
A One-Time Single-bit Fault Leaks All

Previous NTRU-HRSS Session Keys

to a Chosen-Ciphertext Attack

Daniel J. Bernstein1,2(B)

1 Department of Computer Science, University of Illinois at Chicago, Chicago, USA
2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany

djb@cr.yp.to

Abstract. This paper presents an efficient attack that, in the standard
IND-CCA2 attack model plus a one-time single-bit fault, recovers the
NTRU-HRSS session key. This type of fault is expected to occur for
many users through natural DRAM bit flips. In a multi-target IND-
CCA2 attack model plus a one-time single-bit fault, the attack recovers
every NTRU-HRSS session key that was encapsulated to the targeted
public key before the fault. Software carrying out the full multi-target
attack, using a simulated fault, is provided for verification. This paper
also explains how a change in NTRU-HRSS in 2019 enabled this attack.

Keywords: Chosen-ciphertext attacks · Natural faults · Implicit
rejection

1 Introduction

In 2016, the call for submissions for the NIST Post-Quantum Cryptography
Standardization Project [78] said that NIST intends to standardize “one or more
schemes that enable existentially unforgeable digital signatures with respect to
an adaptive chosen message attack” and “one or more schemes that enable
‘semantically secure’ encryption or key encapsulation with respect to adaptive
chosen ciphertext attack”—in other words, signature systems providing EUF-
CMA security, and PKEs or KEMs providing IND-CCA2 security.

The EUF-CMA game allows the attacker to call an oracle that signs arbitrary
messages; the only restriction is that the attacker does not win the game if

This work was funded by the Intel Crypto Frontiers Research Center; by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) as part of the Excel-
lence Strategy of the German Federal and State Governments—EXC 2092 CASA—
390781972 “Cyber Security in the Age of Large-Scale Adversaries”; by the U.S. National
Science Foundation under grant 1913167; by the Taiwan’s Executive Yuan Data Safety
and Talent Cultivation Project (AS-KPQ-109-DSTCP); and by the Cisco Univer-
sity Research Program. “Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation” (or other funding agencies). Permanent ID
of this document: 662cf4ad8f5bff33ae4d71d56051a656d8a62e48. Date: 2022.10.24.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 617–643, 2022.
https://doi.org/10.1007/978-3-031-22912-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_27&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_27

618 Daniel J. Bernstein

the attacker’s forged message was specifically provided as input to the oracle.
Similarly, the IND-CCA2 game for KEMs allows the attacker to call an oracle
that decapsulates arbitrary messages, although the attacker does not win the
game if the oracle was used specifically to decapsulate the target message.

An application providing such powerful oracles is thoroughly flawed and
should not be used. But applications do sign and decapsulate some mes-
sages, providing some of the same information. Aiming merely for security in
the absence of such oracles would then be a disaster, as illustrated by Ble-
ichenbacher’s million-message attack [24], which was demonstrated against real
HTTPS servers and played an important role in ensuring attention to chosen-
ciphertext attacks. See also [25] demonstrating continued exploitability of essen-
tially the same attack against some servers two decades later.

Sometimes the literature suggests that it suffices to aim for security against
the oracles provided by applications.1 But this would be an evaluation night-
mare. One would have to check all the different ways that applications handle
signatures and decapsulations, consider how this can change in the future, and
then evaluate whether a cryptographic system is secure in all of these contexts.
So the community asks for EUF-CMA signature systems and for IND-CCA2
KEMs, rather than for something weaker.2

The literature often presents a simpler justification for stronger security mod-
els: namely, the blanket statement that it is always better (e.g., “more conser-
vative”) to ask for security in stronger models.3 This blanket statement goes far
beyond saying that it is better to ask for IND-CCA2 than for IND-CPA: it also
implies that any proposal to replace IND-CCA2 with stronger model M1 should
be accepted, and then any proposal to replace M1 with a stronger model M2

should be accepted, and so on. This is its own form of evaluation nightmare.
The critical question to ask is how to manage the risk of real-world security

failures so as to best protect real users from attack. The answer cannot be to
devote more and more security-analysis resources to more and more obscure
risks: time taken chasing a neverending series of academic targets is time taken
away from ensuring more important security properties. This does not imply,
however, that the right answer is to stop with EUF-CMA and IND-CCA2.

1 See, e.g., [77]: “We conclude that the CNS attack is a concern for the ISO 9796-2
signature scheme with partial message recovery in environments where the attacker
is capable of obtaining the signatures of a significant number (e.g., one million) of
chosen messages. In environments where the attacker is not capable of obtaining
these signatures, the CNS attack is not a concern.”.

2 Exception: In the context of protocols that use the cryptosystem key just once, such
as the SIGMA approach to secure sessions, the literature often encourages targeting
merely IND-CPA. See [60] for a recent example. On the other hand, it is a mistake
from a systems-security perspective to give users (1) a cryptosystem designed for
IND-CCA2 and (2) a non-IND-CCA2 cryptosystem designed merely for IND-CPA.
As [71] put it: “CPA vs CCA security is a subtle and dangerous distinction, and if
we’re going to invest in a post-quantum primitive, better it not be fragile.”.

3 Occasionally exceptions are made for security notions proven to be unachievable.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 619

1.1. Fragility. Beyond EUF-CMA security and IND-CCA2 security, NIST’s
call for submissions said that “additional security properties . . . would be desir-
able”. Let’s focus on the last item in NIST’s list:

A final desirable, although ill-defined, property is resistance to misuse.
Schemes should ideally not fail catastrophically due to isolated coding
errors, random number generator malfunctions, nonce reuse, keypair reuse
(for ephemeral-only encryption/key establishment) etc.

In 2018, a catastrophic failure was reported in Dilithium because of an iso-
lated coding error in the official Dilithium software. Specifically, the software
generated random values incorrectly, reusing randomness at a place where the
specification instead generated new randomness; [75] announced that this “reuse
of randomness can easily be exploited to recover the secret key”. Evidently
Dilithium fails to provide “resistance to misuse”.

On the other hand, it is difficult to imagine how any scheme could prevent
“isolated coding errors” from causing catastrophic failures,4 never mind all the
other forms of potential “misuse”. Did NIST have some reason to think that
“resistance to misuse” could be achieved?

Perhaps the intent was not to ask the yes-no question of whether one can
construct a misuse scenario, but rather the tricky risk-assessment question of how

likely it is for people to make mistakes that will cause a scheme to fail. It could
be that other cryptographic systems are more failure-prone than Dilithium, and
that the official Dilithium software was simply unlucky.

It is not easy to evaluate such a complicated, open-ended security “property”.
The lack of a clear definition violates the following Katz–Lindell [68] statement:
“One of the key intellectual contributions of modern cryptography has been the
realization that formal definitions of security are essential prerequisites for the
design, usage, or study of any cryptographic primitive or protocol.” It is also easy
to see how an attacker can use this “property” as a tool to attack cryptosystem-
selection processes, promoting weaker cryptosystems by selectively objecting to
stronger cryptosystems.5

4 A standard could insist that implementors take a majority vote of three independent
implementations, but experience shows that there are correlations among errors from
different implementors. Furthermore, a coding error could replace the majority vote
with taking just the result of the first implementation, or an implementor could
“misuse” the scheme by taking just one implementation; either way, a coding error in
that implementation could cause disaster even if other implementations are perfect.

5 In its latest report [2], NIST criticized Classic McEliece for a “misuse scenario” where
“reusing the same error vector when encapsulating for multiple public keys” would
damage security—even though (1) there have been no examples of this scenario occur-
ring for Classic McEliece, (2) the official Classic McEliece software has always used
RNGs correctly, and (3) no encapsulation mechanism is safe against external RNG
failures. Meanwhile none of NIST’s reports criticized Dilithium for the “misuse sce-
nario” of reusing randomness inside a single signature—even though (1) this scenario
occurred in the official Dilithium software, (2) this destroyed the security of that soft-
ware, and (3) the problem was in that software, not in an external RNG.

620 Daniel J. Bernstein

The literature nevertheless provides clear reasons to believe that some cryp-
tographic systems are more failure-prone than others. For example, for ECDH
systems that transmit curve points in affine coordinates (x, y), there are endless
reports (e.g., [21]) of implementations that fail to check whether the incoming
point is on the curve, and that are easily breakable as a result. This attack is
structurally eliminated by ECDH systems that (as in [8] and [9]) choose twist-
secure curves and transmit merely x.

Presumably there are also ways to adjust post-quantum design decisions to
reduce the chance of implementation failures. It is important to keep in mind
here that there is far less evidence available today regarding post-quantum imple-
mentation failures than regarding pre-quantum implementation failures, and the
general difficulty of evaluating implementation security means that claims of
security improvements need to be investigated carefully before they are used for
making decisions. This is not a reason to avoid study of the topic.

1.2. Natural DRAM Faults. In 2009, Schroeder, Pinheiro, and Weber [93]
reported the results of a 2006–2008 study of failure rates in the DRAM in “the
majority of machines in Google’s fleet”. The observed failure rates were “25,000
to 70,000 errors per billion device hours per Mbit”.

Conventional SECDED ECC DRAM encodes 64 bits of logical data in 72 bits
of physical DRAM, using a distance-4 linear error-correcting code.6 “SECDED”
here means “single-error correcting, double-error detecting”, and “ECC” means
“error-correcting code”. In particular, SECDED ECC DRAM corrects any single
bit flip, while reporting the correction to the operating system. Some computer
buyers make sure to buy SECDED ECC DRAM; this is also how the study
from [93] collected data.

However, most computing devices today simply store 64 bits of logical data
in 64 bits of physical DRAM. Any single physical bit flip is then a logical bit flip,
directly corrupting data, with no warning to the user. For example, flipping a
single bit in DRAM can silently convert the ASCII letters “NTRU” to “NTRW”.

Consider a reasonably popular cryptosystem that, worldwide, has a billion
active 256-bit keys stored in DRAM without SECDED. An extrapolation from
the error rates reported in [93] suggests that between 50000 and 140000 of those
keys will have a bit flipped each year.7 This is frequent enough to mandate
investigation of the security consequences.

6 This 12.5% overhead is not the best that can be done. The overhead of a distance-4
error-correcting code, such as an extended Hamming code, drops as the dimension
increases. DRAM today is normally accessed in 512-bit blocks (“lines”), larger than
the 64-bit blocks conventionally used for SECDED. A 512-bit line encoded as 528
bits can be stored as 16 bits on each chip in a 33-chip module, which in principle
should cost just 3.125% more than a 32-chip module; and 523 bits are enough to
encode 512 bits with SECDED, as noted in, e.g., [104].

7 Presumably this is an underestimate of the error rate: one would not expect average
user devices to be as reliable as Google’s air-conditioned, systematically monitored,
frequently replaced servers.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 621

1.3. Contributions of This Paper. This paper shows that, in the IND-CCA2
attack model augmented to include a one-time flip of one bit stored by the legiti-
mate user, NTRU-HRSS is devastatingly insecure: there is an efficient attack that
recovers the NTRU-HRSS session key. In a multi-target IND-CCA2 attack model
similarly augmented to include a one-time single-bit fault, the same attack effi-
ciently recovers all of the NTRU-HRSS session keys that were encapsulated to
the targeted public key before the fault.

Section 4.2 presents the full multi-target attack. For verification, as a sup-
plement to this paper, attack software is provided that carries out the multi-
target attack against the official NTRU-HRSS software, using a simulation of
the required fault. See Sect. 2 for a comparison to previous fault attacks.

Section 4.3 formulates analogous fault attacks against Streamlined NTRU
Prime and Classic McEliece, and explains why both of those attacks are blocked
by plaintext confirmation, a CCA defense already built into the CCA conversions
inside those cryptosystems. (This should not be interpreted as a claim that
Streamlined NTRU Prime and Classic McEliece are immune to all fault attacks.)
See Sect. 3 for a survey of chosen-ciphertext attacks and defenses.

Interestingly, NTRU-HRSS had included the same CCA defense in its orig-
inal design, but then removed the defense on the basis of papers claiming to

have proven that the defense was not necessary. See Sect. 4.4. Those papers were
considering a more limited attack model.

2 Fault Attacks

This section explains how this paper’s fault attack fits into the broader literature
on fault attacks.

A fault is like a software bug or a hardware bug in that it complicates analyses
of computer behavior: it violates the implicit assumption that each computation
is being carried out correctly. As a further complication, a fault is like a physical
side channel in that it comes from physical effects whose boundaries are hard to
formalize and analyze. Even if a system is secure in the absence of faults, the
attacker can hope that the system becomes breakable when faults occur.

2.1. A Generic Fault Attack. If one wants to skip the complications of ana-
lyzing physical effects—or if one believes the blanket statement that it is better
to ask for security in stronger models; see Sect. 1—then one might hypothe-
size that the attacker has the power to induce arbitrary faults in computations.
Under this hypothesis, the following generic fault attack extracts the internal
secrets from any computation whose output is visible to the attacker.

View the computation as an unrolled circuit consisting of NAND gates, and
consider a NAND gate a, b �→ 1 − ab producing output at the end of the com-
putation. If the output is 0 then a = b = 1. Otherwise the attack deduces

622 Daniel J. Bernstein

a, b by re-running the computation with a bit-flip fault on a and then with a
bit-flip fault on b. The attack now knows the inputs to the NAND gate.

The attack then targets the inputs to an earlier NAND gate that produced
a, while using a set-to-1 fault to force b = 1 so that changes in a are visible as
changes in the output 1 − ab. Set-to-1 faults can also be used in place of the
bit-flip faults in the previous paragraph.

The attack proceeds upwards in the same way through each gate to extract
the entire internal state of the computation. The number of runs of the compu-
tation is Θ(n) where n is the circuit size. Each run uses O(d) faults to ensure
that the targeted bit is visible in the output, where d ≤ n is the circuit depth.

Internal checks in the computation, such as verifying signatures before releas-
ing them, do nothing to stop this attack: checks are just like any other computa-
tion in succumbing to faults. Randomizing the computation simply requires the
attacker to apply further faults to zero the randomness. Destroying the device
after 1000 computations requires keeping track of the number of computations;
the attacker can apply faults to zero that number. Destroying the device after one

computation does not need a counter but still requires triggering a self-destruct
mechanism; the attacker can apply faults to clear the trigger.

2.2. Specializing, Optimizing, and Demonstrating the Generic Fault

Attack. A typical fault attack in the literature can be viewed as (1) specializing
the generic attack from Sect. 2.1 to a particular target and (2) optimizing the
specialized attack so that the attacker does not need to induce as many faults.
The resulting attacks vary in how many faults they use and in how precisely
targeted those faults are.

Sometimes fault-attack papers include real-world demonstrations that one can
produce the necessary faults by, e.g., heating a circuit, firing lasers at the circuit,
etc.; see, e.g., [34]. Sometimes faults can be induced by software; see, e.g., [94].

For most attacks, one cannot reasonably expect the requisite faults to occur
naturally. One can try to stop these attacks by cutting off data flow that the
attacker might be able to use to induce faults in the legitimate user’s compu-
tation. This includes keeping the attacker physically away from the device, and
constraining software behavior so as to avoid faults.

2.3. Natural-Fault Attacks. Occasionally a fault attack relies on such a small
number of faults that one can expect naturally occurring physical effects to
produce the requisite faults. Eliminating the attacker’s ability to induce faults
does nothing to stop an attack of this type. The classic example, pointed out by
Boneh, Demillo, and Lipton [27], is as follows.8

8 As a different example of using just one fault, consider the IND-CCA2 game for
KEMs. The attacker is free to send a ciphertext with one bit flipped, and to inspect
the resulting session key; now simply hypothesize that a fault flips the bit back at
the beginning of decapsulation. One reason that this is a less satisfactory example
than [27] is that it requires a specific fault to occur during a narrow window of time,
while a fault in a stored secret key at any moment—something more likely to occur
naturally—opens up the attack of [27].

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 623

The job of an RSA signer is to compute an eth root s of h modulo pq, where
(pq, e) is the public key and h is a hash of the message being signed. This is the
same as computing s = hd mod pq for a suitable decryption exponent d. “RSA-
CRT”, the usual speed-oriented choice of RSA signature algorithm, computes
an eth root sp of h modulo p as hdp mod p where dp = d mod (p − 1), computes
an eth root sq of h modulo q, and combines sp with sq to obtain s.

Now say the signer signs the same message again, but this time there is a
fault in the computation of sp—anything that changes the output; e.g., a bit flip
in dp. The resulting signature S will then be the same as the correct signature s
modulo q but not modulo p, and the attacker can compute q as gcd{S − s, pq}.

A variant by Lenstra [72] is to compute q as gcd{Se − h, pq}. This variant
assumes that the attacker also sees the message m being signed, but avoids the
need for multiple signatures of m, so the attack works with passive observation
of objects that are normally sent in the clear, namely messages and signatures.

One of the countermeasures suggested in [27] is to check signatures before
releasing them. In real-world RSA, the exponent e is chosen to be small, so the
check adds very little to the cost of signing. But typical RSA descriptions do not
include this check, and typical tests of RSA software do not detect the check, so
it is easy to imagine RSA software being deployed without the check.

Sullivan–Sippe–Heninger–Wustrow [96] announced in 2022 that they had
exploited faults to extract “private RSA keys associated with a top-10 Alexa
site” and “browser-trusted wildcard certificates for organizations that used a
popular VPN product”. [96, Section 5.3] found some hosts producing bad sig-
natures for months, suggesting that faults “are persistent: disk corruption or
memory corruption affecting the private key.” Other faults were transient; per-
haps a secret key was copied from disk to DRAM, then a bit flipped in DRAM,
and then the same DRAM was reused for other data, wiping out the flipped
bit. On the other hand, [96] reported unsuccessfully trying some possibilities for
flipped bits. Another hypothesis noted in [96] is “failing hardware”.

2.4. Algorithm Dependence in Natural-Fault Attacks. At the time of
[27], the primary RSA specification was PKCS #1 v1.5, released in 1993. Secret
keys were specified to have the following components (see [66, Section 7.2]): the
public key n; the encryption exponent e; the decryption exponent d; the secret
primes p and q; the integers dp and dq; and the inverse of q modulo p. There are
many ways to double-check these secret keys so as to detect flipped bits: check
whether n matches pq, check whether dp matches d mod (p − 1), check whether
ed is 1 modulo p − 1, etc. With more work one can correct flipped bits (and also
correct any errors that might occur inside the signing computation).

Consequently, the fault attack from [27] was an attack against some

algorithms computing the specified signing function. Stopping the attack
required changing commonly used algorithms (for example, to check signatures
as mentioned above), but did not require a new specification of the signing
function,9 new test vectors, etc.

9 Perhaps the signing function could have been changed to reduce the chance of
problems—see Sect. 1.1—but this is a separate issue.

624 Daniel J. Bernstein

As another example of algorithm dependence in natural-fault attacks, con-
sider the following three versions of the Ed25519 signature system:

• In standard Ed25519 (see [63]), the secret key is a 32-byte string that is hashed
to obtain (1) a secret scalar and (2) another secret that is hashed together
with the message to obtain a nonce. Any bit flip in the stored secret key will
produce completely different hash output, leading to garbage signatures of no
evident value for the attacker.

• In the most commonly used variant of Ed25519, the secret key is 64 bytes:
the same 32-byte string as above, plus a copy of the 32-byte public key. With
the simplest signing algorithm, a fault in these 64 bytes will leak the secret
key. This is an algorithm-dependent attack; a signing algorithm that double-
checks the secret scalar against the public key will detect the fault.

• A more efficient fault-attack countermeasure incorporates another 32 bytes
of randomness into the input to the hash producing the nonce, without the
cost of checking the public key. This variant of Ed25519 was considered in,
e.g., [11] and (as a fault-attack countermeasure) [85, Section 8].

To summarize, the availability of fault attacks is sensitive to details of (1) the
cryptosystem at hand and (2) the algorithms used for that cryptosystem.

2.5. Comparison. Like the attack from [27] against RSA-CRT, this paper’s
attack against NTRU-HRSS works if a single bit is flipped in a stored secret key,
an event that will occur naturally for some users.

Unlike the attack from [27], this paper’s attack has the further feature of
being algorithm-independent: it works against any algorithm that computes
the specified function of the secret key. The NTRU-HRSS secret key does not
contain any data that a decapsulation algorithm can use to detect the fault
exploited in this paper’s attack. This paper’s attack against NTRU-HRSS is
thus a decapsulation-algorithm-independent natural-fault attack.

A disadvantage of this paper’s attack (compared to the attack from [27] with
the improvement of [72]) is that it is active. The attack takes full advantage of
the flexibility of the attack model: for each target ciphertext, the attack sends
some modified versions of the ciphertext before and after the fault occurs, and
sees some information about the resulting session keys. Hopefully the application
does not actually provide so much flexibility to the attacker. On the other hand,
the rationale for asking for IND-CCA2 security (see Sect. 1), rather than inves-
tigating whether IND-CCA2 security is overkill for applications, applies with
equal force when one extends the IND-CCA2 attack model to include a natural
fault. It is interesting that the IND-CCA2 security of NTRU-HRSS is so fragile
in the presence of natural faults.

Another disadvantage of this paper’s attack is that it is recovering only ses-
sion keys, not Alice’s secret key. On the other hand, the reason an attacker wants
to recover Alice’s secret key is to be able to recover all session keys; this attack
recovers all session keys that were communicated before the fault.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 625

2.6. The Cold-Boot Argument Against Error Correction. The litera-
ture on cold-boot DRAM attacks often uses redundancy in stored data to cor-
rect flipped bits; see, e.g., [49, Section 5]. This is occasionally used as an argument
that secret data should be stored in maximally compressed format; see, e.g., [49,
Section 8, “suggested countermeasures”, including “avoiding precomputation”].
The same argument implies that users should not include redundancy in data to
detect and correct errors, and in particular should not use SECDED ECC DRAM;
[49, Section 3.4] says “ECC memory could turn out to help the attacker”.

However, users who avoid SECDED ECC DRAM are exposed to a large
class of hard-to-analyze correctness risks and security risks that they would oth-
erwise have avoided. Meanwhile it is clear that well-executed cold-boot DRAM
attacks rarely encounter errors in the first place (see, e.g., [49, Table 2, “no
errors” entries]) and are thus not stopped by attempts to avoid redundancy.

Encrypting DRAM, using a key stored in better-protected hardware, is a sim-
pler and much more convincing defense to cold-boot DRAM attacks. Encrypting
DRAM is also compatible with SECDED ECC DRAM and other protections
against faults.

3 Chosen-Ciphertext Attacks and Defenses

This section surveys the general structure of chosen-ciphertext attacks against
code-based and lattice-based systems, and of various cryptosystem features that
seem to interfere with these attacks. Beware that the literature often overstates
the extent to which (some of) these features are known to interfere with these
attacks; see Sect. 4.4.

The round-3 versions of NTRU-HRSS, Streamlined NTRU Prime, and Classic
McEliece are used as running examples, abbreviated ntruhrss, sntrup, and
mceliece respectively. Table 3.1 summarizes the features of these cryptosystems.

3.2. Ciphertext Structure. Throughout this section, Bob’s ciphertext has
the form B = bG + d, where G is Alice’s public key and b, d are secrets, in
particular with d chosen to be small. The choice of letters here is as in [12,
Section 8], unifying notation between ECDH, “noisy DH” lattice-based and code-
based systems, and further lattice-based and code-based systems.

The mceliece description uses an optimized ciphertext structure due to
Niederreiter: simply He, where H is the public key and e is small. However,
H internally consists of two parts, an identity matrix and another matrix Q, so
He can be written as e1 + Qe2. This is, modulo transposition and relabeling,
again a ciphertext of the form bG + d.

3.3. Decryption. Alice uses her private key to recover b and d. Let’s assume
at the outset that this recovery process is labeled as a PKE returning plaintext
(b, d).

The original McEliece system [76] instead viewed b as the plaintext—not
required to be small—and d as something chosen randomly in encryption. The
original NTRU system [52] instead viewed d as the plaintext and b as something

626 Daniel J. Bernstein

Table 3.1. Cryptosystem features that seem to (but do not necessarily) interfere
with chosen-ciphertext attacks. The mceliece, sntrup, and ntruhrss columns indi-
cate whether the features appear in Classic McEliece, Streamlined NTRU Prime, and
NTRU-HRSS respectively. All entries are for the round-3 versions of mceliece, sntrup,
and ntruhrss; implicit rejection appeared in sntrup and ntruhrss in 2019, while plain-
text confirmation was removed from ntruhrss in 2019.

feature (see main body for definitions) mceliece sntrup ntruhrss

hashing the plaintext yes yes yes

rigidity yes yes yes

no decryption failures yes yes yes

plaintext confirmation yes yes no

implicit rejection yes yes yes

hashing the ciphertext yes yes no

limited ciphertext space beyond small plaintext no yes no

limited plaintext space beyond small plaintext no no no

no derandomization yes yes yes

chosen randomly in encryption. A 1996 NTRU handout [53, Section 4.2] had
also considered a deterministic PKE with (b, d) as the plaintext—although this
handout was not put online until 2016, after deterministic NTRU PKEs had
already been recommended in, e.g., [10].

Linear algebra easily recovers b from bG (assuming G is public and injective),
but recovering b from a noisy multiple bG+d is conjectured to be hard (for appro-
priate choices of parameters). This conjecture is often described as conjectured
hardness of the “LPN”, “LWE”, “Ring-LPN”, “Ring-LWE”, “Module-LPN”, or
“Module-LWE” problems (again for appropriate choices of parameters), where
the choice of name depends on various details of the algebraic structure contain-
ing G. These problems, in turn, are typically claimed to have been introduced in
various 21st-century papers. However, the original McEliece [76] and NTRU [52,
Section 3] papers had already analyzed the cost of various algorithms for the
cases of LPN and Ring-LWE that matter for those cryptosystems, so it is wrong
to credit those problems to subsequent papers. There is some value in general-
izing the problems (for example, to study other cryptosystems), but credit for
the general problems has to include credit to the cases considered earlier.

The rest of this paper ignores the possibility of recovering (b, d) purely from
(G, bG+d), and instead focuses on the extra power of chosen-ciphertext attacks.

3.4. Exploiting Linearity for Chosen-Ciphertext Attacks. Given the lin-
ear structure of a ciphertextB = bG+d and the definition of IND-CCA2 security,10

the obvious attack sends a modified B′ = B + δ = bG + d + δ for some small
nonzero δ. The attacker hopes that the decryption process successfully returns

10 Beware that there are several slightly different definitions of IND-CCA2 security for
PKEs. See generally [7].

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 627

(b, d + δ), at which point the attacker simply subtracts δ and wins. The attacker
chooses δ to be small because decryption does not work for arbitrarily large d.

For example, a mceliece decoder requires (b, d) to have a specific Hamming
weight. The attacker chooses a random weight-2 vector δ, a vector of the form
(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0). There is then a good chance that (b, d + δ) has
the right weight, meaning that decryption returns (b, d + δ). Various features
described below are included in mceliece to stop this attack.

In the same example, the attacker can, more generally, choose B′ = B+βG+δ
where β, δ have total weight 2. To simplify notation, the comments below focus
mainly on B′ = B + δ, but similar comments apply to B′ = B + βG + δ.

3.5. Feature 0: Hashing the Plaintext. As a preliminary step in limiting
the information provided to chosen-ciphertext attacks, let’s switch from a PKE
to a KEM that hashes the plaintext.

Specifically, let’s define encapsulation to choose the input (b, d) randomly
(not necessarily uniformly; other distributions can be more convenient), and let’s
define decapsulation to return a hash H(b, d). The attacker sending B + δ and
receiving H(b, d + δ) has no obvious way to reconstruct or otherwise recognize
H(b, d), unless the hash function H is remarkably weak.

Let’s assume from now on that the goal is to build a KEM that resists chosen-
ciphertext attacks. This was the target for most encryption submissions to the
NIST Post-Quantum Cryptography Standardization Project, and in particular is
the target for ntruhrss, sntrup, and mceliece. Internally, each of these KEMs
is built from a PKE that produces ciphertext bG + d and recovers (b, d), or
something equivalent to (b, d), during decryption.

Generic transformations convert any KEM into various other cryptographic
objects. For example, in the paper [95] that introduced the KEM abstraction
(and specifically KEMs that hash the plaintext), Shoup built a PKE handling
variable-length user messages by using a KEM to encapsulate a session key and
then using symmetric cryptography to encrypt user data under that key.

There are arguments against using KEMs. For example, the literature
explains how to build a variable-length PKE with smaller ciphertexts by encod-
ing some of the user data inside the input to a fixed-length PKE: in particular,
encoding some user data inside (b, d). The usual approach is to take some ran-
domness and some user data, apply an “all-or-nothing transform” (see generally
[91]), and encode the result as (b, d); decryption reverses these steps. However,
the space savings seems less important than the simplification of independently
analyzing a KEM layer. All-or-nothing transforms might still be useful inside
KEM designs; see Sect. 3.14 below.

3.6. Probing the Boundaries of Successful Decryption. Hashing by itself
does not stop chosen-ciphertext attacks. The main issue is that the attacker
sending B + δ does not always receive a hash of (b, d+ δ). Sometimes d+ δ is too
large to be decoded successfully, and then decapsulation returns a failure report
instead of a hash.

628 Daniel J. Bernstein

The pattern of successes and failures is valuable information for the attacker.
For example, consider again the mceliece decoder, which works exactly when
(b, d) has a specific weight. If adding δ = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) ∈ F

n
2 to

d preserves weight then exactly one of the two 1 positions must match a position
set in d. Seeing enough such δ quickly reveals all of the positions in d. One can
try to accelerate this by using each failing δ as a statistical indication that both
1 positions are likely to be unset in d, but the attack works quickly in any case.

This attack against the original McEliece system was introduced by Hall,
Goldberg, and Schneier in [50] and by Verheul, Doumen, and van Tilborg in [101]
(which says it was submitted in 1998, before [50] appeared). To be more precise,
this is essentially the attack in [101, Section 4]; the attacks in [50, Section 2] and
[101, Section 3] are variants that assume that the decoder works when d has at

most a specific weight.
As another example, ntruhrss chooses d ∈ Z[x]/(xn − 1) as x − 1 times

a polynomial T with coefficients in {−1, 0, 1}, and checks the same condition
during decapsulation. Adding δ = 2(x−1) changes T to T +2, which works when
the constant coefficient of T is −1 and seems very unlikely to work otherwise;
adding δ = −2(x − 1) works when the constant coefficient of T is 1; adding
δ = 2x(x − 1) works when the next coefficient of T is −1; etc.

3.7. Probing as an Attack Against the Secret Key. Failure patterns have
further consequences for PKEs that are not rigid. Non-rigidity means that the
specified decryption function can successfully decrypt multiple ciphertexts to the
same plaintext.

For example, recall that the original NTRU system has just d as a plaintext,
with b chosen randomly in encryption. A closer look at the system reveals that
decrypting B + βG for small β has a good chance of producing d—there are
multiple ciphertexts that produce the same plaintext—and then the resulting
session key is exactly the legitimate user’s session key, breaking IND-CCA2.

Even worse, the pattern of successes and failures for small β reveals the
secret key. Here the attacker does not need to see any information about the
session keys except for knowing which B + βG succeeded and which failed. This
paper suppresses details of this attack, aside from noting that it is easiest for the
attacker to begin with a known (b, d). Attacks of this type against NTRU were
published by Hoffstein–Silverman [54] and Jaulmes–Joux [62]; variants include
[45], [38], [40], [17], [4], [39], [59], [81], [22], [88], [105], and [89].

An analogous problem occurs for PKEs that have decryption failures, mean-
ing that the specified decryption function will sometimes fail to decrypt a legit-
imate ciphertext to the original plaintext. For example, the original NTRU sys-
tem had a noticeable frequency of decryption failures, and this was exploited
by Howgrave-Graham, Nguyen, Pointcheval, Proos, Silverman, Singer, and
Whyte [56] to recover the secret key.

3.8. Feature 1: Rigidity. The first step in limiting the power of probing is
to choose a rigid PKE, so that multiple ciphertexts cannot produce the same
plaintext. It is easy to convert any deterministic PKE into a rigid PKE by

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 629

modifying decryption to reencrypt the plaintext and to check the result against
the ciphertext. This is the Fujisaki–Okamoto [46] transform in the case of deter-
ministic PKEs.

All of ntruhrss, sntrup, and mceliece are designed as rigid PKEs starting
from deterministic PKEs, although not always with an obvious step of reen-
crypting via the encryption procedure:

• Simple facts about error-correcting codes are used inside mceliece to acceler-
ate the reencryption procedure. The resulting algorithm uses, asymptotically,
an essentially linear number of operations, and avoids storage of the public
key inside the private key.11

• For ntruhrss, the reencryption procedure is optimized to share a multiplica-
tion with the original decryption algorithm.

• For sntrup, the original decryption algorithm automatically avoids the anal-
ogous multiplication (since d is chosen by rounding), and reencryption simply
calls the same procedure as encryption.

What matters for this feature is not whether there is a visible reencryption step,
but whether the resulting PKE is rigid; this is why Table 3.1 lists “rigidity”
rather than “reencryption”.

3.9. Feature 2: No Decryption Failures. The second step in limiting the
power of probing is to choose a PKE where the specified decryption function
always recovers the original plaintext from the corresponding ciphertext. There
are no decryption failures in ntruhrss, sntrup, and mceliece.

Note that “no decryption failures” refers to decryption failures for cipher-
texts obtained from the encryption algorithm. Decryption can still fail for other
ciphertexts created by the attacker.

If a rigid PKE has no decryption failures then it decrypts exactly the cipher-
texts bG + d for a key-independent set of valid plaintexts (b, d). An attacker
replacing B = bG + d with B′ = B + βG + δ will obtain a valid ciphertext if
(b+β, d+δ) is in the same key-independent set, and presumably will not obtain a
valid ciphertext if (b+β, d+δ) is not in this key-independent set. Otherwise some
valid (b′, d′) �= (b+β, d+δ) has B′ = b′G+d′, i.e., (b+β−b′)G+(d+δ−d′) = 0;
but it is supposed to be hard for the attacker to find small nonzero s, t such that
sG + t = 0. Taking large β or large δ seems even less useful.

In short, there is no obvious way for the attacker to find (β, δ) where fail-
ures will provide any information about the secret key. In the absence of such
information, the secret key is protected against the attack of Sect. 3.7.

However, the attacker can still target the legitimate user’s plaintext (b, d) via
the attack from Sect. 3.6. This is addressed in Sect. 3.10.

11 See generally [14, Section 8]. Even better, the usual decoding algorithm inside
mceliece is shown in [14, Section 7] to be rigid even without reencryption. How-
ever, [14, Section 8.4] recommends reencryption for robustness.

630 Daniel J. Bernstein

3.10. Feature 3: Plaintext Confirmation. The third step in limiting the
power of probing is to replace the ciphertext B with (B, H ′(b, d)), where H ′ is
another hash function, and to check H ′(b, d) on decryption. This transformation
was published by Dent [37, Table 4] and is now known as plaintext confirmation.

The point of plaintext confirmation is to prevent the attacker from modifying
a ciphertext for the legitimate user’s secret (b, d) into a ciphertext for (b, d + δ).
The attacker can replace B with B+δ, but has no obvious way to replace H ′(b, d)
with H ′(b, d + δ) without first finding (b, d). If the attacker knew (b, d) then the
attacker could compute the session key H(b, d) without bothering to carry out
a chosen-ciphertext attack. An attacker can still choose (b, d) and modify the
resulting ciphertext to try to attack the secret key, but this is addressed by a
rigid PKE without decryption failures; see Sect. 3.9.

Typically H and H ′ are both chosen as a cryptographic hash function applied
to separate input spaces: H(b, d) = F (1, b, d) and H ′(b, d) = F (2, b, d). An alter-
native is to choose H and H ′ as the left and right halves of the output of a
cryptographic hash function: F (b, d) = (H(b, d), H ′(b, d)). Obviously one must
not select H ′ as H, or as any other function whose outputs reveal the H outputs
on the same inputs; see [6] for examples of attacks against real proposals where
H and H ′ were not adequately separated.

3.11. Feature 4: ImplicitRejection. An alternative to plaintext confirmation
is “implicit rejection”. This means replacing any failure output for a ciphertext
B with a string H(r, B), where r is a random string, part of Alice’s secret key.

The idea is that replacing the failures with random garbage hides the pattern
of successfully modified ciphertexts. The attacker sees H(b, d+δ) in success cases
and H(r, B + δ) in failure cases, and—without knowing (b, d) in advance—has
no way to distinguish these situations.

For comparison, plaintext confirmation stops the attacker’s B +δ from being
a valid ciphertext. These features are compatible: one can use implicit rejection
to hide the pattern of successes, and use plaintext confirmation to limit the
attacker’s ability to create a pattern of successes in the first place.

With implicit rejection, care is required to avoid leaking the pattern of failures
through timing. A typical approach starts with B, computes (b, d) in constant
time along with a bit indicating failure, computes H(r, B), computes H(b, d),
and uses the bit to select either H(r, B) or H(b, d) in constant time.

More generally, one can replace any failure output with R(B), where R is
a secretly keyed function producing output of the same length as the normal
hash outputs H(b, d). Well-studied message-authentication codes are faster than
general-purpose hash functions.

Implicit rejection was introduced by Persichetti [86] in the McEliece context,
and generalized by Hofheinz–Hövelmanns–Kiltz [55].

3.12. Feature 5: Hashing the Ciphertext. Instead of choosing the session
key as H(b, d), one can choose it as H(b, d, B) where B is the ciphertext. If an
attacker-chosen B + δ decrypts to the same (b, d) then the resulting session key
H(b, d, B + δ) will be different from H(b, d, B).

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 631

This extra hash input hides any collisions produced by decryption. For com-
parison, reencryption creates rigidity, preventing any collisions from appearing
in the first place. These features are compatible. Note the analogy to implicit
rejection hiding the pattern of successfully modified ciphertexts while plaintext
confirmation eliminates those ciphertexts.

For implementors, a convenient feature of using H(b, d, B) for a valid session
key and H(r, B) for implicit rejection is that one can easily merge the hash
calls if r has the same length as (b, d). Security analysis is slightly easier if a
valid session key uses H(1, b, d, B) and implicit rejection uses H(0, r, B); this
still allows the same merging.

Hofheinz–Hövelmanns–Kiltz [55] observed that ciphertext hashing changed
what they could prove regarding security. See [19, Appendix A.5] for an example
of a broken cryptosystem that seems to be rescued by ciphertext hashing.

3.13. Feature 6: Limited Ciphertext Space. Another way to reduce the
attacker’s ability to modify ciphertexts is to force legitimate ciphertexts bG + d
to be in a constrained set checked by Alice.

For example, sntrup chooses b randomly, and then rounds each entry of bG
to the nearest multiple of 3 to obtain B = bG+d; each entry of d is −1 or 0 or 1.
The ciphertext format enforces the multiple-of-3 rule, so an attacker’s modified
ciphertexts also have to follow this rule.

An advantage of constraining ciphertexts via the ciphertext format is that
this constraint does not rely on Alice’s decapsulation algorithm. This does not
mean that the constraint is as effective as other defenses. Typically such cipher-
text constraints are presented as a way to reduce the use of randomness and
reduce ciphertext sizes; there is very little cryptanalytic literature considering
the extent to which these constraints interfere with chosen-ciphertext attacks.12

Here is another example of constraining the set of ciphertexts. Recall that
McEliece’s original cryptosystem has ciphertexts bG+d where b is arbitrary and
d is small. To constrain bG+d to a linear subspace V , first choose a small d and
then find, by linear algebra, b for which bG + d ∈ V . It is easy to select V so
that b always exists and is unique, and it is easy to show that these constrained
ciphertexts bG + d are equivalent to Niederreiter’s ciphertexts.

As noted above, Niederreiter’s ciphertexts can also be viewed as having the
form bG+d, where different variables are now labeled as b, d, G, and where (b, d)
is required to be small. One could further constrain bG+d to a limited subspace
by choosing b randomly and then finding a small d for which bG + d is in that
subspace; this means solving a decoding problem for that subspace.

In Table 3.1, “limited ciphertext space beyond small plaintext” means that
bG + d is constrained beyond requiring small (b, d), so mceliece’s use of

12 Given recent misinformation regarding rounding, it seems necessary to emphasize
that the cryptanalytic question here is whether rounding is stronger than adding
random errors: this attack avenue obviously works against random errors, whereas
analysis is required of the extent to which the attack avenue is blocked by rounding.
See also [90], which finds that rounding complicates side-channel-assisted chosen-
ciphertext attacks.

632 Daniel J. Bernstein

Niederreiter’s ciphertexts does not qualify, whereas further constraining bG + d
as in the previous paragraph would qualify.

3.14. Feature 7: Limited Plaintext Space. One last way to reduce the
attacker’s ability to modify ciphertexts is to limit the space of plaintexts (b, d).

In the standard attacks, the attacker is choosing (β, δ) so that the target
plaintext (b, d) has a noticeable chance of (b + β, d + δ) also being a plaintext.
Constraining the plaintext space can reduce this chance to something negligible.

Typically there is a reasonably efficient way to compress (b, d) into an s-bit
string where the number N of choices of (b, d) is not far below 2s. Normally
N , and therefore 2s, is much larger than 2256. A standard way to sample from
a “structureless” set of s-bit strings is as follows: start with a 256-bit string,
zero-pad to s bits, and then apply an all-or-nothing transform.13 One can then
try decompressing the resulting s-bit string to (b, d); if this fails then one can
try again with a new 256-bit string. Unless there is some surprising interaction
between the all-or-nothing transform and the compression mechanism, each try
will succeed with probability approximately N/2s, and one can statistically check
this with experiments.

Alice, upon decrypting a ciphertext to obtain (b, d), compresses (b, d) to s
bits, inverts the all-or-nothing transform, and checks for the zero-padding. Defin-
ing hashes in terms of the 256-bit string instead of (b, d) forces implementations
to invert the all-or-nothing transform, although one still has to worry that imple-
mentations will skip the zero-padding check.

An alternative way to limit the plaintext space is as follows. Take any
algorithm to randomly generate (b, d), and compose it with any cryptographic
random-number generator producing the necessary bits of randomness from a
256-bit seed. This is generally hard to invert, but one can transmit, as part of
the ciphertext, the seed encrypted under a hash of (b, d).

Because of various patent issues that remain unresolved at the time of this
writing,14 I’m currently limiting time spent investigating Kyber [3] and other
cryptosystems in the GAM/LPR family. However, it is interesting to note that
this family relies on the seed approach for another reason, namely “derandom-
ization”. Care is required here regarding security: my paper [13] gives examples
of cryptosystems where derandomization loses about 100 bits of security, and
the impact of derandomization on GAM/LPR systems requires cryptanalysis.
None of ntruhrss, sntrup, and mceliece have this issue. This is reported in
the “no derandomization” line in Table 3.1.

13 Presumably an all-or-nothing transform is overkill here, since most of the structure
in the plaintext (b, d) is not easy to see in ciphertexts bG + d. It would be inter-
esting to identify the relevant security properties of plaintext sets, and to optimize
construction algorithms and recognition algorithms for secure sets.

14 See, e.g., [2, page 18]: “If the agreements are not executed by the end of 2022, NIST
may consider selecting NTRU instead of Kyber.” There are also various relevant
patents that do not seem to be considered in [2], such as CN107566121A.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 633

4 The NTRU-HRSS Attack

This section presents this paper’s attack against ntruhrss, and describes an
accompanying software package attackntrw [16] that successfully carries out
the attack against existing ntruhrss software with a simulated fault.

This section also presents analogous attacks against sntrup and mceliece,
and explains why these attacks are blocked by the plaintext confirmation built
into sntrup and mceliece. This section continues by reviewing how “provable
security” led ntruhrss to remove plaintext confirmation, and concludes by eval-
uating possible countermeasures to protect ntruhrss.

4.1. Attack Model. The model considered here is the standard IND-CCA2
attack model for KEMs, plus a one-time bit flip at a uniform random position
inside Alice’s stored secret key. “One time” means that there is a time at which a
bit flips—and then the bit stays flipped, not magically returning to its previous
value. The attacker can carry out many chosen-ciphertext queries to the original
secret key before the bit flip and to the new secret key after the bit flip.

The attack below requires the bit flip to occur within 256 specific bits inside
Alice’s secret key. This does not occur with probability 1, but it does occur with
noticeable probability, namely 256/z, where the secret key has z bits. In the real
world, one expects a fault in these 256 bits to naturally occur for the fraction
of users described in Sect. 1.2. Note that padding the secret key, increasing z,
would not reduce the number of users affected, although it would reduce 256/z.

It is easy to see that one can achieve security in this model (unlike the more gen-
eral fault-attack models reviewed in Sect. 2) if and only if one can achieve standard
IND-CCA2 security without faults: simply change the secret-key format to include
error correction, for example with a distance-3 Hamming code or a distance-4
extended Hamming code, and apply an error-correcting decoder inside the decap-
sulation algorithm. However, a KEM that lacks this feature in its secret-key format
might be breakable in this model whether or not it is IND-CCA2. The attack below
shows that ntruhrss is breakable in this model.

The attack is actually stated for multi-target IND-CCA2 (plus a one-time
bit flip), but readers not familiar with multi-target IND-CCA2 can freely focus
on the case of a single target ciphertext.

A weaker starting attack model than IND-CCA2 would suffice for this attack.
What the attack needs to see is simply whether specified pairs of session keys
are identical within the attacker-chosen ciphertexts.

4.2. Attack Details. The available ntruhrss software supports one parameter
set, namely ntruhrss701. The following description focuses on ntruhrss701.

Eve sees Alice’s ntruhrss701 public key G and any number of legitimate
ciphertexts B1, B2, These are elements of the ring (Z/8192)[x]/(x701 − 1),
encoded as strings. The attackntrw software uses the official nturhrss701 soft-
ware15 to generate a public key and 10 target ciphertexts.

15 Officially, NTRU-HRSS has three software releases and a development repository.
Software release 1, via PQClean, was eliminated by PQClean in July 2022 [67] since

634 Daniel J. Bernstein

For each j, Eve sends Alice various modified versions (described below) of
the legitimate ciphertext Bj , and observes the resulting session keys, as allowed
by the (multi-target) IND-CCA2 attack model. To ensure that there is no cheat-
ing, the attackntrw software carries out decapsulation via an alice_oracle

function that (1) aborts if the input matches any of B1, B2, . . . and otherwise
(2) calls the official ntruhrss701 software.

A fault then occurs, flipping a bit anywhere inside the implicit-rejection
key from Sect. 3.11, the random string r stored inside the secret key.16 The
attackntrw software simulates such a fault by flipping the next-to-bottom bit
of the last byte of Alice’s secret key; this bit happens to be inside r, and flipping
any other bit inside r would also work.

Eve then sends the same modified ciphertexts to Alice, observes the resulting
session keys, and performs a simple calculation (described below) to extract the
secrets bj , dj inside each ciphertext Bj = bjG + dj . The attackntrw software
performs this calculation and verifies that the session keys computed by the
attack match the session keys obtained from the official ntruhrss701 software.

Eve’s modified versions of Bj have the form Bj+2(x−1)xe and Bj−2(x−1)xe

for 0 ≤ e < 701, so overall there are 1402 modifications of each ciphertext. One
could try to improve this—for example, just 701 modifications would identify
about 1/3 of the coefficients of the relevant secret and limit the other 2/3 to just
two values, presumably enough information to make a lattice attack feasible—
but attackntrw is already very fast with 1402 modifications.

The point of these modifications is that, as noted in Sect. 3.6, dj has the form
(x − 1)Tj where Tj has coefficients in {−1, 0, 1}, and the modified ciphertext
Bj ±2(x−1)xe = bjG+dj ±2(x−1)xe will decrypt successfully17 when Tj ±2xe

has coefficients in {−1, 0, 1}, i.e., when the coefficient of xe in Tj is ∓1, whereas
it cannot be expected to decrypt successfully otherwise.

Without the fault, the pattern of decryption failures would be hidden by
implicit rejection. However, with the fault, a decryption failure is immediately
visible as a ciphertext producing a different session key before and after the fault:
it would be astonishing if changing a bit in r produced a hash collision! Eve sees
these mismatches, reconstructs Tj and thus dj , and follows the relevant steps in

NTRU is “no longer under consideration by NIST”, even though, as noted above, [2]
says “NIST may consider selecting NTRU instead of Kyber”. Software release 2, via
BoringSSL, is of the ntruhrss variant used in the CECPQ2 post-quantum deploy-
ment experiments in Google Chrome; this is “not compatible” with the NTRU-
HRSS specification, although the reported reason for this—a different choice of hash
function—should not matter for this paper. Software release 3, via the SUPER-
COP [18] benchmarking framework, is what attackntrw uses.

16 Faults could also flip other bits of the secret key, or—in a broader model—bits of
code, intermediate bits in computations, etc. This paper is analyzing the impact of
faults in r; again, this should not be interpreted as making security claims regarding
arbitrary fault attacks.

17 Exception: The multi-target IND-CCA2 attack model will also prevent successful
decryption if a modified ciphertext happens to collide with another legitimate cipher-
text. However, such collisions are so rare that they can safely be ignored.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 635

the decapsulation algorithm to reconstruct bj and the corresponding session key,
completely breaking ntruhrss in this attack model.

To recap: ntruhrss relies critically on implicit rejection for (conjecturally)
achieving IND-CCA2, but implicit rejection is fragile, losing security when a
natural fault occurs.

4.3. How Plaintext Confirmation Stops Analogous mceliece and sntrup

Attacks. A valid mceliece ciphertext has the form B = bG+d where (b, d) has a
specific Hamming weight. An analogous chosen-ciphertext attack replaces B with
B +βG+ δ, where (β, δ) is chosen by the attacker to have a good chance of having
the right Hamming weight of (b + β, d + δ), as in Sect. 3.4. The attacker again
detects whether implicit rejection has occurred by checking whether a session key
is the same before and after a fault.

Similarly, a valid sntrup ciphertext has the form bG + d where (b, d) has
coefficients in {−1, 0, 1} and b has a specific Hamming weight. An analogous
chosen-ciphertext attack replaces B with B + βG + δ where (β, δ) are chosen
by the attacker to have a good chance of still having coefficients in {−1, 0, 1} in
(b + β, d + δ) and the right Hamming weight for b + β; e.g., take β = 0 and set
exactly one coefficient in δ to 1 to detect whether that coefficient of d is 1.

However, for both mceliece and sntrup, the ciphertext also includes plain-
text confirmation, another hash of (b, d). As in Sect. 3.10, the attacker has no
way to replace this with a hash of (b+β, d+δ). So all of the modified ciphertexts
are (implicitly) rejected, eliminating the information that the attack needs.

For sntrup, there is an independent reason that the attack does not work
as stated: see Sect. 3.13. However, there could be workarounds for the attacker.
Plaintext confirmation makes much more obvious that the attack fails.

4.4. How Proofs Led ntruhrss to Remove Plaintext Confirmation. The
original version of ntruhrss in 2017 included plaintext confirmation, as did the
ntruhrss submission to round 1 of the NIST competition: see [57, Algorithm 6,
“e2”] and [58, Section 1.10.4, “qrom hash”]. However, the ntruhrss submission
to round 2 of the NIST competition in 2019 removed plaintext confirmation. It
is interesting to look at why.

The reason for original ntruhrss and round-1 ntruhrss to include plaintext
confirmation was not that plaintext confirmation interferes with attacks, but
rather that plaintext confirmation seemed necessary for certain types of proofs.
This distinction became important later.

Saito, Xagawa, and Yamakawa [92] proposed a modification of round-1
ntruhrss, writing in [92, Section 1.2] that “the obtained KEM is CCA secure in
the QROM” under a specific assumption. The modification was designed to be
as simple as possible to support the underlying QROM proof; the proof relied
on implicit rejection but not on plaintext confirmation; consequently, the modi-
fication did not include plaintext confirmation.

The round-2 ntruhrss submission [35, page 24] said that the KEM from [92]
“has a tight security reduction in the ROM and avoids the plaintext-confirmation
hash”, along with having “a tight reduction in the QROM”. The round-2

636 Daniel J. Bernstein

ntruhrss KEM is the KEM from [92] plus some further changes that are not
relevant here. For comparison, previous versions of ntruhrss had appealed to
the QROM proofs from [98], which assumed plaintext confirmation.

To summarize: Why did ntruhrss end up deciding that it was not useful
to spend ciphertext space on plaintext confirmation? Answer: because plaintext
confirmation turned out to be unnecessary for various types of proofs. But this
paper shows that even a one-time single-bit fault is enough to break the proofs!

The practice of eliminating any cryptosystem features not needed for proofs
is common in cryptography—but not universal. The possibility of plaintext con-
firmation stopping attacks not stopped by implicit rejection was noted in [19,
Section 17]: implicit rejection and plaintext confirmation “target different aspects
of attacks”, so it is “difficult to justify a recommendation against the dual-defense
construction”. More broadly, Koblitz wrote the following in [69, page 977]: “Any-
one working in cryptography should think very carefully before dropping a vali-
dation step that had been put in to prevent security problems. Certainly someone
with Krawczyk’s experience and expertise would never have made such a blunder
if he hadn’t been over-confident because of his ‘proof’ of security.” The “proof”
critiqued in [69] was erroneous, but the same danger appears when a correct
proof is in a model too narrow to capture real-world attacks.

4.5. Countermeasures for NTRU-HRSS. Any algorithm computing the
specified ntruhrss decapsulation function will be vulnerable to the same attack.
There is nothing in the secret-key format that the algorithm can use to detect
that r has had a fault: r is simply 256 bits of randomness generated indepen-
dently of the rest of the secret key.18 The fault converts a valid secret key into
another valid secret key.

Consequently, to stop this attack, implementors have to use a cryptosystem
that is not the currently specified ntruhrss cryptosystem. Perhaps the simplest
approach is to switch to another secret-key format that makes bit flips detectable
or even correctable; see, e.g., the generic use of Hamming codes in Sect. 4.1.

Implementors can also replace the specified decapsulation function with a
more complicated stateful function that tries to detect attack patterns and to
limit the exposure of each ciphertext. One approach is to maintain a database of
previously seen values of d and reject nearby values, and similarly for b; but this
could be a serious performance problem if “nearby” is too generous, and could
allow attacks if “nearby” is too strict. An alternative is to maintain a database of
ciphertexts and reject any repeated ciphertexts (modulo any “benign malleabil-
ity” allowed by the cryptosystem), if this is suitable for the application. See [54,
Section 2] for further stateful approaches. All of these approaches complicate the
data flow and raise denial-of-service questions.

More options are available for implementors willing to break interoperabil-
ity with ntruhrss ciphertexts; see Sect. 3. Plaintext confirmation is an obvious

18 For comparison, the specified mceliece secret-key format already includes a 256-bit
seed that can be double-checked against the rest of the secret key. This seed was
specified to allow compression, but implementors can reuse it for double-checks of
whether various faults have occurred.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 637

choice. Limiting the ciphertext space or plaintext space could help, but this
needs analysis. Hashing the ciphertext does not help: the attack detects failing
ciphertexts by seeing that a fault changes the results for the same ciphertext.

4.6. Whose Responsibility Is Error Correction? Let’s assume that there’s
an objective of changing the secret-key format, specifically encoding the secret key
using a distance-4 extended Hamming code. This fixes natural bit flips anywhere
in the secret key, not just in r, so it is attractive whether or not there is plaintext
confirmation.

There’s still a question of who should encode the secret key. Should the
ntruhrss specification be updated to specify an encoded secret-key format? Or
should applications encode secret keys, and much more data, to protect all of that
data against bit flips? Or should the operating system build error correction into
paging mechanisms, and continually sweep through pages to check for errors?
Or should the hardware apply error correction to all data stored in DRAM?

The attack relies on all of these layers failing to act. Note that the fact that
there are multiple layers that can act gives each layer an excuse not to act,
especially when nobody is responsible for the security of the system as a whole.

One could respond that any layer that can take action should do so: the
ntruhrss designers can specify error correction, so they should; applications
can correct errors, so they should; the operating system can correct errors, so
it should; and the hardware can correct errors, so it should. These layers can
share specifications, and to some extent implementations, of the error-correction
mechanisms. But this nevertheless means added complications at each layer.
Surely a simpler, more easily reviewed system can address the problem at hand,
the same way that twist-security and x-coordinates address the ECDH security
problem mentioned in Sect. 1.1 without the complications of implementations
having to check point validity.

SECDED ECC DRAM handles DRAM bit flips in a way that is measurable
and seems robust. Unfortunately, computer manufacturers appear to have used
the minor costs of SECDED ECC DRAM for market segmentation, in much
the same way that 19th-century railroad companies installed a roof on some

train cars for market segmentation; see generally [80, Section 3]. Perhaps DDR5
“on-die ECC”—which tries to catch DRAM errors, although it does not protect
data in transit to the CPU—will eventually put an end to the non-ECC era, but
non-ECC equipment will continue to be in use for many years.

It is clear that many options require software for error correction. As another
supplement to this paper, I have released a libsecded software library [15] that
encodes arrays in RAM using a distance-4 Hamming code. However, this paper
does not draw conclusions regarding the optimal way forward.

Acknowledgments. This paper is inspired by a series of discussions with Tanja Lange
regarding IND-CCA2 attacks and defenses. In particular, Lange pointed out plaintext
confirmation as a countermeasure to fault attacks.

638 Daniel J. Bernstein

References

1. — (no editor), IEEE international conference on communications, ICC 2017,
IEEE, 2017. See [38]

2. Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, Yi-Kai Liu, Status report on the third
round of the NIST Post-Quantum Cryptography Standardization Process (2022).
NISTIR 8413. Cited in §1.1, §3.14, §3.14, §4.2

3. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé,
CRYSTALS-Kyber: Algorithm specifications and supporting documentation
(2020). Cited in §3.14

4. Ciprian Baetu, F. Betül Durak, Löıs Huguenin-Dumittan, Abdullah Talayhan,
Serge Vaudenay, Misuse attacks on post-quantum cryptosystems, in Eurocrypt
2019 [61] (2019), 747–776. Cited in §3.7

5. Mihir Bellare (editor), Advances in cryptology—CRYPTO 2000, LNCS, 1880,
Springer, 2000. See [62]

6. Mihir Bellare, Hannah Davis, Felix Günther, Separate your domains: NIST PQC
KEMs, oracle cloning and read-only indifferentiability , in Eurocrypt 2020 [32]
(2020), 3–32. Cited in §3.10

7. Mihir Bellare, Dennis Hofheinz, Eike Kiltz, Subtleties in the definition of IND-
CCA: when and how should challenge decryption be disallowed? , Journal of
Cryptology 28 (2015), 29–48. Cited in §3.4

8. Daniel J. Bernstein, Re: Current consensus on ECC (2001). Cited in §1.1
9. Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006

[103] (2006), 207–228. Cited in §1.1
10. Daniel J. Bernstein, A subfield-logarithm attack against ideal lattices (2014).

Cited in §3.3
11. Daniel J. Bernstein, How to design an elliptic-curve signature system (2014).

Cited in §2.4
12. Daniel J. Bernstein, Comparing proofs of security for lattice-based encryption

(2019). Second PQC Standardization Conference. Cited in §3.2
13. Daniel J. Bernstein, On the looseness of FO derandomization (2021). Cited in

§3.14
14. Daniel J. Bernstein, Understanding binary-Goppa decoding (2022). Cited in §3.8,

§3.8, §3.8
15. Daniel J. Bernstein, libsecded (software package) (2022). Cited in §4.5
16. Daniel J. Bernstein, attackntrw (software package) (2022). Cited in §4
17. Daniel J. Bernstein, Leon Groot Bruinderink, Tanja Lange, Lorenz Panny,

HILA5 Pindakaas: On the CCA security of lattice-based encryption with error
correction, in Africacrypt 2018 [64] (2018), 203–216. Cited in §3.7

18. Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking
of Cryptographic Systems (2022). Accessed 25 August 2022. Cited in §4.2

19. Daniel J. Bernstein, Edoardo Persichetti, Towards KEM unification (2018). Cited
in §3.12, §4.4

20. Eli Biham (editor), Fast software encryption, 4th international workshop, FSE
’97, LNCS, 1267, Springer, 1997. See [91]

21. Eli Biham, Lior Neumann, Breaking the Bluetooth pairing—the fixed coordinate
invalid curve attack , in SAC 2019 [84] (2019), 250–273. Cited in §1.1

https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://web.archive.org/web/20211007045636/https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://eprint.iacr.org/2019/525
https://eprint.iacr.org/2020/241
https://eprint.iacr.org/2020/241
https://eprint.iacr.org/2009/418
https://eprint.iacr.org/2009/418
https://groups.google.com/g/sci.crypt/c/mu_paShEU3w/m/m491pYxHbtAJ
https://cr.yp.to/papers.htmlcurve25519
https://blog.cr.yp.to/20140213-ideal.html
https://blog.cr.yp.to/20140323-ecdsa.html
https://cr.yp.to/papers.html#latticeproofs
https://cr.yp.to/papers.html#footloose
https://cr.yp.to/papers.html#goppadecoding
https://pqsrc.cr.yp.to/downloads.html
https://pqsrc.cr.yp.to/downloads.html
https://cr.yp.to/papers.html#hila5
https://cr.yp.to/papers.html#hila5
https://bench.cr.yp.to
https://bench.cr.yp.to
https://cr.yp.to/papers.html#tightkem
https://www.cs.technion.ac.il/biham/BT/
https://www.cs.technion.ac.il/biham/BT/

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 639

22. Nina Bindel, Douglas Stebila, Shannon Veitch, Improved attacks against key
reuse in learning with errors key exchange, in Latincrypt 2021 [74] (2021),
168–188. Cited in §3.7

23. Mario Blaum, Patrick G. Farrell, Henk C. A. van Tilborg (editors), Informa-
tion, coding and mathematics, Kluwer International Series in Engineering and
Computer Science, 687, Kluwer, 2002. MR 2005a:94003. See [101]

24. Daniel Bleichenbacher, Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1 , in Crypto 1998 [70] (1998), 1–12. Cited in §1

25. Hanno Böck, Juraj Somorovsky, Craig Young, Return of Bleichenbacher’s
oracle threat (ROBOT), in [43] (2018), 817–849. Cited in §1

26. Dan Boneh (editor), Advances in cryptology—CRYPTO 2003, LNCS, 2729,
Springer, 2003. See [56]

27. Dan Boneh, Richard A. DeMillo, Richard J. Lipton, On the importance of
checking cryptographic protocols for faults (extended abstract), in Eurocrypt 1997
[47] (1997), 37–51; see also newer version [28]. Cited in §2.3, §2.3, §2.3,
§2.3, §2.4, §2.4, §2.5, §2.5, §2.5

28. Dan Boneh, Richard A. DeMillo, Richard J. Lipton, On the importance of
eliminating errors in cryptographic computations, Journal of Cryptology 14
(2001), 101–119; see also older version [27]

29. Joe P. Buhler (editor), Algorithmic number theory, third international
symposium, ANTS-III, LNCS, 1423, Springer, 1998. See [52]

30. Kevin Butler, Kurt Thomas (editors), 31st USENIX Security Symposium,
USENIX Association, 2022. See [96]

31. L. Jean Camp, Stephen Lewis (editors), Economics of information security,
Advances in Information Security, 12, Springer, 2004. See [80]

32. Anne Canteaut, Yuval Ishai (editors), Advances in cryptology—EUROCRYPT
2020, LNCS, 12106, Springer, 2020. See [6]

33. Anne Canteaut, François-Xavier Standaert (editors), Advances in
cryptology—EUROCRYPT 2021, LNCS, 12697, Springer, 2021. See [34]

34. Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi, Alexandre Menu,
Lilian Bossuet, Message-recovery laser fault injection attack on the Classic
McEliece cryptosystem, in [33] (2021), 438–467. Cited in §2.2

35. Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost
Rijneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
NTRU: algorithm specifications and supporting documentation (2019). Cited in
§4.4

36. Mauro Conti, Jianying Zhou, Emiliano Casalicchio, Angelo Spognardi (edi-
tors), Applied cryptography and network security—18th international conference,
ACNS 2020, LNCS, 12146, Springer, 2020. See [59]

37. Alexander W. Dent, A designer’s guide to KEMs, in Cirencester 2003 [83] (2003),
133–151. Cited in §3.10

38. Jintai Ding, Saed Alsayigh, R. V. Saraswathy, Scott R. Fluhrer, Xiaodong Lin,
Leakage of signal function with reused keys in RLWE key exchange, in ICC 2017
[1] (2017), 1–6. Cited in §3.7

39. Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, Zheng Zhang, A simple
and efficient key reuse attack on NTRU cryptosystem (2019). Cited in §3.7

40. Jintai Ding, Scott R. Fluhrer, Saraswathy RV, Complete attack on RLWE key
exchange with reused keys, without signal leakage, in ACISP 2018 [97] (2018),
467–486. Cited in §3.7

https://eprint.iacr.org/2020/1288
https://eprint.iacr.org/2020/1288
https://archiv.infsec.ethz.ch/education/fs08/secsem/Bleichenbacher98.pdf
https://archiv.infsec.ethz.ch/education/fs08/secsem/Bleichenbacher98.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://link.springer.com/content/pdf/10.1007/3-540-69053-0_4.pdf
https://link.springer.com/content/pdf/10.1007/3-540-69053-0_4.pdf
https://crypto.stanford.edu/~dabo/abstracts/faults.html
https://crypto.stanford.edu/~dabo/abstracts/faults.html
https://eprint.iacr.org/2020/900
https://eprint.iacr.org/2020/900
https://ntru.org/f/ntru-20190330.pdf
https://eprint.iacr.org/2002/174
https://eprint.iacr.org/2016/1176
https://eprint.iacr.org/2019/1022
https://eprint.iacr.org/2019/1022
https://eprint.iacr.org/2017/1185
https://eprint.iacr.org/2017/1185

640 Daniel J. Bernstein

41. John R. Douceur, Albert G. Greenberg, Thomas Bonald, Jason Nieh (editors),
Proceedings of the eleventh international joint conference on measurement and
modeling of computer systems, SIGMETRICS/Performance 2009, ACM, 2009.
See [93]

42. Orr Dunkelman, Stefan Dziembowski (editors), Advances in
cryptology—EUROCRYPT 2022, LNCS, 13277, Springer, 2022. See [60]

43. William Enck, Adrienne Porter Felt (editors), 27th USENIX security symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018 , USENIX
Association, 2018. See [25]

44. Wieland Fischer, Naofumi Homma (editors), Cryptographic hardware and
embedded systems—CHES 2017, LNCS, 10529, Springer, 2017. See [57]

45. Scott R. Fluhrer, Cryptanalysis of ring-LWE based key exchange with key share
reuse (2016). Cited in §3.7

46. Eiichiro Fujisaki, Tatsuaki Okamoto, Secure integration of asymmetric and
symmetric encryption schemes, in Crypto 1999 [102] (1999), 537–554. Cited
in §3.8

47. Walter Fumy (editor), Advances in cryptology—EUROCRYPT ’97, LNCS, 1233,
Springer, 1997. See [27]

48. Debin Gao, Qi Li, Xiaohong Guan, Xiaofeng Liao (editors), Information and
communications security-23rd international conference, ICICS 2021, LNCS,
12919, Springer, 2021. See [105]

49. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, Edward W.
Felten, Lest we remember: cold boot attacks on encryption keys, in USENIX
Security 2008 [82] (2008), 45–60. Cited in §2.6, §2.6, §2.6, §2.6

50. Chris Hall, Ian Goldberg, Bruce Schneier, Reaction attacks against several
public-key cryptosystems, in ICICS 1999 [100] (1999), 2–12. Cited in §3.6, §3.6,
§3.6

51. Martin Hirt, Adam D. Smith (editors), Theory of cryptography—14th
international conference, TCC 2016-B, LNCS, 9986, 2016. See [98]

52. Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, NTRU: a ring-based public
key cryptosystem, in ANTS III [29] (1998), 267–288. Cited in §3.3, §3.3

53. Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, NTRU: a new high speed
public key cryptosystem (2016). Circulated at Crypto 1996, put online in 2016.
Cited in §3.3

54. Jeffrey Hoffstein, Joseph H. Silverman, Reaction attacks against the NTRU
public key cryptosystem (2000). Cited in §3.7, §4.5

55. Dennis Hofheinz, Kathrin Hövelmanns, Eike Kiltz, A modular analysis of the
Fujisaki-Okamoto transformation, in TCC 2017-1 [65] (2017), 341–371. Cited in
§3.11, §3.12

56. Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos,
Joseph H. Silverman, Ari Singer, William Whyte, The impact of decryption
failures on the security of NTRU encryption, in Crypto 2003 [26] (2003),
226–246. Cited in §3.7

57. Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe, High-speed
key encapsulation from NTRU , in [44] (2017), 232–252. Cited in §4.4

58. Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe,
NTRU-HRSS-KEM: algorithm specifications and supporting documentation
(2017). Cited in §4.4

https://www.usenix.org/conference/usenixsecurity18
https://www.usenix.org/conference/usenixsecurity18
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
https://link.springer.com/content/pdf/10.1007/3-540-48405-1_34.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48405-1_34.pdf
https://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
https://cypherpunks.ca/~iang/pubs/paper-reaction-attacks.pdf
https://cypherpunks.ca/~iang/pubs/paper-reaction-attacks.pdf
https://ntru.org/f/hps98.pdf
https://ntru.org/f/hps98.pdf
https://ntru.org/f/hps96.pdf
https://ntru.org/f/hps96.pdf
https://ntru.org/f/tr/tr015v2.pdf
https://ntru.org/f/tr/tr015v2.pdf
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/604
https://iacr.org/archive/crypto2003/27290225/27290225.pdf
https://iacr.org/archive/crypto2003/27290225/27290225.pdf
https://eprint.iacr.org/2017/667
https://eprint.iacr.org/2017/667
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Round-1-Submissions

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 641

59. Löıs Huguenin-Dumittan, Serge Vaudenay, Classical misuse attacks on NIST
round 2 PQC—the power of rank-based schemes, in ACNS 2020 [36] (2020),
208–227. Cited in §3.7

60. Löıs Huguenin-Dumittan, Serge Vaudenay, On IND-qCCA security in the ROM
and its applications: CPA security is sufficient for TLS 1.3 , in Eurocrypt 2022
[42] (2022), 613–642. Cited in §1

61. Yuval Ishai, Vincent Rijmen (editors), Advances in cryptology—EUROCRYPT
2019, LNCS, 11477, Springer, 2019. See [4]

62. Éliane Jaulmes, Antoine Joux, A chosen-ciphertext attack against NTRU , in
Crypto 2000 [5] (2000), 20–35. Cited in §3.7

63. Simon Josefsson, Ilari Liusvaara, Edwards-curve digital signature algorithm
(EdDSA) (2017). Cited in §2.4

64. Antoine Joux, Abderrahmane Nitaj, Tajjeeddine Rachidi (editors), Progress in
cryptology—AFRICACRYPT 2018, LNCS, 10831, Springer, 2018. See [17]

65. Yael Kalai, Leonid Reyzin (editors), Theory of cryptography—15th international
conference, TCC 2017, LNCS, 10677, Springer, 2017. See [55]

66. Burt Kaliski, PKCS #1: RSA encryption version 1.5 (1998). Cited in §2.4
67. Matthias Kannwischer, Remove schemes that are no longer under consideration

by NIST (2022). Cited in §4.2
68. Jonathan Katz, Yehuda Lindell, Introduction to modern cryptography: principles

and protocols, Chapman & Hall/CRC, 2007. Cited in §1.1
69. Neal Koblitz, The uneasy relationship between mathematics and cryptography,

Notices of the American Mathematical Society 54 (2007), 972–979. Cited in §4.4,
§4.4

70. Hugo Krawczyk (editor), Advances in cryptology—CRYPTO ’98, LNCS, 1462,
Springer, 1998. See [24]

71. Adam Langley, CECPQ2 (2018). Cited in §1
72. Arjen K. Lenstra, Memo on RSA signature generation in the presence of faults

(1996). Cited in §2.3, §2.5
73. Joseph K. Liu, Hui Cui (editors), Information security and privacy—25th

Australasian conference, ACISP 2020, LNCS, 12248, Springer, 2020. See [80]
74. Patrick Longa, Carla Ràfols (editors), Progress in cryptology—LATINCRYPT

2021, LNCS, 12912, Springer, 2021. See [22]
75. Vadim Lyubashevsky, OFFICIAL COMMENT: CRYSTALS-DILITHIUM

(2018). Cited in §1.1
76. Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory

(1978), 114–116. JPL DSN Progress Report. Cited in §3.3, §3.3
77. Alfred Menezes, Evaluation of security level of cryptography: RSA signature

schemes (PKCS#1 v1.5, ANSI X9.31, ISO 9796) (2002). Cited in §1
78. National Institute of Standards and Technology, Submission requirements and

evaluation criteria for the post-quantum cryptography standardization process
(2016). Cited in §1

79. Jesper Buus Nielsen, Vincent Rijmen (editors), Advances in
cryptology—EUROCRYPT 2018, LNCS, 10822, Springer, 2018. See [92]

80. Andrew M. Odlyzko, Privacy, economics, and price discrimination on the
internet , in [31] (2004), 187–211. Cited in §4.5

81. Satoshi Okada, Yuntao Wang, Tsuyoshi Takagi, Improving key mismatch attack
on NewHope with fewer queries, in ACISP 2020 [73] (2020), 505–524. Cited in
§3.7

82. Paul C. van Oorschot (editor), Proceedings of the 17th USENIX security
symposium, USENIX Association, 2008. See [49]

https://eprint.iacr.org/2020/409
https://eprint.iacr.org/2020/409
https://eprint.iacr.org/2021/844
https://eprint.iacr.org/2021/844
https://www.iacr.org/archive/crypto2000/18800021/18800021.pdf
https://datatracker.ietf.org/doc/rfc8032/
https://datatracker.ietf.org/doc/rfc8032/
https://datatracker.ietf.org/doc/html/rfc2313
https://github.com/PQClean/PQClean/commit/b0fc0c098c7930e04931071a46cc7d520a1f8d1b
https://github.com/PQClean/PQClean/commit/b0fc0c098c7930e04931071a46cc7d520a1f8d1b
https://www.cs.umd.edu/~jkatz/imc.html
https://www.cs.umd.edu/~jkatz/imc.html
https://www.ams.org/notices/200708/tx070800972p.pdf
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://infoscience.epfl.ch/record/164524
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://www.cryptrec.go.jp/exreport/cryptrec-ex-1014-2002.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-1014-2002.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://www.dtc.umn.edu/~odlyzko/doc/privacy.economics.pdf
http://www.dtc.umn.edu/~odlyzko/doc/privacy.economics.pdf
https://eprint.iacr.org/2020/585
https://eprint.iacr.org/2020/585

642 Daniel J. Bernstein

83. Kenneth G. Paterson (editor), Cryptography and coding, 9th IMA international
conference, LNCS, 2898, Springer, 2003. See [37]

84. Kenneth G. Paterson, Douglas Stebila (editors), Selected areas in
cryptography—SAC 2019, LNCS, 11959, Springer, 2020. See [21]

85. Trevor Perrin, The XEdDSA and VXEdDSA signature schemes (2016). Cited in
§2.4

86. Edoardo Persichetti, Improving the efficiency of code-based cryptography, Ph.D.
thesis, 2012. Cited in §3.11

87. Bart Preneel (editor), Advances in cryptology—EUROCRYPT 2000, LNCS,
1807, Springer, 2000. See [95]

88. Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, Jintai Ding, A
systematic approach and analysis of key mismatch attacks on lattice-based NIST
candidate KEMs, in Asiacrypt 2021 [99] (2021), 92–121. Cited in §3.7

89. Yue Qin, Ruoyu Ding, Chi Cheng, Nina Bindel, Yanbin Pan, Jintai Ding, Light
the signal: optimization of signal leakage attacks against LWE-based key exchange
(2022). Cited in §3.7

90. Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam
Chattopadhyay, Sujoy Sinha Roy, Will you cross the threshold for me? Generic
side-channel assisted chosen-ciphertext attacks on NTRU-based KEMs, IACR
Transactions on Cryptographic Hardware and Embedded Systems 2022.1

(2022), 722–761. Cited in §3.13
91. Ronald L. Rivest, All-or-nothing encryption and the package transform, in FSE

1997 [20] (1997), 210–218. Cited in §3.5
92. Tsunekazu Saito, Keita Xagawa, Takashi Yamakawa, Tightly-secure

key-encapsulation mechanism in the quantum random oracle model , in
Eurocrypt 2018 [79] (2018), 520–551. Cited in §4.4, §4.4, §4.4, §4.4

93. Bianca Schroeder, Eduardo Pinheiro, Wolf-Dietrich Weber, DRAM errors in the
wild: a large-scale field study , in [41] (2009), 193–204. Cited in §1.2, §1.2, §1.2

94. Mark Seaborn, Thomas Dullien, Exploiting the DRAM rowhammer bug to gain
kernel privileges (2015). Cited in §2.2

95. Victor Shoup, Using hash functions as a hedge against chosen ciphertext attack ,
in Eurocrypt 2000 [87] (2000), 275–288. Cited in §3.5

96. George Arnold Sullivan, Jackson Sippe, Nadia Heninger, Eric Wustrow, Open to
a fault: On the passive compromise of TLS keys via transient errors, in USENIX
Security 2022 [30] (2022), 233–250. Cited in §2.3, §2.3, §2.3, §2.3

97. Willy Susilo, Guomin Yang (editors), Information security and privacy—23rd
Australasian conference, ACISP 2018, LNCS, 10946, Springer, 2018. See [40]

98. Ehsan Ebrahimi Targhi, Dominique Unruh, Post-quantum security of the
Fujisaki-Okamoto and OAEP transforms, in [51] (2016), 192–216. Cited in §4.4

99. Mehdi Tibouchi, Huaxiong Wang (editors), Advances in
cryptology—ASIACRYPT 2021, LNCS, 13093, Springer, 2021. See [88]

100. Vijay Varadharajan, Yi Mu (editors), Information and communication security,
second international conference, ICICS’99, Springer, 1999. See [50]

101. Eric R. Verheul, Jeroen M. Doumen, Henk C. A. van Tilborg, Sloppy
Alice attacks! Adaptive chosen ciphertext attacks on the McEliece public-key
cryptosystem, in [23] (2002), 99–119. MR 2005b:94041. Cited in §3.6, §3.6, §3.6

102. Michael J. Wiener (editor), Advances in cryptology—CRYPTO ’99, LNCS, 1666,
Springer, 1999. See [46]

103. Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key
cryptography—9th international conference on theory and practice in public-key
cryptography, LNCS, 3958, Springer, 2006. See [9]

https://www.signal.org/docs/specifications/xeddsa/xeddsa.pdf
https://persichetti.webs.com/Thesis%20Final.pdf
https://eprint.iacr.org/2021/123
https://eprint.iacr.org/2021/123
https://eprint.iacr.org/2021/123
https://eprint.iacr.org/2022/131
https://eprint.iacr.org/2022/131
https://eprint.iacr.org/2021/718
https://eprint.iacr.org/2021/718
https://people.csail.mit.edu/rivest/pubs/Riv97d.pdf
https://eprint.iacr.org/2017/1005
https://eprint.iacr.org/2017/1005
https://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf
https://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.iacr.org/archive/eurocrypt2000/1807/18070279-new.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/sullivan
https://www.usenix.org/conference/usenixsecurity22/presentation/sullivan
https://eprint.iacr.org/2015/1210
https://eprint.iacr.org/2015/1210
https://research.utwente.nl/en/publications/sloppy-alice-attacks-adaptive-chosen-ciphertext-attacks-on-the-mc
https://research.utwente.nl/en/publications/sloppy-alice-attacks-adaptive-chosen-ciphertext-attacks-on-the-mc
https://research.utwente.nl/en/publications/sloppy-alice-attacks-adaptive-chosen-ciphertext-attacks-on-the-mc

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 643

104. Meilin Zhang, Vladimir M. Stojanovic, Paul Ampadu, Reliable ultra-low-voltage
cache design for many-core systems, IEEE Transactions on Circuits and Systems
II: Express Briefs 59 (2012), 858–862. Cited in §1.2

105. Xiaohan Zhang, Chi Cheng, Ruoyu Ding, Small leaks sink a great ship: an
evaluation of key reuse resilience of PQC third round finalist NTRU-HRSS , in
ICICS 2021 [48] (2021), 283–300. Cited in §3.7

https://www.rle.mit.edu/isg/documents/Zhang_TCASII12.pdf
https://www.rle.mit.edu/isg/documents/Zhang_TCASII12.pdf
https://eprint.iacr.org/2021/168
https://eprint.iacr.org/2021/168

	A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys to a Chosen-Ciphertext Attack
	1 Introduction
	1.1 Fragility
	1.2 Natural DRAM Faults
	1.3 Contributions of This Paper

	2 Fault Attacks
	2.1 A Generic Fault Attack
	2.2 Specializing, Optimizing, and Demonstrating the Generic Fault Attack
	2.3 Natural-Fault Attacks
	2.4 Algorithm Dependence in Natural-Fault Attacks
	2.5 Comparison
	2.6 The Cold-Boot Argument Against Error Correction

	3 Chosen-Ciphertext Attacks and Defenses
	3.2 Ciphertext Structure
	3.3 Decryption
	3.4 Exploiting Linearity for Chosen-Ciphertext Attacks
	3.5 Feature 0: Hashing the Plaintext
	3.6 Probing the Boundaries of Successful Decryption
	3.7 Probing as an Attack Against the Secret Key
	3.8 Feature 1: Rigidity
	3.9 Feature 2: No Decryption Failures
	3.10 Feature 3: Plaintext Confirmation
	3.11 Feature 4: Implicit Rejection
	3.12 Feature 5: Hashing the Ciphertext
	3.13 Feature 6: Limited Ciphertext Space
	3.14 Feature 7: Limited Plaintext Space

	4 The NTRU-HRSS Attack
	4.1 Attack Model
	4.2 Attack Details
	4.3 How Plaintext Confirmation Stops Analogous mceliece and sntrup Attacks
	4.4 How Proofs Led ntruhrss to Remove Plaintext Confirmation
	4.5 Countermeasures for NTRU-HRSS

	References

