
How E�ective Are Neural Networks for Fixing Security
Vulnerabilities

Yi Wu
Purdue University
West Lafayette, USA
wu1827@purdue.edu

Nan Jiang
Purdue University
West Lafayette, USA
jiang719@purdue.edu

Hung Viet Pham∗

York University
Toronto, Canada
hvpham@yorku.ca

Thibaud Lutellier∗

University of Alberta
Camrose, Canada

lutellie@ualberta.ca

Jordan Davis
Purdue University
West Lafayette, USA
davi1304@purdue.edu

Lin Tan
Purdue University
West Lafayette, USA
lintan@purdue.edu

Petr Babkin
J.P. Morgan AI Research

Palo Alto, USA
petr.babkin@jpmorgan.com

Sameena Shah
J.P. Morgan AI Research

New York, USA
sameena.shah@jpmchase.com

ABSTRACT

Security vulnerability repair is a di�cult task that is in dire need

of automation. Two groups of techniques have shown promise: (1)

large code language models (LLMs) that have been pre-trained on

source code for tasks such as code completion, and (2) automated

program repair (APR) techniques that use deep learning (DL)models

to automatically �x software bugs.

This paper is the �rst to study and compare Java vulnerabil-

ity repair capabilities of LLMs and DL-based APR models. The

contributions include that we (1) apply and evaluate �ve LLMs

(Codex, CodeGen, CodeT5, PLBART and InCoder), four �ne-tuned

LLMs, and four DL-based APR techniques on two real-world Java

vulnerability benchmarks (Vul4J and VJBench), (2) design code

transformations to address the training and test data overlapping

threat to Codex, (3) create a new Java vulnerability repair bench-

mark VJBench, and its transformed version VJBench-trans, to better

evaluate LLMs and APR techniques, and (4) evaluate LLMs and APR

techniques on the transformed vulnerabilities in VJBench-trans.

Our �ndings include that (1) existing LLMs and APR models �x

very few Java vulnerabilities. Codex �xes 10.2 (20.4%), the most

number of vulnerabilities. Many of the generated patches are un-

compilable patches. (2) Fine-tuning with general APR data improves

LLMs’ vulnerability-�xing capabilities. (3) Our newVJBench reveals

that LLMs and APR models fail to �x many Common Weakness

Enumeration (CWE) types, such as CWE-325Missing cryptographic

step and CWE-444 HTTP request smuggling. (4) Codex still �xes

8.7 transformed vulnerabilities, outperforming all the other LLMs

∗This work is done when Hung Viet Pham and Thibaud Lutellier were at University of
Waterloo.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598135

and APR models on transformed vulnerabilities. The results call for

innovations to enhance automated Java vulnerability repair such

as creating larger vulnerability repair training data, tuning LLMs

with such data, and applying code simpli�cation transformation to

facilitate vulnerability repair.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Automatic programming; • Computing methodologies

→ Neural networks; • Security and privacy → Software security

engineering.

KEYWORDS

Automated Program Repair, Large Language Model, Vulnerability,

AI and Software Engineering

ACM Reference Format:

YiWu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan,

Petr Babkin, and Sameena Shah. 2023. How E�ective Are Neural Networks

for Fixing Security Vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA ’23), July

17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3597926.3598135

1 INTRODUCTION

Software vulnerabilities, such as bu�er over�ows and SQL injec-

tions, have a critical impact on global economies and can harm

millions of users. Once a vulnerability is discovered, it is often cru-

cial to �x it promptly to minimize the potential for exploitation.

Yet, recent studies [43, 52] �nd that the average time to �x a vulner-

ability (time between the discovery and the �x) varies between 60

to 79 days, which is still too long and provides ample opportunities

for attackers to exploit these vulnerabilities. For example, for the

severe Apache Log4Shell vulnerability reported on November 24,

2021, the �rst �x was deployed by Apache 12 days after the report.

During these 12 days, both Cloud�are and Cisco reported several

attacks exploiting the vulnerability [34]. Moreover, the initial �x

proved insu�cient, leaving Log4Shell vulnerable until a complete

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1282

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1145/3597926.3598135

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah

�x was released more than one month later. As a result, there is a

need for faster vulnerability-�xing solutions.

Most vulnerability benchmarks and vulnerability repair solutions

focus either on C/C++ [19, 29–31, 36, 42, 46, 53, 67] or binaries [10,

48, 54, 60, 72]. There is a lack of solutions and benchmarks for Java,

despite it being a widely-used programming language (the third

most popular language in the open-source community [32]) with

many severe vulnerabilities.

Java has been used to implement important servers, includ-

ing web servers and services (e.g., Tomcat, Spring, CFX, Log4J),

which are especially vulnerable to attackers. Consequently, many

of the most critical vulnerabilities are in Java software. For exam-

ple, Google assessed that the Log4Shell vulnerability in the Log4J

package a�ected 17,000 Maven projects [7], and Microsoft even

reported that nation-state attackers exploited the vulnerability [2].

Benchmarks and solutions for other programming languages

often do not work or work poorly for �xing Java vulnerabilities.

For example, the most common vulnerabilities in C/C++ are bu�er

over�ows [24, 59]. Java, as a type-safe language, is designed to

avoid bu�er over�ows. Thus, most C/C++ techniques focusing on

bu�er over�ow vulnerabilities are irrelevant to Java. We need new

benchmarks and techniques for �xing Java security vulnerabilities.

Instead of building a technique to �x Java vulnerabilities au-

tomatically, we study and compare the space and feasibility of

applying two types of techniques—learning-based automated pro-

gram repair and LLMs—to �x Java security vulnerabilities auto-

matically. First, learning-based program repair has gained pop-

ularity [18, 21, 22, 40, 47, 75, 75, 76, 76]. These encoder-decoder

approaches learn from a large number of pairs of bugs and their

�xes (in open-source projects) to �x unseen Java software bugs

automatically. It would be interesting to study how e�ective such

learning-based program repair models are in �xing a subset of soft-

ware bugs, i.e., software vulnerabilities.

Secondly, LLMs have recently been applied to source code [17,

25, 37, 40, 50, 63, 73] and are pre-trained models that have been

trained on a tremendous amount of source code (e.g., the entirety of

GitHub). Di�erent from APR models, pre-trained LLMs learn from

large corpus of source code (instead of pairs of bugs and their �xes)

for various tasks such as identi�er tagging and code completion.

Despite learning to perform tasks di�erent from repairing, recent

study [38, 74] shows that pre-trained LLMs have competitive capa-

bilities of �xing general Java bugs [41, 44]. It would be interesting

to study how e�ective such LLMs are for a di�erent task, i.e., �xing

software vulnerabilities, when they do not see how bugs are �xed.

Thirdly, it would be interesting to compare deep learning (DL)-

based APR techniques’ and LLMs’ capabilities of �xing Java vulnera-

bilities. DL-based APR techniques and LLMs represent two angles of

applying models for a di�erent task. Applying DL-based APR tech-

niques to �x vulnerabilities is using models learned from a general

dataset for a speci�c subset of the dataset (software vulnerability

is a type of software bug). Applying LLMs to �x vulnerabilities is

using models learned from a di�erent format of dataset (sequences

of code) for another format (pairs of buggy and �xed code). Since

LLMs do not require pairs of bugs and their �xes, LLMs are typically

built from data that is orders of magnitude larger than the training

data used to train APR models.Would more data win or data-format

matching win?

Lastly, pre-trained LLMs are often �ne-tuned to adapt to di�erent

downstream tasks [8, 26, 33, 65, 73]. A recent study [38] shows

that �ne-tuning improves LLMs’ �xing capabilities by at least 31%.

However, given the lack of Java vulnerability data, it is unrealistic

to �ne-tune LLMs for �xing Java vulnerabilities. Thus, it would be

interesting to study how e�ective LLMs �ne-tuned with general APR

data are in �xing software vulnerabilities. And when compared with

DL-based APR techniques, would more data plus �ne-tuning win or

data-format matching win?

1.1 Our Approach

We conduct the �rst study to evaluate and compare APR tech-

niques’ and LLMs’ abilities of �xing Java vulnerabilities. We evalu-

ate �ve LLMs (Codex [1], CodeT5 [73], CodeGen [55], PLBART [8]

and InCoder [28]), four LLMs that are �ned-tuned with general

APR data, and four APR techniques (CURE [40], Recoder [76], Re-

wardRepair [75], and KNOD [39]) on two Java vulnerability bench-

marks (Vul4J and a new VJBench that we create). There are two

main challenges.

First, there are few benchmarks available for evaluating Java

vulnerability repair tools. While Vul4J [16] contains 79 reproducible

Java vulnerabilities, they belong to only 25 CWEs, i.e., types of

vulnerabilities. In addition, 60% of the CWEs in the dataset (15

types of vulnerabilities) are covered by only a single reproducible

vulnerability.

To address this challenge, we develope new benchmarks. We

analyze the entire National Vulnerability Database (NVD) [4] to

identify reproducible real-world Java vulnerabilities that are suit-

able for vulnerability repair evaluation, and use these to create

our VJBench benchmark. These vulnerabilities cover an additional

twelve CWE types not included by the Vul4J dataset and add more

vulnerabilities to four CWE types with which Vul4J has only one

vulnerability associated. The new benchmark can facilitate the

evaluation of future Java vulnerability repair techniques.

The second challenge arises from the fact that Codex was trained

on a substantial code corpus collected from GitHub [17] and the

training dataset is unreleased. Since the projects in Vul4J and

VJBench are public repositories on GitHub, one cannot be certain

that the vulnerabilities in Vul4J and VJBench are not in Codex’s

training data. This is a major known threat to the validity of eval-

uation [11, 69]. While dataset HumanEval [17] is not in Codex’s

training data, it is for Python code completion and does not contain

Java vulnerabilities. Creating new real-world benchmarks is not

only expensive [16, 41], but might also be impracticable if LLMs

have been trained on all public datasets.

Our best-e�ort solution to mitigate this challenge is to transform

the vulnerability code in existing benchmarks. We use two types of

code transformation: identi�er renaming and code structure change.

These transformations generate new equivalent programs that still

retain the vulnerabilities but are not included in any open-source

dataset that Codex and other LLMs may have seen. As a result, we

create VJBench-trans, a benchmark of transformed vulnerabilities,

by applying two transformation strategies on vulnerabilities from

Vul4J and VJBench.

1283

How E�ective Are Neural Networks for Fixing Security Vulnerabilities ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

1.2 Contributions

Our paper makes the following contributions:

• We conduct the �rst study that evaluates the �xing capabilities

of �ve LLMs, four �ne-tuned LLMs, and four APR techniques

on real-world Java vulnerabilities from two benchmarks Vul4J

and our new VJBench. Our �ndings include:

– Existing LLMs and APR techniques �x very few Java vulner-

abilities. Codex �xes 10.2 (20.4%) vulnerabilities on average,

exhibiting the best �xing capability. (Section 6.1)

– Fine-tuningwith general APR data improves LLMs’ vulnerability-

�xing capabilities. Fine-tuned InCoder �xes 9 vulnerabili-

ties, exhibiting competitive �xing capability to Codex’s. (Sec-

tion 6.1)

– Codex has the highest compilation rate of 79.7%. Other LLMs

(�ne-tuned or not) and APR techniques have low compilation

rates (the lowest being 6.4%with CodeT5 and the rest between

24.5% to 65.2%), showing a lack of syntax domain knowledge.

(Section 6.1)

– LLMs and APR models, except Codex, only �x vulnerabilities

that require simple changes, such as a single deletion or

variable/method replacement. (Section 6.2)

– Our new VJBench reveals that LLMs and APR models fail

to �x many CWE types including CWE-172 Encoding error,

CWE-325 Missing cryptographic step, CWE-444 HTTP re-

quest smuggling, CWE-668 Exposure of resource to wrong

sphere, and CWE-1295 Debug messages revealing unneces-

sary information. (Section 6.2)

• We create two Java vulnerability benchmarks for automated

program repair: (1) VJBench, which contains 42 reproducible

real-world Java vulnerabilities that cover twelve newCWE types,

and (2) VJBench-trans, which contains 150 transformed Java

vulnerabilities.

• We use code transformations to mitigate the threat that LLMs

and black-box Codex may have seen the evaluated benchmarks.

• We evaluate LLMs and APR techniques’ �xing capabilities on

transformed vulnerabilities (VJBench-trans).

– Code transformations make LLMs and APR techniques �x

fewer number of vulnerabilities. Some models such as Codex

and �ne-tuned CodeT5 are more robust to code transforma-

tions. On the other hand, some transformations make the

vulnerabilities easier to �x. (Section 6.3)

• We provide implications and suggestions for future directions

(Section 6).

2 NEW BENCHMARK OF JAVA
VULNERABILITIES

A Java APR benchmark must contain reproducible Java vulnera-

bilities with test cases exposing the vulnerabilities. While there

is an abundance of such benchmarks for Java bugs, including De-

fects4J [41], QuixBugs [44], Bugs.jar [66], and Bears [49], the only

Java vulnerability benchmark for APR is Vul4J [16]. Vul4J contains

79 vulnerabilities from 51 projects covering 25 CWE types. Despite a

valuable �rst step, Vul4J o�ers limited coverage of CWE categories

as explained in Introduction. In addition, only 35 of these vulnera-

bilities are applicable for evaluating state-of-the-art learning-based

un
kn

ow
CW

E-
78

CW
E-

34
7*

CW
E-

94
*

CW
E-

20
CW

E-
91

8
CW

E-
79

CW
E-

50
2

CW
E-

22
CW

E-
61

1
CW

E-
55

2*
CW

E-
28

5*
CW

E-
74

CW
E-

31
0

CW
E-

75
4*

CW
E-

40
0*

CW
E-

18
4*

CW
E-

44
4*

CW
E-

20
0

CW
E-

86
3

CW
E-

32
5*

CW
E-

17
2*

CW
E-

66
8*

CW
E-

12
95

*

CWE Types

0
1
2
3
4
5

#V
ul

ne
ra

bi
lit

ie
s

Figure 1: CWE Type Distribution of VJBench (* denotes the

new CWE types not included in Vul4J).

APR systems [40, 75, 76] since these APR models only �x single-

hunk bugs. Speci�cally, 39 of the 79 vulnerabilities are single-hunk.

We can only reproduce 35 of the 39 vulnerabilities, as two bugs

fail to compile, and two bugs are not reproducible with the Docker

container provided by the Vul4J authors.

To extend this benchmark, we collect Java vulnerabilities follow-

ing prior work [41]: i) The vulnerability should only be related to

Java source code, ii) The �xing commit should contain at least one

test case that passes on +5 8G but fails on +1D6 , iii) The �xing patch

should only include changes that �x the vulnerability and should

not introduce unrelated changes such as features or refactoring,

and iv) the vulnerability is not already in Vul4J.

We download all available vulnerability data in JSON format on

May 13, 2022 from NVD. We parse this data and obtain a list of

7,116 GitHub projects by collecting the reference URLs of these

vulnerabilities. We exclude projects which have less than 50% of

their code in Java, resulting in 400 Java projects containing 933

unique vulnerabilities. We then try to identify the �xing commits

for each of the 933 vulnerabilities by manually checking the ref-

erence links provided in the vulnerability report or by searching

the vulnerability ID in the GitHub repository if no link is provided.

We �nd vulnerability-�xing commits for 698 vulnerabilities. Then

we manually �lter out 185 vulnerabilities whose �xing commits

contain non-Java changes and 314 vulnerabilities that do not have

test cases in their �xing commits. We now have 199 vulnerabilities,

each with test cases and a corresponding Java-only �xing commit.

We then successfully reproduce 42 Java vulnerabilities that are not

included in Vul4J, using building tools such as Maven or Gradle.

We end up with a dataset of 42 new reproducible real-world

Java vulnerabilities from thirty open-source projects. In detail,

our dataset consists of 27 multi-hunk vulnerabilities from twenty-

two projects and 15 single-hunk vulnerabilities from eleven projects.

As Figure 1 shows, these 42 vulnerabilities covers a total of 23 CWE

types. Furthermore, our dataset introduces 12 new CWE types (de-

noted by * in Figure 1) not included in Vul4J and supplements four

CWE types (CWE-78, CWE-200, CWE-310, CWE-863) for which

Vul4J only has one example.

Table 1 describes the 15 new single-hunk vulnerabilities of twelve

CWE types in our VJBench benchmark. There are six new unique

CWE types of vulnerabilities not present in Vul4J. As a result, there

are 15 vulnerabilities from VJBench and 35 vulnerabilities from

Vul4J, a total of 50 vulnerabilities that we use in our study.

1284

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah

Table 1: List of the 15 new single-hunk vulnerabilities cate-

gorized by their corresponding CWE. The vulnerability IDs

compose of the project name and the bug index. * denotes

the six new CWE types that our benchmark adds compared

to Vul4J. Jenkins-1 and Flow-2 both belong to two CWE cate-

gories.

CWE Description Vulnerability IDs

20 Improper Input Validation Pulsar-1
22 Improper limitation of path name Halo-1

to a restricted directory
74 Improper Neutralization of Elements Ratpack-1

in Output (’Injection’)
79 Cross-site Scripting Json-sanitizer-1
172* Encoding error Flow-1
200 Exposure of sensitive information Jenkins-1, Jenkins-2, Jenkins-3
325* Missing cryptographic step Jenkins-1
347* Improper Veri�cation of BC-Java-1

Cryptographic Signature
444* HTTP request smuggling Netty-1, Netty-2
611 Improper restriction of XML external Quartz-1, Retro�t-1

entity reference
668* Exposure of resource to wrong sphere Flow-2
1295* Debug messages revealing Flow-2

unnecessary information
unk no speci�c CWE category Jinjava-1

Table 2: Input Formats of Large Language Models

Model Input Format

Codex
Comment buggy lines (BL) with hint “BUG:” and “FIXED:”
Pre�x prompt: Beginning of the buggy function to BL comment
Su�x prompt: Line after BL comment to end of the buggy function

CodeT5 Mask buggy lines with <extra_id_0> and input the buggy function

CodeGen Input beginning of the buggy method to line before buggy lines

PLBART Mask buggy lines with <mask> and input the buggy function

InCoder Mask buggy lines with <mask> and input the buggy function

Tuned LLMs Comment buggy lines and input the buggy function

3 LARGE LANGUAGE MODELS AND APR
TECHNIQUES

3.1 Large Language Models

We select �ve LLMs, i.e., Codex, PLBART, CodeT5, CodeGen and

InCoder, because they are (1) state-of-the-art, (2) capable of per-

forming code generation tasks without any modi�cations to the

models or additional components (e.g., CodeBERT [26] GraphCode-

BERT [33] are excluded), and (3) trained with enough source code

so that they can understand code to some extent (e.g., we exclude

T5 [65], GPT-2 [64], GPT-Neo [13] and GPT-J [71], whose training

data is over 90% text). In this work, we study the LLMs in two

settings: as is and �ne-tuned with general APR data.

3.1.1 Large Language Models As Is. In this section, we introduce

the details of the studied LLMs and how to use them for �xing

vulnerabilities. Table 3 provides the model sizes and their training

data information.

Codex [17]: Codex is a GPT-3-based [15, 17] language model with

12B parameters trained on both natural language and source code.

We use the davinci-002 model (as of July 2022), which is supposed

to be the most accurate Codex model [1]. We focus on Codex’s

Prefix:
private int extend(int v, final int t){ ...
 /* BUG:
 * while (v < vt) {
 * FIXED:
 */
Suffix:
 vt = (-1 << t) + 1; ... }
Expected Output:
 if (v < vt) {

Figure 2: An example input to Codex and its expected output

insertion mode as it provided the best results in our preliminary

study among the three main modes: completion, insertion, and edit.

CodeT5 [73]:CodeT5 is an encoder-decoder transformermodel [70]

pre-trained with an identi�er-aware denoising objective and with

bimodal dual generation tasks. It is trained on a corpus of 5.2 mil-

lion code functions and 8.3 million natural language sentences from

open-source repositories in six programming languages including

Java. In this work, we use the largest CodeT5 model released, which

has 770M parameters.

CodeGen [55]: CodeGen models are a series of autoregressive

decoder-only transformers trained for conversational program syn-

thesis. Their training data consists of 354.7B natural language to-

kens from THEPILE dataset and 150.8B programming language

tokens extracted from a subset of the Google BigQuery database.

In this work, we apply the CodeGen model which contains 6B pa-

rameters (the larger model with 16B parameters is not used due to

the limitation of our machine).

PLBART [8]: PLBART uses an encoder-decoder transformer ar-

chitecture with an additional normalization layer on the encoder

and decoder. It’s pre-trained on functions extracted from Java

and Python GitHub repositories via denoising autoencoding. Two

PLBART models of di�erent sizes are available, and we use the

larger model containing 400M parameters.

InCoder [28]: InCoder models follow XGLM [45]’s decoder-only

architecture and are pre-trained on the masked span prediction task.

Its pre-training data comes from open-sourced projects on GitHub

andGitLab, and StackOver�ow posts. There are two InCodermodels

of di�erent sizes released, and we use the larger one which contains

6B parameters.

Input Formats: Table 2 illustrates the input format we used for

each model. For Codex, we adopt an input format similar to the one

used in prior work [58]. The prompt includes the commented buggy

code with hint words “BUG:" and “FIXED:" to signify the location

of the bug and to guide Codex towards generating a �xed version

of the code. If the number of input tokens exceeds the maximum

number for a model, we truncate the code and input the code around

the buggy lines. Since it is unclear how the commented buggy line

prompts will a�ect the models’ �xing capabilities, we experiment

with the input with and without commented buggy lines for each

model. Figure 2 shows an example of the input and expected output

of Codex with buggy lines commented by /* BUG .. FIXED */.

3.1.2 Fine-Tuned Large Language Models. We also study the �xing

capabilities of �ne-tuned LLMs, since �ne-tuning is a common

technique to adapt a pre-trained LLM to a speci�c downstream task,

such as code summarization or code translation [26, 28, 65, 73].

1285

How E�ective Are Neural Networks for Fixing Security Vulnerabilities ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 3: Model size (number of parameters) and training data

size of the �ve LLMs we apply and report in this work

Codex CodeT5 CodeGen PLBART InCoder

#Parameters 12B 770M 6B 400M 6B

Training Data NL 45.0TB - 1.1TB 79.0GB 57.0GB

Raw Size PL 159.0GB - 436.3GB 576.0GB 159.0GB

Training Data NL 499.0B - 354.7B 6.7B -

#Tokens PL 100.0B - 150.8B 64.4B -

Training Data NL - 5.2M - 47.0M -

#Instances PL - 8.3M - 680.0M -

However, due to the lack of vulnerabilities as �ne-tuning data, we

use the LLMs �ne-tuned with general APR data, shared by existing

work [38]. Prior work [38] �ne-tuned LLMs with a training dataset

containing 143,666 instances collected from open-source GitHub

Java projects [76]. Each data instance is a pair of buggy code and

�xed code. In detail, [38] used the Adam optimizer with a learning

rate of 14−5, set batch size to one and �ne-tuned for one epoch. The

�ne-tuned LLMs are supposed to be adjusted to vulnerability �xing

task to some extent due to the similarity between vulnerability

�xing and general bug �xing. We perform a search and con�rm

that none of the vulnerabilities we study in this work is present in

the APR training data used to �ne-tune the LLMs.

We cannot �ne-tune Codex, since it does not o�er any �ne-

tuning API and there is also no �ne-tuned Codex available. The

last row of Table 2 describes the input format for using �ne-tuned

LLMs, where the buggy lines are given as commented lines, and

the entire function is input into the �ne-tuned LLMs to generate

the patched lines [38].

3.2 APR Techniques

We select four state-of-the-art learning-basedAPR techniques trained

for Java bugs. These APR techniques need to be open-sourced so

that we can run them on our new vulnerability benchmarks.

CURE [40] applies a small language model (pre-trained with 4.04M

code instances) to the CoCoNuT’s [47] encoder-decoder architec-

ture to learn code syntax and propose a new code-aware strategy to

remove invalid identi�ers and increase the compilation rate during

inference. CURE is trained with 2.72M APR instances.

Recoder [76] uses an tree-based deep learning network that is

trained on 82.87K APR training instances. It focuses on generating

edits to modify buggy ASTs to form the patched ASTs.

RewardRepair [75] includes compilation in the calculation of the

model’s loss function to increase the number of compilable (and

correct) patches. This is di�erent from CURE as the loss function

increases the number of compilable patches during training. Overall,

RewardRepair is trained with 3.51M APR training instances.

KNOD [39] proposes a novel three-stage tree decoder to generate

the patched ASTs, and also uses domain-knowledge distillation to

modify the loss function to let the models learn code syntax and

semantics. KNOD is trained with 576K APR training instances, and

is the state-of-the-art DL-based APR techniques.

public static void checkDirectoryTraversal(...) {
 ...
 if (pathToCheck.startsWith(parentPath.normalize())) { ... }
 throw new ForbiddenException(...); ... }

(a) Before identi�er renaming

public static void examineUnauthorizedPathAccess(...) {
 ...
 if (examinePath.startsWith(basePath.normalize())) { ... }
 throw new ProhibitedException(...); ... }

(b) After identi�er renaming

Figure 3: Identi�er renaming for Halo-1. Functions

"startsWith" and "normalize" remain intact as they are Java

library functions.

if (!(value.getClass().equals(String.class)) || ...)

(a) Before function chaining

Class value_class = value.getClass()
if (!(value_class.equals(String.class)) || ...)

(b) After function chaining

Figure 4: Function chaining for VUL4J-30

if (pathToCheck.startsWith(parentPath.normalize())) {...}

(a) Before function-argument passing

Path normalizedParentPath = parentPath.normalize();
if (pathToCheck.startsWith(normalizedParentPath)) {...}

(b) After function-argument passing

Figure 5: Function-argument passing for Halo-1.

4 CODE TRANSFORMATION

To address the challenge of training-testing data overlap, we need

to create vulnerabilities and their �xes that have not been seen by

existing LLMs or APR techniques. We generate unseen vulnerabili-

ties by transforming existing vulnerabilities to their semantically

equivalent forms. None of the APR models and LLMs, including

Codex, have seen these transformed buggy code and the corre-

sponding �xes in their training set. We apply two categories of

transformations to Vul4J and VJBench, which are described below:

(1) Identi�er Renaming: To prevent LLMs and APR models from

simply memorizing the exact correct patches associated with iden-

ti�er names, we rename identi�ers in the buggy code and the corre-

sponding �xed code. All variables, functions, and classes de�ned in

the project are renamed using synonyms for the original identi�er

names according to Java speci�cations. We use synonyms to keep

the word meaning of the original identi�ers. We do not rename

identi�ers from external libraries or default Java class libraries,

since one often cannot modify external libraries. Figure 3 shows an

example of identi�er renaming for Halo-1.

We �rst use the tool src2abs [6] to extract all variable, func-

tion, and class names in the buggy function, and �lter out those

identi�ers from Java or third-party libraries. We tokenize each

identi�er based on camel case or snake case conventions, then use

NLTKWordNet [3] to generate synonyms for each word. After that,

we reassemble these synonyms to form a complete identi�er. We

manually review and adjust the synonyms to ensure they �t the

1286

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah

code context. Since some APR techniques need to extract identi�ers

from the whole project, we rename the identi�ers used in the buggy

function across the entire project.

(2) Code Structure Change:We de�ne six transformation rules

to change code structures.

• If-condition �ipping: negates an if-condition and swaps the

code blocks in the if and else branches.

• Loop transformation: converts a for loop to a while loop and

vice versa.

• Conditional-statement transformation: turns a ternary ex-

pression (var = cond ? exprTrue: exprFalse;) into an if-else

statement (if (cond) {var = exprTrue;} else {var = exprFalse;}),

and transform a switch statement into multiple if and elseif state-

ments, and vice versa.

• Function chaining: merges multiple function invocations into

one call chain, or conversely splits a function call chain into

separate function invocations. Figure 4 shows an example where

value.getClass().equals(...); is split into Class value_class

= value.getClass(); and value_class.equals(...);.

• Function-argument passing: If a locally de�ned variable or

object is only used as a function argument, we replace the func-

tion argument with its de�nition statement, or we extract the

function call that is passed as a function argument into a sepa-

rate variable/object de�nition. Figure 5 shows an example where

the argument parentPath.normalize() is extracted and declared

as a local object normalizedParentPath.

• Code-order change: alters the order of statements if changing

the order does not a�ect the execution results. For example,

funcA(); int n =0; can be transformed into int n = 0; funcA();

as invoking funcA() and declaring int n do not a�ect each other.

For code structure change, we manually transform the buggy

function. For each buggy function, we apply all applicable trans-

formations at once. We further con�rm the equivalence of the

transformed bug by reproducing them using the same test set and

applying semantically equivalent patches to pass the tests.

A new benchmark (VJBench-trans): In summary, to create bugs

and patches that LLMs have not seen in their training set, we apply

three sets of transformations (identi�er renaming only, code struc-

ture change only, and both at the same time) to VJBench and Vul4J,

and create VJBench-trans that contains 3×50 = 150 transformed Java

vulnerabilities. We search in GitHub and Google the transformed

code, and �nd no public code that is the same as the transformed

buggy function.

Recover patches for evaluation: The transformed code is still

realistic and human-readable. However, for the ease of evaluating

the correctness of plausible patches, we maintain a dictionary that

stores the mapping between the renamed identi�ers and their origi-

nal names. For each vulnerability, we also write a patched program

for its code structure transformed version, providing a reference

for future dataset users.

Vul4J

VJBench

Correct Patches
VJBench

-trans

LLMs

DL-based APR

Generated
PatchesTransform

Benchmarks Inference

Validation

Figure 6: Overview of our study

5 EXPERIMENT SETUP

Figure 6 provides an overview of our study. First, we build a new

dataset of vulnerabilities, VJBench, that contains 42 new vulnera-

bilities. We use this new dataset and the original dataset (Vul4J) to

benchmark the vulnerability-�xing capabilities of DL-based APR

techniques, LLMs and �ne-tuned LLMs. Each language model gen-

erates 10 patches for each bug through inference. For each APR

model, we use its default beam search size and validate its top 10

patches. The generated patches are then validated using test cases

and manual veri�cation of all the patches that pass the test cases.

Then, we apply code transformations on Vul4J and VJBench to

generate VJBench-trans. Finally, we evaluate the impact of code

transformations on the vulnerability-repair capabilities of all the

LLMs, �ne-tuned LLMs and APR techniques.

5.1 Dataset

In this work, we focus on �xing single-hunk Java vulnerabilities

as state-of-the-art DL-based APR models are designed to �x single-

hunk bugs. We �lter and obtain 35 single-hunk bugs from Vul4J

dataset. Alongwith the 15 single-hunk vulnerabilities fromVJBench,

we have a total of 50 Java vulnerabilities. We use the perfect fault

localization for these Java vulnerabilities, that is, we use the code

lines that are modi�ed in the developers’ patches as the buggy lines.

5.2 Large Language Model Setups

We evaluate each LLM with two input setups: (1) the buggy lines

are commented as part of the input and (2) without the buggy lines.

We observe that InCoder �xes more vulnerabilites when the input

contains buggy line comments, while the other LLMs perform better

without buggy lines. We then report the best-performing setup for

each model in the rest of this paper. For �ne-tuned LLMs, we follow

the input format with buggy line comments used in [38] which is

described in Table 2.

We con�gure each model to generate 10 patches for each vul-

nerability. For CodeT5, CodeGen, PLBART and InCoder, we set

their beam search size to 10. For Codex, we set its parameter n, the

number of candidates to generate, to 10. Considering the inherent

randomness of the sampling method adopted by Codex, we run it

twenty-�ve times for each vulnerability to obtain the average re-

sults. We run twenty-�ve times to control the margin of error small

(≤0.3) at 95% con�dence level . We set the sampling temperature of

Codex to 0.6, which is shown to have the best performance when

sampling ten candidates in prior work [17]. We set the max number

1287

How E�ective Are Neural Networks for Fixing Security Vulnerabilities ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

of newly generated tokens to 400 for Codex due to its request rate

limit, and to 512 for all other LLMs.

5.3 Patch Validation

Codex insertion mode generates code to be inserted between the

pre�x prompt and the su�x prompt. Since we use the code before

and including the buggy line comment as its pre�x prompt and

the code after the buggy line comment as its su�x prompt, we

replace the original buggy code with the code that Codex generates.

Similarly, CodeT5 generates code to replace the masked label in its

input. PLBART generates the entire patched function that replaces

the whole buggy function. CodeGen and InCoder are completion

models that generate code to complete the given pre�x prompt. We

take the �rst complete function CodeGen and InCoder generate to

replace the original buggy function. For all the �ne-tuned LLMs,

the �ne-tuned CodeT5, CodeGen, PLBART and InCoder directly

generate the patched code to replace the buggy code.

For each LLM and APR techniques, we �rst validate the top-10

patches they generate using the test cases from the project. Follow-

ing prior work [40, 47, 75, 76], plausible patches are patches that

pass all test cases, while correct patches are semantically equivalent

to developer patches, and over-�tted patches are patches that pass

all test cases but are incorrect. We manually inspect each plausible

patch to identify if it is a correct patch.

6 RESULTS AND FINDINGS

We evaluate the vulnerability �xing capabilities of �ve LLMs, four

�ne-tuned LLMs and four DL-based APR techniques on two real-

world Java vulnerability benchmarks.

6.1 RQ1: Vulnerability Fixing Capabilities

We run Codex twenty-�ve times and report the average number

of �xed vulnerabilities with the margin of error, because Codex’s

patch generation is non-deterministic. For other LLMs, we only run

them once since their patch generation is deterministic (Section 5).

Table 4 shows the �xing capabilities, i.e., the number of vul-

nerabilities that each approach �xes correctly, of �ve LLMs, four

�ne-tuned LLMs and four APR models. We consider the top ten

patches since a recent study shows that almost all developers are

only willing to examine ten patches at most [57]. Results in Table 4

are reported as X/Y, where X is the number of vulnerabilities cor-

rectly �xed by each technique and Y is the number of vulnerabilities

that are plausibly �xed. A vulnerability is plausibly �xed by a model

if the model generates a plausible patch (de�nition in Section 5.3).

6.1.1 LLMs vs. APR Techniques. We �rst compare using LLMs as

is with APR techniques. Here, LLMs as is refers to that we apply

Codex and LLMs under zero-shot learning and without �ne-tuning.

Our results show that Codex exhibits the best �xing capability. Out

of a total of 50 vulnerabilities in Vul4J and VJBench, Codex �xes an

average of 10.2 vulnerabilities with a margin of error of 0.3 (at 95%

con�dence). InCoder demonstrates the second best capability, �xing

5 vulnerabilities. The other LLMs and DL-based APR techniques

only �x very few vulnerabilities. Overall, LLMs and APR techniques

show very limited vulnerability �xing capabilities.

Our �nding of Codex performing the best on �xing Java vul-

nerabilities is consistent with Codex’s superior performance in

repairing general bugs [74] and in other domains [1, 17, 27, 58],

possibly due to its signi�cantly larger model size and training data

size as indicated in Table 3. Our result is also consistent with recent

work [38] in showing that LLMs without �ne-tuning have competi-

tive �xing capabilities – InCoder �x three more vulnerabilities than

the best APR technique (RewardRepair). However, while [38] shows

that CodeGen, PLBART and InCoder as is can �x 18%-23% general

bug of Java APR benchmarks, our result shows that they can �x

only 4%(2/50)-10%(5/50) vulnerabilities of Vul4J and VJBench. In

real-world, only about 1~7% of bugs are vulnerabilities, resulting

in few data for models to learn from. This means that, for neural

networks, �xing vulnerabilities is more di�cult than general bugs

and requires more domain-speci�c knowledge.

Finding 1: Existing large language models and APR techniques

�x very few Java vulnerabilities. Codex �xes 10.2 (20.4%) vul-

nerabilities on average, exhibiting the best �xing capability.

6.1.2 LLMs Fine-Tuned with APR Data. We applied LLMs �ned-

tuned with general APR data by [38] on the vulnerability bench-

marks. We cannot �ne-tune Codex as OpenAI does not provide a

public API for �ne-tuning. Table 4 shows that all the �ned-tuned

LLMs �x more vulnerabilities than their original models. In detail,

�ne-tuned InCoder �xes 9 vulnerabilities, 4 more than its original

model. The second best models is �ne-tuned CodeGen, which �xes

8 vulnerabilities, 6 more than its original model. Fine-tuned CodeT5

and �ne-tuned PLBART each �xes 3 and 2 more vulnerabilities.

Overall, �ne-tuning with general APR data can improve the

�xing capabilities of LLMs for vulnerabilities. First, �ne-tuning

could adapt LLMs to APR tasks better, making LLMs be aware of

generating patches instead of open-ending code or text. Second,

though vulnerabilities have special characteristics (root causes)

compared to general bugs, some vulnerabilities still share similar

repair patterns with general bugs, such as replacing a function

argument with another variable, which can be well learned during

�ne-tuning. Given the scarcity of real-world vulnerability data, our

results implicate that �ne-tuning LLMs with general APR data can

be bene�cial.

Finding 2: Fine-tuning with general APR data improves all

four LLMs’ vulnerability-�xing capabilities. Fine-tuned InCoder

�xes 9 vulnerabilities, exhibiting competitive �xing capability

compared to Codex’s.

We also evaluate the compilation rates (i.e., portions of gen-

erated patches that compile) to study the quality of the patches.

Uncompilable patches cannot be correct patches. Codex, the best

model overall, has a compilation rate of 79.7%, which is signi�cantly

higher than that of the best �ne-tuned LLM, �ne-tuned InCoder

(55.2%) and the best APR model, Recoder (57.6%). Fine-tuning no-

tably improves CodeT5 and CodeGen’s compilation rates, from 6.4%

to 46.8% and from 35.8% to 47.2% respectively. On the other hand,

the compilation rate of �ne-tuned PLBART is 45.2%, slightly lower

than the original PLBART’s compilation rate of 47.8%. Despite the

higher 65.2% compilation rate of InCoder compared to its �ne-tuned

model, it generates 82.0% duplicate patches, whereas the �ne-tuned

InCoder generates patches with more diverse modi�cations that re-

sult in more correct �xes. Overall, compared with compilation rates

of repairing general bugs [38], these compilation rates of �xing

1288

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah

Table 4: Comparison of LLMs and APR models on �xing Java vulnerabilities. For x/y in a cell, x denotes the number of

correctly-�xed bugs, and y is plausibly-�xed bugs (with at least one patch that passes the test cases). RewardR is RewardRepair.

LLMs Fine-Tuned LLMs APR models

Codex CodeT5 CodeGen PLBART InCoder CodeT5 CodeGen PLBART InCoder CURE Recoder RewardR KNOD

VJBench (15) 4.0/ 4.6 0/0 1/2 2/3 2/2 3/4 3/4 2/3 3/4 0/1 1/2 2/3 0/0
Vul4J (35) 6.2/ 10.9 2/2 1/6 0/4 3/4 2/7 5/8 2/6 6/9 1/4 0/4 0/2 1/1

Total (50) 10.2/ 15.5 2/2 2/8 2/7 5/6 5/11 8/12 4/9 9/13 1/5 1/6 2/5 1/1

Compilation Rate (%) 79.7 6.4 35.8 47.8 65.2 46.8 47.2 45.2 55.2 24.5 57.6 37.7 37.3

 private int extend(int v, final int t) {
 int vt = (1 << (t - 1));
- while(v < vt) {
+ if (v < vt) { Developer patch
+ while (v < vt && vt > 0) { t--; Codex's patch
+ while (!v.equals(vt)) { RewardR's patch
 }

(a) Vul4J-12 and its uncompilable patches

 parser.parseArray(
- componentClass, array, fieldName);
+ componentType, array, fieldName); Developer patch
+ componentClass, array, fieldName, null); LLMs' patch

(b) Vul4J-1 and its uncompilable patches

Figure 7: Vul4J-12’s and VulJ-1’s developer patch and uncom-

pilable patch

vulnerability are lower. PLBART, CodeGen and InCoder without

�ne-tuning when repairing general bugs show an average of 65%–

73% compilation rate [38], outperforming both of their original and

�ne-tuned models when repairing vulnerabilities.

Figure 7a shows an example of uncompilable patches of Vul4J-

12: The function signature declares t to be final, thus t’s value is

not allowed to be changed. However, Codex fails to capture this

constraint, even though the function signature is only two lines

above the buggy line. As a result, it generates code t-- to decrease

t’s value which makes the patch uncompilable. Similary, RewardR

ignores the fact that v and vt are both of type int, and invokes the

invalid function equals on them. Figure 7b shows another example

of uncomplable patch for Vul4J-1: parseArray is a method de�ned

in another class in the project that accepts two or three arguments

only. All the four �ne-tuned LLMs generate the same uncompilable

patches where they pass null as the fourth argument, because they

do not have the information that parseArray does not accept four

arguments.

These results suggest that LLMs’ abilities to learn code syntax

could be improved. Recent work [40, 76] are steps in the right direc-

tion to add domain knowledge to models to help them learn code

syntax and semantics. Another direction is prompt engineering,

such as providing method signatures or type information in the

prompt to specify the constraints. This would enable LLMs to uti-

lize syntax information from across the entire project, rather than

being limited to the code within the buggy function.

Finding 3: Codex has the highest compilation rate of 79.7%.

Other LLMs (�ne-tuned or not) and APR techniques have low

compilation rates (the lowest of 6.4% with CodeT5 and the rest

between 24.5% to 65.2%), showing a lack of syntax domain knowl-

edge.

 xmlIn = XMLInputFactory.newInstance();
 xmlIn.setProperty(XMLInputFactory.IS_SUPPORTING_
 EXTERNAL_ENTITIES, Boolean.FALSE);
+ xmlIn.setproperty(XMLInputFactory.SUPPORT_DTD,
+ Boolean.FALSE);

(a) Vul4J-47 and its developer patch

 xmlIn = XMLInputFactory.newInstance();
- xmlIn.setProperty(XMLInputFactory.IS_SUPPORTING_
- EXTERNAL_ENTITIES, Boolean.FALSE);
+ xmlIn.setproperty(XMLInputFactory.IS_SUPPORTING_
+ EXTERNAL_ENTITIES, Boolean.TRUE); Fine-tuned CodeGen's patch

(b) Vul4J-47 and the incorrect patch generated by �ne-tuned Code-

Gen

Figure 8: Java vulnerability Vul4J-47 and its patches

6.2 RQ2: What kinds of vulnerabilities do LLMs
and learning-based APR techniques �x?

Table 5 shows the vulnerabilities that are correctly �xed by the

LLMs, �ne-tuned LLMs, and APR techniques. In total, 16 vulnera-

bilities (belonging to ten CWE categories as shown in column CWE

with their description in columnDescription) from both benchmarks

are �xed by at least one of the models. The IDs of these vulnerabili-

ties are listed under column Vul. ID. Some vulnerabilities belong to

no speci�c CWE category and are listed as unk.

Vul4J-47 is a vulnerability that only Codex can �x. Figure 8a

shows the developer patch for Vul4J-47 of type CWE-611 (Im-

proper Restriction of XML External Entity Reference) and CWE-

918 (Server-Side Request Forgery). The correct �x requires insert-

ing a statement xmlIn.setProperty(XMLInputFactory. SUPPORT_DTD,

Boolean.FALSE) to disable the support of Document Type De�nition

(DTD), because DTD can be used to perform server-side request

forgery (SSRF) attacks. The original buggy code only disables the

support for external entities by setting the IS_SUPPORTING_EXTERNAL_

ENTITIES property to false, which is not enough to prevent the at-

tack. Figure 8b shows an incorrect patch generated by �ne-tuned

CodeGen, which replaces the Boolean.FALSE with Boolean.TRUE. In

general, except Codex, other LLMs and �ne-tuned LLMs only �x

vulnerabilities that require simple modi�cations such as deleting

statements or replacing variable/method names.

On the other hand, Codex �xes 15 out of the 16 vulnerabilities

(the union of all bugs, for which Codex generates at least one cor-

rect patch in twenty-�ve runs). The one vulnerability �xed by other

LLMs but not Codex is Vul4J-39 of type CWE-200 (Exposure of

Sensitive Information to an Unauthorized Actor). This vulnerability

can be �xed by simply deleting the entire buggy code. However,

for Vul4J-39, Codex generates patches by applying di�erent modi�-

cations to the buggy code, rather than deleting it.

1289

How E�ective Are Neural Networks for Fixing Security Vulnerabilities ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 5: Detailed description of the vulnerabilities �xed by each LLM, �ne-tuned LLM, and DL-based APR technique

LLMs Fine-tuned LLMs APR Techniques

Vul. ID CWE Description Codex CodeT5 CodeGen PLBART InCoder CodeT5 CodeGen PLBART InCoder CURE Recoder RewardR KNOD

Vul4J-1 20 Improper Input Validation ✓ ✓ ✓

Vul4J-4 unk / ✓ ✓ ✓ ✓

Vul4J-5 unk / ✓ ✓ ✓

Vul4J-12 835 In�nite Loop ✓ ✓ ✓ ✓ ✓ ✓

Vul4J-19 unk / ✓

Vul4J-20 unk / ✓

Vul4J-25 39 Cross-site Scripting ✓

Vul4J-39 200 Sensitive Information ✓ ✓ ✓ ✓ ✓ ✓

Vul4J-47 611 Improper External References ✓

Vul4J-50 79 Cross-site Scripting ✓ ✓ ✓ ✓

Vul4J-59 79 Cross-site Scripting ✓ ✓

Vul4J-73 522 Protected Credentials ✓ ✓

Halo-1 22 Path Traversal ✓ ✓ ✓ ✓

Jenkins-2 200 Sensitive Information ✓ ✓ ✓ ✓ ✓ ✓

Jenkins-3 200 Sensitive Information ✓ ✓ ✓ ✓ ✓ ✓

Ratpack-1 74 Improper Neutralization ✓ ✓ ✓ ✓ ✓ ✓ ✓

#Total: 16 15 2 2 2 5 5 8 4 9 1 1 2 1

- HttpHeaders nettyHeaders = new DefaultHttpHeaders(false);
+ HttpHeaders nettyHeaders = new DefaultHttpHeaders();

Figure 9: Java vulnerability Ratpack-1 and its developer patch

Ratpack-1, Vul4J-12, Vul4J-39 and Jenkins-2 are four vulnerabili-

ties �xed by the most number (6-7 out of 13) of models. Ratpack-

1 (Figure 9) when initializing DefaultHttpHeaders, sets the con-

structor argument to false, which disables the validation for user-

supplied header values. The correct patch is simply removing false

or changing it to true to enable the validation. The �x for Vul4J-12

(Figure 7a) is to change the keyword while to if, and the �x for

both Jenkins-2 and Vul4J-39 is to simply delete of an if statement

that exposes sensitive information to unauthorized actors. The sim-

plicity of these patches are evident from the number of models that

can �x them.

Finding 4: Large language models and APR techniques, except

Codex, only �x vulnerabilities that require simple changes, such

as deleting statements or replacing variable/method names.

Surprisingly, the nine LLMs and four APR techniques �x none

of the six new CWE types that VJBench adds, which shows that

our VJBench helps reveal the limitations of existing LLMs and

APR techniques in �xing Java vulnerabilities. This calls for new

techniques that can �x CWE-172, CWE-325, CWE-347, CWE-444,

CWE-668, and CWE-1295. In addition, for CWE-611 that is covered

by Vul4J’s Vul4J-47, we add two instances of this CWE type (Quartz-

1 and Retro�t-1) in VJBench. Codex �xes Vul4J-47, but none of

the LLMs and APR techniques �xes the additional Quartz-1 and

Retro�t-1. This shows that VJBench complements Vul4J even on

CWE categories that Vul4J has already covered.

Figure 10 shows Retro�t-1 of CWE-611 category. None of the

models �xes Retro�t-1. The correct patch is to prevent XML Ex-

ternal Entity attacks by calling xmlInputFactory.setProperty(...)

to disable the support for external entities and DTD. But as LLMs

are not provided with information that the vulnerability is about

XML External Entity attacks (as suggested by the CWE type), they

only make changes on the buggy code (Figure 10b) unrelated to

XML properties. Figure 11 shows Jenkins-1 of CWE-325 (Missing

cryptographic step), a new CWE category that VJBench adds. The

correct �x for the bug is adding if-condition to check the permission

 this.type = type;
+ xmlInputFactory.setProperty(XMLInputFactory.IS_SUPPORTING_
+ EXTERNAL_ENTITIES, false);
+ xmlInputFactory.setProperty(XMLInputFactory.SUPPORT_DTD,
+ false);

(a) Developer patch of Retro�t-1

- this.type = type;
+ this.type = (Class<T>) type;

(b) Incorrect �x generated by InCoder

Figure 10: Java vulnerability Retro�t-1 and its patches.

- for (NodeMonitor monitor : NodeMonitor.getAll())
- r.put(monitor.getClass().getName(), monitor.data(this));
+ if (hasPermission(CONNECT)) {
+ for (NodeMonitor monitor : NodeMonitor.getAll())
+ r.put(monitor.getClass().getName(), monitor.data(this));
+ } Developer patch
+ for (NodeMonitor monitor : NodeMonitor.getAll())
+ r.put(monitor.data(this)); Codex's patch

Figure 11: Java vulnerability Jenkins-1 and its patches

before the for-loop to restrict the access to NodeMonitor. As Codex’s

patch shown in Figure 11, all the models fail to �x the bug because

they only apply general modi�cations to the for-loop and are un-

aware that the bug is related to the permission restriction. Further,

the hasPermission method and the CONNECT variable are declared

outside of the buggy function, thus the models have no knowledge

about their usages. This re�ects two problems for LLMs to �x Java

vulnerabilities: (1) With only buggy lines pointed out, LLMs fail

to generate patches targeting the vulnerability. This suggests that

it is necessary to provide LLMs with more information about the

vulnerability, such as CWE types. (2) More project-speci�c informa-

tion is needed for LLMs to �x vulnerabilities, i.e., providing LLMs

with related methods and variables declared outside of the buggy

function.

1290

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah

Table 6: Impact of code transformation on LLMs’ and APR models’ vulnerability repair capabilities. For Codex, x ± y: x denotes

the average number of correctly �xed bug, and y denotes the margin of error (95% con�dence).

LLMs Fine-Tuned LLMs APR Techniques
Codex CodeT5 CodeGen PLBART InCoder CodeT5 CodeGen PLBART InCoder CURE Recoder RewardR KNOD

No transformation 10.2 ±0.3 2 2 2 5 5 8 4 9 1 1 2 1
Rename only 8.1 ±0.3 0 1 0 2 4 6 1 7 0 1 1 1

Code structure change only 10.0 ±0.3 0 2 2 1 4 6 4 7 0 1 1 2
Rename + code structure change 8.7 ±0.4 0 1 1 1 3 4 3 4 0 1 1 0

Finding 5: Our new VJBench benchmark reveals that large

language models and APR techniques fail to �x many CWE

types, including CWE-172 (Encoding error), CWE-325 (Missing

cryptographic step), CWE-444 (HTTP request smuggling), CWE-

668 (Exposure of resource to wrong sphere), and CWE-1295

(Debug messages revealing unnecessary information).

6.3 RQ3: Fixing Capabilities on Transformed
Vulnerabilities

To mitigate the training-testing data overlapping threat, we apply

code transformations to the benchmarks to study the generalization

abilities of Codex and LLMs on unseen data (Section 4). Table 6

shows the number of vulnerabilities that LLMs as is, �ne-tuned

LLMs, and APR techniques can �x in four settings: (1) No transfor-

mation—the original vulnerability dataset, (2) Rename only—only

identi�er renaming is applied, (3) Code structure change only—only

code structure change is applied, and (4) Rename + code structure

change—both transformations are applied.

Overall, code transformations make LLMs (�ne-tuned or not) and

APR techniques �x fewer vulnerabilities. For example, �ne-tuned

InCoder �xes nine vulnerabilities in Vul4J and VJBench (no trans-

formation), but only �xes four fully transformed vulnerabilities

(Rename + Code structure change). The impact of transformation is

smaller on some models, e.g., Codex and �ne-tuned CodeT5, demon-

strating these models’ robustness against code transformations and

generalized learning capabilities. This result, to some extent, ad-

dresses the threat of Codex’s non-public training data and reveals

Codex’s strong learning and vulnerability-�xing capability. Many

models only �x two or fewer vulnerabilities without transforma-

tions, thus the impact of transformations cannot be big for these

models. However, we see a general trend across almost all models

that these code transformations make models �x fewer number of

vulnerabilities.

Figure 12a shows an example, Halo-1, whose correct �x is to call

normalize() on pathToCheck to remove any redundant elements

in the �le path. This bug can be correctly �xed by Codex, �ne-

tuned CodeGen, and �ne-tuned InCoder. Yet, after applying both

transformations, only Codex can �x it (Figure 12b).

Di�erent transformations have di�erent e�ects but each transfor-

mation signi�cantly a�ects at least one LLM. For example, although

identi�er renaming has small e�ect on �ne-tuned CodeT5, it de-

creases the number of vulnerabilities that �ne-tuned PLBART �xes

by three. The result shows that our code transformation e�ectively

tests the generalization ability of LLMs on unseen data.

One interesting observation is that some models �x transformed

vulnerabilities that they cannot �x in the original dataset. This is a

reasonable phenomenon because our transformation may convert a

code snippet into a simpler form for the models to �x. For example,

 public static void checkDirectoryTraversal(...) { ...
- if (pathToCheck.startsWith(parentPath.normalize())) {
+ if (pathToCheck.normalize().startsWith(parentPath)) {

(a) Halo’s original buggy code and its correct patch

 public static void examinePathManipulation(...) { ...
- Path normalizedBasePath = basePath.normalize();
- if (!examinePath.startsWith(normalizedBasePath)) {
+ Path normalizedExaminePath = examinePath.normalize();
+ if (!normalizedExaminePath.startsWith(basePath)) {

(b) Halo’s buggy code after Rename+Code structure change and its

correct patch generated by Codex

Figure 12: Halo-1 before and after transformation

- if (... || !Pattern.compile(getUrlRegex(), ...).matcher(
- String.valueOf(value)).matches()) {
+ if (... || !Pattern.compile(getUrlRegex(), ...).matcher(
+ String.valueOf(value).trim()).matches()) {

(a) VUL4J-30’s original buggy line and its correct patch

 String urlRegex = getUrlRegex();
 Pattern p = Pattern.compile(urlRegex, ...);
- String s = String.valueOf(value);
+ String s = String.valueOf(value).trim();
 Matcher m = p.matcher(s);
 if (... || m.matches()) {

(b) VUL4J-30’s buggy line after code transformation and its correct

patch generated by �ne-tuned LLMs.

Figure 13: Vul4J-30 before and after code structure change

Vul4J-30 is a bug that none of the models �xes in its original form,

but its transformed version is �xed by all four �ne-tuned LLMs

when code structure transformation is applied. Figure 13 shows

that the �x of Vul4J-30 is to call trim() on String.valueOf(value).

The original vulnerability is hard to �x as String.valueOf(value)

is a part of a complex if-condition. Yet, after code transformation,

String.valueOf(value) stands out as a single statement, which is

easier for LLMs to repair. This phenomenon suggests that equiva-

lent code transformation could be a promising direction to simplify

the vulnerable code and enhance the e�ectiveness of �xing vulner-

abilities.

Finding 6: Code transformations make large language models

and APR techniques �x fewer number of vulnerabilities. Some

models such as Codex and �ne-tuned CodeT5 are more robust to

code transformations. On the other hand, some transformations

make vulnerabilities easier to �x.

7 THREATS TO VALIDITY

Java vulnerabilities are diverse. It is hard for benchmarks to repre-

sent all of them. Thus, our �ndings might not generalize to all Java

vulnerabilities. We address this threat by expanding the existing

Java vulnerability benchmark with a new dataset of vulnerabilities.

1291

How E�ective Are Neural Networks for Fixing Security Vulnerabilities ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

We rely on developers’ patches to assess whether a vulnerability

is �xed. Developers may make a mistake in �xing vulnerabilities.

Therefore, our ground truth might be incorrect. We mitigate this

threat by only looking at vulnerabilities that are publicly disclosed

in the NVD dataset that are reproducible and include test cases

indicating that the �xed version is no more exploitable.

Another threat is that Codex (and other LLMs) may have been

trained on the vulnerability patches in Vul4J and VJBench dataset.

To mitigate this problem, we apply code transformations to cre-

ate semantically equivalent vulnerabilities that are not included in

their training dataset. Then we apply Codex to repair these trans-

formed programs to prove that Codex is indeed able to repair new

vulnerabilities that it has not seen.

8 RELATED WORK

8.1 DL-Based Vulnerability Fixing Techniques

Much work uses DL to �x vulnerabilities. Encoder-decoder ap-

proaches have been proposed for repairing C vulnerabilities: [29]

�ne-tuned a CodeT5 model with C vulnerability repair data; [19]

trained a transformer model on a large bug �xing dataset and then

tuned on a small vulnerability �xing dataset, but they use sequence

accuracy as the evaluation metric rather than practical APR settings.

Previous work [35] applied both CodeBERT and GraphCodeBert

to �x vulnerabilities, but they only evaluated on a synthetic vul-

nerability database, the Juliet 1.1 C/C++ test suite [14], which is

a benchmark for evaluating static analyzers only. As a result, the

vulnerabilities in the dataset are isolated and simpli�ed to �t within

a few lines and are not representative of code vulnerabilities in

the production. Our work is di�erent since we use a dataset of

real-world vulnerabilities for our evaluation, making our results

closer to what researchers and developers can expect of the quality

of LLM vulnerability repair in real-world production code.

Prior work [58] applied LLMs with zero-shot learning to repair

seven hand-crafted C/Python vulnerabilities and 12 real-world C

vulnerabilities. They explored the e�ectiveness of di�erent prompt

templates and used the static analysis tool CodeQL or C sanitizers to

detect the vulnerabilities to incorporate the obtained error messages

into the input prompts. Our work di�ers from [58] in several main

aspects. First, we study not only LLMs but also DL-based APR tools

and LLMs �ne-tuned with general APR data. Second, we evaluate

our approach on a larger dataset of 50 real-world Java vulnerabilities.

Third, we apply code transformations to mitigate the data leakage

problem and suggest a new direction of using transformations to

simplify the repair for some vulnerabilities. Most vulnerabilities

in Vul4J and VJBench cannot be detected by state-of-the-art Java

security analysis tools, so we cannot incorporate error messages in

the input prompts as [58] did.

8.2 Vulnerability Benchmarks

Previous work proposed benchmarks and datasets to help evaluate

vulnerability �xing approaches. Maestro [61] propose a platform

for benchmarking tools on Java and C++ vulnerabilities. As Mae-

stro does not support running LLMs and APR models, we directly

use the same Java vulnerability dataset, Vul4J [16], with our new

dataset VJBench. Other benchmarks and datasets of real-world vul-

nerabilities have been proposed [12, 24, 56, 62]. However, these

datasets only contain code snippets from the �xing commits and do

not have test cases. Therefore, such datasets can only support code

matching when evaluating the correctness of patches, and cannot

be used in automated program repair in practice.

8.3 LLMs for Repair and Other Tasks

Researchers use LLMs to improve many software engineering tasks

such as automated program repair [40, 50, 63], auto-complete sug-

gestions [25], and pair-programming [37]. Much work also dis-

cusses the implication of LLMs for software developers [23, 27, 51]

and current limitations of LLMs [9, 20, 68]. Our work explores a

di�erent application domain of LLMs, with its own challenges (vul-

nerabilities are notoriously di�cult to �x [52]) that have not been

well explored yet.

9 CONCLUSION

This work is the �rst to investigate LLMs’ and DL-based APR mod-

els’ capacity at repairing vulnerabilities in Java. We evaluate �ve

LLMs, four �ne-tuned LLMs, and four DL-based APR techniques on

two real-world Java vulnerability benchmarks including a new one

that we create. We use code transformations to address the training

and testing data overlapping threat of LLMs and create a new Java

vulnerability repair benchmark VJBench, and its transformed ver-

sion VJBench-trans. We �nd that existing LLMs and APR models �x

very few Java vulnerabilities, and call for new research innovations

to improve automated Java vulnerability repair such as creating

larger vulnerability repair training datasets, �ne-tuning LLMs with

such data, exploring few-shot learning, and leveraging simplifying

transformations to improve program repair.

Replication package: Our benchmark and artifacts are available

at [5].

ACKNOWLEDGEMENT

We thank the reviewers for their insightful comments and sugges-

tions. This work was funded in part by NSF 1901242, NSF 2006688,

J.P. Morgan AI Faculty Research Awards, and Meta/Facebook Re-

search Awards. Any opinions, �ndings, and conclusions in this

paper are those of the authors only and do not necessarily re�ect

the views of our sponsors.

REFERENCES
[1] 2022. Codex. https://beta.openai.com/docs/guides/code
[2] Accessed: 2022. Guidance for preventing, detecting, and hunting for ex-

ploitation of the Log4j 2 vulnerability. https://www.microsoft.com/en-
us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-
for-cve-2021-44228-log4j-2-exploitation/.

[3] Accessed: 2023. NLTK Documentation. https://www.nltk.org/howto/wordnet.
html.

[4] Accessed: 2023. NVD Data Feeds. https://nvd.nist.gov/vuln/data-feeds.
[5] Accessed: 2023. Replication package of this work. https://github.com/lin-tan/llm-

vul.
[6] Accessed: 2023. src2abs GitHub Repository. https://github.com/micheletufano/

src2abs.
[7] Accessed: 2023. Understanding the Impact of Apache Log4j Vulnerability. https://

security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html.
[8] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

�ed Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668. https://doi.org/10.18653/v1/2021.naacl-main.211

1292

https://beta.openai.com/docs/guides/code
https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://www.nltk.org/howto/wordnet.html
https://www.nltk.org/howto/wordnet.html
https://nvd.nist.gov/vuln/data-feeds
https://github.com/lin-tan/llm-vul
https://github.com/lin-tan/llm-vul
https://github.com/micheletufano/src2abs
https://github.com/micheletufano/src2abs
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://doi.org/10.18653/v1/2021.naacl-main.211

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah

[9] Owura Asare, Meiyappan Nagappan, and N Asokan. 2022. Is GitHub’s Copi-
lot as Bad As Humans at Introducing Vulnerabilities in Code? arXiv preprint
arXiv:2204.04741 (2022).

[10] Thanassis Avgerinos, David Brumley, John Davis, Ryan Goulden, Tyler Nigh-
swander, Alex Rebert, and Ned Williamson. 2018. The mayhem cyber reasoning
system. IEEE Security & Privacy 16, 2 (2018), 52–60.

[11] Björn Barz and Joachim Denzler. 2020. Do we train on test data? purging cifar of
near-duplicates. Journal of Imaging 6, 6 (2020), 41.

[12] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVE�xes: automated
collection of vulnerabilities and their �xes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics
in Software Engineering. 30–39. https://doi.org/10.1145/3475960.3475985

[13] Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-
Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensor�ow.
(March 2021). https://doi.org/10.5281/zenodo.5297715

[14] Tim Boland and Paul E Black. 2012. Juliet 1. 1 C/C++ and java test suite. Computer
45, 10 (2012), 88–90.

[15] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Je�rey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
CoRR abs/2005.14165 (2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165

[16] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Díaz Ferreyra. 2022.
Vul4J: A Dataset of Reproducible Java Vulnerabilities Geared Towards the Study
of Program Repair Techniques. In 2022 IEEE/ACM 19th International Conference
on Mining Software Repositories (MSR). 464–468. https://doi.org/10.1145/3524842.
3528482

[17] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. CoRR abs/2107.03374 (2021).
arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[18] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-sequence
learning for end-to-end program repair. IEEE Transactions on Software Engineering
47, 9 (2019), 1943–1959. https://doi.org/10.1109/TSE.2019.2940179

[19] Zimin Chen, Steve James Kommrusch, and Martin Monperrus. 2022. Neural
Transfer Learning for Repairing Security Vulnerabilities in C Code. IEEE Trans-
actions on Software Engineering (2022).

[20] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C Desmarais, Zhen Ming, et al. 2022. GitHub Copilot AI pair programmer:
Asset or Liability? arXiv preprint arXiv:2206.15331 (2022).

[21] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning Graph Transformations to Detect and Fix Bugs in
Programs. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.
net/forum?id=SJeqs6EFvB

[22] Dawn Drain, Colin B. Clement, Guillermo Serrato, and Neel Sundaresan. 2021.
DeepDebug: Fixing Python Bugs Using Stack Traces, Backtranslation, and Code
Skeletons. CoRR abs/2105.09352 (2021). arXiv:2105.09352 https://arxiv.org/abs/
2105.09352

[23] Neil A Ernst and Gabriele Bavota. 2022. AI-Driven Development Is Here: Should
You Worry? IEEE Software 39, 2 (2022), 106–110.

[24] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. AC/C++ code
vulnerability dataset with code changes and CVE summaries. In Proceedings
of the 17th International Conference on Mining Software Repositories. 508–512.
https://doi.org/10.1145/3379597.3387501

[25] Zhiyu Fan, Xiang Gao, Abhik Roychoudhury, and Shin Hwei Tan. 2022. Improving
automatically generated code from Codex via Automated Program Repair. arXiv
preprint arXiv:2205.10583 (2022).

[26] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and Natural Languages. CoRR
abs/2002.08155 (2020). arXiv:2002.08155 https://arxiv.org/abs/2002.08155

[27] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of

openai codex on introductory programming. InAustralasian Computing Education
Conference. 10–19.

[28] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder:
A Generative Model for Code In�lling and Synthesis. https://doi.org/10.48550/
ARXIV.2204.05999

[29] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: A T5-Based Automated Software Vulnerability Repair. (2022).

[30] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. 2015. Safe memory-leak �xing for c programs. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 459–470.

[31] Xiang Gao, Bo Wang, Gregory J Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roy-
choudhury. 2021. Beyond tests: Program vulnerability repair via crash constraint
extraction. ACM Transactions on Software Engineering and Methodology (TOSEM)
30, 2 (2021), 1–27.

[32] github. 2022. GitHub. https://github.com/
[33] DayaGuo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou,

Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng,
Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming
Zhou. 2020. GraphCodeBERT: Pre-training Code Representations with Data Flow.
CoRR abs/2009.08366 (2020). arXiv:2009.08366 https://arxiv.org/abs/2009.08366

[34] Raphael Hiesgen, Marcin Nawrocki, Thomas C Schmidt, and Matthias Wählisch.
2022. The Race to the Vulnerable: Measuring the Log4j Shell Incident. In Network
Tra�c Measurement and Analysis Conference (TMA).

[35] Kai Huang, Su Yang, Hongyu Sun, Chengyi Sun, Xuejun Li, and Yuqing Zhang.
2022. Repairing Security Vulnerabilities Using Pre-trained Programming Lan-
guage Models. In 2022 52nd Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops (DSN-W). IEEE, 111–116. https:
//doi.org/10.1109/DSN-W54100.2022.00027

[36] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using safety properties
to generate vulnerability patches. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 539–554.

[37] Saki Imai. 2022. Is GitHub Copilot a Substitute for Human Pair-programming?
An Empirical Study. In 2022 IEEE/ACM 44th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). IEEE, 319–321.

[38] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code
language models on automated program repair. arXiv preprint arXiv:2302.05020.

[39] Nan Jiang, Thibaud Lutellier, Yiling Lou, Lin Tan, Dan Goldwasser, and Xiangyu
Zhang. 2023. KNOD: Domain Knowledge Distilled Tree Decoder for Automated
Program Repair. In Proceedings of the International Conference on Software Engi-
neering. https://doi.org/10.1109/ICSE48619.2023.00111

[40] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine
translation for automatic program repair. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[41] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.
https://doi.org/10.1145/2610384.2628055

[42] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. Mem�x: static analysis-
based repair of memory deallocation errors for c. In 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 95–106.

[43] Xiaodan Li, Xiaolin Chang, John A Board, and Kishor S Trivedi. 2017. A novel
approach for software vulnerability classi�cation. In 2017 Annual Reliability and
Maintainability Symposium (RAMS). IEEE, 1–7.

[44] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications: software for
humanity. 55–56.

[45] Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen,
Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O’Horo,
Je� Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona T. Diab, Veselin Stoyanov,
and Xian Li. 2021. Few-shot Learning with Multilingual Language Models. CoRR
abs/2112.10668 (2021). arXiv:2112.10668 https://arxiv.org/abs/2112.10668

[46] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, Bing Mao, and Li Xie. 2007. AutoPaG:
towards automated software patch generation with source code root cause iden-
ti�cation and repair. In Proceedings of the 2nd ACM symposium on Information,
computer and communications security. 329–340.

[47] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: Combining Context-Aware Neural Translation Models
Using Ensemble for ProgramRepair. In ISSTA (Virtual Event, USA). ACM, 101–114.
https://doi.org/10.1145/3395363.3397369

[48] Siqi Ma, David Lo, Teng Li, and Robert H Deng. 2016. Cdrep: Automatic repair
of cryptographic misuses in android applications. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security. 711–722.

1293

https://doi.org/10.1145/3475960.3475985
https://doi.org/10.5281/zenodo.5297715
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3524842.3528482
https://doi.org/10.1145/3524842.3528482
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/TSE.2019.2940179
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB
https://arxiv.org/abs/2105.09352
https://arxiv.org/abs/2105.09352
https://arxiv.org/abs/2105.09352
https://doi.org/10.1145/3379597.3387501
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.48550/ARXIV.2204.05999
https://doi.org/10.48550/ARXIV.2204.05999
https://github.com/
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://doi.org/10.1109/DSN-W54100.2022.00027
https://doi.org/10.1109/DSN-W54100.2022.00027
https://doi.org/10.1109/ICSE48619.2023.00111
https://doi.org/10.1145/2610384.2628055
https://arxiv.org/abs/2112.10668
https://arxiv.org/abs/2112.10668
https://doi.org/10.1145/3395363.3397369

How E�ective Are Neural Networks for Fixing Security Vulnerabilities ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

[49] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.
Bears: An extensible java bug benchmark for automatic program repair studies.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 468–478.

[50] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying codebert for automated pro-
gram repair of java simple bugs. In 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR). IEEE, 505–509.

[51] Ekaterina A Moroz, Vladimir O Grizkevich, and Igor M Novozhilov. 2022. The
Potential of Arti�cial Intelligence as a Method of Software Developer’s Produc-
tivity Improvement. In 2022 Conference of Russian Young Researchers in Electrical
and Electronic Engineering (ElConRus). IEEE, 386–390.

[52] Patrick J Morrison, Rahul Pandita, Xusheng Xiao, Ram Chillarege, and Laurie
Williams. 2018. Are vulnerabilities discovered and resolved like other defects?
Empirical Software Engineering 23, 3 (2018), 1383–1421. https://doi.org/10.1145/
3180155.3182553

[53] Paul Muntean, Martin Monperrus, Hao Sun, Jens Grossklags, and Claudia Eckert.
2019. Intrepair: Informed repairing of integer over�ows. IEEE Transactions on
Software Engineering 47, 10 (2019), 2225–2241.

[54] David J Musliner, SE Friedman, M Boldt, J Benton, M Schuchard, P Keller, and
S McCamant. 2015. Fuzzbomb: Autonomous cyber vulnerability detection and
repair. In Fourth International Conference on Communications, Computation, Net-
works and Technologies.

[55] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. A conversational paradigm for program
synthesis. arXiv preprint arXiv:2203.13474 (2022).

[56] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris
Mitropoulos. 2021. CrossVul: a cross-language vulnerability dataset with commit
data. In European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. 1565–1569. https://doi.org/10.1145/3468264.3473122

[57] Yannic Noller, Ridwan Shari�deen, Xiang Gao, and Abhik Roychoudhury. 2022.
Trust Enhancement Issues in Program Repair. In Proceedings of the ACM/IEEE
44th International Conference on Software Engineering.

[58] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Bren-
dan Dolan-Gavitt. 2022. Examining Zero-Shot Vulnerability Repair with Large
Language Models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 1–18.

[59] José D’Abruzzo Pereira, Naghmeh Ivaki, and Marco Vieira. 2021. Characterizing
Bu�er Over�ow Vulnerabilities in Large C/C++ Projects. IEEE Access 9 (2021),
142879–142892. https://doi.org/10.1109/ACCESS.2021.3120349

[60] Je� H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, et al. 2009. Automatically patching errors in deployed software. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
87–102.

[61] Eduard Pinconschi, Quang-Cuong Bui, Rui Abreu, Pedro Adão, and Riccardo
Scandariato. 2022. Maestro: a platform for benchmarking automatic program
repair tools on software vulnerabilities. In International Symposium on Software
Testing and Analysis. 789–792.

[62] Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. 2019. A manually-curated dataset of �xes to vulnerabilities of

open-source software. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 383–387.

[63] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s Codex
Fix Bugs?: An evaluation on QuixBugs. In 2022 IEEE/ACM International Workshop
on Automated Program Repair (APR). IEEE, 69–75.

[64] Alec Radford, Je� Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[65] Colin Ra�el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
Limits of Transfer Learning with a Uni�ed Text-to-Text Transformer. CoRR
abs/1910.10683 (2019). arXiv:1910.10683 http://arxiv.org/abs/1910.10683

[66] Ripon K Saha, Yingjun Lyu,Wing Lam,Hiroaki Yoshida, andMukul R Prasad. 2018.
Bugs. jar: a large-scale, diverse dataset of real-world java bugs. In Proceedings of
the 15th international conference on mining software repositories. 10–13.

[67] Stelios Sidiroglou and Angelos D Keromytis. 2005. Countering network worms
through automatic patch generation. IEEE Security & Privacy 3, 6 (2005), 41–49.

[68] Adam Sobieszek and Tadeusz Price. 2022. Playing Games with Ais: The Limits
of GPT-3 and Similar Large Language Models. Minds and Machines 32, 2 (2022),
341–364.

[69] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online defect predic-
tion for imbalanced data. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 2. IEEE, 99–108.

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[71] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Au-
toregressive Language Model. (May 2021).

[72] Tielei Wang, Chengyu Song, and Wenke Lee. 2014. Diagnosis and emergency
patch generation for integer over�ow exploits. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 255–
275.

[73] YueWang,WeishiWang, Sha�q Joty, and Steven CHHoi. 2021. CodeT5: Identi�er-
aware Uni�ed Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 8696–8708.

[74] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2022. Practical Pro-
gram Repair in the Era of Large Pre-trained Language Models. arXiv preprint
arXiv:2210.14179 (2022).

[75] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural program repair
with execution-based backpropagation. In 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). IEEE, 1506–1518.

[76] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 341–353.

Received 2023-02-16; accepted 2023-05-03

1294

https://doi.org/10.1145/3180155.3182553
https://doi.org/10.1145/3180155.3182553
https://doi.org/10.1145/3468264.3473122
https://doi.org/10.1109/ACCESS.2021.3120349
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

	Abstract
	1 Introduction
	1.1 Our Approach
	1.2 Contributions

	2 New Benchmark of Java Vulnerabilities
	3 Large Language Models and APR Techniques
	3.1 Large Language Models
	3.2 APR Techniques

	4 Code Transformation
	5 Experiment Setup
	5.1 Dataset
	5.2 Large Language Model Setups
	5.3 Patch Validation

	6 Results and Findings
	6.1 RQ1: Vulnerability Fixing Capabilities
	6.2 RQ2: What kinds of vulnerabilities do LLMs and learning-based APR techniques fix?
	6.3 RQ3: Fixing Capabilities on Transformed Vulnerabilities

	7 Threats to Validity
	8 Related Work
	8.1 DL-Based Vulnerability Fixing Techniques
	8.2 Vulnerability Benchmarks
	8.3 LLMs for Repair and Other Tasks

	9 Conclusion
	References

