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Minimum degree and the graph removal lemma

Jacob Fox∗ Yuval Wigderson†

Abstract

The clique removal lemma says that for every r ≥ 3 and ε > 0, there exists some
δ > 0 so that every n-vertex graph G with fewer than δnr copies of Kr can be made
Kr-free by removing at most εn2 edges. The dependence of δ on ε in this result
is notoriously difficult to determine: it is known that δ−1 must be at least super-
polynomial in ε−1, and that it is at most of tower type in log ε−1.

We prove that if one imposes an appropriate minimum degree condition on G,
then one can actually take δ to be a linear function of ε in the clique removal lemma.
Moreover, we determine the threshold for such a minimum degree requirement, showing
that above this threshold we have linear bounds, whereas below the threshold the
bounds are once again super-polynomial, as in the unrestricted removal lemma.

We also investigate this question for other graphs besides cliques, and prove some
general results about how minimum degree conditions affect the bounds in the graph
removal lemma.

1 Introduction

One of the deepest results in extremal graph theory is the triangle removal lemma of Ruzsa
and Szemerédi [33], as well as its extension to the graph removal lemma, proved indepen-
dently by Alon–Duke–Lefmann–Rödl–Yuster [3] and Füredi [22]. Loosely, this result says
that if a large graph G contains “few” copies of a fixed graph H , then it can be made H-free
by deleting “few” edges. The formal statement is as follows.

Theorem 1.1. Let H be a graph on h vertices. For every ε > 0, there exists a δ > 0 such
that the following holds. If G is an n-vertex graph with fewer than δnh copies of H, then
one can remove at most εn2 edges from G to make it H-free.

Despite its simple statement, the graph removal lemma is a deep result, with many
applications in number theory, computer science, and graph theory. For more on the removal
lemma and its history, we refer to the survey [6].
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Many important questions surrounding the graph removal lemma remain open. Most
notably, the correct bound for δ in terms of ε is unknown. Formally, let δ(ε,H) denote the
maximum1 δ such that the following holds for every graph G: if G has fewer than δ|V (G)|h

copies of H , then G can be made H-free by removing at most ε|V (G)|2 edges. The best
lower bound on δ(ε,H), due to Fox [15], shows that δ(ε,H) ≥ 1/T (Oh(log 1

ε
)), where T is

the tower function, recursively defined by T (0) = 1 and T (x) = 2T (x−1) for x ≥ 1. For the
upper bound, Alon [2] (extending [33] and [11]) showed that if H is not bipartite2, then

δ(ε,H) ≤ εΩH (log 1

ε
) as ε → 0. In particular, if H is not bipartite, then 1/δ(ε,H) must be at

least super-polynomial in 1/ε. Even in the first non-trivial case, of H = K3, these bounds
remain the best known results.

Another important class of results in extremal graph theory concerns structural results
implied by minimum degree conditions. Notable examples include Dirac’s theorem [8] on
the existence of Hamiltonian cycles, its extension by Komlós, Sárközy, and Szemerédi [25] to
powers of Hamiltonian cycles, and the Andrásfai–Erdős–Sós theorem [5] on when a Kr-free
graph is (r − 1)-partite.

In this paper, we study a natural minimum-degree version of the graph removal lemma.
Formally, let us define δ(ε,H ; γ) to be the maximum δ ∈ [0, 1] such that every n-vertex
graph with fewer than δnh copies of H and minimum degree at least γn can be made H-free
by deleting at most εn2 edges. Here, γ ∈ [0, 1] is some constant which we think of as fixed,
and we are interested in the behavior of δ(ε,H ; γ) as ε → 0. We remark that this function
is non-decreasing in γ, and that setting γ = 0 recovers the earlier definition of δ(ε,H), that
is, δ(ε,H ; 0) = δ(ε,H).

Our main results show that δ(ε,Kr; γ) is linear in ε if γ > 2r−5
2r−3

, but that it is super-

polynomial in ε if γ < 2r−5
2r−3

. Formally, we first prove the following theorem, which asserts

that δ(ε,Kr; γ) is linear in ε for γ > 2r−5
2r−3

.

Theorem 1.2. For every r ≥ 3, there exists µr > 0 such that for all α, ε > 0,

δ

(

ε,Kr;
2r − 5

2r − 3
+ α

)

≥ µrαε,

meaning that δ(ε,Kr; γ) is linear in ε for all γ > 2r−5
2r−3

.

Our next result implies that below the threshold 2r−5
2r−3

, the Kr removal lemma must have
super-polynomial bounds. In fact, we are able to relate the behavior of the restricted removal
function δ(ε,Kr; γ) to that of the unrestricted triangle removal function δ(ε,K3); since this
function is known to have super-polynomial bounds, we conclude the same for δ(ε,Kr; γ).
Formally, we prove the following result.

1Note that this maximum is attained (i.e. that one can write “maximum” rather than “supremum”),
because we require fewer than δ|V (G)|h copies of H , but allow deleting at most ε|V (G)|2 edges.

2If H is bipartite, then δ(ε,H) = εΘH(1), i.e. the removal lemma has polynomial bounds [2]. The removal
lemma is somewhat degenerate in caseH is bipartite, since in this case the entire problem reduces to counting
copies of bipartite graphs in dense graphs, which can be done with the method of Kővari–Sós–Turán [26].
This is closely related to a famous conjecture of Erdős–Simonovits and Sidorenko, see e.g. [7] for details.

2



Theorem 1.3. For every integer r ≥ 3 and every α > 0, there exists some C = C(r, α) > 0
such that for every ε > 0,

δ

(

ε,Kr;
2r − 5

2r − 3
− α

)

≤ δ(Cε,K3).

In particular, δ(ε,Kr; γ)−1 is super-polynomial in ε−1 for fixed γ < 2r−5
2r−3

.

Somewhat surprisingly, our technique does not enable us to upper-bound δ(ε,Kr; γ) in
terms of δ(ε,Kr) for γ < 2r−5

2r−3
. Because of this, to prove super-polynomial bounds on the

restricted Kr removal function, we must use that such bounds are known for the unrestricted
triangle removal function.

The results in Theorems 1.2 and 1.3 tell us that 2r−5
2r−3

is a minimum degree threshold
for the Kr removal lemma: below this threshold, the removal lemma has super-polynomial
bounds, whereas above it we have linear bounds. We can formalize this notion of threshold
as follows.

Definition 1.4. Let H be a graph. We define the linear removal threshold of H to be

δlin-rem(H) = inf{γ ∈ [0, 1] : there exists µ > 0 so that δ(ε,H ; γ) ≥ µε for all ε ∈ (0, 1)}.

Similarly, we define the polynomial removal threshold of H to be

δpoly-rem(H) = inf{γ ∈ [0, 1] : there exists µ > 0 so that δ(ε,H ; γ) ≥ µε1/µ for all ε ∈ (0, 1)}.

These thresholds measure the weakest possible minimum degree condition one can impose
in order to have, respectively, linear and polynomial bounds in the graph removal lemma for
H . In this language, Theorems 1.2 and 1.3 can be rephrased as saying that

δlin-rem(Kr) = δpoly-rem(Kr) =
2r − 5

2r − 3
.

In addition to determining the linear and polynomial removal thresholds for Kr, we also
prove some results about δlin-rem(H) and δpoly-rem(H) for more general classes of graphs, and
make a number of conjectures about the relationship between these thresholds and other
well-known thresholds in extremal graph theory. We refer to Section 4 for more details.

We remark that other versions of the graph removal lemma have been studied under
certain minimum degree–like assumptions, such as in [17, 18]. More generally, there is a long
line of work on how the numerical dependencies in the removal lemma (and in Szemerédi’s
regularity lemma) can be improved under certain assumptions about the host graph, e.g.
[4, 16, 19, 20, 21, 28, 30].

The rest of the paper is organized as follows. In the next section, we prove Theorem 1.2.
In Section 3, we prove Theorem 1.3 by exhibiting a specific graph of high minimum degree and
poor Kr removal properties. We end with some concluding remarks, where we generalize
these results and study δlin-rem(H) and δpoly-rem(H) for general graphs H , and discuss the
connections this problem has to the chromatic and homomorphism thresholds of graphs. For
the sake of clarity of presentation, we omit all floor and ceiling signs whenever they are not
crucial.
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2 Above the threshold: the proof of Theorem 1.2

In this section, we prove Theorem 1.2. Unlike all known proofs of the full graph removal
lemma, our proof uses only simple averaging arguments to find a small set of edges, each
of which lies in many copies of Kr. We then show that removing all these edges deletes all
copies of Kr in G. Crucially, these averaging arguments only work because of our minimum
degree assumption; as shown by Theorem 1.3, they cannot possibly work if the minimum
degree is below (2r−5

2r−3
− α)n for any fixed α > 0.

Here is a restatement of Theorem 1.2, restated to indicate what exactly we will prove in
this section.

Theorem 2.1. For every r ≥ 3, there exists µr > 0 such that the following holds for all
α, ε > 0. Let G be an n-vertex graph with minimum degree at least (2r−5

2r−3
+α)n, and suppose

that G contains at most (µrαε)n
r copies of Kr. Then G can be made Kr-free by deleting at

most εn2 edges.

We will need the following simple fact from calculus (or basic algebra).

Lemma 2.2. For any x ≥ 4, we have that

x
2x− 5

2x− 3
≥ x− 2 +

2

5
.

Proof. Differentiating shows that the function f(x) = x2x−5
2x−3

− (x − 2) is monotonically

increasing, so its value for all x ≥ 4 is lower-bounded by its value at x = 4, and f(4) = 2
5
.

Our main technical result is the following lemma, which says that if G has minimum
degree at least (2r−5

2r−3
+ α)n, then every Kr in G contains a “popular” edge, namely an edge

lying in Ωr(αn
r−2) copies of Kr.

Lemma 2.3. Let r ≥ 3 and α > 0. If G is an n-vertex graph with minimum degree at least
(2r−5
2r−3

+ α)n, then every Kr in G contains an edge which lies in at least crαn
r−2 copies of

Kr, for some constant cr > 0 depending only on r.

Proof. Fix a copy of Kr in G, and let its vertices be v1, . . . , vr. For i ∈ [r], let Vi = N(vi)
denote the neighborhood of vi. Note that by the minimum degree condition, we have that
|Vi| ≥ (2r−5

2r−3
+ α)n for each i. We will prove the following claim by induction.

Claim. For each integer 0 ≤ t ≤ r− 3, there exists a set St ⊆ [r] of size |St| = r− t and at
least cr,tn

t copies of Kt whose vertices lie in
⋂

i∈St
Vi, for some constant cr,t > 0.

Proof of claim. The base case t = 0 is trivial, since we simply take S0 = [r] and cr,0 = 1.
Inductively, suppose we have found a set St with the desired properties, for t ≤ r − 4. Let
Q be a copy of Kt with vertices in

⋂

i∈St
Vi. Since every vertex in Q has degree at least

(2r−5
2r−3

+α)n, there are at most ( 2
2r−3

−α)n < 2
2r−3

n vertices not adjacent to any given vertex
in Q. Thus, the common neighborhood of Q has size at least

m := n− t

(

2

2r − 3
n

)

=
2r − 3 − 2t

2r − 3
n.
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Note that for any vertex v ∈ V (G) and for any set of m vertices in G, the number of edges
between v and this m-set is at least

(

2r − 5

2r − 3
+ α

)

n− (n−m) >
2r − 5 − 2t

2r − 3
n =

2r − 5 − 2t

2r − 3 − 2t
m.

Now consider an auxiliary bipartite graph Bt, whose first part consists of St, whose second
part consists of m arbitrary common neighbors of the vertices in Q, and where a vertex v in
the second part is adjacent to a vertex i in the first part if v ∈ Vi. By the computation above,
each vertex in the first part of Bt has degree at least 2r−5−2t

2r−3−2t
m. The first part of Bt has r− t

vertices. Hence, the average degree in the second part of Bt is at least (r − t)2r−5−2t
2r−3−2t

, which

is at least r− t− 2 + 2
5
, by Lemma 2.2 applied to x = r− t and using the fact that t ≤ r− 4,

which implies that x ≥ 4. By Markov’s inequality, at least m/5 vertices in the second part
of Bt have degree at least r − t − 1. Therefore, there are at least (cr,tn

t)(m/5) choices of a
clique Q contained in

⋂

i∈St
Vi, and a common neighbor of Q that lies in at least r− t− 1 of

the sets Vi for i ∈ St. Hence, by the pigeonhole principle, for at least cr,tn
tm/(5(r − t)) of

these choices, the same subset of St of order r − t − 1 is used. We let St+1 be this subset,
and let

cr,t+1 =
cr,t

5(r − t)

m

n
=

(2r − 3 − 2t)

5(2r − 3)(r − t)
cr,t,

so that there are at least cr,t+1n
t+1 choices of a Kt+1 whose vertices lie in

⋂

i∈St+1
Vi. This

completes the proof of the claim.

To conclude, we actually run the same argument for t = r − 3, except that we need to
be more careful about keeping track of the parameter α. Let S = Sr−3 be the set given by
the claim for t = r− 3, and let c = cr,r−3. Let Q be a Kr−3 whose vertices lie in

⋂

i∈S Vi. Let
B be the bipartite graph whose first part consists of three vertices, labeled by the elements
of S, and whose second part consists of m common neighbors of the vertices in Q, where

m = n− (r − 3)

(

2

2r − 3
− α

)

n =

(

3

2r − 3
+ (r − 3)α

)

n.

By the same argument as above, each vertex in the first part of B has degree at least
(

2r − 5

2r − 3
+ α

)

n− (n−m) =

(

1

2r − 3
+ (r − 2)α

)

n

=
1

2r−3
+ (r − 2)α

3
2r−3

+ (r − 3)α
m

=
1 + (r − 2)(2r − 3)α

3 + (r − 3)(2r − 3)α
m

≥

(

1

3
+ c′α

)

m,

for some constant c′ > 0 depending only on r. Therefore, the average degree in the second
part of B is at least 1 + 3c′α. By Markov’s inequality, this implies that at least 3

2
c′αm
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vertices in this part have at least two neighbors in the first part. Hence, there are at least
cnr−3 · 3

2
c′αm choices of a Kr−3 and a vertex in its common neighborhood which lies in at

least two of the three sets Vi for i ∈ S. By the pigeonhole principle, there is some {i, j} ⊂ S
such that Vi ∩ Vj contains at least crαn

r−2 copies of Kr−2, where

cr =
cc′

2

m

n
=

cc′

2

(

3

2r − 3
+ (r − 3)α

)

≥
3cc′

2(2r − 3)
.

Therefore, the edge {vi, vj} in our original Kr lies in at least crαn
r−2 copies of Kr.

Using Lemma 2.3, we can prove Theorem 2.1, and thus Theorem 1.2.

Proof of Theorem 2.1. Let µr = cr/
(

r
2

)

, where cr is the constant from Lemma 2.3, and let
δ = µrαε. Let G be an n-vertex graph with minimum degree at least (2r−5

2r−3
+ α)n and with

at most δnr copies of Kr.
Let E∗ denote the set of edges in G which lie in at least crαn

r−2 copies of Kr. Then

the number of Kr in G is at least
(

r
2

)−1
crαn

r−2|E∗|, since each edge in E∗ contributes at
least crαn

r−2 copies, and we count each copy at most
(

r
2

)

times (once for each edge). By
assumption, G has at most δnr copies of Kr, and combining these bounds, we find that

|E∗| ≤

(

r
2

)

cr

δ

α
n2 = εn2,

by our choice of δ = µrαε.
Additionally, by Lemma 2.3, we know that every Kr in G contains at least one edge from

E∗. Hence, if we delete the edges in E∗, we are left with a Kr-free graph. Since we deleted
at most εn2 edges, this completes the proof.

3 Below the threshold: the proof of Theorem 1.3

In this section, we prove Theorem 1.3 by constructing a graph with high minimum degree,
few copies of Kr, but such that many edges must be removed to make it Kr-free. Formally,
we will prove the following result.

Theorem 3.1. For every integer r ≥ 3, parameters α > 0 and ε > 0, and all sufficiently
large n, there exists an n-vertex graph G with minimum degree at least (2r−5

2r−3
−α)n and with

at most α3

(r/3)r
δ( (2r−3)2

α2 ε,K3)n
r copies of Kr, but at least εn

2 edges must be deleted from G to
make it Kr-free. Therefore,

δ

(

ε,Kr;
2r − 5

2r − 3
− α

)

≤
α3

(r/3)r
δ

(

(2r − 3)2

α2
ε,K3

)

.

Note that Theorem 3.1 is somewhat stronger than Theorem 1.3, because we discarded
the factor α3

(r/3)r
in the statement of Theorem 1.3. We will first prove Theorem 3.1 in the case

r = 3, and then show how to extend this construction to prove Theorem 3.1 for all r ≥ 4.
We will need two simple and well-known lemmas. The first says that balanced blowups

preserve the triangle removal properties of graphs.
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Lemma 3.2. Let H0 be a graph with t triangles, let m be the minimum number of edges that
one can delete to make H0 triangle-free, and let s be a positive integer. Then the balanced
blowup H0[s] has exactly s3t triangles, and the minimum number of edges one can delete to
make H0[s] triangle-free is s2m.

Proof. The first claim is immediate since every triangle in H0 corresponds to s3 triangles
in H0[s]. For the second, suppose we delete fewer than s2m edges from H0[s]. We pick a
random copy of H0 in H0[s] by independently picking a uniformly random vertex in each
part of H0[s]. Then the expected number of deleted edges in this copy of H0 is less than
(s2m)/s2 = m. So there exists a copy of H0 in H0[s] with fewer than m edges deleted, and
this copy must contain a triangle by assumption. Thus, by deleting fewer than s2m edges,
we cannot destroy all triangles in H0[s]. On the other hand, suppose we are given a set E∗

of m edges in H0 whose deletion destroys all triangles in H0. By deleting all s2m edges of
H0[s] which correspond to a blown-up copy of an edge in E∗, we delete all triangles in H0[s],
so s2m edge deletions suffice to destroy all triangles in H0[s].

The second lemma says that one can convert any construction for the triangle removal
lemma into a tripartite construction with similar parameter dependencies. We remark that
this lemma is not fully optimized, and one could obtain better constants through a more
careful argument.

Lemma 3.3. Suppose that H0 is an n0-vertex graph with at most δn3
0 triangles, but such that

at least εn2
0 edges must be deleted to make H0 triangle-free. Then there exists a tripartite

graph H on n := 3n0 vertices with at most 2
9
δn3 triangles, such that at least 1

9
εn2 edges must

be deleted to make H triangle-free.

Proof. Consider the tensor product H = H0 × K3, which is the graph whose vertices are
pairs (v, x) ∈ V (H) × [3], and where two vertices (v, x) and (w, y) are adjacent if and only
if x 6= y and v ∼ w in H0. We claim that H has the desired properties.

Indeed, by definition, H is tripartite and has n = 3n0 vertices. Moreover, each triangle
in H0 yields precisely six triangles in H , so H has at most 6δn3

0 = 2
9
δn3 triangles. To

conclude, suppose that E∗ ⊆ E(H) is a set of edges whose deletion makes H triangle-free.
Let E∗

0 ⊆ E(H0) denote the edges of H0 obtained by deleting the second coordinate of every
vertex in every edge of E∗; in particular, |E∗

0 | ≤ |E∗|. We claim that deleting the edges in
E∗

0 makes H0 triangle-free. Indeed, if {v1, v2, v3} ⊆ V (H0) form a triangle in H0 after the
deletion of E∗

0 , then we see that no edge in E∗ can be of the form {(vi, x), (vj , y)} for any
i 6= j and x 6= y. In particular, we find that {(v1, 1), (v2, 2), (v3, 3)} is a triangle in H whose
edges do not intersect E∗, contradicting the assumption that the deletion of E∗ destroyed
all triangles in H . Hence, by the defining property of H0, we conclude that

|E∗| ≥ |E∗
0 | ≥ εn2

0 =
1

9
εn2,

as claimed.

7



The next lemma is simply a restatement of Theorem 3.1 in the case r = 3. We state
it as a separate lemma because the r = 3 construction will be used as a black box in the
construction for larger values of r.

Lemma 3.4. For all α > 0 and ε > 0 and all sufficiently large n, there exists a tripartite
n-vertex graph G0 with minimum degree at least (1

3
−α)n and with at most α3δ(9ε/α2, K3)n

3

triangles, but at least εn2 edges must be deleted from G0 to make it triangle-free.

Proof. We first claim that for all sufficiently large n, there exists an n-vertex graph with at
most 2δ(ε,K3)n

3 triangles such that at least εn2 edges must be deleted to make it triangle-
free. Indeed, by the definition of δ(ε,K3), there is a sequence of graphs which are all ε-far
from being triangle-free, but whose triangle density approaches δ(ε,K3). Thus, there must
exist a graph H0 on some fixed number n0 of vertices with at most 3

2
δ(ε,K3)n

3
0 triangles

such that at least εn2
0 edges must be deleted to make it triangle-free. By Lemma 3.2, for

any s ≥ 1, the balanced blowup H0[s] will have at most 3
2
δ(ε, k3)(sn0)

2 triangles, but at
least ε(sn0)

2 edges must be deleted to make H0[s] triangle-free. Therefore, for n sufficiently
large relative to n0, we may take the blowup H0[⌊n/n0⌋] and add to it n−n0⌊n/n0⌋ isolated
vertices to obtain the desired graph.

Therefore, by Lemma 3.3 applied with parameters ε′ = 9ε/α2 and n′ = αn/3, there
exists a tripartite graph H on αn vertices with fewer than 2

9
·2δ(ε′, K3)(αn)3 < δ(ε′, K3)(αn)3

triangles such that at least 1
9
ε′(αn)2 edges must be deleted to make H triangle-free. Let Γ be

a balanced blowup of the path with two edges, blown up so that it has (1−α)n vertices. Let
G0 be the graph obtained by taking the disjoint union of H and Γ, and placing a complete
bipartite graph between the ith part of H and the ith part of Γ, for i ∈ [3]. Then G0 is
tripartite by definition. The construction is shown in Figure 1.

Since every vertex in G0 is adjacent to all vertices in at least one part of Γ, we see
that every vertex in G0 has degree at least 1

3
(1 − α)n > (1

3
− α)n. Moreover, we see that

every triangle in G0 is actually contained in H , so the number of triangles in G0 is at most
δ(ε′, K3)(αn)3 = α3δ(9ε/α2, K3)n

3. Finally, if we delete some edges to make G0 triangle-free,
we must in particular make H triangle-free. Therefore, the number of edges needed to make
G0 triangle-free is at least 1

9
ε′(αn)2 = 1

9
· 9ε
α2 (αn)2 = εn2.

With this result, we are now ready to prove Theorem 3.1, and thus Theorem 1.3.

Proof of Theorem 3.1. If r = 3, then the result is precisely the statement of Lemma 3.4.
So we henceforth assume that r ≥ 4. Let G0 be the graph from Lemma 3.4, applied with

parameters α, ε′ =
(

2r−3
3

)2
ε, and n′ = 3

2r−3
n. Let K be a complete (r − 3)-partite graph

where each part has 2
2r−3

n vertices, and let G be the join of G0 and K, i.e. the graph obtained
from the disjoint union of G0 and K by connecting every vertex in K to every vertex in G0.
Then G has (r−3) 2

2r−3
n+ 3

2r−3
n = n vertices. In G, every vertex coming from K has degree

(r − 4) 2
2r−3

n + 3
2r−3

n = 2r−5
2r−3

n, and every vertex coming from G0 has degree at least

(r − 3)
2

2r − 3
n +

(

1

3
− α

)

3

2r − 3
n >

(

2r − 5

2r − 3
− α

)

n,

8



H

Γ

Figure 1: The construction in Lemma 3.4. Solid edges represent complete bipartite graphs,
and dashed edges represent the edges of H as given by Lemma 3.3.

hence G has the desired minimum degree condition. Additionally, since G0 is tripartite, it
is Kt-free for all t ≥ 4. Therefore, we see that every Kr in G must consist of a triangle in G
and r − 3 vertices from K. Hence, the number of Kr in G is at most

α3δ

(

9ε′

α2
, K3

)

(n′)3 ·

(

2n

2r − 3

)r−3

≤
α3

(r/3)r
δ

(

(2r − 3)2

α2
ε,K3

)

nr.

Moreover, if we delete some edges to make G be Kr-free, we must in particular make G0

triangle-free. Thus, the number of edges that must be deleted is at least ε′(n′)2 = εn2.

4 Concluding remarks

4.1 The removal thresholds for other graphs

Recall the definition of the linear and polynomial removal thresholds from Definition 1.4. In
this subsection, we make some remarks about the values of δlin-rem(H) and δpoly-rem(H) for
more general classes of graphs.

We begin by observing, directly from the definition, that δpoly-rem(H) ≤ δlin-rem(H) for
any H , since a linear bound on the removal lemma is in particular a polynomial bound.
Moreover, if ex(n,H) denotes the extremal number of H , that is the maximum number of

edges in an H-free graph on n vertices, and if π(H) := limn→∞

(

n
2

)−1
ex(n,H) is the Turán

density of H , then we have that δlin-rem(H) ≤ π(H). Indeed, this follows from the Erdős–
Simonovits supersaturation theorem [13], which implies that for any α > 0, there exists some
δ0 > 0 such that every n-vertex graph G with minimum degree at least (π(H) + α)n has at
least δ0n

|V (H)| copies of H . This shows that δ(ε,H ; π(H) + α) ≥ δ0 for all ε > 0, which in
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turn implies that δlin-rem(H) ≤ π(H) + α by taking µ = δ0 in Definition 1.4. Letting α tend
to zero yields that δlin-rem(H) ≤ π(H).

Our first result in this section shows that δpoly-rem is invariant under a certain natural
relation on graphs. Recall that a graph homomorphism H2 → H1 is a function V (H2) →
V (H1) that maps every edge of H2 to an edge of H1.

Proposition 4.1. If H1 is a subgraph of H2 and there exists a homomorphism H2 → H1,
then

δpoly-rem(H1) = δpoly-rem(H2).

Proof. Let h1 = |V (H1)|, h2 = |V (H2)|, and fix a graph homomorphism ϕ : H2 → H1.
Let s1, . . . , sh1

be the sizes of the fibers of ϕ, i.e. si = |ϕ−1(vi)| for vi ∈ V (H1). Let
s = max{s1, . . . , sh1

}, so that H2 is a subgraph of the blowup H1[s].
We first prove that δpoly-rem(H1) ≤ δpoly-rem(H2). For this, let G be an n-vertex graph

with minimum degree γn that has at most δnh1 copies of H1, such that at least εn2 edges
must be removed from G to make it H1-free. By the same argument as in the first paragraph
of Lemma 3.4, we may assume without loss of generality that n is sufficiently large. The
number of non-injective homomorphisms H1 → G is at most

(

h1

2

)

nh1−1, which is at most
δnh1 for n sufficiently large. So the number of homomorphisms H1 → G is at most 2δnh1,
which implies that the number of copies of H1 in the blowup G[s] is at most 2δ(sn)h1. Every
copy of H1 in G[s] can be extended to a copy of H2 in at most (sn)h2−h1 ways, which implies
that G[s] contains at most 2δ(sn)h2 copies of H2. An H2-free subgraph Γ ⊆ G[s] yields an
H1-free subgraph of G by keeping those edges of G all of whose lifts are present in Γ; any
copy of H1 in this subgraph would lift to a copy of H1[s] ⊇ H2 in Γ, a contradiction. This
implies that at least εn2 = ε

s2
(sn)2 edges must be deleted from G[s] to make it H2-free. Since

G[s] has minimum degree γ(sn) and sn vertices, we conclude that

δ(ε,H1; γ) ≥
1

2
δ
( ε

s2
, H2; γ

)

,

and therefore that δpoly-rem(H1) ≤ δpoly-rem(H2).
For the reverse inequality, now let G be an n-vertex graph with minimum degree γn that

has at most δnh2 copies of H2, such that at least εn2 edges must be removed from G to make
it H2-free, and we again assume that n is sufficiently large. Since an H1-free subgraph of G is
also H2-free, we see that at least εn2 edges must be removed from G to make it H1-free. Let
m = s1 · · · sh1

. We claim that G has at most 3hh1

1 δ1/mnh1 copies of H1. For if not, then we
can randomly partition V (G) into h1 sets to obtain an h1-partite subgraph G′ with at least
3δ1/mnh1 canonical copies of H1, where we say that a copy is canonical if the ith vertex of H1

lies in the ith part of G′ for all i ∈ [h1]. Let H be the h1-uniform hypergraph on V (G) whose
edges are the canonical copies of H1 in G′, so that H has edge density at least η := 3δ1/m. An
argument of Erdős [10] (see also [36]) implies that if K is a complete h1-partite h1-uniform
hypergraph with m edges, then there at least ηmn|V (K)| homomorphisms K → H. For n
sufficiently large, and taking K to have parts of size s1, . . . , sh1

, we conclude that H has at
least 1

2
ηmnh2 > δnh2 copies of K. This implies that G′ contains more than δnh2 copies of H2,
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a contradiction. We conclude that

δ(ε,H2; γ) ≥
1

3hh1

1

δ(ε,H1; γ)m,

and therefore that δpoly-rem(H2) ≤ δpoly-rem(H1).

Using Proposition 4.1, we can determine the polynomial removal threshold of many
graphs. For instance, if H is a non-bipartite graph whose clique number ω(H) equals its
chromatic number χ(H), then

δpoly-rem(H) =
2ω(H) − 5

2ω(H) − 3
,

since Kω(H) is a subgraph of H and there is a homomorphism H → Kω(H). In particular, we
are able to determine the polynomial removal threshold of all perfect graphs.

Additionally, Proposition 4.1 implies that δpoly-rem(H) = δpoly-rem(H [s]) for any graph H
and any integer s ≥ 1, that is that the polynomial removal threshold is invariant under
blowups. More generally, we recall that the core of a graph H is defined as the inclusion-
minimal subgraph K such that there exists a homomorphism H → K; see e.g. [24] for more
on this concept. Then by Proposition 4.1, we see that δpoly-rem(H) = δpoly-rem(K) for any
graph H and its core K. In other words, the polynomial removal threshold of a graph is
completely determined by that of its core.

In contrast to the above results, the linear removal threshold does not satisfy such a nice
invariance property. Indeed, our next result demonstrates that for any r ≥ 3 and s ≥ 2, the
complete multipartite graph Kr[s] has linear removal threshold r−2

r−1
; this equals the Turán

density π(Kr[s]), and is strictly larger than δlin-rem(Kr) = 2r−5
2r−3

.

Proposition 4.2. For any r ≥ 3 and s ≥ 2,

δlin-rem(Kr[s]) =
r − 2

r − 1
.

Proof. As remarked above, the inequality δlin-rem(Kr[s]) ≤
r−2
r−1

follows from the Erdős–Stone

theorem [14], which says that π(Kr[s]) = r−2
r−1

. For the reverse inequality, it suffices to

construct an n-vertex graph G with minimum degree at least r−2
r−1

n and fewer than δnrs

copies of Kr[s], but such that at least εn2 edges must be deleted to make it Kr[s]-free, where
ε cannot be taken to depend linearly on δ. We may assume throughout that n is sufficiently
large.

To do so, we let T (n, r− 1) denote the Turán graph, that is the complete (r− 1)-partite
graph with parts of size |S1| = · · · = |Sr−1| = n

r−1
(where we assume for simplicity that

2(r − 1) divides n). Inside the part S1 of T (n, r − 1), we place a random graph G( n
r−1

, p)

for some fixed p ∈ (0, 1
4s2

); in other words, we connect every pair in S1 by an edge with
probability p, independently over all these choices. We let G be the resulting graph. Then
we immediately see that G has minimum degree at least r−2

r−1
n, since that was the case in
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T (n, r − 1). For clarity, we now fix G[S1] to be a graph where every vertex has degree
(p + o(1))|S1| and the Ks,s density in G[S1] is ps

2

+ o(1). This is possible since both these
properties hold in G( n

r−1
, p) with high probability. Note that every copy of Kr[s] in G must

contain a copy of Ks,s in S1. Therefore, G contains at most δnrs copies of Kr[s], where
δ = ps

2

.
Now, suppose that G′ is a Kr[s]-free subgraph of G with the maximum possible number

of edges. Recall that in G, every vertex of S1 has degree at most 2p n
r−1

inside S1. Therefore,
if any vertex v ∈ S1 has more than 2p n

r−1
non-neighbors in S2 ∪ · · · ∪ Sr−1, we can find a

Kr[s]-free subgraph of G with more edges than G′ by deleting all edges incident to v in S1

and adding all missing edges to S2 ∪ · · · ∪ Sr−1.
We now show G′[S1] is Ks,s-free. Suppose not, and consider a copy of Ks,s in G′[S1].

Since every vertex of this Ks,s has at most 2p n
r−1

non-neighbors in S2 ∪ · · · ∪ Sr−1, we find
that the vertices of the Ks,s have in total at most 2s · 2p n

r−1
non-neighbors outside S1. As

2s · 2p n
r−1

≤ 1
2
|Si| since p < 1/(4s2) ≤ 1/(8s), we see that there are subsets S ′

i ⊆ Si for

2 ≤ i ≤ r− 1 such that |S ′
i| = 1

2
|Si| and every vertex in S ′

i is complete to the vertices in the
Ks,s. If r = 3, we arrive at a contradiction as |S ′

2| ≥ s for n sufficiently large, so the Ks,s

together with s vertices from S ′
2 yields a copy of K3[s]. We now assume r ≥ 4. As G′ is Kr[s]-

free, G′[S ′
2∪· · ·∪S ′

r−1] does not contain a copy of Kr−2[s]. Now suppose we sample s random
vertices from each S ′

i. These (r−2)s vertices cannot span a copy of Kr−2[s], so these vertices
must include both endpoints of at least one edge that is present in G but not G′. On the other
hand, if there are qij |S

′
i||S

′
j| such deleted edges of between S ′

i and S ′
j for all 2 ≤ i 6= j ≤ r−1,

then the expected number of deleted edges among the (r−2)s sampled vertices is s2
∑

i 6=j qij .
As this expectation must be at least 1, we conclude that the number of edges deleted when
passing from G to G′ is at least

∑

i 6=j qij |S
′
i||S

′
j| = 1

4
( n
r−1

)2
∑

i 6=j qij ≥ 1
4s2

( n
r−1

)2. However,
this is more than the number of edges in G[S1], so the graph obtained from G by deleting all
edges inside S1 has more edges than G′ and is also Kr[s]-free, a contradiction. Thus, G′[S1]
is Ks,s-free.

Any Ks,s-free subgraph of G[S1] has at most O(n2−1/s) edges by the Kővári–Sós–Turán

theorem [26], so we conclude that at least 1
2
p
(

|S1|
2

)

≥ εn2 edges must have been deleted when

going from G to G′, where ε = p
4r2

. Since G has at most δnrs copies of Kr[s], where δ = ps
2

,
we see that the dependence between ε and δ cannot be linear.

To conclude this subsection, we turn our attention to cycles. Since an even cycle is bipar-
tite, its Turán density is 0, and hence so are its linear and polynomial removal thresholds.
For odd cycles, we are able to prove the following lower bound, though we do not know if
it is tight. The construction is a natural and simple generalization of that in Lemma 3.4,
which corresponds to the case k = 1 in the following theorem.

Theorem 4.3. For every positive integer k, we have that δpoly-rem(C2k+1) ≥
1

2k+1
.

Proof. For every k ≥ 1, every sufficiently small ε0 > 0, and every sufficiently large m, Alon
[2] constructed a graph H on m vertices with vertex set V0 ⊔ · · · ⊔ V2k with the following
properties. Every edge in H goes between Vi and Vi+1 for some i (with the indices taken
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modulo 2k + 1), at least ε0m
2 edges must be removed from H to make it C2k+1-free, and H

has at most δm2k+1 copies of C2k+1, where δ = ε0
−c log ε0 , for some constant c > 0 depending

only on k.
We set ε0 = ε/α2 and m = αn and adjoin to this graph H a balanced blowup Γ of the

path on 2k+ 1 vertices, blown up so that Γ has (1−α)n vertices in total. Finally, we place a
complete bipartite graph between the ith part of Γ and the ith part of H . Then the resulting
graph has minimum degree at least ( 1

2k+1
−α)n, and every C2k+1 in this graph is contained in

H . Therefore, this resulting graph has at most δm2k+1 ≤ δn2k+1 copies of C2k+1, but at least
ε0m

2 = εn2 edges must be removed to make it C2k+1-free. Since 1/δ is super-polynomial in
1/ε, this gives the theorem.

4.2 The popular edge threshold

Our proof of Theorem 1.2 used Lemma 2.3, which is a very natural way of proving linear
bounds on the removal lemma. Recall that Lemma 2.3 says that if G has minimum degree
at least (2r−5

2r−3
+α)n, then every copy of Kr in G has a “popular” edge, namely an edge that

lies in Ω(nr−2) copies of Kr. Given this statement, the proof of Theorem 1.2 is simple, since
we simply delete a popular edge from each copy of Kr, which necessarily yields linear bounds
for the Kr removal lemma.

This discussion naturally leads to the following definition.

Definition 4.4. Let H be a graph. The popular edge threshold of H is defined as the
infimum of all γ ∈ [0, 1] for which the following holds. There exists β = β(γ) > 0 such that
for every n-vertex graph G with minimum degree at least γn, every copy of H in G contains
an edge which lies in at least βn|V (H)|−2 copies of H .

From the same argument as before, we see that δlin-rem(H) ≤ δpop-edge(H), and Lemma 2.3
shows that δpop-edge(Kr) ≤

2r−5
2r−3

, which is a tight bound by Theorem 1.3. However, in general,
δpop-edge(H) can be strictly larger than δlin-rem(H), as shown in the following proposition.

Proposition 4.5. Let H be a graph with no isolated vertices. Then δpop-edge(H) = 0 if and
only if H is bipartite and every edge of H lies in a cycle.

Recall that if H is bipartite, then π(H) = 0 and therefore δlin-rem(H) = 0 as well. Thus,
every bipartite graph in which every edge lies in a cycle is an example of a graph whose
popular edge threshold is strictly larger than its linear removal threshold.

Proof of Proposition 4.5. Let h = |V (H)|. First suppose that H is not bipartite or every
edge of H lies in a cycle. For any integer s ≥ 1, consider the blowup Ch2[s], where we label
the parts 0, 1, . . . , h2 − 1. Form a graph G by adding to Ch2[s] a single copy of H , with one
vertex in each of the parts labeled 0, h, 2h, . . . , h2 − h. Then G has n := h2s vertices and
minimum degree 2s = 2

h2n. If H is not bipartite, then the only odd cycles of length at most
h in G are in the added copy of H . Since any odd cycle can be extended to a copy of H in at
most OH(nh−3) ways, we conclude that G has at most OH(nh−3) copies of H . For any fixed
β > 0, by letting s (and thus n) be sufficiently large, this implies that G contains fewer than
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βnh−2 copies of H , and in particular the added copy of H has no popular edge. Similarly, if
every edge of H lies in a cycle, then in particular every edge lies in a cycle of length at most
h. For any edge in the added copy of H , the only cycles of length at most h it participates
in are in the added copy, so any such edge appears in at most OH(nh−4) copies of H , again
showing that this copy of H has no popular edge. This implies that δpop-edge(H) ≥ 2

h2 > 0.
For the reverse implication, suppose that H is bipartite and has an edge which lies in no

cycle. Let u1u2 ∈ E(H) be such an edge, and note that its deletion makes H disconnected.
Let H1, H2 be induced subgraphs of H containing u1 and u2, respectively, so that the only
edge between H1 and H2 is u1u2. For i ∈ {1, 2}, let the bipartition of Hi be V (Hi) = Ai∪Bi,
with ui ∈ Ai. Let |Ai| = ai, |Bi| = bi, so that h = a1 + b1 +a2 + b2. Let γ > 0, and let G be a
graph with n vertices and minimum degree at least γn. We claim that for all positive integers
a, b, and for any vertex v ∈ V (G), there are at least Ωγ,a,b(n

a+b−1) copies of Ka,b in G which
contain v as one of the a vertices in the first part. This follows from the supersaturation
version [13] of the Kővári–Sós–Turán theorem [26] on the problem of Zarankiewicz, which
proves the existence of many copies of Ka−1,b in the auxiliary bipartite graph with parts
V (G) \ {v} and N(v), whose edges are given by adjacency in G. This implies that for any
edge v1v2 of G, there are at least Ωγ,a1,b1,a2,b2(n

h−2) copies of H in G containing the edge
v1v2, since H is a subgraph of the graph obtained from the disjoint union of Ka1,b1 and Ka2,b2

by adding a single edge between A1 and A2.
This shows that every edge in G lies in at least Ωγ,H(nh−2) copies of H . In particular,

in any copy of H in G, any edge is a popular edge, showing that δpop-edge(H) ≤ γ. Letting
γ → 0 gives the desired result.

This example demonstrates that our approach to upper-bounding the linear removal
threshold via the popular edge threshold will not give tight bounds in general. Nevertheless,
we think that it is interesting to study when this approach will yield a tight bound, i.e. to
understand when δlin-rem(H) = δpop-edge(H).

Question 4.6. For which graphs H does δlin-rem(H) = δpop-edge(H)?

4.3 The chromatic and homomorphism thresholds

The number 2r−5
2r−3

, which emerges from Theorems 1.2 and 1.3 as the linear and polynomial
removal threshold of Kr, is a well-known number in extremal graph theory. Indeed, it turns
out that 2r−5

2r−3
is also both the chromatic threshold and homomorphism threshold of Kr. These

are defined as follows. For a family of graphs F and a parameter γ ∈ [0, 1], let G(F , γ) denote
the set of F -free graphs G with minimum degree at least γ|V (G)|.

Definition 4.7. Let F be a family of graphs. The chromatic threshold of F is the number

δχ(F) = inf{γ ∈ [0, 1] : there exists M > 0 such that χ(G) ≤ M for all G ∈ G(F , γ)}

and the homomorphism threshold of F is

δhom(F) = inf{γ ∈ [0, 1] : there exists an F -free graph G0 such that for all G ∈ G(F , γ),

G has a homomorphism to G0}.
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If F = {F} consists of a single graph, we denote these by δχ(F ) and δhom(F ).

In other words, the chromatic threshold measures what minimum degree conditions force
an F -free graph to have a homomorphism to a graph of bounded order, and the homomor-
phism threshold further requires this bounded graph to itself be F -free. Due to the efforts
of many researchers [12, 23, 29, 31, 32, 34], it is now known that

δχ(Kr) = δhom(Kr) =
2r − 5

2r − 3
.

Despite the fact that we get the same answer for all cliques, we were not able to find any
a priori relationship between the two removal thresholds and the chromatic or homomor-
phism thresholds. Moreover, such a relationship does not hold in general. For instance,
Thomassen [35] proved that δχ(C2k+1) = 0 for all k ≥ 2, while Theorem 4.3 shows that
δlin-rem(C2k+1) ≥ δpoly-rem(C2k+1) ≥

1
2k+1

. Thus, the chromatic threshold of C2k+1 is different
from both removal thresholds. The homomorphism threshold of C2k+1 is unknown for any
k ≥ 2, though Letzter–Snyder [27] and Ebsen–Schacht [9] proved that δhom(C2k+1) ≤ 1

2k+1
,

and that δhom({C3, C5, . . . , C2k+1}) = 1
2k+1

. It would be very interesting to determine if in

fact δhom(C2k+1) = 1
2k+1

, as well as what the values of δpoly-rem(C2k+1) and δlin-rem(C2k+1) are.
As a first pass, we make the following conjecture.

Conjecture 4.8. δpoly-rem(C2k+1) > δhom(C2k+1) for all k ≥ 2.

Odd cycles provide an example of graphs where the polynomial removal threshold is
strictly larger than the chromatic threshold. In the other direction, we see from Proposi-
tion 4.1 that δpoly-rem(K3[2]) = δpoly-rem(K3) = 1

3
, while it is well-known that δχ(K3[2]) = 1

2

(see [1], where this is stated as a folklore result). Thus, K3[2] (or more generally a non-trivial
balanced blowup of a clique) is an example of a graph whose polynomial removal threshold
is strictly smaller than its chromatic threshold. However, in this case, we have the curious
situation that δlin-rem(K3[2]) = δχ(K3[2]), by Proposition 4.2. We conjecture that this is a
coincidence, and that in general, the four thresholds have nothing to do with one another.

Conjecture 4.9. There exists a graph H for which δχ(H), δhom(H), δlin-rem(H), δpoly-rem(H)
are all distinct.

More generally, the numbers δχ(H), δhom(H), δlin-rem(H), δpoly-rem(H) may appear in any
order in [0, 1], subject to the constraints δχ(H) ≤ δhom(H) and δpoly-rem(H) ≤ δlin-rem(H).

To conclude, we remark that Allen, Böttcher, Griffiths, Kohayakawa, and Morris [1]
determined δχ(H) for all graphs H . Moreover, they showed that if χ(H) = r ≥ 3, then
δχ(H) can take only one of three values, namely

δχ(H) ∈

{

r − 3

r − 2
,

2r − 5

2r − 3
,
r − 2

r − 1

}

.

We are not bold enough to make any specific conjecture about the removal thresholds for
arbitrary graphs. But we do leave the following open question, inspired by the Allen–
Böttcher–Griffiths–Kohayakawa–Morris theorem.
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Question 4.10. Is it the case that for each r ≥ 3, there exists a finite set ∆r ⊂ [0, 1] such
that δpoly-rem(H) ∈ ∆r for every graph H with χ(H) = r? What if we replace δpoly-rem(H) by
δlin-rem(H), by δpop-edge(H), or by δhom(H)?

Acknowledgments: We would like to thank the anonymous referees for many helpful
comments which greatly improved the presentation of this paper.
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[26] T. Kövari, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3
(1954), 50–57.

[27] S. Letzter and R. Snyder, The homomorphism threshold of {C3, C5}-free graphs, J.
Graph Theory 90 (2019), 83–106.

17



[28] L. Lovász and B. Szegedy, Regularity partitions and the topology of graphons, in An
irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., Budapest,
2010, pp. 415–446.

[29] T.  Luczak, On the structure of triangle-free graphs of large minimum degree, Combina-
torica 26 (2006), 489–493.

[30] M. Malliaris and S. Shelah, Regularity lemmas for stable graphs, Trans. Amer. Math.
Soc. 366 (2014), 1551–1585.

[31] V. Nikiforov, Chromatic number and minimum degree of Kr-free graphs, 2010. Preprint
available at https://arxiv.org/pdf/1001.2070.pdf.

[32] H. Oberkampf and M. Schacht, On the structure of dense graphs with bounded clique
number, Combin. Probab. Comput. 29 (2020), 641–649.

[33] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles,
in Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq.
Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 939–
945.

[34] C. Thomassen, On the chromatic number of triangle-free graphs of large minimum
degree, Combinatorica 22 (2002), 591–596.

[35] C. Thomassen, On the chromatic number of pentagon-free graphs of large minimum
degree, Combinatorica 27 (2007), 241–243.

[36] Y. Wigderson, Complete r-partite r-graphs are Sidorenko: a
brief exposition, 2021. Not intended for publication. Available at
http://web.stanford.edu/~yuvalwig/math/expository/HypergraphSidorenko.pdf.

18


	1 Introduction
	2 Above the threshold: the proof of Theorem 1.2
	3 Below the threshold: the proof of Theorem 1.3
	4 Concluding remarks
	4.1 The removal thresholds for other graphs
	4.2 The popular edge threshold
	4.3 The chromatic and homomorphism thresholds


