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Background
• DON, which is non-bioavailable and excluded from

eutrophication-related loading budgets, can degrade
water quality and harm aquatic ecosystems in
nitrogen-sensitive environments (Osburn et al., 2016).

• Aquatic DON—amino acids, urea, and humic
substances—promotes phytoplankton and bacteria
growth (Maie et al., 2006).
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Figure 4: In-situ algal bioassay process

Results
Table 1: PARAFAC modeling output: Reactor 1

Component 2 Component 3
R1 Humic-like and Aromatic proteins

Fulvic-like II
R1-In 17.1 103.8                       38.2
R1-Eff 3.9 23.0 36.4

Table 2: PARAFAC modeling output: Reactor 2

Component 1 Component 3
R2 Humic-like and                                     Aromatic

Fulvic-like proteins II
R2-In 34.6                      94.8                    154.6
R2-Eff 32.5 73.3 59.3

Table 3: PARAFAC modeling output: Reactor 3

Figure 1: Eutrophication in a lake at Greensboro, NC

• Nitrogen additions worsen cyanobacterial blooms in
rivers, estuaries, and Albemarle Sound in North
Carolina (Plaas, 2021; Tobb, 2022).

• Landfill leachate nitrogen contributes to aquatic
eutrophication, but its effect on phytoplankton growth
is unknown (Price et al., 2018).

• This study analyzed DON fate in an SBR-treated
wastewater and landfill leachate blend, followed by
in-situ algal bioassay using Neuse River water..

Figure 5: Algal bioassay setup in pond incubation
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Figure 8: Excitation-emission matrix of R1, R2, and R3 effluents

Component 1
Aromatic proteins II

(Lignin)
179.05
22.54

Component 2
Humic-like and Fulvic-like

(Cellulose)
33.8
15.24
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Figure 9: Van Krevelen diagrams of DON from FTICR-MS analysis
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Figure 2: SBRs process with in-situ algal bioassays
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Figure 7: Influent and effluent COD and BOD of the SBRs

Figure 3: a) SBR schematic diagram, b) Reactor’s lab
setup, c) Three effluents

• For R1, R2, and R3, the SBR system removed TN at 83, 86, and
88% and COD at 75, 59, and 63%.

• PARAFAC modeling showed that SBRs removed large amounts of
humic, fulvic, and aromatic proteins II.

• FTICR-MS analysis showed that reactors R1 and R2 had lignin
and proteins/amino sugars in their DON, while reactor R3 had
carbohydrates and tannins along with them.

• Refractory DON compounds in R1, R2, and R3 effluents may
explain the low algal growth in short term bioassays. Inorganic
nitrogen-enriched leachate samples grew algae. Raw leachate 2
outgrew leachate 1 in fucoxanthin, chlorophyll b, alloxanthin, and
peridinin.
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Figure 10: Algal Bioassay report (HPLC analysis)
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