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Minimum degree and the graph removal lemma

Jacob Fox* Yuval Wigderson'

Abstract

The clique removal lemma says that for every » > 3 and ¢ > 0, there exists some
0 > 0 so that every n-vertex graph G with fewer than dn” copies of K, can be made
K,-free by removing at most en? edges. The dependence of § on & in this result
is notoriously difficult to determine: it is known that 6~' must be at least super-
polynomial in e~!, and that it is at most of tower type in loge™1.

We prove that if one imposes an appropriate minimum degree condition on G,
then one can actually take § to be a linear function of € in the clique removal lemma.
Moreover, we determine the threshold for such a minimum degree requirement, showing
that above this threshold we have linear bounds, whereas below the threshold the
bounds are once again super-polynomial, as in the unrestricted removal lemma.

We also investigate this question for other graphs besides cliques, and prove some
general results about how minimum degree conditions affect the bounds in the graph
removal lemma.

1 Introduction

One of the deepest results in extremal graph theory is the triangle removal lemma of Ruzsa
and Szemerédi [33], as well as its extension to the graph removal lemma, proved indepen-
dently by Alon-Duke-Lefmann-Ro6dl-Yuster [3] and Fiiredi [22]. Loosely, this result says
that if a large graph G contains “few” copies of a fixed graph H, then it can be made H-free
by deleting “few” edges. The formal statement is as follows.

Theorem 1.1. Let H be a graph on h vertices. For every e > 0, there exists a § > 0 such
that the following holds. If G is an n-vertex graph with fewer than én" copies of H, then
one can remove at most en? edges from G to make it H-free.

Despite its simple statement, the graph removal lemma is a deep result, with many
applications in number theory, computer science, and graph theory. For more on the removal
lemma and its history, we refer to the survey [6].

*Department of Mathematics, Stanford University, Stanford, CA 94305, USA. Email:
jacobfox@stanford.edu Research supported by a Packard Fellowship and by NSF award DMS-185563.

tDepartment of Mathematics, Stanford University, Stanford, CA 94305, USA. Email:
yuvalwig@stanford.edu Research supported by NSF GRFP Grant DGE-1656518.



Many important questions surrounding the graph removal lemma remain open. Most
notably, the correct bound for ¢ in terms of € is unknown. Formally, let d(e, H) denote the
maximum?! § such that the following holds for every graph G: if G has fewer than 6|V (G)["
copies of H, then G can be made H-free by removing at most |V (G)[* edges. The best
lower bound on §(e, H), due to Fox [15], shows that d(e, H) > 1/T(Op(log 1)), where T is
the tower function, recursively defined by 7/(0) = 1 and T'(z) = 27@=V for > 1. For the
upper bound, Alon [2] (extending [33] and [11]) showed that if H is not bipartite?, then
i, H) < £2(02) a5 ¢ — (0. In particular, if H is not bipartite, then 1/6(e, H) must be at
least super-polynomial in 1/¢. Even in the first non-trivial case, of H = K3, these bounds
remain the best known results.

Another important class of results in extremal graph theory concerns structural results
implied by minimum degree conditions. Notable examples include Dirac’s theorem [8] on
the existence of Hamiltonian cycles, its extension by Komlds, Séarkozy, and Szemerédi [25] to
powers of Hamiltonian cycles, and the Andrasfai-Erdds—Sés theorem [5] on when a K,-free
graph is (r — 1)-partite.

In this paper, we study a natural minimum-degree version of the graph removal lemma.
Formally, let us define d(e, H;7) to be the maximum & € [0, 1] such that every n-vertex
graph with fewer than dn” copies of H and minimum degree at least yn can be made H-free
by deleting at most en? edges. Here, v € [0, 1] is some constant which we think of as fixed,
and we are interested in the behavior of d(e, H;v) as € — 0. We remark that this function
is non-decreasing in v, and that setting v = 0 recovers the earlier definition of (e, H), that
is, 0(e, H;0) = d(e, H).

Our main results show that d(e, K,;7) is linear in ¢ if v >
that d(e, K,;7) is linear in € for v > 2=

3::2, but that it is super-
Formally, we first prove the following theorem, which asserts
5
3.

polynomial in ¢ if v <

Theorem 1.2. For every r > 3, there exists p, > 0 such that for all o, e > 0,

2r =5
4 <5>Kr; 2::7_3 —I—Oé) 2 HrQE,

meaning that 6(e, K,;~) is linear in ¢ for all v > g::g

Our next result implies that below the threshold g::g, the K, removal lemma must have

super-polynomial bounds. In fact, we are able to relate the behavior of the restricted removal
function d(e, K,;7) to that of the unrestricted triangle removal function §(e, K3); since this
function is known to have super-polynomial bounds, we conclude the same for d(g, K,; 7).
Formally, we prove the following result.

!Note that this maximum is attained (i.e. that one can write “maximum” rather than “supremum?”),
because we require fewer than 5|V (G)|" copies of H, but allow deleting at most €|V (G)|* edges.

2If H is bipartite, then d(e, H) = e®#() i.e. the removal lemma has polynomial bounds [2]. The removal
lemma is somewhat degenerate in case H is bipartite, since in this case the entire problem reduces to counting
copies of bipartite graphs in dense graphs, which can be done with the method of K&vari-Sés—Turdn [26].
This is closely related to a famous conjecture of Erdés—Simonovits and Sidorenko, see e.g. [7] for details.



Theorem 1.3. For every integer r > 3 and every o > 0, there exists some C' = C(r,a) > 0
such that for every e >0,

2r—>5
2r —3

) <5,Kr; — a) < 0(Ce, K3).

1 2r—>5

2r—3°

In particular, §(c, K,;v)™! is super-polynomial in €' for fived v <

Somewhat surprisingly, our technique does not enable us to upper-bound d(e, K,;7) in
terms of d(e, K,.) for v < g::g Because of this, to prove super-polynomial bounds on the
restricted K, removal function, we must use that such bounds are known for the unrestricted
triangle removal function.

The results in Theorems 1.2 and 1.3 tell us that g::g is a minimum degree threshold
for the K, removal lemma: below this threshold, the removal lemma has super-polynomial
bounds, whereas above it we have linear bounds. We can formalize this notion of threshold

as follows.

Definition 1.4. Let H be a graph. We define the linear removal threshold of H to be

Oinrem(H) = inf{y € [0, 1] : there exists u > 0 so that (e, H;v) > pe for all e € (0,1)}.
Similarly, we define the polynomial removal threshold of H to be
Spoly-rem (H) = inf{~y € [0, 1] : there exists p > 0 so that §(e, H;~) > ue'/* for all € € (0,1)}.

These thresholds measure the weakest possible minimum degree condition one can impose
in order to have, respectively, linear and polynomial bounds in the graph removal lemma for
H. In this language, Theorems 1.2 and 1.3 can be rephrased as saying that
_2r—35
2r—3
In addition to determining the linear and polynomial removal thresholds for K, we also
prove some results about dinrem(H) and dpoly-rem (H ) for more general classes of graphs, and
make a number of conjectures about the relationship between these thresholds and other
well-known thresholds in extremal graph theory. We refer to Section 4 for more details.

We remark that other versions of the graph removal lemma have been studied under
certain minimum degree—like assumptions, such as in [17, 18]. More generally, there is a long
line of work on how the numerical dependencies in the removal lemma (and in Szemerédi’s
regularity lemma) can be improved under certain assumptions about the host graph, e.g.
[4, 16, 19, 20, 21, 28, 30].

The rest of the paper is organized as follows. In the next section, we prove Theorem 1.2.
In Section 3, we prove Theorem 1.3 by exhibiting a specific graph of high minimum degree and
poor K, removal properties. We end with some concluding remarks, where we generalize
these results and study Ojnrem(H) and dpoly-rem (H) for general graphs H, and discuss the
connections this problem has to the chromatic and homomorphism thresholds of graphs. For
the sake of clarity of presentation, we omit all floor and ceiling signs whenever they are not
crucial.

5lin—rem (Kr) - 6poly—rem (Kr)



2 Above the threshold: the proof of Theorem 1.2

In this section, we prove Theorem 1.2. Unlike all known proofs of the full graph removal
lemma, our proof uses only simple averaging arguments to find a small set of edges, each
of which lies in many copies of K,. We then show that removing all these edges deletes all
copies of K, in GG. Crucially, these averaging arguments only work because of our minimum
degree assumption; as shown by Theorem 1.3, they cannot possibly work if the minimum
degree is below (2:=2 — a)n for any fixed a > 0.

Here is a restatement of Theorem 1.2, restated to indicate what exactly we will prove in
this section.

Theorem 2.1. For every r > 3, there exists ju,. > 0 such that the following holds for all
a,e > 0. Let G be an n-vertex graph with minimum degree at least (3;:2 + a)n, and suppose
that G contains at most (p.ae)n” copies of K,.. Then G can be made K,.-free by deleting at

most en? edges.

We will need the following simple fact from calculus (or basic algebra).

Lemma 2.2. For any x > 4, we have that

Proof. Differentiating shows that the function f(z) = 222 — (z — 2) is monotonically
2

increasing, so its value for all z > 4 is lower-bounded by its value at x = 4, and f(4) = . O

Our main technical result is the following lemma, which says that if G has minimum

degree at least (g::g + a)n, then every K, in G contains a “popular” edge, namely an edge

lying in Q,.(an™?) copies of K.

Lemma 2.3. Letr > 3 and o > 0. If G is an n-vertex graph with minimum degree at least

=5 L a)n, then every K, in G contains an edge which lies in at least c,an™ 2 copies of
2r—3

K,, for some constant ¢, > 0 depending only on r.

Proof. Fix a copy of K, in G, and let its vertices be vq,...,v,. Fori € [r], let V; = N(v;)
denote the neighborhood of v;. Note that by the minimum degree condition, we have that

V| > (;Z:g + a)n for each i. We will prove the following claim by induction.

Claim. For each integer 0 <t <r — 3, there exists a set Sy C [r] of size |S¢| =1 —1t and at

least ¢, 4n' copies of K; whose vertices lie in ﬂiest Vi, for some constant ¢, > 0.

Proof of claim. The base case t = 0 is trivial, since we simply take Sy = [r| and ¢, o = 1.
Inductively, suppose we have found a set .S; with the desired properties, for t < r — 4. Let
Q be a copy of K; with vertices in [),c4 Vi. Since every vertex in @ has degree at least
(3::2 + a)n, there are at most (ﬁ —a)n < ﬁn vertices not adjacent to any given vertex
in ). Thus, the common neighborhood of ) has size at least

( 2 ) 2r—3 — 2t
m:=n—t n|=— m———n.

2r—3



Note that for any vertex v € V(G) and for any set of m vertices in GG, the number of edges
between v and this m-set is at least

2r—5+a ( m)>2r—5—2t 2r—5—2tm
n—(n— n= .
2r—3 2r — 3 2r — 3 — 2t

Now consider an auxiliary bipartite graph By, whose first part consists of .S;, whose second
part consists of m arbitrary common neighbors of the vertices in ), and where a vertex v in
the second part is adjacent to a vertex i in the first part if v € V;. By the computation above,
each vertex in the first part of B, has degree at least g::g:gim. The first part of B; has r —t
vertices. Hence, the average degree in the second part of B, is at least (r — t) g::g:gi, which
is at least r —t — 2+ %, by Lemma 2.2 applied to x = r —t and using the fact that t < r —4,
which implies that z > 4. By Markov’s inequality, at least m/5 vertices in the second part
of B, have degree at least r —t — 1. Therefore, there are at least (c,,n')(m/5) choices of a
clique @ contained in [, s, Vi, and a common neighbor of () that lies in at least r —¢ —1 of
the sets V; for i € S;. Hence, by the pigeonhole principle, for at least ¢, n'm/(5(r —t)) of
these choices, the same subset of S; of order r — ¢ — 1 is used. We let S;,;1 be this subset,

and let

. ey om o (2r—3-2t) .

TS —t)n - 5(2r—3)(r—t) "
so that there are at least cr,HlntH choices of a K;,1 whose vertices lie in ﬂie i1 V;. This
completes the proof of the claim. O

To conclude, we actually run the same argument for ¢t = r — 3, except that we need to
be more careful about keeping track of the parameter a. Let S = S,_3 be the set given by
the claim for ¢ = r — 3, and let ¢ = ¢,,_3. Let ) be a K,_3 whose vertices lie in miES Vi. Let
B be the bipartite graph whose first part consists of three vertices, labeled by the elements
of S, and whose second part consists of m common neighbors of the vertices in (), where

m=n—(r—3) <2T2_3—a)n: <2T3_3+(7“—3)a>n.

By the same argument as above, each vertex in the first part of B has degree at least

(;::g—l-a)n—(n—m): <2r1_3+(7“—2)a)n

_ 27«1—3 + (r — 2)«
. (r— 3)am
2r—3

1+ (r=2)2r-3)a
T34 (r—3)(2r—3)a

> _1+’
dalm
3 ’

for some constant ¢ > 0 depending only on r. Therefore, the average degree in the second
part of B is at least 1 4+ 3ca. By Markov’s inequality, this implies that at least %c’am
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vertices in this part have at least two neighbors in the first part. Hence, there are at least
en™ 3 30’ am choices of a K,_3 and a vertex in its common neighborhood which lies in at
least two of the three sets V; for i € S. By the pigeonhole principle, there is some {i,j} C S

such that V; NV} contains at least cyan” 2 copies of K,_,, where

. cm o 3 =3 > 3ed
= —— = — r— > —
2n 2 \2r—3 2(2r — 3)
Therefore, the edge {v;,v;} in our original K, lies in at least cyan” 2 copies of K, . O

Using Lemma 2.3, we can prove Theorem 2.1, and thus Theorem 1.2.

Proof of Theorem 2.1. Let p, = ¢,/ (g), where ¢, is the constant from Lemma 2.3, and let
0 = prae. Let G be an n-vertex graph with minimum degree at least (g: g + a)n and with
at most on” copies of K.

Let E* denote the set of edges in G which lie in at least c,an” copies of K,. Then
the number of K, in G is at least (g)_lcrom’"_2|E*\, since each edge in E™ contributes at
least c,an™2 copies, and we count each copy at most (T) times (once for each edge). By

2
assumption, GG has at most én” copies of K,, and combining these bounds, we find that

2

|E*| < (L)énQ =en’,
Cr
by our choice of § = p,ae.
Additionally, by Lemma 2.3, we know that every K, in G contains at least one edge from
E*. Hence, if we delete the edges in E*, we are left with a K .-free graph. Since we deleted
at most en? edges, this completes the proof. O

3 Below the threshold: the proof of Theorem 1.3

In this section, we prove Theorem 1.3 by constructing a graph with high minimum degree,
few copies of K,, but such that many edges must be removed to make it K,-free. Formally,
we will prove the following result.

Theorem 3.1. For every integer r > 3, parameters a > 0 and € > 0, and all sufficiently

large n, there exists an n-vertex graph G with minimum degree at least (27’ g — a)n and with

at most 95 5((2T 3)° e, K3)n" copies of K,, but at least en® edges must be deleted from G to
make it [é -free. Therefore,

o(amigimz-a) < gt (P ).

Note that Theorem 3.1 is somewhat stronger than Theorem 1.3, because we discarded
the factor (BR /3)7 in the statement of Theorem 1.3. We will first prove Theorem 3.1 in the case
r = 3, and then show how to extend this construction to prove Theorem 3.1 for all » > 4.

We will need two simple and well-known lemmas. The first says that balanced blowups
preserve the triangle removal properties of graphs.

6



Lemma 3.2. Let Hy be a graph with t triangles, let m be the minimum number of edges that
one can delete to make Hy triangle-free, and let s be a positive integer. Then the balanced
blowup Hyls] has exactly s3t triangles, and the minimum number of edges one can delete to
make Hy[s| triangle-free is s*m.

Proof. The first claim is immediate since every triangle in H, corresponds to s* triangles
in Hy[s]. For the second, suppose we delete fewer than s?m edges from Hy[s]. We pick a
random copy of Hy in Hy[s] by independently picking a uniformly random vertex in each
part of Hy[s]. Then the expected number of deleted edges in this copy of Hy is less than
(s?m)/s* = m. So there exists a copy of Hy in Hy[s] with fewer than m edges deleted, and
this copy must contain a triangle by assumption. Thus, by deleting fewer than s>m edges,
we cannot destroy all triangles in Hy[s]. On the other hand, suppose we are given a set E*
of m edges in Hy, whose deletion destroys all triangles in Hy. By deleting all s>m edges of
Hy[s] which correspond to a blown-up copy of an edge in E*, we delete all triangles in Hy[s],
so s>m edge deletions suffice to destroy all triangles in Hols]. O

The second lemma says that one can convert any construction for the triangle removal
lemma into a tripartite construction with similar parameter dependencies. We remark that
this lemma is not fully optimized, and one could obtain better constants through a more
careful argument.

Lemma 3.3. Suppose that Hy is an ng-vertex graph with at most on3 triangles, but such that
at least en? edges must be deleted to make Hy triangle-free. Then there exists a tripartite
graph H on n = 3ng vertices with at most %5713 triangles, such that at least %5712 edges must
be deleted to make H triangle-free.

Proof. Consider the tensor product H = Hy x K3, which is the graph whose vertices are
pairs (v,z) € V(H) x [3], and where two vertices (v, z) and (w,y) are adjacent if and only
if x #y and v ~ w in Hy. We claim that H has the desired properties.

Indeed, by definition, H is tripartite and has n = 3nq vertices. Moreover, each triangle
in Hy yields precisely six triangles in H, so H has at most 66nj = %57@3 triangles. To
conclude, suppose that E* C F(H) is a set of edges whose deletion makes H triangle-free.
Let Ef C E(H,) denote the edges of Hy obtained by deleting the second coordinate of every
vertex in every edge of E*; in particular, |E| < |E*|. We claim that deleting the edges in
Ef makes Hy triangle-free. Indeed, if {vy,vs,v3} C V(Hp) form a triangle in Hy after the
deletion of Ef, then we see that no edge in E* can be of the form {(v;, x), (v;,y)} for any
i # 7 and x # y. In particular, we find that {(v1, 1), (v2,2), (v3,3)} is a triangle in H whose
edges do not intersect E*, contradicting the assumption that the deletion of E* destroyed
all triangles in H. Hence, by the defining property of Hy, we conclude that

1
| 2 |3 2 end = =n,

as claimed. O



The next lemma is simply a restatement of Theorem 3.1 in the case r = 3. We state
it as a separate lemma because the r = 3 construction will be used as a black box in the
construction for larger values of 7.

Lemma 3.4. For all « > 0 and € > 0 and all sufficiently large n, there exists a tripartite
n-vertex graph Gy with minimum degree at least (3 —a)n and with at most &*6(9¢/a?, K3)n?
triangles, but at least en?® edges must be deleted from Gy to make it triangle-free.

Proof. We first claim that for all sufficiently large n, there exists an n-vertex graph with at
most 2d(e, K3)n? triangles such that at least en? edges must be deleted to make it triangle-
free. Indeed, by the definition of d(e, K3), there is a sequence of graphs which are all e-far
from being triangle-free, but whose triangle density approaches d(e, K3). Thus, there must
exist a graph Hy on some fixed number ny of vertices with at most %5(5,K3)ng triangles
such that at least en? edges must be deleted to make it triangle-free. By Lemma 3.2, for
any s > 1, the balanced blowup Hg[s] will have at most 28(e, ks3)(sno)? triangles, but at
least £(sng)? edges must be deleted to make Hy[s] triangle-free. Therefore, for n sufficiently
large relative to ng, we may take the blowup Hy[|n/ng|] and add to it n —ng|n/ng| isolated
vertices to obtain the desired graph.

Therefore, by Lemma 3.3 applied with parameters ¢/ = 9¢/a? and n’ = an/3, there
exists a tripartite graph H on an vertices with fewer than 2-26(¢’, K3)(an)® < 6(¢’, K3)(an)?
triangles such that at least §&’(an)? edges must be deleted to make H triangle-free. Let I' be
a balanced blowup of the path with two edges, blown up so that it has (1 —a)n vertices. Let
Gy be the graph obtained by taking the disjoint union of H and I', and placing a complete
bipartite graph between the ith part of H and the ith part of I', for ¢ € [3]. Then Gj is
tripartite by definition. The construction is shown in Figure 1.

Since every vertex in (G is adjacent to all vertices in at least one part of I', we see
that every vertex in Gy has degree at least (1 — a)n > (5 — a)n. Moreover, we see that
every triangle in Gy is actually contained in H, so the number of triangles in Gy is at most
5(e’, K3)(an)?® = a35(92/a?, K3)n3. Finally, if we delete some edges to make Gy triangle-free,
we must in particular make H triangle-free. Therefore, the number of edges needed to make

Gy triangle-free is at least $¢'(an)? = & - 25 (an)? = en. O

9 a2
With this result, we are now ready to prove Theorem 3.1, and thus Theorem 1.3.

Proof of Theorem 3.1. If r = 3, then the result is precisely the statement of Lemma 3.4.

So we henceforth assume that r > 4. Let G be the graph from Lemma 3.4, applied with
27’3—_3)25, and n/ = 2;’_371. Let K be a complete (r — 3)-partite graph

where each part has %_?)n vertices, and let G be the join of Gy and K, i.e. the graph obtained
from the disjoint union of Gy and K by connecting every vertex in K to every vertex in Gy.

Then G has (r — 3)%n+ 27,3_371 = n vertices. In G, every vertex coming from K has degree
(r—4) 2T2_3n + 2;’_371 = g::gn, and every vertex coming from Gq has degree at least

( 3) 2 " 1 3 - 2r — 5
r— n —Y n —aln
2r — 3 3 2r —3 2r —3 ’

parameters a,&’ = (




Figure 1: The construction in Lemma 3.4. Solid edges represent complete bipartite graphs,
and dashed edges represent the edges of H as given by Lemma 3.3.

hence G has the desired minimum degree condition. Additionally, since Gy is tripartite, it
is K;-free for all ¢ > 4. Therefore, we see that every K, in G must consist of a triangle in G
and r — 3 vertices from K. Hence, the number of K, in G is at most

9e’ on \"° o? (2r — 3)?

3 "3 T

0| —, K. | — < ) K :

8 (Gem) 00 (525) <t (Fa )

Moreover, if we delete some edges to make G be K,-free, we must in particular make Gq
triangle-free. Thus, the number of edges that must be deleted is at least £'(n/)? = en?. O

4 Concluding remarks

4.1 The removal thresholds for other graphs

Recall the definition of the linear and polynomial removal thresholds from Definition 1.4. In
this subsection, we make some remarks about the values of Oy rem(H) and Opory-rem(H) for
more general classes of graphs.

We begin by observing, directly from the definition, that dpely-rem(H) < Slinrem(H) for
any H, since a linear bound on the removal lemma is in particular a polynomial bound.
Moreover, if ex(n, H) denotes the extremal number of H, that is the maximum number of
edges in an H-free graph on n vertices, and if 7(H) = lim, (Z)_l ex(n, H) is the Turdn
density of H, then we have that yyrem(H) < 7m(H). Indeed, this follows from the Erdds—
Simonovits supersaturation theorem [13], which implies that for any a > 0, there exists some
do > 0 such that every n-vertex graph G with minimum degree at least (7(H) + a)n has at
least don!V ! copies of H. This shows that &(s, H;m(H) + ) > & for all € > 0, which in



turn implies that 0y rem(H) < m(H) + a by taking p = g in Definition 1.4. Letting « tend
to zero yields that Oyprem(H) < w(H).

Our first result in this section shows that dply-rem is invariant under a certain natural
relation on graphs. Recall that a graph homomorphism H, — H; is a function V(Hy) —
V' (H,) that maps every edge of Hy to an edge of H;.

Proposition 4.1. If Hy is a subgraph of Hy and there exists a homomorphism Hy — Hy,
then

6p01y—rem (Hl ) = 5poly—rom (H2 ) .

Proof. Let hy = |V(Hy)|,he = |V(H3)|, and fix a graph homomorphism ¢ : Hy — H;.
Let si,...,sn, be the sizes of the fibers of ¢, ie. s; = |p~!(v;)| for v; € V(H;). Let
s = max{sy,...,Sn }, so that Hy is a subgraph of the blowup H[s].

We first prove that dpoly-rem(H1) < Opoly-rem(H2). For this, let G be an n-vertex graph
with minimum degree yn that has at most én"* copies of H;, such that at least en? edges
must be removed from G to make it Hi-free. By the same argument as in the first paragraph
of Lemma 3.4, we may assume without loss of generality that n is sufficiently large. The
number of non-injective homomorphisms H; — G is at most (}gl)nhl_l, which is at most
dn™ for n sufficiently large. So the number of homomorphisms H, — G is at most 26n™,
which implies that the number of copies of H; in the blowup G[s] is at most 25(sn)"*. Every
copy of H; in G[s] can be extended to a copy of Hs in at most (sn)"~" ways, which implies
that G[s] contains at most 25(sn)" copies of Hy. An Hy-free subgraph I' C G[s] yields an
H-free subgraph of G by keeping those edges of GG all of whose lifts are present in I'; any
copy of Hj in this subgraph would lift to a copy of Hi[s] O Hj in I', a contradiction. This
implies that at least en® = 5(sn)? edges must be deleted from G[s] to make it Hs-free. Since
G[s] has minimum degree v(sn) and sn vertices, we conclude that

d(e, Hy;y) > %5 <§,H2;7) )

and therefore that dpoly-rem(H1) < Opoly-rem (H2)-

For the reverse inequality, now let G be an n-vertex graph with minimum degree yn that
has at most én"? copies of Hy, such that at least en? edges must be removed from G to make
it Ho-free, and we again assume that n is sufficiently large. Since an H;-free subgraph of G is
also H-free, we see that at least en? edges must be removed from G to make it H;-free. Let
m = S1---Sp,. We claim that G has at most 3h§”51/mnh1 copies of Hy. For if not, then we
can randomly partition V' (G) into h; sets to obtain an hi-partite subgraph G’ with at least
36Y™nM canonical copies of Hy, where we say that a copy is canonical if the ith vertex of H;
lies in the ith part of G’ for all i € [hy]. Let H be the hy-uniform hypergraph on V(G) whose
edges are the canonical copies of H; in G’, so that H has edge density at least 7 := 36'/™. An
argument of Erdds [10] (see also [36]) implies that if K is a complete hj-partite hi-uniform
hypergraph with m edges, then there at least n™n!V®)l homomorphisms K — H. For n
sufficiently large, and taking K to have parts of size sy, ..., sy,, we conclude that H has at
least %nmn’” > dn"? copies of K. This implies that G’ contains more than dn"? copies of Ho,
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a contradiction. We conclude that

1
§(e, Hy;7y) > w(S(&HnV)m,

1
and therefore that dpoly-rem(H2) < dpoly-rem (H1)- O

Using Proposition 4.1, we can determine the polynomial removal threshold of many
graphs. For instance, if H is a non-bipartite graph whose clique number w(H) equals its
chromatic number y(H), then

2w(H) -5

5poly—rem(H) = ma

since K, (g) is a subgraph of H and there is a homomorphism H — K, gy. In particular, we
are able to determine the polynomial removal threshold of all perfect graphs.

Additionally, Proposition 4.1 implies that dpoly-rem(H) = Opoly-rem (H [s]) for any graph H
and any integer s > 1, that is that the polynomial removal threshold is invariant under
blowups. More generally, we recall that the core of a graph H is defined as the inclusion-
minimal subgraph K such that there exists a homomorphism H — K see e.g. [24] for more
on this concept. Then by Proposition 4.1, we see that dpoly-rem(H) = Opoly-rem () for any
graph H and its core K. In other words, the polynomial removal threshold of a graph is
completely determined by that of its core.

In contrast to the above results, the linear removal threshold does not satisfy such a nice
invariance property. Indeed, our next result demonstrates that for any » > 3 and s > 2, the
complete multipartite graph K,[s] has linear removal threshold :—:f; this equals the Turan

density 7(K,[s]), and is strictly larger than 0y yem (K;) = g::g

Proposition 4.2. For anyr > 3 and s > 2,

r—2
r—1"

5lin—rem ( Kr [S] ) -

Proof. As remarked above, the inequality Oy rem(K[s]) < % follows from the Erdds—Stone
theorem [14], which says that m(K,[s]) = Z=2. For the reverse inequality, it suffices to
construct an n-vertex graph G with minimum degree at least %n and fewer than on'"*
copies of K,[s], but such that at least en? edges must be deleted to make it K,[s]-free, where
¢ cannot be taken to depend linearly on . We may assume throughout that n is sufficiently
large.

To do so, we let T'(n,r — 1) denote the Turdn graph, that is the complete (r — 1)-partite
graph with parts of size [Si| = --- = |S,_1| = %5 (where we assume for simplicity that
2(r — 1) divides n). Inside the part S; of T'(n,7 — 1), we place a random graph G(-"1,p)
for some fixed p € (0, ﬁ); in other words, we connect every pair in S; by an edge with
probability p, independently over all these choices. We let G be the resulting graph. Then

we immediately see that G has minimum degree at least %n, since that was the case in
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T(n,r — 1). For clarity, we now fix G[S;] to be a graph where every vertex has degree
(p 4 0(1))|Sy| and the K, density in G[S;] is p* + o(1). This is possible since both these
properties hold in G(-"7,p) with high probability. Note that every copy of K,[s] in G must
contai:gl a copy of K, in Sy. Therefore, G contains at most on™ copies of K,[s], where
0o=p*.

Now, suppose that G’ is a K, [s]-free subgraph of G with the maximum possible number
of edges. Recall that in G, every vertex of S; has degree at most 2p—" inside S;. Therefore,
if any vertex v € S; has more than 2p-"; non-neighbors in S, U---U S, 1, we can find a
K, [s]-free subgraph of G with more edges than G’ by deleting all edges incident to v in S
and adding all missing edges to Sy U ---U S, _;.

We now show G'[S;] is K, s-free. Suppose not, and consider a copy of K, in G'[S].
Since every vertex of this K, has at most 2p-"¢ non-neighbors in Sy U---US,_;, we find
that the vertices of the K, have in total at most 2s - 2p-"5 non-neighbors outside S;. As
2s - 2p2 < 1[5 since p < 1/(4s%) < 1/(8s), we see that there are subsets S/ C S; for
2 <i <r— 1 such that S]] = 1|S;| and every vertex in S} is complete to the vertices in the
K, If r =3, we arrive at a contradiction as |S5| > s for n sufficiently large, so the K
together with s vertices from S}, yields a copy of K3[s]. We now assume r > 4. As G’ is K,[s]-
free, G'[S5U- - -US/_,] does not contain a copy of K,_s[s]. Now suppose we sample s random
vertices from each SI. These (r —2)s vertices cannot span a copy of K, _»[s], so these vertices
must include both endpoints of at least one edge that is present in G but not GG'. On the other
hand, if there are ¢;;|57||S}| such deleted edges of between S; and S} forall 2 <i # j <r—1,
then the expected number of deleted edges among the (r—2)s sampled vertices is s? Y, 25 Qij-
As this expectation must be at least 1, we conclude that the number of edges deleted when
passing from G to G' is at least Y. q;|Si|1S]| = $(:2)* 2ois; € > 72 (%)% However,
this is more than the number of edges in G[S;], so the graph obtained from G by deleting all
edges inside S; has more edges than G’ and is also K, [s]-free, a contradiction. Thus, G'[S}]
is K s-free.

Any K, ,-free subgraph of G[S)] has at most O(n*71/*) edges by the Kévari-Sés—Turan
theorem [26], so we conclude that at least %p(‘s';') > en? edges must have been deleted when
going from G to G', where ¢ = 5. Since G has at most én"™ copies of K, [s], where § = e’
we see that the dependence between ¢ and ¢ cannot be linear. O

To conclude this subsection, we turn our attention to cycles. Since an even cycle is bipar-
tite, its Turdn density is 0, and hence so are its linear and polynomial removal thresholds.
For odd cycles, we are able to prove the following lower bound, though we do not know if
it is tight. The construction is a natural and simple generalization of that in Lemma 3.4,
which corresponds to the case k = 1 in the following theorem.

Theorem 4.3. For every positive integer k, we have that dpely-rem(Cort+1) > ﬁ

Proof. For every k > 1, every sufficiently small ¢y > 0, and every sufficiently large m, Alon
[2] constructed a graph H on m vertices with vertex set Vo Ll - - - L Vo, with the following
properties. Every edge in H goes between V; and V;,; for some i (with the indices taken
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modulo 2k + 1), at least £gm? edges must be removed from H to make it Coy,i-free, and H
has at most dm?**! copies of Copy1, Where § = £7¢1°8%0, for some constant ¢ > 0 depending
only on k.

We set g9 = ¢/a? and m = an and adjoin to this graph H a balanced blowup I' of the
path on 2k + 1 vertices, blown up so that I" has (1 — «a)n vertices in total. Finally, we place a
complete bipartite graph between the ith part of I' and the ¢th part of H. Then the resulting

graph has minimum degree at least a)n, and every Coiy 1 in this graph is contained in
2k+1

(2k1+1 -
H. Therefore, this resulting graph has at most dm?**! < §n?**1 copies of Cy;41, but at least
gom? = en? edges must be removed to make it Cyyi-free. Since 1/4 is super-polynomial in
1/e, this gives the theorem. O

4.2 The popular edge threshold

Our proof of Theorem 1.2 used Lemma 2.3, which is a very natural way of proving linear
bounds on the removal lemma. Recall that Lemma 2.3 says that if G has minimum degree
at least (3::2 + a)n, then every copy of K, in G has a “popular” edge, namely an edge that
lies in Q(n"~2) copies of K,. Given this statement, the proof of Theorem 1.2 is simple, since
we simply delete a popular edge from each copy of K., which necessarily yields linear bounds
for the K, removal lemma.

This discussion naturally leads to the following definition.

Definition 4.4. Let H be a graph. The popular edge threshold of H is defined as the
infimum of all v € [0, 1] for which the following holds. There exists 5 = (y) > 0 such that
for every n-vertex graph G with minimum degree at least yn, every copy of H in G contains
an edge which lies in at least Bnl!V()I=2 copies of H.

From the same argument as before, we see that djiyrem(H) < pop-cdge(H ), and Lemma 2.3

shows that pop-edge (£7) < g::g, which is a tight bound by Theorem 1.3. However, in general,

Opop-edge (H) can be strictly larger than iy rem(H ), as shown in the following proposition.

Proposition 4.5. Let H be a graph with no isolated vertices. Then dpop-cage(H) = 0 if and
only if H is bipartite and every edge of H lies in a cycle.

Recall that if H is bipartite, then 7(H) = 0 and therefore iy rem(H) = 0 as well. Thus,
every bipartite graph in which every edge lies in a cycle is an example of a graph whose
popular edge threshold is strictly larger than its linear removal threshold.

Proof of Proposition 4.5. Let h = |V (H)|. First suppose that H is not bipartite or every
edge of H lies in a cycle. For any integer s > 1, consider the blowup Cjz2[s]|, where we label
the parts 0,1,...,h% — 1. Form a graph G by adding to C}2[s] a single copy of H, with one
vertex in each of the parts labeled 0, h,2h,...,h* — h. Then G has n = h?s vertices and
minimum degree 2s = %n If H is not bipartite, then the only odd cycles of length at most
h in G are in the added copy of H. Since any odd cycle can be extended to a copy of H in at
most Oy (n"~3) ways, we conclude that G has at most O (n"=3) copies of H. For any fixed
B > 0, by letting s (and thus n) be sufficiently large, this implies that G contains fewer than
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An"2 copies of H, and in particular the added copy of H has no popular edge. Similarly, if
every edge of H lies in a cycle, then in particular every edge lies in a cycle of length at most
h. For any edge in the added copy of H, the only cycles of length at most h it participates
in are in the added copy, so any such edge appears in at most Oy (n"~*) copies of H, again
showing that this copy of H has no popular edge. This implies that dpop-edge(H) > % > 0.

For the reverse implication, suppose that H is bipartite and has an edge which lies in no
cycle. Let ujus € E(H) be such an edge, and note that its deletion makes H disconnected.
Let Hy, Hy be induced subgraphs of H containing u; and us, respectively, so that the only
edge between Hy and Hy is ujug. For i € {1,2}, let the bipartition of H; be V(H;) = A;UB;,
with u; € A;. Let |A;] = a;,|B;| = b;, so that h = a; + by +ag+by. Let v > 0, and let G be a
graph with n vertices and minimum degree at least yn. We claim that for all positive integers
a,b, and for any vertex v € V(G), there are at least Q, ,,(n*™*~!) copies of K,; in G which
contain v as one of the a vertices in the first part. This follows from the supersaturation
version [13] of the Kévari-Sés—Turdn theorem [26] on the problem of Zarankiewicz, which
proves the existence of many copies of K, 1, in the auxiliary bipartite graph with parts
V(G) \ {v} and N(v), whose edges are given by adjacency in G. This implies that for any
edge vive of G, there are at least 4, b, .a0.00(n" %) copies of H in G containing the edge
V1V, since H is a subgraph of the graph obtained from the disjoint union of K, 5, and K, s,
by adding a single edge between A; and As.

This shows that every edge in G lies in at least Q. 5(n"~2) copies of H. In particular,
in any copy of H in G, any edge is a popular edge, showing that dpep-edge(H) < 7. Letting
v — 0 gives the desired result. O

This example demonstrates that our approach to upper-bounding the linear removal
threshold via the popular edge threshold will not give tight bounds in general. Nevertheless,
we think that it is interesting to study when this approach will yield a tight bound, i.e. to
understand when Ojin-rem (H) = pop-edge (H ).

Question 4.6. For which graphs H does Ojin-rem(H) = Spop-cdge(H ) ?

4.3 The chromatic and homomorphism thresholds

The number g::g, which emerges from Theorems 1.2 and 1.3 as the linear and polynomial

removal threshold of K, is a well-known number in extremal graph theory. Indeed, it turns
out that 37’:3 is also both the chromatic threshold and homomorphism threshold of K,. These
are defined as follows. For a family of graphs F and a parameter v € [0, 1], let G(F, ) denote

the set of F-free graphs G with minimum degree at least 7|V (G)|.
Definition 4.7. Let F be a family of graphs. The chromatic threshold of F is the number

0, (F) = inf{y € [0,1] : there exists M > 0 such that x(G) < M for all G € G(F,v)}

and the homomorphism threshold of F is

Ohom (F) = inf{y € [0, 1] : there exists an F-free graph Gy such that for all G € G(F,~),
G has a homomorphism to Gy}.
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If 7 ={F} consists of a single graph, we denote these by d, (F) and Opom (F).

In other words, the chromatic threshold measures what minimum degree conditions force
an F-free graph to have a homomorphism to a graph of bounded order, and the homomor-
phism threshold further requires this bounded graph to itself be F-free. Due to the efforts
of many researchers [12, 23, 29, 31, 32, 34], it is now known that

2r — 5
or —3°

Despite the fact that we get the same answer for all cliques, we were not able to find any
a priori relationship between the two removal thresholds and the chromatic or homomor-
phism thresholds. Moreover, such a relationship does not hold in general. For instance,
Thomassen [35] proved that 5X(Cgk+1) = 0 for all £ > 2, while Theorem 4.3 shows that
Sinrem (C2k+1) > Opoly-rem (Cok+1) > 2k - Thus, the chromatic threshold of Cyy, is different
from both removal thresholds. The homomorphism threshold of Cy, 1 is unknown for any
k > 2, though Letzter—Snyder [27] and Ebsen Schacht [9] proved that dpom(Cor+1) <
and that 5hom({C37 05, .. ,Cgk_H}) = 2k+1
fact Spom (Cogr1) = 2k 1> as well as what the values of Ipoly-rem (C2k+1) and dinrem(Cor+1) are.
As a first pass, we make the following conjecture.

6X(Kr) = 5hom(Kr) =

1
= 2410
It would be very interesting to determine if in

Conje(:ture 4.8. 5poly—rom(02k+1> > 6hom(C2k+1) fOT’ all k > 2.

Odd cycles provide an example of graphs where the polynomial removal threshold is
strictly larger than the chromatic threshold. In the other direction, we see from Proposi-
tion 4.1 that dpoly-rem (K3[2]) = dpoly-rem (K3) = %, while it is well-known that 6, (K3[2]) = %
(see [1], where this is stated as a folklore result). Thus, K3[2] (or more generally a non-trivial
balanced blowup of a clique) is an example of a graph whose polynomial removal threshold
is strictly smaller than its chromatic threshold. However, in this case, we have the curious
situation that dinrem(K3[2]) = 6, (K3[2]), by Proposition 4.2. We conjecture that this is a

coincidence, and that in general, the four thresholds have nothing to do with one another.

Conjecture 4.9. There exists a graph H for which 6,(H ), ohom(H ), Stin-rem(H ), dpoly-rem (H)
are all distinct.

More generally, the numbers 6,(H), Snom(H ), Otin-rem(H ), dpoly-rem (H ) may appear in any
order in [0, 1], subject to the constraints 6, (H) < dhom(H) and dporyrem(H) < Stinrem(H).

To conclude, we remark that Allen, Bottcher, Griffiths, Kohayakawa, and Morris [1]
determined 6, (H) for all graphs H. Moreover, they showed that if x(H) = r > 3, then
0, (H) can take only one of three values, namely

r—3 2r—5r—2
5X(H)€{r—2’2r—3’r—1}

We are not bold enough to make any specific conjecture about the removal thresholds for
arbitrary graphs. But we do leave the following open question, inspired by the Allen—
Bottcher—Griffiths—Kohayakawa—Morris theorem.
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Question 4.10. Is it the case that for each r > 3, there exists a finite set A, C [0,1] such
that dpolyrem(H) € A, for every graph H with x(H) = r? What if we replace Spoly-rem(H) by
5lin—rem(H)7 by 5p0p—edge(H)7 or by 5h0m(H) ¢

Acknowledgments: We would like to thank the anonymous referees for many helpful
comments which greatly improved the presentation of this paper.
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