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Abstract—Introducing the emerging serverless paradigm into
edge computing could avoid over- and under-provisioning of lim-
ited edge resources and make complex edge resource management
transparent to application developers, which largely facilitates the
cost-effectiveness, portability, and short time-to-market of edge
applications. However, the computation/data dispersion and de-
vice/network heterogeneity of edge environments prevent current
serverless computing platforms from acclimating to the network
edge. In this paper, we address such challenges by formulating a
container placement and data flow routing problem, which fully
considers the heterogeneity of edge networks and the overhead of
operating serverless platforms on resource-limited edge servers.
We design an online algorithm to solve the problem. We further
show its local optimum for each arriving container and prove
its theoretical guarantee to the optimal offline solution. We also
conduct extensive simulations based on practical experiment
results to show the advantages of the proposed algorithm over
existing baselines.

I. INTRODUCTION

The progressive penetration of Internet-of-Things (IoT) and
the fast proliferation of artificial intelligence (AI) applications
have endowed edge computing with unprecedented impor-
tance. Through deploying computing and storage capabilities
near the network edge, many delay-sensitive IoT applications
could be offloaded from the remote cloud to the proximity of
edge users, which largely reduces service delay and backbone
network pressure. In addition, edge computing enables a
significant portion of data generated by IoT to be processed
locally. Such a near-data paradigm greatly mitigates both trans-
mission and privacy problems that impede the development of
data-intensive services, e.g., AI applications.

Recently, serverless computing [1], [2], also known as
Function-as-a-Service (FaaS) [3], introduces new inspirations
to the edge computing landscape. In serverless computing,
each application is realized as one or several functions that are
initialized and executed upon a user event. It allows users to
focus only on application development and offload all manage-
ment operations, e.g., provisioning, scheduling, and scaling, to
the service provider. It is believed by multiple researches, e.g.,
[4]–[7], that extending the serverless paradigm from the cloud
to the network edge will bring new efficiency, flexibility, and
scalability to tremendous edge-native applications.

The serverless service model applied in edge environ-
ments is often called serverless edge computing or deviceless
computing [4], [5]. In such a paradigm, edge-native appli-
cations are implemented as functions and encapsulated in
light-weighted containers, which could be flexibly started or

stopped on edge servers according to dynamic workloads.
This mechanism largely prevents resource over- or under-
provisioning, which greatly alleviates resource shortage and
enhances flexibility in edge environments. In addition, server-
less edge computing makes the complex nature of edge
resource management completely transparent to application
developers. This feature significantly facilitates the portability
and short time-to-market of edge applications, which are major
challenges in today’s edge computing realm.

To fuse the serverless service model into edge environ-
ments, systems and architectures have been proposed from
both industry and academia, e.g., [6], [8]–[11]. Neverthe-
less, serverless edge computing platforms are still in their
early stages, especially for data-intensive services such as
edge AI applications, which are comprising the majority of
serverless use cases [12], [13]. The major reason for such
incompatibility comes from computation/data geo-dispersion
and device/network heterogeneity of edge environments. Con-
tainers holding data-intensive applications often have close
dependency on certain types and amounts of data during
their initialization and execution. For instance, getting the
corresponding image from a repository is necessary during the
initialization of a container. Many containers holding functions
such as training and inferring phases of AI applications also
need to access large quantities of data during their execution
periods. Unlike the cloud with centralized and homogeneous
computation and storage substrates, supporting data-dependent
containers on distributed and heterogeneous edge devices may
incur large transmission and execution delays that offset the
benefits of the serverless paradigm. On one hand, placing
containers near data origins may lead to significant execution
delay, since edge devices often have limited resources and may
not have desired accelerators to speed up computation. On the
other hand, transmitting data to edge devices or the remote
cloud with sufficient computing resources may lead to large
transmission delays and privacy issues.

There exists pioneering work proposing data-aware con-
tainer orchestration strategies and systems, e.g., [11], to bridge
the gaps between the serverless paradigm and the network edge
for data-intensive applications. Nonetheless, existing solutions
are not sufficient to address the aforementioned challenges,
since multiple unique features of the geo-distributed and
heterogeneous serverless edge computing network have not
been fully considered. First, as far as we are concerned,
existing work has not considered the heterogeneous network



typologies at the network edge that may be much different
from the cloud. For example, an edge server holding containers
and the corresponding data location may not be directly
connected by one router but a complex routing path. Thus,
besides container scheduling, how to jointly route data flows
between containers and data sources for low transmission
delay is complex but pivotal towards a successful container
orchestration system. In addition, despite the efforts of sim-
plifying serverless computing platforms for edge environments
such as the K3s build [14], extra energy and resources for
container orchestration and maintenance are still needed, e.g.,
using a container scheduler to deploy containers and running
daemons like Kubelet [15] to take care of detailed starting,
stopping, and maintaining containers on each edge server.
Considering both energy and resource are highly limited at
the network edge, such extra operating costs for serverless
edge computing should not be omitted. Furthermore, since
serverless operating costs exist, initializing a container in the
remote cloud and transmitting corresponding data to it is
not necessarily inferior to starting a container near the data
location at the edge. It is highly desirable to have a model
that trades off delays and operating costs over the edge and the
cloud to achieve optimal container scheduling results. Finally,
existing container orchestration systems schedule containers
using greedy algorithms with no performance guarantee in
the worst cases. It is thus desirable to come up with an
online algorithm balancing both performance and theoretical
guarantee.

In this paper, we design an online container scheduling
strategy for data-intensive applications to solve the problems
in serverless edge computing mentioned above. Our main
contributions are summarized as follows.

• To overcome the computation/data dispersion and de-
vice/network heterogeneity in serverless edge computing,
we formulate a joint container placement and flow routing
problem. The formulated model reflects diverse execution
and transmission delays of data-intensive applications
on different edge devices. It also takes various network
typologies at the edge into consideration for detailed
data flow routing. Meanwhile, the formulation makes
it possible to trade off the operating costs of enabling
the serverless edge computing paradigm and the delay
reduction gained by deploying containers at the network
edge. In this way, an optimized container scheduling over
the edge and the cloud could be achieved.

• To solve the formulated problem, we design an Online
Data-aware Container Scheduling (ODCS) algorithm that
jointly places containers and routes data flows when
container requests arrive in a sequential manner. We
then show in the theoretical analysis that the placement
and routing result is locally optimized for each arriving
container. We further prove a theoretical bound of the
ODCS algorithm to the optimal offline solution in the
worst cases.

• We verify the advantages of our algorithm through ex-

tensive simulations, the settings of which are based on
data from small-scale practical experiments. Simulation
results show that the proposed ODCS algorithm achieves
much better performance than existing baselines.

The remainder of this paper is organized as follows. Section
II presents an overview of related work. Section III proposes
the joint container placement and flow routing problem while
Section IV demonstrates the ODCS algorithm and correspond-
ing theoretical analysis. Section V further shows the results of
the small-scale experiment and extensive simulations. Finally,
Section VI concludes the paper.

II. RELATED WORK

Lately, serverless computing is drawing more and more
attention from both industry and academia because of its pay-
as-you-go pricing model, low complexity, cost-effectiveness,
auto-scaling characteristics, etc. Several tech giants have de-
veloped commercial products such as Azure Functions [16],
Cloud Functions [17], Lambda [18], and OpenWhisk [19].
Many research studies have also been proposed focusing on
current challenges and open issues of serverless computing,
e.g., [1], [20]–[24]. Among them, one significant topic is
how to adapt the serverless computing paradigm to edge
environments given its great potential in numerous application
scenarios, e.g., smart home, edge swarms, industry 4.0, and
urban sensing [11], [25].

Fig. 1. Demonstration of a serverless edge computing network. Here, we
utilize the logo of Kubernetes (a blue ship wheel) to represent that a server
supports serverless computing.

In industry, big tech companies have already set their sights
on serverless edge computing. For instance, Amazon proposed
AWS IoT Greengrass [26] that could carry out AWS Lambda
functions on edge devices, aiming at bringing intelligence to
the network edge. In academia, algorithmic, systematic, and
architectural researches have also been proposed. Glikson et al.
pointed out major requirements of serverless edge computing
and defined a deviceless paradigm to emphasize the differences
between serverless models at the edge and in the cloud [5].
Aslanpour et al. put forward a detailed analysis concerning the
opportunities, e.g., always-on mitigation, event-driven applica-
tions, pure pay per use, and open issues, e.g., cold starts, dis-
tributed networking, edge artificial intelligence, in [13]. Xiong
et al. extended a series of components in Kubernetes to adapt



the container orchestration platform to edge environments and
named the modified system KubeEdge [8]. While Nastic et al.
proposed a serverless real-time data analytics platform in [27],
Baresi et al. constructed a practical network architecture for
serverless edge computing in [6]. According to these pioneer-
ing researches, a serverless edge computing platform could
be concluded as an ingenious combination and extension of
multiple leading-edge virtualization technologies, e.g., docker
[28], OpenFaaS [29], and Kubernetes [30], which is deployed
on interconnected edge devices to provide low-delay, highly
flexible, and cost-effective edge-native applications as shown
in Fig 1.

To mitigate the negative impacts of computation/data geo-
distribution to a serverless edge computing network as men-
tioned in Section I, Pan et al. formulated in [31] a container
caching jointly with request distribution problem and designed
online algorithms to solve it. Rausch et al. proposed a data-
aware container orchestration system in [11] to acclimate data-
intensive edge functions to edge environments. Nevertheless,
existing work omits the necessity of data flow routing given
various and heterogeneous edge network typologies and does
not take the operating costs of serverless edge platforms into
consideration. Mechanisms focusing on end-to-end service
allocation and flow routing, e.g., [32]–[35], on the other hand,
could not be directly applied in the new serverless edge
computing scenario due to constraints such as data availability
and privacy requirements. Therefore, we formulate the joint
container placement and data routing problem for serverless
edge computing in this paper and provide an online solution
with a theoretical guarantee to the optimal offline solution.

III. MODEL FORMULATION

In this section, we formulate the joint container placement
and flow routing problem. We consider a serverless edge
computing network for data-intensive applications shown as
Fig. 2. For unification, we call all units in the network that
could hold containers ”nodes” and denote the set of nodes
as N = {1, ..., n, ..., |N |}. It is worth noting that we use the
node 1 to represent the remote cloud and other nodes as edge
servers. We also use I = {1, ..., i, ..., |I|} to denote the set
of containers to be scheduled on these nodes. To formulate
a container scheduling problem that targets mitigating the
negative impacts of computation/data geo-distribution and
device/network heterogeneity to serverless edge computing,
we need to consider in total four sets of decision variables
in the model.

The variable xi,n 2 {0, 1} in Set X represents whether
the ith container is deployed on node n. The variable yi,n 2

{0, 1} in Set Y represents whether the data for the ith

container is retrieved from node n. Due to the heterogeneous
topology of edge networks, we define en1,n2 2 E as the
communication link between nodes n1 and n2 and utilize the
variable fi,n1,n2 2 {0, 1} to represent if the flow between
any container i and its corresponding data passes through
link en1,n2 or not. In addition, since realizing the serverless
service model on an edge node involves extra operating costs,

Fig. 2. Demonstration of the container placement and data flow routing
problem for data-intensive applications in a serverless edge computing net-
work. Different containers are represented by C1, C2, and C3, while their
corresponding data are file symbols with corresponding colors. To solve the
problem, the container scheduler needs to determine the placement of each
container and decide which data location to choose for data retrieve and which
flow routing path to follow.

as mentioned in Section I, we consider zn = {0, 1} as the
variable indicating whether the node n is enabled to support
the serverless platform. With the decision variables defined,
we now construct the objective function with multiple terms
as follows. All important notations are listed in Table 1.

TABLE I

Notation Definition
N Set of nodes in the network, N = {1, ..., n, ..., |N |}.
I Set of containers in the network, I = {1, ..., i, ..., |I|}.
en1,n2 The communication link connecting node n1 to n2.
E Set of communication links.
xi,n 2 {0, 1} Decision variable whether container i is placed on node n.
yi,n 2 {0, 1} Decision variable whether data of container i is retrieved

from node n.
zn 2 {0, 1} Decision variable whether node n is enabled for

serverless computing.
fi,n1,n2 2 {0, 1} Decision variable whether flow between container i

and corresponding data passes through en1,n2 .
wi,n1,n2 The transmission delay introduced by the flow between

container i and corresponding data passing through en1,n2 .
↵i,n Execution delay introduced by placing container i on node n.
�i,n Constant marking the availability of data for container i

on node n.
�n Operating cost of node n enabling serverless computing.
p Cost of operating a container with one unit of resource

consumption in the cloud.
ci Resource consumption of container i.
Cn Resource capacity of node n.

Transmission delay: Transmission delay occurs when data
is transmitted from one node to another. We thus define a
parameter wi,n1,n2 representing the transmission delay intro-
duced by the data flow between the container i and the chosen
data source passing the communication link en1,n2 . With each
flow variable fi,n1,n2 defined, the total data transmission delay
introduced by all containers could be summarized as



U1 =
X

i2I

X

n12N

X

n22N

wi,n1,n2 · fi,n1,n2 .

Execution delay: Due to the heterogeneity of edge com-
puting, different edge devices have various types and amounts
of resources. Hence, it is possible that the same container will
incur distinct execution delays on different nodes. According
to our experiment results shown in Section V, a container
encapsulated with a machine learning inference function could
have about 3.6 times execution delay on a Raspberry Pi 4
device compared to the same container on a Jetson Xavier
NX device with a GPU. We thus define the execution delay
of container i on node n as ↵i,n. We could then formulate the
total execution delay as

U2 =
X

i2I

X

n2N

↵i,n · xi,n.

It is worth noting that ↵i,n could be set to infinity to represent
that the data of container i could not be transmitted to node
n due to constraints such as privacy issues. Hence, our model
is compatible with applications that have privacy or security
requirements.

Data availability: For the availability of needed data for
each container, we consider the most generalized case in
this model. First, data could be located at edge nodes. It
could be a container image that is downloaded and saved
in the local storage of an edge node. It could also be raw
data generated by sensors that is collected and stored by
an edge storage server nearby. In addition, data could also
be retrieved from the remote cloud that contains numerous
container repositories and databases. Moreover, data needed by
a container i may exist on multiple nodes at the same time. In
this way, we use a parameter �i,n to represent whether the data
needed by container i could be retrieved from node n. If so,
�i,n = 0. Otherwise, �i,n will be assigned infinity to mark its
unavailability. In this way, we formulate the data availability
for all containers in the objective function as

U3 =
X

n2N

X

i2I

�i,n · yi,n.

Operating cost: As mentioned in Section I, applying the
serverless service model involves operating costs from multi-
ple aspects such as container scheduling and daemons. Since
both energy and computation resources are highly limited
at the network edge, such operating costs often have worse
impacts at the network edge than that in the cloud, which
means larger relative values in the model. For an edge node
n, we define �n as the operating cost if the node is enabled
to hold containers for serverless edge computing. �n varies
for different types of nodes due to the device heterogeneity.
Besides, we consider the operating cost of a container placed
in the cloud is proportional to its resource usage ci and utilize
the parameter p to represent the positive ratio. Therefore, the
total operating cost of the serverless edge computing network
could be considered as

U4 =
X

n2N/1

�n · zn +
X

i2I

p · ci · xi,1.

With the objective function determined, we further consider
the constraints for the container placement and data flow
routing problem. First, each edge node has a maximal resource
capacity for containers. Denote by ci and Cn the resource
needed by container i and the resource capacity of node n.
It is obvious that any node could hold containers only if it
is enabled for serverless computing, which is indicated by
variable zn. We thus have resource constraints defined as

X

i2I

ci · xi,n  zn · Cn, 8n 2 N. (1)

Here, C1 is a very large positive constant (�
P

i2I ci) so
that cloud can supply enough resource for all containers. It is
also clear that each container will only be placed once on a
single node, we thus have

X

n2N

xi,n = 1, 8i 2 I. (2)

Similarly, although data for a certain container may be
available at multiple locations, it only need to be retrieved
from one location, so that

X

n2N

yi,n = 1, 8i 2 I. (3)

In addition, the flows among containers and corresponding
data should satisfy the flow conservation law on any type of
network topology. This means that, for each data flow, the in-
degree and out-degree of a node n should be the same if both
container i and its data are on the node or neither of them is
on the node. Otherwise, there will be one unit of difference.
Hence, we can conclude that

X

n12N

fi,n1,n �
X

n22N

fi,n,n2 = xi,n � yi,n, 8n 2 N. (4)

In the end, we also need to ensure that all variables are
binary in the formulated model that

xi,n, yi,n, zn, fi,n1,n2 2 {0, 1}, 8i 2 I, n, n1, n2 2 N. (5)

With the objective function and constraints defined, we
hence formulate the data-aware container placement and flow
routing problem P1 as follows.

min
xi,n,yi,n,zn,fi,n1,n2

U1 + U2 + U3 + U4

s.t. (1), (2), (3), (4), (5). (P1)

It is worth noting that the unit of U4 is different from the first
two terms in the objective function of P1. U3 is a penalty item,
which is either zero or infinity. Related work has proposed
methods to solve such a problem for multi-objective problems.
For instance, Rausch et al. designed a dedicated simulator to
find the best relative value of each objective term in [11].
We will not consider the details in this paper due to the page



limitation. Nonetheless, we will prove in the following section
IV that the algorithm we propose in this paper will always
have a theoretical bound to the optimal offline solution. We
will also show that the superiority of our algorithm over other
baselines preserves when the relative value of operating cost
changes through extensive simulations in Section V.

IV. ONLINE DATA-AWARE CONTAINER PLACEMENT AND
FLOW ROUTING

In this section, we will discuss the hardness of the formu-
lated problem P1. We will then demonstrate an online algo-
rithm specifically designed to solve P1 with low complexity.
In the end, we will show that the proposed algorithm is locally
optimal for each arriving container and has a theoretical bound
to the optimal offline solution.

A. The Hardness of P1

By assigning parameters wi,n1,n2 , ↵i,n, �i,n, and p to zero,
and �n to one, we can reduce the well-known bin packing
problem to the problem P1. Therefore, P1 is at least strongly
NP-complete even if container requests come in a batch and
the problem could be solved in an offline manner. Furthermore,
since applications in serverless computing are realized as
functions that are initialized and executed upon users’ events,
containers holding such functions are often started in an online
manner. We thus need to consider a more complex case for P1
that the container requests will arrive sequentially instead of
all at once. This means that corresponding information about
the container i is unknown until its arrival. Such missing
information makes it even harder to solve P1 with close
performance to the optimal offline solution, which knows all
future information in advance.

B. Online Algorithm Design

In view of the hardness and online features of P1, we
design the Online Data-aware Container Scheduling (ODCS)
algorithm to handle the placement and data flow routing
of each arriving container request i. The ODCS algorithm
considers the serverless edge computing network as a di-
rected graph Gi = (N,E), where the edge weight of each
communication link en1,n2 from node n1 to n2 is wi,n1,n2 .
Suppose that all nodes with necessary data for container i
belong to a node set Ndata

i . Here, �i,n̂k = 0 if n̂k 2 Ndata
i .

For each n̂k, ODCS runs a single-sourced shortest path al-
gorithm and saves the shortest path and the corresponding
path length li,n̂k,n from n̂k to every node n in Gi. The
computational complexity of such a procedure for each n̂k

is O((|N | + |E|) log(|N |)). The same process is carried out
for all possible data locations n̂k 2 Ndata

i with the total
complexity at most O((|N |+|E|)|N | log(|N |)) in the case that
data needed by container i is available on every node in the
network. Then, for each possible container location n, the data
location n̂k with the smallest li,n̂k,n is chosen to retrieve data
for container i along the corresponding routing path. Denote
by hi,n the transmission delay along the chosen routing path
from data to container i if it is placed on node n, i.e., the

smallest path length li,n̂k,n for any n̂k, we can transform the
original P1 into a new online problem P2 by combining hi,n

and ↵i,n and eliminating U1 and U3 as follows.

min
xi,n,zi

X

i2I

X

n2N

↵0
i,n · xi,n +

X

n2N/1

�n · zn +
X

i2I

p · ci · xi,1

s.t. (1), (2), (5). (P2)

Here, ↵0
i,n = ↵i,n + hi,n. Although simplified, P2 is

still at least strongly NP-complete even with batched arrivals
according to a similar proof. To solve P2 for each arriving
container i, the ODCS algorithm in total has three types of
choices. The first choice is to place the container on an edge
node that has been initialized for serverless computing and has
sufficient remaining resource capacity. The second choice is
to initialize a new edge node and deploy the container on it.
The third choice is to start the container in the remote cloud.
In our design, the metric for the ODCS algorithm to make
the decision is the increment to the objective function �n by
placing container i on node n. In the first type of choice, the
increment to the objective function �i,n = ↵0

i,n. For the second
choice, �i,n = ↵0

i,n+�n. If the container is to be placed in the
cloud in the third choice, �i,1 = ↵0

i,1+ ci · p. The ODCS sorts
all nodes in the increasing order of �i,n and deploys container
i into the first fit node with sufficient capacity. In general, the
complexity of running the ODCS algorithm for each container
is O((|N |+ |E|)|N | log(|N |)) and the total complexity for |I|
containers is thus O((|N |+|E|)|N ||I| log(|N |)). More details
about the online algorithm could be found in Algorithm 1.

C. Theoretical Analysis

We now analyze the proposed online algorithm theoretically
and show that it is local optimal for each arriving container
request.

Theorem 1. For each request i, the container placement and
routing decision of the ODCS algorithm is local optimum.

Proof. It is clear that by running the shortest path algorithm
and choosing the data location with the lowest transmission
delay hi,n for each possible container placement xi,n (lines
4-9 in Algorithm 1), choosing the optimal data location and
routing path is converted to choosing the best xi,n to minimize
hi,n · xi,n. Therefore, transforming P1 to P2 by combining
hi,n · xi,n and ↵i,n · xi,n will not change the local optimal
direction of the online problem. Since the problem P2 is then
solved by the ODCS algorithm via choosing the container
placement with the lowest objective value, the result is locally
optimized for each arriving container request i.

We then prove that the global performance of the ODCS
algorithm has a theoretical guarantee to the optimal offline
solution.

Theorem 2. Suppose the solution of the ODCS algorithm is
S† and we have S⇤ as the result of the optimal offline solution.
Then, the competitive ratio between ODCS and the offline



Algorithm 1 The ODCS Algorithm
Input: Related information of the upcoming containers, i.e., ↵i,n,

�i,n, wi,n1,n2 , ci. The conditions of the edge-cloud network, i.e.,
Cn, �n, p.

Output: Container placement xi,n, data location choice yi,n, flow
routing fi,n1,n2 , and enabled nodes for serverless computing zn.

1: for all i 2 I do
2: Construct a directed graph Gi with edge weight wi,n1,n2 .
3: Suppose all nodes n̂k with �i,n̂k = 0 belong to Set Ndata

i .
4: for all n̂k 2 Ndata

i do
5: Conduct the single-sourced shortest path algorithm for node

n̂k and get the shortest path and corresponding length
li,n̂k,n to each node n in Gi.

6: end for
7: for all n 2 N do
8: Find the n̂k 2 Ndata

i with the smallest li,n̂k,n and assign
hi,n = minn̂k{li,n̂k,n}.

9: Substitute ↵i,n with ↵0
i,n = ↵i,n + hi,n and eliminate U1

and U3 to formulate P2.
10: end for
11: Suppose the increment to the objective function of P2 by

placing container i on node n is �i,n.
12: for all n 2 N do
13: if n = 1 then
14: �i,1 = ↵0

i,1 + ci · p
15: else if zn = 0 then
16: �i,n = ↵0

i,n + �n
17: else

�i,n = ↵0
i,n

18: end if
19: Sort nodes in the increasing order of �i,n as Set Nsort

i .
20: Denote the current workload of node n is Ln.
21: for all n 2 Nsort

i do
22: if Ln + ci  Cn then
23: xi,n = 1, Ln = Ln + ci.
24: yi,n̂k0 = 1, where li,n̂k0 ,n = hi,n.
25: if zn = 0 then
26: zn = 1.
27: end if
28: Assign fi,n1,n2 to 1 along the shortest path from n̂k0

to n in Gi.
29: Break.
30: end if
31: end for
32: end for
33: end for

optimum is a constant, i.e., S†
 ⌘ · S⇤. Here, the constant ⌘

will be defined in the following proof.

Proof. For each node n, we consider three sets of containers
I†n, I⇤n, and Ifirstn placed on it. Set I†n and I⇤n contain the con-
tainers that are placed on node n by the ODCS algorithm and
the optimal offline solution, respectively. Set Ifirstn includes
all containers that would be placed on node n if there is no
capacity constraint on the node n. To prove the theorem, we
need to consider three different cases for each node n.

Case 1, when n = 1: This means the node is the remote
cloud. We define the portion of objective value contributed by
containers in case 1 by the OCPS algorithm as alg1,1 that

alg1,1 =
X

i2I†1

(↵0
i,1 + ci · p) =

X

i2I†1

↵0
i,1

ci
(1 +

ci
↵0
i,1

· p) · ci.

Consider ✓max = max(
↵0

i,n

ci
) and ✓min = min(

↵0
i,n

ci
), it is

clear that
alg1,1  ✓max(1 +

p
✓min

) ·
X

i2I†1

ci.

Similarly, we have opt1,1, the objective value of the optimal
offline solution

opt1,1 � ✓min(1 +
p

✓max
) ·
X

i2I⇤1

ci.

Case 2, when Ifirstn ✓ I†n and n 6= 1: This means the
node n has sufficient capacity to include all containers which
will contribute to the minimized objective value if placed on
the node. Then we have the objective value of our algorithm
for each n, alg2,n, as

alg2,n =
X

i2I†n

↵0
i,n + �n =

X

i2Ifirst
n

↵0
i,n + �n +

X

i2I†n/Ifirst
n

↵0
i,n.

Then, it is clear that
alg2,n 

X

i2Ifirst
n

↵0
i,n + �n + ✓max ·

X

i2I†n/Ifirst
n

ci.

For any node n in case 2, since its capacity is sufficient to
include all containers in Ifirstn , the optimal offline solution
will definitely also have Ifirstn ✓ I⇤n. Therefore, we have a
similar conclusion that

opt2,n �
X

i2Ifirst
n

↵0
i,n + �n + ✓min ·

X

i2I⇤n/Ifirst
n

ci.

Case 3, when Ifirstn * I†n and n 6= 1: In this case, we
have the objective value of our algorithm for each n, alg3,n,
as

alg3,n =
X

i2I†n

↵0
i,n + �n =

 
1 +

CnP
i2I†n

↵0
i,n

· �n
Cn

!
·
X

i2I†n

↵0
i,n.

Consider �max = max( �n

Cn
) and �min = min( �n

Cn
), we have

alg3,n 
 
1 +

CnP
i2I†n

↵0
i,n

· �max

!
·
X

i2I†n

↵0
i,n


 
1 +

Cn

✓min ·
P

i2I†n
ci

· �max

!
·
X

i2I†n

↵0
i,n.

Based on the observation of our practical experiment in
Section V, we assume that the node with the smallest ca-
pacity can still hold the container with the maximal resource
consumption, i.e., R = min(Cn)

max(ci)
� 1. Since Ifirstn * I†n, there

exists at least one container î that î 2 Ifirstn and î /2 I†n due
to the capacity limitation. Hence, we haveX

i2I†n

ci + cî > Cn.

According to the definition of R, we know that
cî  max(ci) =

1
R

·min(Cn) 
Cn

R
.

Then, it is clear that
X

i2I†n

ci > Cn � cî � Cn � Cn

R
=

R� 1
R

Cn.



Thus, we have

alg3,n 
 
1 +

Cn

✓min · R�1
R Cn

· �max

!
·
X

i2I†n

↵0
i,n

 ✓max ·
✓
1 +

R
R� 1

· �max

✓min

◆
·
X

i2I†n

ci.

Substituting
P

i2I†
n
ci > R�1

R Cn with
P

i2I⇤
n
ci < Cn, we

can also conclude that

opt3,n � ✓min ·
✓
1 +

�min

✓max

◆
·
X

i2I⇤n

ci.

Taking all three cases into consideration, we can summarize
the competitive ratio between our algorithm and the optimal
offline solution as
S†

S⇤ =

P
n2case1 alg1,1 +

P
n2case2 alg2,n +

P
n2case3 alg3,nP

n2case1 opt1,1 +
P

n2case2 opt2,n +
P

n2case3 opt3,n

It is worth noting that
P

n2case2 alg2,n and
P

n2case2 opt2,n
share the same component m =

P
n2case2

P
i2Ifirst

n
↵0
i,n +

�n � 0. Knowing that if A � B > m � 0, then A
B 

A�m
B�m .

We hence can conclude that S†

S⇤ is less than or equal to
P

n2case1 alg1,1 +
P

n2case2 alg2,n +
P

n2case3 alg3,n �m
P

n2case1 opt1,1 +
P

n2case2 opt2,n +
P

n2case3 opt3,n �m
.

Here, we consider all containers counted in m belong to the
set Î . Therefore,

S†

S⇤ 
✓max · (1 +

max{p,0,R·�max
R�1 }

✓min
) ·
P

n

P
i/2Î ci

✓min · (1 + min{p,0,�min}
✓max

) ·
P

n

P
i/2Î ci

=
✓max

✓min
· (1 +

max{p, R·�max
R�1 }

✓min
) = ⌘.

After proving the theoretical guarantee of the ODCS algo-
rithm to the optimal offline solution in the worst cases, we
then evaluate its average performance compared to existing
baselines in the following section.

V. PERFORMANCE EVALUATION

To highlight the advantages of the proposed ODCS algo-
rithm, we conduct extensive simulations to compare it with
existing container scheduling algorithms for serverless edge
computing. Many basic settings and data in the simulations are
based on small-scale experiments, in which several real-world
data-intensive applications are implemented as serverless func-
tions on representative edge devices. Data transmission is also
carried out among different edge devices in the same edge
network. In this section, we will first briefly illustrate the
small-scale experiments and then demonstrate the simulation
settings based on them. Finally, we will present and discuss
the simulation results.

A. Serverless Edge Computing Experiments
The experiments are realized in an edge network consisting

of two types of edge nodes, raspberry Pi 4 [36] and Jetson
Xavier NX [37]. There are in total 4 Pi 4 and 2 NX devices and
all devices are connected in an Ad-Hoc network. Each rasp-
berry Pi 4 has 8G memory and 32G storage, while each Jetson
Xavier NX has 16G memory and 128G storage. We utilize a
lightweight container orchestration system, i.e., K3s [14], to
schedule and manage containers among the edge devices. K3s
is a highly available, certified Kubernetes distribution designed
for production workloads in unattended, resource-constrained,
remote locations or inside IoT appliances. We implement three
types of data-intensive serverless functions on the serverless
edge computing framework, i.e., data pre-processing, machine
learning inference with a convolutional neural network (CNN),
and results feedback to end users. Such three serverless
functions all involve data transmission with non-negligible
delays in the edge network. During the experiments, we record
the average execution and data transmission delays for each
serverless function as shown in Table II.

TABLE II
Function 1 Function 2 Function 3

Execution delay (s) 0.0027 1.1432 0.0001
Transmission delay (s) 1.4950 1.5926 0.2985

Besides above values, we also abstract heterogeneous fea-
tures of serverless edge computing from the experiments for
our simulation. For instance, the average execution delay of
the machine learning inference function on a raspberry pi 4
is 1.7520 seconds. However, the container running the same
function on a Jetson Xavier NX device only takes 0.4883
second to execute. More details about how to convert such
experiment results to simulation settings will be discussed in
the following section.

B. Simulation Settings
Due to the fact that edge networks may have different

topologies, we apply our ODCS algorithm on randomly gener-
ated connected graphs in the simulations. The connectivity is
0.2 by default but varies in different simulations to represent
the network heterogeneity. In the experiments, we observe that
the capacity of each edge node is mainly constrained by its
memory resource when executing data-intensive applications.
Given the memory resource of our edge devices is 8G and
16G, we set the capacity of each edge node Cn randomly
distributed in range [6, 14]. Here, 2G memory is set aside
for system functions. According to the minimal and maximal
memory consumption of different containers in our experi-
ments, i.e., 200M and 1.5G, we set the range of the resource
requirement of each container ci as [0.2, 1.5]. We further
set the execution delays, i.e., ↵i,n, as the benchmark of the
objective function. The basic value of this parameter for each
container i is uniformly distributed between [0.0001, 1.1432]
based on Table II. While for different edge node n, we multiply
the basic value with a factor that is randomly distributed in
[1, 1.7520

0.4883 ], which represents the execution delay difference



between Raspberry Pi 4 and Jetson Xavier NX, to imitate the
delay variety on different edge devices.

For the transmission delays, we consider the delays among
edge nodes are uniformly distributed in range [0.2985, 1.5926].
Since we do not include the transmission delay from the
edge to the cloud in the current experiments, we apply a
ratio of edge-to-cloud delays to edge-to-edge delays, which
is 2 by default but will also change in different simulation
results considering distinct network conditions. We consider
the default data availability is 10%, which means there will
be one node storing the data needed by container i in every
ten nodes on average. In the following Fig. 4, we will show
the influence of changing data availability to performance of
different algorithms. As mentioned in Section III, the ratio
of operating cost to delay is important for multi-objective
problems with inconsistent units. By default, we consider the
operating cost of edge node �n is uniformly distributed in
range [0, 40]. We will further evaluate the effects of different
cost-delay ratios to our algorithm in Fig. 6. Similarly, the cloud
cost parameter p is set to 0.5 by default, which means that
operating the same container incurs on average half the cost
compared to that at the edge. The value will also be tuned and
evaluated in Fig. 6.

C. Baselines
In the simulations, we compare the ODCS algorithm with

three typical container scheduling strategies as follows.
Data-aware placement algorithm (DAP): This baseline algo-
rithm derives from the greedy container scheduling algorithm
that is widely adopted by container orchestration systems
like the Kubernetes [30]. The original algorithm assigns each
condition of a server node a priority score and schedules the
next arriving container on the node with the highest score.
To acclimate the algorithm to edge environments for data-
intensive applications, related work, e.g., [11], formulate the
DAP algorithm by adding scores to evaluate the transmission
distance between the edge node and data location. However,
DAP does not take multiple data locations, detailed data flow
routing, or operating costs of the serverless edge computing
platform into consideration.
Near-data placement algorithm (ND): The ND algorithm is
designed based on the fact that many edge-native applications
tend to minimize the data transmission delay. Hence, the
algorithm will deploy the next arriving container on the
capable node, i.e., the node with sufficient resources, with the
lowest transmission delay to the corresponding data location.
First placement then routing algorithm (FPTR): Instead
of jointly dealing with container placement and flow routing,
the FPTR algorithm first deploys the arriving container to the
capable node with the lowest execution delay and operating
cost. It then searches for the data location with the lowest
transmission delay along the data flow routing path.

D. Simulation Results
In this section, we utilize box plots to show details of the

simulation results and each box contains objective values of 20

independent simulations. We first present the performance of
our ODCS algorithm and other baselines when the sufficiency
of edge resources changes in Fig. 3. It is clear that an
increasing number of arrived containers leads to a higher
objective value with 60 nodes in the network as shown in
Fig. 3(a). Nevertheless, our ODCS algorithm, which has a
comprehensive consideration of flow routing and operating
costs, always performs much better than the baselines without
such features, e.g., the DAP algorithm. Such an advantage
preserves even when the number of containers reaches 600,
which means that the network is heavily loaded with the total
resource consumption of containers comparable to the total
capacity of all edge nodes. We can also draw from Fig. 3(a)
that jointly handling the container placement and data flow
routing as our algorithm does always achieve lower objective
values compared to solving the two problems separately by
the FPTR algorithm.
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Fig. 3. Performance of the ODCS algorithm and baselines under different
resource sufficiency. (a) presents the comparison of the algorithms with fixed
edge nodes and an increasing number of containers. (b) shows the performance
with fixed containers and an increasing number of nodes.

Fig. 3(b) further shows the performance of the algorithms
with in total of 300 containers deployed on an increasing
number of nodes. Besides conclusions similar to those drawn
from Fig. 3(a), we also observe that ignoring the operating
cost of serverless computing on edge nodes may lead to
even worse performance when the number of available edge
nodes increases. This is because such algorithms like DAP
and ND may initialize unnecessary edge devices for serverless
computing. The proposed ODCS algorithm in this paper totally
avoids this drawback and always achieves better performance
with more sufficient edge resources.

We then utilize Fig. 4(a) to evaluate the performance of
different algorithms when the topology of the edge network
varies. There are in total 60 nodes and 300 upcoming contain-
ers, the rest settings are the same as those in Fig. 3. There
is an obvious performance improvement for the ODCS and
FPTR algorithms when the connectivity of the edge network
increases. We infer that such an enhancement is caused by
the availability of more data flow routing choices with lower
transmission delay. On the other hand, there is no such
performance improvement in the DAP and ND algorithms due
to their ignorance of detailed flow routing. As discussed in
Section I, one advantage of the ODCS algorithm is that it
respects that data could be available at multiple locations and
picks the best one for objective function optimization. We thus
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Fig. 4. Performance of the ODCS algorithm and baselines in serverless edge
computing networks with heterogeneous topology and data availability. (a)
shows the simulation results of different algorithms when the connectivity of
the edge network increases. (b) demonstrates corresponding results when the
number of data copies grows.

present the comparison of it to the baselines with different data
availability in Fig. 4(b). We observe from the figure that the
objective value of the ODCS algorithm keeps decreasing when
the copies of data for containers increases in the edge network.
In addition, ODCS still has the best performance compared to
the baselines even when the data availability is low.
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Fig. 5. Performance of the ODCS algorithm and baselines with increasing
delays. (a) presents the simulation results with growing transmission delays.
(b) shows the results when the ratio of the edge-cloud transmission delay to
the edge-edge transmission delay increases.

The geo-distribution and heterogeneity of edge networks
are also reflected in the diverse transmission delays among
edge nodes. We multiply the default transmission delay in
the settings by a factor changing from 0.5 to 2 and show
corresponding simulation results in Fig. 5(a). It is worth noting
that the performance declines of the ODCS and the FPTR
algorithms are more prominent than the other two baselines
DAP and ND. The reason is that the latter two algorithms
always tend to deploy containers on nodes with the lowest
transmission delay to data, thus largely offsetting the influence
of transmission delay increment. The former two algorithms,
on the other hand, need to balance the operating costs and the
delays. Nevertheless, ODCS and FPTR still outperform the
other two baselines even with large transmission delays. Fur-
thermore, the exceeding of our ODCS to the FPTR algorithm
is more obvious under large transmission delays, emphasizing
the advantages of solving container placement and flow routing
jointly. Similarly, we can infer from Fig. 5(b) that the ODCS
still achieves the best performance even if the transmission
delay between edge and cloud is on average four times larger
than that among edge nodes.
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Fig. 6. Performance of the ODCS algorithm and baselines under different
operating costs. (a) shows the algorithms’ performance when the ratio of the
operating cost to the default value in the settings increases from 0.5 to 2. (b)
shows corresponding results when p change from 0.25 to 1.

In the end, we present the effect of different operating costs
on the performance of the OCDS algorithm and other baselines
in Fig. 6. Although the objective values of all algorithms
increase with the growth of the relative operating cost as
shown in Fig. 6(a), the increments of ODCS and FPTR are
much milder than those of the other two baselines. Besides, the
ODCS algorithm remains the leading performance even when
the operating cost is relatively small compared to the delays,
which shows the superiority of the proposed algorithm in
solving the multi-objective problem. Fig. 6(b) further presents
the simulation results when the relative cloud operating cost,
i.e., the parameter p, varies while the operating cost of each
edge node remains the same. We can conclude from the figure
that our ODCS can orchestrate containers flexibly among
edge nodes and the cloud for the best performance. It will
achieve a lower objective value if operating a container on the
cloud is relatively cheaper but still keeps the best performance
compared with other baselines when cloud resources are
expensive.

VI. CONCLUSION

In this paper, we mainly focus on extending the serverless
computing paradigm from the cloud to the network edge
to facilitate data-intensive applications. We demonstrate the
challenges of serverless edge computing introduced by the
geo-distribution and heterogeneity of edge environments. We
propose an online data-aware container scheduling algorithm
to address the aforementioned challenges, which deals with
container placement and data flow routing simultaneously. We
prove that the proposed algorithm achieves local optimum
for each arriving container request and its global result also
preserves a theoretical bound to the optimal offline solution.
We further conduct extensive simulations based on real-world
experiment-driven data to show that our algorithm performs
better than existing baselines.
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