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Abstract

As web applications grow more complicated and rely on

third-party libraries to deliver new features to their users, they

become bloated with unnecessary code. This unnecessary

code increases a web application’s attack surface, which can

be exploited to steal user data and compromise the underlying

web server. One approach to deal with bloated code is the

process of selectively removing features that users do not

require – debloating.

In this paper, we identify the current challenges with

debloating web applications and propose a semi-automated

static debloating scheme. We implement a prototype of our

proposed method, called Minimalist that generates a call-graph

for a given PHP web application. Minimalist performs a

reachability analysis for the features users require and removes

unreachable functions in the analyzed web application.

Compared to prior work, Minimalist debloats web applications

without relying on heavy runtime instrumentation. Further-

more, the call-graph generated by Minimalist can be reused

(in combination with web server logs) to debloat different

installations of the same web application. Due to the inherent

complexity and highly dynamic nature of the PHP language,

Minimalist cannot guarantee the soundness of its call-graph

analysis. However, Minimalist follows a best-effort approach

to model the majority of PHP features used by popular web

applications, such as WordPress, phpMyAdmin, and others.

We evaluated Minimalist on 12 versions of four popular

PHP web applications with 45 recent security vulnerabilities.

We show that Minimalist reduces the size of web applications

in our dataset on average by 18% and removes 38% of known

vulnerabilities. Our results demonstrate that the principled

debloating of web applications can lead to significant security

gains without relying on instrumentation mechanisms that

degrade the performance of the server.

1 Introduction
The growth in features and capabilities of software applica-

tions is fueled by the constant introduction of additional and

increasingly complex code. This ever-increasing codebase can

be partially explained by the reliance on third-party libraries

and frameworks. While these artifacts may simplify the de-

velopment process of applications, they also contribute to the

resources attackers can misuse to exploit the system [18]. Cru-

cially, developers include entire libraries and frameworks in

their applications while only using a small portion of the code

from each framework [4]. An example of this situation are bi-

nary applications that only rely on a small number of functions

in common shared libraries, such as libc, while loading the

entire library into the program’s address space at runtime [2].

At the same time, users do not always use the entirety of

the features of an application, leading to yet another source

of unnecessary code (i.e., features in the application that are

unnecessary for a given set of users). The unused portion

of code introduced during the development process or the

environment of the application can be considered as bloat.

One approach to deal with unused code in an application is

called debloating. Debloating is the process of determining the

functionality that a user or system requires to fulfill its purpose

and subsequently preventing the execution of all other code

in that application. A crucial aspect of the debloating process

is determining what code to remove, which can be determined

statically or dynamically. Debloating techniques detect

unused code, for example, based on dynamic traces of appli-

cations [1, 4, 5, 13], static construction of call-graphs [2, 8, 26],

and dependency graphs of JavaScript applications [15].

Dynamic debloating of web applications relies on a training

phase and records execution traces to determine the used

portion of the code and remove any code not executed during

training. Profiling user interaction with the web application

is a resource-intensive task, which cripples the server’s

response-time and subsequently affects the users’ experience

with the web application. In the case of Less is More [4] (LIM)

(the most recent system for dynamically debloating web appli-

cations), our experiments show that the server’s response time

experiences a significant slowdown, all the way up to 17× for

specific complicated pages of the evaluated web applications.

A key goal for both static and dynamic debloating ap-

proaches is that false positives (i.e., the incorrect removal of



required functionality) have to be minimized. Unfortunately,

the current state-of-the-art systems in both categories use

approaches that give rise to breakage for features not exercised

during the training phase. Our experiments demonstrate that

just by adding simple variations to the already exercised

features (e.g., changing an option in a dropdown list on a

submitted form), users can observe a breakage in 33% of

their actions for web application debloated by dynamic code

coverage (more details in Section 4.5). An example of such

breakage is in the media upload functionality of WordPress,

where the training dataset of LIM only includes uploading a

PNG-formatted image to the web application. As a result, de-

bloating removes the file upload handlers of other media files,

therefore, users cannot upload any media file other than PNG-

formatted images to the WordPress instance debloated by LIM.

The performance overhead of profiling in LIM and its potential

for breakage is a motivation for building practical debloating

schemes that can reliably be used to debloat web applications.

In contrast to dynamic techniques, static approaches

perform static analysis over the call-graph, control-flow graph,

or other representations of the application to identify and

debloat unused code. While a purely static analysis does not

rely on potentially incomplete training data, these systems

will trigger false positives if the implemented analysis is

unsound. The dynamic nature of interpreted languages such

as JavaScript and PHP makes static analysis challenging.

For instance, Mininode generates an unsound call-graph

of Node.js modules as it does not resolve all the dynamic

imports [15]. As a result, the reduction in Node.js modules by

Mininode is susceptible to runtime errors that occur when the

Node.js app invokes a function that was incorrectly debloated.

To address these shortcomings, in this paper we propose

Minimalist, a semi-automated static analysis system for web

applications written in PHP, the most prolific programming

language for web applications [32]. Minimalist generates a

call-graph for a given PHP web application, which is then

used to debloat that application. Due to the complexity of PHP

language, (e.g., dynamic function calls or script inclusion)

Minimalist cannot guarantee the soundness of the generated

call-graph. However, unlike prior work such as Mininode,

Minimalist makes a concerted best-effort to reason about

the above dynamic features and be soundy (more details in

Section 6). According to the soundiness manifesto [17], "an

analysis is soundy if most common language features are

over-approximated by modeling all their possible behaviors

[...]. On the other hand, some specific language features, well

known to experts in the program analysis area are best under

approximated." In order to generate the call-graph, Minimalist

needs to identify all the invoked functions in the target

web applications. PHP provides various APIs for invoking

functions, which makes static analysis a challenging task.

Our tool automatically identifies the vast majority (99.95%)

of invoked functions in target applications in our dataset. In

order to address the challenges introduced by highly dynamic

features in the PHP interpreter, such as evalwhich can execute

dynamically generated code, Minimalist relies on the anno-

tations provided by an analyst. We quantify the difficulty of

producing these annotations and find that analysts can produce

them with a minimal time investment (less than 15 minutes

per callsite) and that analysis efforts from one version of a web

application can be amortized over multiple followup versions.

At a high level, our debloating scheme consists of three

major steps. First, Minimalist statically analyzes the given

PHP web application to generate a call-graph. Second,

Minimalist prunes the call-graph by removing the functions

that the web application does not require to respond to users’

requests, as determined by readily available web server logs.

Finally, Minimalist performs a function-level debloating to

remove the unused functions.

Given an accurate call-graph, Minimalist can then use

information about how users interact with the web application

in order to remove more than just unreachable code. We can

capture users’ interactions by: 1) running simulations of user

interactions, 2) deploying monitoring tools on real-world

deployed web applications, and 3) using already recorded

access-log files from web-servers. Minimalist obtains historic

information of user interactions with the web application

by taking advantage of already recorded access-log files on

the server. This approach allows us to avoid the unrealistic

simulation of users using automation tools as well as avoid

deploying resource-intensive, monitoring tools for tracking

code coverage on the server side. By using the set of accessed

files and the generated call-graph to tailor the web appli-

cation based on user interactions, Minimalist preserves the

functionality that web applications need to respond to users.

Overall, our main contributions are the following:

• We propose a semi-automated static debloating scheme

that removes the unused functionality of PHP applications

refined with information from prior user interactions.

• We design and instantiate our approach in a prototype

called Minimalist, using static analysis to generate a

call-graph for a given web application. To facilitate the

handling of few (< 50 call sites per application in our

dataset) edge cases, Minimalist provides an API for

developers and experts to develop custom static analyses

(CSAs) for PHP web applications.

• We analyzed the source-code of the four most popular

web applications accounting for more than 45% of all

public websites and developed a set of CSAs to handle

the unresolved function calls of the PHP web applications

in our dataset.

• We extensively evaluated the security benefits of debloat-

ing web applications using Minimalist. Our findings

show that Minimalist reduces the size of web applications

by 18% on average and removes 38% of high-severity

vulnerabilities in our dataset. Evaluating our CSAs shows



1 ## Class.php

2 class ParentClass {

3 public $feature = 0;

4 public function __construct() {

5 $this ->feature = 1;

6 }

7 public function Cprint(){

8 echo $this ->feature."\n";

9 }

10 }

11 class ChildClass extends ParentClass {

12 public function call() {

13 call

Invoke Cprint in ParentClass

_user_func(array($this , ’Cprint’));

14 }

15 }

16

17 ## test.php

18 define(’classpath’, __DIR__ );

19 $included = classpath."/Class";

20 include_once $included.’.php’;

Variable file inclusion
21 $type = "ChildClass";

22 $obj = new $type;

Invoke the parent constructor23 $method = "call";

24 $obj ->$method(); Variable invocation

Listing 1: Usage of dynamic PHP language constructs in

file inclusion, class instantiation and function calls.

that, on average, 80% of the code (i.e., ∼780 lines) in a

CSA is identical and hence reusable between different

versions of the same web applications. This allows

developers to amortize their efforts across months and

years of consecutive web application versions.

We will open-source Minimalist and our dataset to encourage

further research in the area of web-application debloating.

2 Background

Static analysis of dynamic languages such as PHP is

inherently challenging. In this section, we review the language

constructs that complicate static analysis. First, we review

common PHP code snippets that use dynamic language

features. Then we discuss the sources of dynamicity in

the control flow of PHP applications and the call-graph

construction and its properties.

2.1 File Inclusion Schemes in PHP

PHP provides two mechanisms for file inclusion. Direct

inclusion using include and require statements and

autoloaders.

Direct file inclusion enables developers to load PHP files

corresponding to different classes and modules at runtime.

Lines 18 and 19 in Listing 1 incorporate a constant variable defi-

nition based on the path of the current directory (using__DIR__

built-in constant) to generate the file path that is then used in the

include statement on line 20. This file inclusion scheme is com-

monly used in applications such as WordPress and phpMyAd-

min. In order to statically resolve such file paths, an application-

wide “variable analysis” step is required which properly mod-

els the data flow (e.g., direct variable assignments, use of arrays,

constants and global variables) for the target variables.

Autoloaders allow developers to dynamically resolve and

load undeclared classes without explicit calls to include or

require. A PHP application can introduce autoloading rules

to the PHP interpreter using spl_autoload_register. This

way the PHP interpreter can automatically use the defined

rules to load undeclared classes. In Listing 1, autoloaders

could be used instead of direct file inclusion on line 20. This

way, the PHP interpreter would automatically include the

Class.php file inside test.php on line 22 when the class

instantiation occurs with an undefined class name. Regardless

of the file inclusion mechanism, the PHP engine executes all

the code in the main body (i.e., not part of a function or a class)

of the included PHP script upon inclusion.

2.2 Call Graph Generation

A call-graph is a directed graph where the vertices represent

functions and directed edges between vertices represent

function invocations where the caller invokes the callee [10].

Each node (i.e., caller) can have multiple edges to other nodes

(i.e., callee) depending on the number of invoked functions

by the caller. One important property for a call-graph is the

soundness property. A call-graph is sound if it includes all

possible edges for every function call in an application.

PHP provides various language APIs to invoke functions

(e.g., direct invocation, variable function names, and call-

backs). In order to build a sound call graph of an application,

one needs to resolve dynamic function calls to their set of

feasible target functions. A dynamic function call refers to

a function invocation where the function to be invoked is

determined at runtime. Next, we go over the PHP language

APIs and constructs that can result in dynamic function calls:

Reflection can be used to dynamically instantiate a class,

list available methods and properties or invoke class methods.

As a result, static analyzers need to understand the reflection

API to resolve the correct class instantiations and method calls.

Variable functions in PHP is an implicit way of calling

functions using reflection. In this scheme, the target function

name is stored in a variable, which is then used in a function

invocation. Lines 23 and 24 of Listing 1 demonstrate this use

case where the variable $method is assigned with the function

name call. Likewise, the class name that implements this

method is defined on line 21 by a variable named $type.

Callback functions allow a function name to be passed

as an argument to another function. Certain PHP built-in

functions such as array_filter, call_user_func, and

set_error_handler accept callback functions through

their parameters. Line 13 in Listing 1 showcases a call-

back function named Cprint which is invoked instantly

by call_user_func. Popular web applications such as

WordPress use callbacks to provide APIs for plugin and theme

developers.

Inheritance and building the class hierarchy is an impor-

tant step in generating the call graph of PHP applications.

Object-Oriented Programming (OOP) in PHP allows the

invocation of a method from a given object’s class or any of its

parent classes. Accurate resolution of method calls relies on





2) Variable Analysis, 3) Script Inclusion Analysis. Our tool

uses the php-parser library [29] to parse each PHP script in

the web application into its corresponding Abstract Syntax

Tree (AST) and then performs each analysis. Next, we discuss

the details of each analysis and how Minimalist incorporates

this information to generate the call-graph.

3.1.1 Class Hierarchy Analysis

In this step, Minimalist performs the class hierarchy

analysis on the given PHP web application. This analysis

allows Minimalist to identify the inheritance relationships

between the implemented classes in the web application. For

the class hierarchy analysis, Minimalist identifies the class

definition statements (e.g., Line 11 in Listing 1) by iterating

over the AST nodes of each PHP script. In a class definition

statement (Line 11 in Listing 1), Minimalist extracts the name

of the defined class and the extended class, which follow

the keywords class and extends respectively. Our tool

generates a global hashmap called Inherit, where the key

is the defined class and its value is the parent class name.

3.1.2 Variable Analysis

In this step, Minimalist performs a flow-insensitive analysis

on the source code of the target web applications. PHP

applications often use dynamic features such as variable

invocation and script inclusion to deliver dynamic content.

This analysis allows Minimalist to correctly resolve the list of

target functions in dynamic invocations and included files in

further analyses. The variable analysis in Minimalist involves

tracking assignment statements in the web application and

recording the assigned values in a hashmap. In our analysis,

a variable can take any of the following values:

• Constant: The assignment statement contains only

constant values.

• Unbound: The variable analysis cannot restrict the

possible values for a variable such as assignments based

on user-input.

• Mixed: The assigned value to the variable is a mixture of

constants and unbounded values.

Each assignment statement is comprised of three compo-

nents: the left hand side (lhs), the right hand side (rhs), and the

operation. Minimalist tracks the variable assignments for each

PHP script in a separate hashmap structure named ValueSet.

In this hashmap, the key is the name of the variable on the lhs

and the value is the string representing the assigned value. For

each assignment, we resolve the lhs expression to extract the

name of the target variable, which includes variables, arrays,

and class property assignments. Similarly, the rhs is resolved

iteratively by traversing the AST nodes provided by the PHP

parser. The rhs is resolved to a string representing the assigned

value. In PHP, variables are scoped. There are three different

variable scopes in PHP [25]: 1) global, 2) local, and 3) static.

A variable’s scope is global when the variable is defined

outside a PHP function. Furthermore, a variable defined inside

a function is by default limited to the local function scope.

Similar to local scope, a static variable can only be accessed

inside the local function scope [25]. Minimalist conservatively

promotes all variables to the global scope and combines the

resulting ValueSets (i.e., set union) of all variables that share

the same name, irrespective of the variables’ scopes (Pseu-

docode in Appendix D). This approach leads Minimalistto

over-approximate the possible values a variable can hold.

Figure 2: Minimalist analyzes the assignment statements by

1) Extracting the name of the variable from LHS, 2) Resolving

the RHS to a string representing the assigned value, 3) Storing

the mapping in the ValueSet hashmap.

We categorize the rhs expressions into six groups, which

we handle as follows:

Literal: There is no further analysis on string literals.

Magic Constants and PHP built-in functions: The

PHP interpreter defines a set of constants with predefined

values such as __dir__ and __function__, which refer

to the current directory and current function, respectively.

Minimalist models the commonly-used PHP file operations

functions such as dirname as well as magic constants. This

way, we can resolve dynamic file inclusions statically.

Object Instantiation: For object instantiation statements,

Minimalist extracts the name of the instantiated class and

determines the type of the instantiated object. If Minimalist

cannot reason about the type of an object in rhs, it marks the

variable as “unbound”.

Variables: If the rhs contains a variable, this means that

the variable must have been initialized previously in the web

application. In this case, Minimalist resolves each variable

on the rhs by looking up its assigned value in the ValueSet

hashmap. If we cannot find the variable in the hashmap for

the current script, we perform a global search across other

PHP scripts for its definition. If the variable is not found,

Minimalist marks the variable as “unbound”.

User-defined Function Call: Minimalist only resolves

direct function calls used in assignment statements. To do

this, Minimalist identifies the implementation of the invoked

function in the web application, and analyzes the return

statement inside the function’s body. Our tool iteratively

analyzes the AST nodes of the return statement, similar to

the analysis of the assignment statements. Next, we translate



Figure 3: Minimalist analyzes the include statements and

generates a script dependency graph for the web application

under analysis.

the sequence of nodes that compose the return statement into

a string representing the returned value. We then replace the

function call in the assignment statement with this string.

In the case of recursion in function calls, Minimalist only

analyzes the return statement once. If Minimalist cannot

determine the target function (i.e., variable invocations) or its

returned value, it marks the return value as “unbound”.

Unbound: For any other type of node that does not

belong to the above categories, Minimalist marks the string

representation of the node as “unbound”.

Minimalist applies this procedure recursively on every node

of the rhs in the assignment statement until it includes only

literals, unbounds, and string concatenation. Minimalist then

translates the rhs into a regular expression (regex). In doing so,

Minimalist over-approximates the unbounds (e.g., user-input,

database records) by replacing them with a wildcard (.*) in the

generated regex. Over-approximating the values of variables

in this step allows Minimalist to include all possible values

assumed by a variable in the regex. In the case of multiple

assignments to the same variable, Minimalist joins the regexes

for each option with the or operator. In the end, Minimalist

creates an entry in the ValueSet hashmap with the name of the

variable as the key and the generated regex as the value. Fig-

ure 2 demonstrates how Minimalist analyzes different types of

nodes in the AST for the assignment statements in Listing 1 and

stores the mapping of their values in the ValueSet hashmap.

3.1.3 Analyze Script Inclusions

In this analysis, Minimalist generates a script dependency

graph for the PHP web application. A script dependency graph

is a directed graph where the nodes are the files in the web

application and a directed edge between two nodes (i.e., two

files) represents the inclusion of scripts. The PHP interpreter

always executes the main body (i.e., global context) of an

included script. This is critical to constructing the call graph

since each included script can invoke a series of functions

or include other scripts. Minimalist iterates over the AST of

each script in the PHP web application and identifies script

inclusion expressions. For each script inclusion expression,

Minimalist iterates over all the nodes that compose the string

passed to the expression.

Minimalist handles dynamic script inclusions in web ap-

plication by resolving the value of variables using the variable

analysis results. If there is a variable in the argument, we

Figure 4: Minimalist uses the information from previous anal-

ysis, 1) Looks up for variables values in ValueSet hashmap,

2) Retrieves and replaces the values in the function call , and 3)

Draws the associated edges in the call-graph. main:test.php

represents the global scope of the test.php script.

replace the variable with its value in the valueSet hashmap.

Next, Minimalist translates the sequence of arguments into

a regex. Finally, we draw edges between the file under analysis

and every file that matched the regex. If the passed argument

to the script inclusion function is a wildcard regex, we draw

edges from the file under analysis to every file in the web

application. In Figure 3, we demonstrate how Minimalist

resolves the arguments into the files matching the regex, and

generates the script dependency graph for Listing 1.

PHP scripts frequently use auto-loaders to instantiate

objects from classes without explicitly including the file which

contains the implemented class. Minimalist handles auto-

loaded classes in scripts by analyzing the new expression used

for instantiating the object. As with resolving the argument

passed to include statements, Minimalist resolves the argu-

ments passed to the new expression. Afterward, Minimalist

draws a dependency edge from the current file under analysis

to the script(s) which contain(s) the class implementation(s).

3.1.4 Generate the Call-graph

In this step, Minimalist generates a call-graph for the web

application under analysis. To generate the call-graph, Min-

imalist must identify the caller-callee relationships between

functions in the web application. This is accomplished by

iterating over the AST of each PHP file, to identify function

call expressions residing in the caller. The target of this

expression identifies the callee. As callers and callees are

functions, Minimalist maintains a special caller corresponding

to the global script contenxt (i.e., function invocations not part

of a function body). For direct invocations, Minimalist adds

a node to the call-graph for the caller and callee, if they do not

exist, and draws an edge from the caller to the callee.

In case of variable invocations, our tool leverages the col-

lected information in the variable and class hierarchy analysis

to resolve the values of variables. Minimalist extracts the

nodes that compose the variable and performs a lookup in the

ValueSet hashmap to find the regex for the assigned values.

For keywords within the object’s context (e.g., parent),

Minimalist uses the Inheritmapping to replace the keyword

with the name of the current class or its parent. Next, our tool

resolves the variable invocation by matching the regex against

all defined functions and methods in the web application.



Finally, Minimalist draws edges in the call-graph between the

caller and each of the matching functions. Note that the over-

approximation of variable values in the variable analysis leads

Minimalist to draw edges to every possible invoked function at

each call-site. Figure 4 demonstrates how Minimalist resolves

the assigned values to variables in a function call and draws

the edge between the caller and the callee in the call-graph.

If the variable involved in the variable invocation is unbound

(i.e., wildcard (.*)), Minimalist cannot resolve the function call

to a subset of defined functions in the web application. In such

a case, we draw edges to every defined function in the web ap-

plication. call-graph. Minimalist also creates a report of the un-

resolved instances, including the target file, function, and line

number. This report provides the necessary information for im-

plementing custom static analysis (described in Section 3.1.5).

Furthermore,Minimalist models the set of higher-order func-

tions provided by the PHP interpreter that take the name of a

function as an argument, which is then invoked by the inter-

preter. Higher-order functions affect the call-graph by invoking

the functions passed as arguments. Hence,Minimalist needs to

take such functionality into account while generating the call-

graph of the web application. We identified the set of higher-

order PHP functions by manually analyzing the arguments and

return values of the functions according to the PHP documen-

tation [24]. We then modeled their behavior according to the

arguments accepted by each higher-order function and their

return values in Minimalist. In the case of calling a higher-

order PHP function, Minimalist infers the target function’s

name passed as arguments by leveraging the corresponding

variable’s ValueSet. Then, Minimalist adds a node to the call-

graph for the caller and callee (if they do not already exist) and

draws an edge between them. Note that, if there are multiple

functions that match the passed argument (i.e., function to be

invoked) to the higher-order function, Minimalist draws an

edge between the caller and each of the matching functions.

Similar to higher-order function invocation, we modeled the

behavior of PHP’s reflection API in Minimalist. Specifically,

to address reflection, Minimalist extracts the argument that

represents the function to be invoked and draws the respective

edges in the call-graph. Analogous to variable function calls,

Minimalist generates a report for unresolved instances of the

invoked functions by higher-order functions or the reflection

API, which should be addressed by an analyst through CSA.

For script inclusion functions, Minimalist uses the script in-

clusion analysis result and creates a dummy node for the main

body of the included script if it does not exist and draws an

edge from the caller to the dummy node.

At the end of this step, Minimalist generated a call-graph

for the web application using the information acquired

from the previous analyses. Our tool needs to construct the

call-graph once per web application. Whenever there is a

modification in the source-code of the target web application,

such as upgrading to a new version or installing a new module,

1 function test() {

2 //Retrieve the callable action from the database

3 $query ="SELECT * FROM actions WHERE ".$conds;

4 $result_db = mysql_query($query);

5

6 //Assign the value to the variable action

7 $action = mysql_fetch_row($result_db);

8 // Invoke the retrieved function name

9 // from the database

10 $result = $action();

11 }

Listing 2: Drupal retrieves the name of the function to

invoke from database. The function test is implemented

in actions.php.

Minimalist needs to repeat the call-graph construction step,

including the preliminary analyses.

3.1.5 Custom Static Analysis

In this analysis, Minimalist resolves the problematic

function calls and script inclusions into a small set of

functions/scripts. For a small subset of function calls and file

inclusions, Minimalist cannot statically resolve the callees or

target scripts. In the absence of such information, Minimalist

draws edges to every node in the call-graph or the script

dependency graph. This level of abstraction can render the

debloating process ineffective if an invoked function has edges

to all the functions in the web application.

Since Minimalist is not able to fix the unresolved instances

alone, alternative methods are necessary. Our tool leverages an

analysts’ knowledge in order to resolve the missing function

calls. Using the report from the previous step, a human analyst

can inspect the source code of the web application and provide

the annotations using the CSA API. Using these annotations,

Minimalist can resolve the specific challenging call sites and

file inclusions to a subset of functions and files. Minimalist

cannot verify the soundiness of a manually created CSA.

However, we discuss the implications of soundiness on such

CSAs in Section 6.

To put this into perspective, we investigate an unresolved

function call in Drupal 7.34 in Listing 2. Drupal registers a

set of functions called “actions” in the database while getting

installed or whenever there is a new module installed. Drupal

retrieves the function names from the database to invoke under

certain conditions, such as when a user comments on a post

or replies to a comment. In Listing 2, Drupal issues a query to

the database on line 4 to extract the name of the target function

from the database and store it in the action variable on line 7.

Given that the values fetched from dynamic queries executed

on a database are not accessible to the static analysis, such

cases pose a challenge to any static analysis tool, including

Minimalist. In such a case, an analyst can assist Minimalist by

providing the routine to query the database and retrieve all pos-

sible invoked target function calls and update the call-graph.

Listing 3 demonstrates the CSA for Drupal, which adds the

edges in the call-graph for the function test based on the query

results on the first line. Note that Minimalist needs to rebuild

the call-graph whenever there is a change in the web applica-



1 list_actions=db.Query(’SELECT callbacks FROM actions’)

2 foreach list_actions.Next() {

3 // grab items from the list of actions

4 var item

5 list_actions.Scan(&item)

6 // update the callgraph of function test

7 // with the retrieved action called item

8 update_callgraph("test", "actions.php", item)

9 }

Listing 3: The code snippet in the CSA to resolve the actions

retrieved from the database in Drupal

tion source-code (e.g., a new installed module). Considering

that new installed modules in Drupal have their own actions in

the database, communicating with the database allows the CSA

to update the call-graph with the latest target function calls.

The function test in Listing 2 only retrieves one action to

invoke, which is determined by the provided conditions in vari-

able conds. Since we cannot reason about the value of conds

in Line 3 of Listing 2, the analyst needs to identify all possible

invoked functions on Line 10. On lines 2 to 8 of Listing 3, we

iterate over the values of the variable action retrieved from

the database and add the target functions in the call-graph for

the function test in actions.php inside Drupal.

3.2 Debloating the Web application
Up to this point, Minimalist generated the call-graph of

the entire web application. In this step, our tool removes the

pieces of code from the web application that are not necessary

to respond to users’ requests. Each individual request from the

users of web applications invokes a small subset of the files

within the whole codebase of the application. Moreover, not all

functions contained within these files get invoked to respond

to users’ requests. The debloating process in Minimalist

consists of identifying the reachable files and functions from

the set of files accessed by users within the call-graph and then

removing the unreachable parts of the graph.

First, we use access-log files to obtain the set of files that

users access during their interaction with a web application.

There are alternatives to this approach, including instrument-

ing the PHP interpreter and the web application to log every

executed file, function, and line at runtime. This approach

slows down the server’s response-time by up to 17x in certain

cases. Moreover, recording synthetic interaction with a web

application for a short period of time does not encompass

the behavior of real users’ interactions. Our approach infers

the accessed entry points in the application by analyzing

existing access-log files, which are readily available on the

web servers. The web server records the requests that users and

administrators send to the server for browsing the website, ex-

ercising the offered functionality, and debugging problems [7].

Compared to instrumentation approaches, access-log files

allow Minimalist to obtain real users’ interaction over longer

periods without causing additional performance overhead.

Second, for every file recorded in the access-log file,

Minimalist identifies the node associated with the global

context of the accessed file in the call-graph. Afterwards,

Minimalist performs a reachability analysis to identify all

the files and functions reachable from each accessed file.

Minimalist repeats this process for all unique entries from

the access-log file to build its overall reachable call-graph and

prunes the nodes of unreachable files and functions.

In the last step, we debloat the web application at a

function-level granularity based on prior users’ interactions.

Leveraging function-level debloating allows Minimalist to

selectively remove functions and PHP files from the web

application. To achieve this, Minimalist determines the set of

line numbers associated with the body of reachable functions

and the global scope of the scripts. Finally, it iterates over the

PHP files in the web application and removes any lines that are

not associated with the set of line numbers for the functions

or scripts remaining in the pruned call-graph.

4 Evaluation
We assess the effectiveness of Minimalist from different

perspectives on a set of popular PHP web applications. First,

we assess our static analysis and its capability to resolve

function calls in the web applications. Next, we analyze the

CSAs that we implemented for the web application in our

dataset. Finally, we evaluate the impact of debloating web

applications in terms of reducing bloated code and removing

security vulnerabilities. Our evaluation aims to answer the

following research questions:

RQ1. How precise is Minimalist in resolving function calls

and generating the call-graph for a web application? (§ 4.2)

RQ2. How much effort do analysts need to implement a CSA

for Minimalist? (§ 4.3)

RQ3. How effective is Minimalist in debloating web

applications in terms of reducing the lines of code? (§ 4.4.1)

RQ4. What is the impact of Minimalist on removing severe

security vulnerabilities? (§ 4.4.2)

RQ5. What is the effect of different debloating techniques

on the usability of debloated web applications? (§ 4.5)

4.1 Evaluation Dataset
We evaluated Minimalist on four popular PHP web applica-

tions. Our evaluation dataset includes three open-source PHP

content management systems (CMS): WordPress, Joomla, and

Drupal, and phpMyAdmin as a database administration tool.

In practice, administrators customize CMSes by installing

plugins. To reflect this, we installed the top five (at the time

of writing) featured plugins [33] on WordPress 4.6.0 in

accordance to official WordPress website: Jetpack, Akismet,

Health-check, classic editor, and classic widgets. According to

W3Tech, these open-source CMSes account for 45.2% of all

the websites on the Internet [31]. For each web application in

our dataset, we selected the versions with the largest number of

high-severity vulnerabilities based on the vulnerability CVSS



Table 1: We break down the static and dynamic function calls for each web application in our dataset. The last two columns

in the Static Analysis section present the number of unresolved function calls in each web application and the number of new

implemented lines in their CSAs. The Vulnerability Reduction section presents the number of removed security vulnerabilities

from the web application debloated by LIM, and Minimalist.

Static Analysis Vulnerability Reduction

Web app Version
Function Calls New

LoC

Total

CVEs

Total Removed CVEs

Total Direct Dynamic Resolved Fuzzy Resolved Unres LIM [4] Minimalist

WordPress

4.6.0 64,692 60,010 4,682 (7%) 63,719 (98%) 927 (1.4%) 46 768 2 0 0

4.6.0 + Plugins 102,328 93,773 8,555 (8%) 100,416 (98%) 1,888 (0.33%) 24 123 - - -

4.7.1 65,575 60,664 4,911 (7%) 64,631 (98%) 888 (1.3%) 56 37 2 1 0

4.7.19 66,080 61,161 4,919 (7%) 65,157 (98%) 874 (1.3%) 49 0 - - -

5.0 71,030 56,906 5,124 (7%) 70,055 (98%) 926 (1.3%) 49 10 - - -

PhpMyAdmin

4.0.0 26,079 23,424 2,655 (10%) 25,819 (99%) 253 (0.9%) 7 215 8 7 5

4.4.0 29,232 25,009 4,223 (14%) 28,352 (97%) 874 (2.9%) 6 14 7 7 4

4.6.0 44,415 34,503 9,912 (22%) 42,986 (97%) 1,421 (3.2%) 8 54 9 7 3

4.7.0 46,119 34,792 11,327 (24%) 43,802 (95%) 2,271 (4.9%) 46 274 1 0 0

Drupal
6.15 14,298 14,101 197 (1%) 14,152 (99%) 90 (0.6%) 56 302 2 1 1

7.34 29,833 23,434 6,399 (21%) 27,354 (92%) 2,435 (8.1%) 44 200 7 6 2

Joomla
3.4.2 89,087 59,834 29,253 (32%) 79,389 (89%) 9,677 (10.8%) 21 680 3 1 0

3.7.0 101,477 67,673 33,804 (33%) 88,608 (87%) 12,850 (12.6%) 19 167 4 3 2

Average (w.r.t. Total Calls) 100% 83.21% 16.79% 95.23% 4.72% 0.05%

Total 45 33 (-73%) 17 (-38%)

score [23]. Collectively, we analyzed 12 different versions (see

Table 1) of the aforementioned web applications in our dataset

and mapped 45 security vulnerabilities to their source code.

For our evaluation of Minimalist, we compared our tool

with Less is More (LIM) [4]. LIM is a dynamic debloating

approach that records the executed lines of code in the web

application while performing a series of interactions using

Selenium scripts. Next, LIM removes the lines of code that

were not exercised during the above interaction. We used

LIM’s source code, which is publicly available [3]. In order

to assess Minimalist using the analyst-provided CSAs, we

implemented a custom static analysis for each web application

in our dataset, which we describe in Section 4.3.

4.2 Static Analysis Evaluation

The static analysis in Minimalist is an integral part of our

debloating scheme. Our tool analyzes a PHP web application

to generate a call-graph which is then used to debloat the

given web application based on prior user interaction. The

debloating performance of Minimalist is directly affected by

the accuracy of its static analysis.

Table 1 presents the function call resolution statistics for the

web applications in our dataset. The Direct calls column shows

the total number of function calls that simply use the name of

the function for invocation. The Dynamic calls column shows

the number of function calls in a given web application that are

not string literals. The Resolved, Fuzzy-Resolved, and Unres

Function calls provide a breakdown of how the static analysis

resolved each function call in a given web application. Namely,

the Resolved function call column contains the number of

function calls that are resolved to a single function definition.

The Unres function call column presents the number of func-

tion calls that Minimalist cannot resolve to a subset of defined

functions in the web application. Finally, the Fuzzy-Resolved

function call column shows the number of function calls that

Minimalist resolves to a subset of defined functions which is

less than total number of functions in the web application.

The static analysis in Minimalist resolved 99.95% of all

function calls in the web application to a single function

(95.23%) or a subset of defined functions (4.72%) in each web

application in our dataset. To handle unresolved function calls,

Minimalist requires an analyst to provide the CSA annotations.

For our evaluation, we implemented the CSA for all the web

applications in our dataset. The last column in Table 1 present

the manual effort required to implement a CSA in terms

implemented lines of code (LoC) per version.

In a further analysis of Minimalist’s call-graph generation,

we assessed the number of resolved higher-order functions.

Higher-order functions in PHP take a target function name as an

argument, which gets invoked by the interpreter. Such behavior

poses a challenge for any static analysis, including Minimalist.

Thus, we investigated all 4,143 invocations of higher-order

PHP functions in our dataset of web applications and counted

the number of resolved higher-order functions. Minimalist

resolved 99.92% of all higher-order functions. To handle the

remaining 0.08%, Minimalist relies on the implemented CSAs

for the web applications.

4.3 Custom Static Analyses

In this section, we quantify the effort required by an analyst

to implement a CSA for a given web application and maintain

it over time across multiple web application updates and new

releases. As described in Section 4.1, we implemented a CSA

for each web application in our dataset to handle instances

of unresolved call-sites. First, we look into the development

of CSAs for different versions of web applications and the

reusability of previous CSAs when migrating them to a new

version of the same web application. Next, we investigate the

major version changes in web applications and the underlying

changes that affect the CSA implementation. Finally, we



examine the use of third-party libraries in different web

applications and their effects on implementing CSAs.

Custom Static Analysis. Our data in Table 1 indicate that

the manual effort required to implement a CSA varies between

versions of a web application. We see in the last column of

Static Analysis section in Table 1 that the first version of a

CSA often requires the largest number of new implemented

lines. This is because the first version needs to implement

annotations for all the function calls that Minimalist does

not resolve. Our analysis of the unresolved function calls

shows that the majority of the unresolved functions remain

unchanged across versions. In such cases where there is little to

no change in the unresolved dynamic function calls, analysts

can reuse the same CSA annotations from the previous

versions of the web application with zero to minimal change.

Figure 5 plots the number of new lines of code (y-axis)

implemented over time for multiple versions of phpMyAdmin

and WordPress. According to Figure 5, the first imple-

mented CSA for WordPress requires the highest number

of implemented lines, which then drastically reduces for

the next versions of WordPress. During our evaluation, we

observed that on average, 80% of the code in the CSA remains

unchanged between two consecutive versions of the same

web application. In the case of WordPress, from 2016 to 2020,

analysts only need to add or modify an average of 10 lines

of code each year. For instance, although WordPress 4.7.19

was released three years after 4.7.1, an administrator can fully

reuse the CSA on version 4.7.1 with zero modifications.

Major releases and architectural changes. Major

changes in the architecture of web applications can affect

the reusability of CSAs. In our dataset, phpMyAdmin from

version 4.7.0 started incorporating the Composer package

manager and its provided third-party libraries. This resulted

in a 45% increase in Logical Lines of Code (LLOC) between

versions 4.6.0 to 4.7.0 in this application and 41 unresolved

function calls that need to be included in the CSA. This

increase in the number of unresolved function calls is evident

by the increase in the required number of new implemented

lines of code in the CSA in Figure 5.

Reusability of CSAs for third-party libraries across

web applications. Web applications rely on third-party

libraries to provide common functionality, such as sending

emails (e.g., PHPMailer). WordPress and Joomla in our

dataset both use PHPMailer in their source-code, which

allows Minimalist to reuse the CSA for unresolved function

calls of PHPMailer between WordPress and Joomla. Although

WordPress and Joomla use different versions of PHPMailer,

the list of unresolved function calls remains unchanged. This

enables analysts and developers to provide the CSA for popular

libraries, which can then be shared and reused to debloat a

wide range of web applications and their third-party libraries.

Cross-validation of CSA: While plugins bring new fea-

tures to web applications, they also introduce unresolved func-

tion calls to our analysis, which an analyst needs to address via

Figure 5: The number of new lines of code implemented in

CSAs for various versions of WordPress and PMA over time.

CSA. In our evaluation of WordPress’ plugins, Minimalist re-

quired the analyst to create CSAs that resolve 24 unbound func-

tion call-sites. Note that not all plugins introduce unresolved

function calls. In our dataset, only two out of five WordPress

plugins did: Jetpack and Health-check. During this evalua-

tion, we measured the time it takes for two different analysts

to resolve each instance in the CSA. To achieve this, two of

the authors independently implemented the CSA for the 24

instances of unresolved calls in the WordPress plugins while

recording the time required to address each instance.

Figure 6 shows the distribution of times it took both authors

to implement the CSA for each unresolved instance. Our

experiment shows that the time needed for each unresolved

instance varies depending on the complexity of the code.

However, there are instances (e.g., instances 8, 9, and 15

in Figure 6) that take less than 30 seconds to resolve. The

reason behind such short analysis times is the similarity of

the instance with previously handled cases, which reduces

the time of analysis and implementation. Overall, the first

and second authors of this paper spent 75 and 65 minutes

implementing the CSA for WordPress plugins, respectively.

In our examination of the CSAs, we also investigated the

differences in the authors’ implementation of the CSAs. Since

different analysts can create different CSAs for the same

unresolved instance, we assessed whether such differences

affect the overall accuracy of Minimalist. For this evaluation,

we inspected the implemented CSAs by the two authors. Our

analysis shows that, while each author follows different coding

practices, the differences in the implemented CSAs do not

lead to any discrepancies in the generated call-graph or later

on in the debloating process.

Overall, it took less than 20 person-hours for the authors

of this paper to implement the first version of a CSA for

each web application in our dataset. This process includes

inspecting the source-code of the the unresolved instances

listed in Table 1 and writing the CSA plugins. The reusability

of CSAs among different web applications and versions of the

same web application amortizes the effort of implementing

one for newer web applications. Furthermore, crowd-sourcing

the tasks in the implementation of CSAs among developers

and administrators of web applications (CSAs are globally

valid) can further minimize the effort of authoring CSAs.



Figure 6: Time distribution of implementing a CSA for each

unresolved instance in WordPress plugins. On average, each

author spent less than 3 minutes to resolve each instance.

4.4 Debloating results of Minimalist

In this section, we evaluate the effectiveness of our debloat-

ing scheme by measuring the reduction in lines of code and

security vulnerabilities after debloating. Minimalist reuses the

same usage profiles as LIM to generate the entry-point infor-

mation and feature usage. We collected the access-log files for

each web application in our dataset using the Selenium scripts

available on LIM’s website and exercised the web applications.

For Drupal and Joomla, we adopted the same approach as

LIM, produced the Selenium scripts based on online tutorials

(See Table 4), and collected access-logs to get the ground truth

of coverage information from the LIM framework.

4.4.1 LLOC Reduction

According to McConnel [19], the number of programming

errors in an application is proportional to the size of the

program. Given the correlation between the size of an

application and its overall security, we look into the reduction

of web applications’ size in terms of LLOC. LLOC represents

the number of lines in the source code, excluding comments

and empty lines.

Figure 7 demonstrates the LLOC reduction for different

versions of web applications that Minimalist debloated. On

average, Minimalist debloated 17.78% of LLOC in all the

web applications in our dataset while using the implemented

CSAs. LIM debloats 53.47% of the web applications in our

dataset. As discussed before, LIM is a dynamic debloating

mechanism that removes all functions and scripts that are not

exercised during its training with Selenium scripts. As seen

in Figure 7, relying on dynamic traces for debloating leads

to more removed lines in debloated web applications. At the

same time, any slight variation in user interactions from the

dynamic training data with the web application can lead to

breakage. We discuss this issue in Section 4.5 in more detail.

According to Figure 7, we observe a sudden expansion

in phpMyAdmin 4.7 compared to its previous versions. As

noted by Amin Azad et al. [4], the sudden expansion of

the source code of phpMyAdmin 4.7 is due to changes in

development practices. Namely, phpMyAdmin 4.7.0 started

relying on external libraries, which introduced a large amount

of unused code and increased the size of phpMyAdmin 4.7.0

by 45% compared to phpMyAdmin 4.6.0. We observed that

Figure 7: LLoC reduction of Minimalist. The 4.6.0*, presents

the LLoC reduction in WordPress and its five featured plugins.

Minimalist removes 62% of the lines in the external libraries

that reside in the vendor directory of phpMyAdmin 4.7.0.

4.4.2 Security Vulnerability Reduction

In addition to LLoC reduction, we evaluated Minimalist’s

security benefits by analyzing its debloating effect on security

vulnerabilities. Minimalist removes a vulnerability if it

resides in an unreachable function with respect to the users’

interaction with the web application.

In the Vulnerability Reduction section of Table 1, we com-

pare the number of removed vulnerabilities after debloating

each web application in our dataset using Minimalist and LIM.

In Table 1, we present the total number of security vulnera-

bilities in our dataset for each web application. The last two

columns present the number of removed vulnerabilities in our

work and LIM. On average, our debloating scheme can remove

38% of vulnerabilities in web applications, while LIM removes

73% of the vulnerabilities. Our analysis of the removed

vulnerabilities by LIM that Minimalist preserved shows that

all the vulnerable functions are reachable from the entry-points

in the analyzed access-log files. Thus, Minimalist does not

remove the vulnerable functions to preserve the functions

required by the users in the debloated web application.

Compared to Minimalist, LIM favors a more aggressive

approach on debloating web applications and consequently

removing vulnerabilities. A case study for this argument is

the CVE-2016-6609 vulnerability in phpMyAdmin 4.4.0 and

4.6.0. This vulnerability resides in an export module, where

an attacker can run arbitrary PHP commands using a specially

crafted database name. The excessive debloating of LIM

removes the security vulnerability as well as all but one of the

exporting functions from phpMyAdmin. Compared to LIM,

Minimalist preserves all exporting functions, thereby retaining

the vulnerable code but also all the export features that users

might require (more details in Appendix A). This demon-

strates the clear dichotomy between the dynamic, LIM-like

approaches that favor aggressive debloating gains (accepting

breakage while doing so) vs. Minimalist that aims to provide a

balance between debloating-based security gains and preserv-

ing the functionality and usability of the debloated software.

Overall, in our debloating experiments, we demonstrated

the reduction of LLOC in web applications and its effect



on eliminating vulnerabilities. Compared to prior work, we

observed higher debloating numbers in LIM. LIM was built as

a means to quantify the benefits of debloating and its potential

to remove security vulnerabilities, assuming the system is

provided with complete dynamic traces. In contrast, Mini-

malist is a practical debloating scheme that provides a balance

between debloating source-code, removing vulnerabilities,

and keeping debloated web applications usable.

4.5 Robustness of Debloated Web applications

In this experiment, we evaluated the robustness against

false positives of web applications debloated by Minimalist.

False positives (i.e., breakage) in a debloated web application

occur when a user’s interaction causes the invocation of an

(incorrectly) removed function. To this end, we used two

different approaches to investigate the occurrence of false

positives in debloated web applications: 1) Automatic random

testing and 2) Official testsuites.

4.5.1 Automatic Random Testing

In this experiment, we evaluated the robustness of debloated

web applications using the crawling feature of Burp-suite to

mimic random user behavior. We argue that there should not be

any false positives in the debloated web applications as long as

Burp-suite targets the already visited PHP scripts by Selenium.

Note that we debloated the web application based on the prior

user interaction recorded in the LIM’s Selenium. To assess

robustness, we crawled the debloated web applications using

Burp-suite with a custom-defined scope. This scope forces

Burp-suite to only crawl a predefined set of PHP scripts in the

debloated web application, which, in this case, are the PHP

scripts visited by Selenium. While Burp-suite will target the

same web application entry points, it will randomly vary the

passed parameters and values leading to execution paths that

differ from those observed during the Selenium interactions.

Whenever Burp-suite invokes a removed PHP function, the

debloated web application raises an alert. Thus, we calculated

the number of alerts raised by Burp-suite to examine the robust-

ness of the debloated web application. In our experiment, we

crawled the debloated WordPress and phpMyAdmin for one

hour each using Burp-suite. Collectively, Burp-suite sent 1,055

requests to both debloated WordPress (603) and phpMyAdmin

(452) and raised no false positives.

In the next step of our analysis, we looked into the function

coverage of the web applications while browsing with Burp-

suite compared to Selenium scripts. Note that the Burp-suite

browsing tests are only meaningful if they cover a different

set of functions in the web applications during their browsing

compared to the Selenium scripts. Thus, we recorded the set of

invoked functions during both Burp-suite and Selenium brows-

ing. Figure 9 (Appendix H) shows the set of different invoked

functions during both browsing patterns. Burp-suite browsing

led to the invocation of 114 (7.5%) functions that were not

covered during Selenium browsing. Importantly, we note that

the invocation of 114 new functions by Burp-suite would yield

up to 114 false positives in a dynamic debloating approach

such as LIM. However, Minimalist correctly debloated the

web applications using the access-log files and preserved the

necessary functionality to respond to users’ requests.

4.5.2 Official Testsuites

In a further experiment, we evaluated the breakage of de-

bloated applications by using the official testsuites obtained

from their respective Github repositories. In order to execute

the official testsuite of the web applications, we manually pre-

pared the testing environment, which included creating con-

figuration files, database tables, and inserting sample data to

the database. For this evaluation, we executed all 7,238 test

cases from the official testsuites of both phpMyAdmin and

WordPress on Minimalist-debloated web applications.

Table 2 presents the results of this experiment. Each set of

tests from the official testsuites belongs to a category, which is

shown in the second column of Table 2. The next two columns

present the total number of tests in each category and the num-

ber of failed tests. On average, the debloated web applications

in our dataset failed 12% of the official testsuite (885 out of

7,238 total unit-tests). During our experiment, we randomly

chose 6% of failed test cases (52 out of 885 total failed unit-

tests) and investigated the cause of failure. All 52 failures were

rooted in a few correctly debloated functions. The last column

in Table 2 shows the name of the debloated function that failed

the test cases in each group. Note that, these failed test cases are

not false positives of Minimalist. Specifically, our analysis of

both web applications reveals that neither of these functions are

reachable from the PHP files in the access-log, and were either

deprecated (e.g., wp_shrink_dimensions) or exclusively in-

voked from entry points not found in the access-log. Hence,

Minimalist correctly debloated the functions.

Table 2: On average, Minimalist-debloated web applications

fail 12% of official testsuite. The last column presents the

name of functions and the number of failed tests due to

debloating each function in paranthesis.

Web app Test Group Tests Example Reason

Total Failed

WordPress

Admin 741 22 get_help_tab(2),

comment_exists(5)

Authentication 16 0

Comment 311 21 unreigster_taxonomy(6)

File Operation 20 0

Others 5152 709 parseISO(6), getISO(4),

wp_shrink_dimensions(4),

is_comment_feed(5),

remove_permastruct (8)

Total 6240 752 (12%)

phpMyAdmin

Unit 509 39 npgettext(2),

StringReader::currentpos(3)

Engines 26 0

Classes 463 93 HasErrors(1), HasUserErrors(1),

getVersion(3), getPrintPreview(1),

locale_emulation(1)

Total 998 132 (13%)

In a further evaluation, we examined the set of features that

Minimalist preserves in the web application but LIM removes.

During this experiment, we observed that unlike Minimalist,

LIM causes up to 33% false positives in new real-user



browsing patterns on average (details in Appendix E). Overall,

in our evaluation, we performed several experiments on web

applications debloated by Minimalist and the state-of-the-art

approach, LIM [4]. We evaluated Minimalist and LIM in terms

of reducing the LLoC of web applications and its effect on

removing vulnerabilities. We observe that although dynamic

debloating techniques such as LIM have higher debloating

numbers compared to our approach, their debloating approach

causes false positives in debloated web applications.

Artifact Availability: Minimalist is open-source and

available at https://github.com/BUseclab/Minimalist. We

provide the source-code of our tool as well as containers that

we used to evaluate Minimalist, along with the instructions

for reproducing the experiments. These artifacts were major

components of our evaluation and we believe that they can

be useful for future research in this space.

5 Related Work
The application of software debloating to vulnerability

reduction has recently received a great deal of attention. Prior

work has applied debloating techniques to a wide spectrum

of software applications ranging from low-level platforms

such as kernels and containers [1, 8] to higher level bina-

ries [9,11,16,20–22,26–28,30] and web applications [4,5,15].

Debloating web applications. Prior work focused on

debloating different parts of web apps. SQLBlock protects

legacy web apps against SQL injection attacks by only

allowing a limited set of SQL APIs in each function of a

web application [13]. Orthogonally, Saphire protects web

applications by limiting the list of system calls available to

each PHP script extracted by static analysis [5]. Mininode

focuses on third-party dependencies in Node.js applications

and their code bloat [15]. Less is More, demonstrates that

debloating web apps can lead to the removal of high-severity

vulnerabilities and the reduction of up to 60% of their source

code [4]. The authors synthetically generate a set of baseline

usage profiles for their target applications and dynamically

record the files and lines covered while running their tests. We

reuse these profiles to reproduce baseline coverage information

and access-log entry points for our static debloating scheme.

Debloating browsers and other platforms. Hoe et al.

explored the idea of reinforcement learning for source code

removal in software debloating [11]. Abubakar et al. apply the

idea of debloating to kernels [1]. Orthogonally, Cofine aims

to build restrictive system call policies for container environ-

ments [8]. Another line of work focuses on the identification

and removal of unreachable code in binaries that can be used in

code-reuse attacks [27, 28]. Qian et al. debloat the Chromium

browser based on the feature usage of top Alexa websites [26].

Snyder et al. perform a cost-benefit study of providing browser

APIs to websites based on the usage statistics of each API and

historic CVEs targeting those APIs [30]. Our work protects

web applications against vulnerabilities, while the work of

Qian and Snyder et al. protect end users. Finally, Koo et al.

debloat up to 77% of NGINX and OpenSSH by analyzing spe-

cific configurations of each instance of these applications and

removing code that is not exercised with each configuration

profile [16]. Our work is similar in that we use an abstraction

of the outside environment to identify the set of features that

will not be used within that abstraction (i.e., web server logs).

6 Discussion and Limitations

In this section, we discuss some of Minimalist’s limi-

tations. Of particular interest are the code practices that

challenges Minimalist to generate a call-graph, and the fact

that manually-created CSAs might introduce unsoundness

into the generated call-graph. Furthermore, we elaborate on

extending Minimalist to debloat web applications using other

languages such as JavaScript.

Soundiness in CSAs: Minimalist resolved the majority of

function calls (99.95%) in the web applications in our dataset.

The remaining 0.05% of call-sites required the development

of CSAs, inducing small amounts of developer attention (even

zero in the case of WordPress 4.7.19). Obviously, unsound

CSAs can render the resulting call-graph unsound too. As

Minimalist cannot assess whether a CSA is sound, it is the de-

veloper’s responsibility to ensure the developed CSA preserves

soundiness. CSAs are necessary in scenarios where Minimalist

cannot reason about specific program constructs (e.g., custom

call-back schemes), or where control flow is determined based

on factors external to the web application’s code (e.g., by in-

formation stored in a database). In theory, these challenges

can become arbitrarily complex. In practice, we observed that

during the development of all the CSAs used in this work,

soundiness can be manually ascertained. Based on the obser-

vation that our evaluation covers the largest and most popular

web applications in use today, we are confident that CSAs for

other web applications can be created in a soundy manner too.

Unsupported PHP features in Minimalist: Minimalist

models most features in the PHP interpreter to generate call-

graphs. However, there are features in the PHP interpreter that

challenge any static analysis, including Minimalist. Among

the PHP features, there are two that Minimalist does not sup-

port in its current implementation: 1) dynamically loaded code

through eval and assert and 2) arguments passed by refer-

ence. eval and assert evaluate their string arguments as PHP

code, which can originate from arbitrary origins (e.g., a remote

URL) or computation (e.g., the decryption of encrypted con-

tent). Such functionality is widely recognized to be beyond the

reach and capability of static analysis techniques. Besides that,

there exists a set of PHP features that Minimalist partially sup-

ports, which includes, 1) dynamic file inclusion, 2) reflection

API, 3) higher-order functions, and 4) variable function calls.

All the above features use variables to either include a dynamic

script or invoke a function that is determined at runtime. Thus,

resolving the variables is an essential step to identifying the

invoked function. Minimalist over-approximates the value of

variables used in dynamic function calls. Thus, in cases where



the system cannot constrain the value of variables, it draws

edges to all defined functions in the web application. However,

such aggressive over-approximation limits the utility for de-

bloating purposes, and hence Minimalist calls the analyst’s

attention to these instances, which have to be resolved via CSA.

Table 3 includes the full list of features that Minimalist partially

supports or does not support. We identified the features listed

in Table 3 by relying on prior work such as Pixy [14], RIPS [6],

and Hills et al. [12], as well as our expertise on analyzing PHP

applications. Note that we cannot guarantee the completeness

of the features listed in Table 3 due to the complexity of the

PHP interpreter as well as its large codebase (1.3M LOC).

Table 3: The list of dynamic PHP features that Minimalist par-

tially supports or does not support while generating call-graph.

Type Function name

Partially Supported Features

Higher-order function call_user_func, call_user_func_array, array_map,

preg_replace_callback, array_walk, array_walk_recursive,

array_reduce, array_intersect_ukey, array_uintersect,

array_uintersect_assoc, array_intersect_uassoc, ar-

ray_uintersect_uassoc, array_diff, array_diff_ukey, ar-

ray_udiff_assoc, array_diff_uassoc, array_udiff_uassoc,

array_filter, array_udiff, usort, uasort, uksort, ob_start, ses-

sion_set_save_handler, assert_option, sqlite_create_function,

register_shutdown_function, register_tick_function,

set_error_handler, set_exception_handler, iterator_apply,

spl_autoload_register

Reflection API ReflectionClass, ReflectionMethod, ReflectionFunction

Dynamic file inclusion use of variables in script inclusion functions

Variable function call use of variables for invoking a function

Unsupported Features

dynamic loaded code eval, assert

Pass by reference

Extend Minimalist to Other Languages: In the current

implementation of Minimalist, we focus on PHP web appli-

cations, which power more than 77% of all live web sites [32].

While each programming language has unique characteristics,

there are similarities between PHP and other server-side

languages such as JavaScript or Python. For example, both

JavaScript and Python support variable function calls in

scripts, which is similar to PHP. Furthermore, both Python

and JavaScript also allows the dynamic inclusion of modules,

which is similar to include in PHP. These similarities suggest

that our approach of handling dynamic features in the PHP

interpreter is applicable to other interpreted applications such

as JavaScript and Python. Of course, the technical details

and idiosyncrasies of other languages would still require

significant engineering efforts. However, not all programming

languages provide such a diverse set of dynamic features.

For example, Java only provides a fraction of the dynamic

features (e.g., the reflection API) that are available in PHP.

As a result, the challenges of analyzing dynamic features

to debloat Java applications might be fewer than those of

interpreted languages such as PHP.

7 Conclusion

In this paper, we proposed Minimalist, a semi-automated

static-analysis-driven solution to debloat PHP web applica-

tions based on prior user interactions. Minimalist analyzes a

PHP web application and generates a call-graph and uses this

in tandem with historical information from access log-files.

By combining these two sources of information, Minimalist

is able to debloat the web application, while retaining the

code that could plausibly be exercised by users in the future,

without the need of dedicated and likely incomplete training

data. In our experiments on four popular web applications

in 12 versions, Minimalist debloated more than 18% of the

web applications’ code and removed 38% of historical CVEs

residing in their code. Our results demonstrate that Minimalist

captures the reliability guarantees of static analysis with the

aggressive-debloating abilities of dynamic analysis.
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Appendix

A Security Vulnerability Reduction
Dynamic debloating approaches such as LIM, which solely

relies on dynamic traces, favor aggressive debloating while

potentially breaking the functionality of the debloated web

applications. A case study for this argument is the CVE-2016-

6609 vulnerability in phpMyAdmin 4.4.0 and 4.6.0. This

vulnerability resides in the Phparray export module, where

an attacker can run arbitrary PHP commands using a specially

crafted database name. The Selenium scripts in LIM perform

a series of tasks on the phpMyAdmin web application. One of

the tasks includes exporting a table from the database to a .sql

file. This interaction leads LIM to debloat all the exporting

functionality in phpMyAdmin except for the module related

to exporting a SQL file. Thus, LIM removes the vulnerability

related to exporting tables to PHP arrays. At the same time, the

debloating in LIM breaks the functionality of phpMyAdmin,

resulting in an exception when a user tries to export data to any

format but a .sql file, such as PDF, CSV, and PHP Arrays.

B Tutorials

Table 4: List of tutorials collected from the first page of Google

search results
Drupal

https://websites.ucsf.edu/drupal-tutorials

https://www.greengeeks.com/tutorials/topic/drupal-tutorials/page/2/

https://www.fastcomet.com/tutorials/drupal

https://www.drupal.org/documentation/customization/tutorials

https://www.tutorialspoint.com/drupal/index.htm

https://www.hostinger.com/tutorials/drupal

https://www.ostraining.com/blog/drupal/

https://www.siteground.com/tutorials/drupal/

Joomla

https://websitesetup.org/build-website-with-joomla/

https://docs.joomla.org/Tutorials:Beginners

https://www.tutorialspoint.com/joomla/index.htm

https://www.siteground.com/tutorials/joomla/

https://www.hostinger.com/tutorials/joomla/

https://www.fastcomet.com/tutorials/joomla

https://www.cloudaccess.net/joomla-knowledgebase.html

https://www.joomla-monster.com/documentation/joomla-tutorials

C Single-entrypoint Web Applications
In our dataset, Joomla and Drupal provide dedicated mech-

anisms to route incoming requests to their corresponding

internal modules. In these web applications, a specific file

(e.g., “index.php”) is responsible for all incoming requests,

and the desired module is communicated as an extra parameter.

For instance, a sample URL from access-logs of Joomla would

look like /index.php/author-login. For this request, the routing

logic inside index.php is responsible for loading the correct

module, which in this case is the authentication module.

We used a customized reachability analysis in order to analyze

the access-log files for single-entrypoint web applications.

Note that every module in web applications like Joomla

is reachable from the routing mechanism, and the routing

mechanism loads the requested module based on passed

parameters. In this analysis, for every request in the access-log

file, Minimalist extracts the accessed file and the requested

module in the web application using regexes. During the

reachability analysis of the accessed files (e.g., index.php in

Joomla), Minimalist only preserves the invoked functions in

the requested module passed as a parameter and removes the

rest of the modules in the web application.

D Variable Analysis Pseudocode

1 # n is the AST node under analysis

2 # ValueSet is the hashmap

3 # which holds all the variable values

4 function RecordVariable(Node n) {

5 # This function takes a node in the AST

6 # and returns the assigned value

7 Value = Resolve_Variable(Node n)

8

9 # Variable_name take a node in the AST

10 # and returns the name of the variable

11 Var_name = Variable_name(Node n)

12

13 if Var_name in ValueSet {

14 # If Minimalist already recorded

15 # a value for the same variable name ,

16 # merge the values using OR operation

17 ValueSet[Var_name] += "|" + Value

18 } else {

19 ValueSet[Var_name] = Value

20 }

21 return

22 }

Listing 4: Pseudocode of Minimalist variable analysis.

E Removal of Features
In this experiment, we look for features that are kept by

Minimalist but debloated by LIM. As a case study, we

inspected the source code of the debloated WordPress 4.6.

The Selenium script for WordPress performs a series of

common tasks such as creating a new user, signing in to the

web application, creating posts, uploading media files, and

so on. One of the exercised tasks within WordPress is to attach

an image to a blog post. WordPress uses the ID3 library to

generate the metadata for media files. ID3 supports various file

formats, covering images, videos, and audio. For each type of

media file, ID3 invokes a dedicated function within its library.

The Selenium script exclusively uploaded an image with

the PNG format to the deployed web application. Thus, after

debloating the web application using LIM, uploading any

media file other than PNG-formatted pictures results in an error

as that functionality is debloated. To confirm this finding,

we performed an experiment with the debloated version of

WordPress 4.7.1 by LIM and identified that a user indeed

cannot upload any media files other than PNG-formatted

pictures to the debloated web application. Unlike LIM, when

Minimalist generates the call-graph of WordPress, all the

uploading functionality for different file types is reachable

from the media upload script in WordPress.




