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ABSTRACT

Security vulnerability repair is a difficult task that is in dire need
of automation. Two groups of techniques have shown promise: (1)
large code language models (LLMs) that have been pre-trained on
source code for tasks such as code completion, and (2) automated
program repair (APR) techniques that use deep learning (DL) models
to automatically fix software bugs.

This paper is the first to study and compare Java vulnerabil-
ity repair capabilities of LLMs and DL-based APR models. The
contributions include that we (1) apply and evaluate five LLMs
(Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned
LLMs, and four DL-based APR techniques on two real-world Java
vulnerability benchmarks (Vul4] and VJBench), (2) design code
transformations to address the training and test data overlapping
threat to Codex, (3) create a new Java vulnerability repair bench-
mark V]Bench, and its transformed version VJBench-trans, to better
evaluate LLMs and APR techniques, and (4) evaluate LLMs and APR
techniques on the transformed vulnerabilities in VJBench-trans.

Our findings include that (1) existing LLMs and APR models fix
very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most
number of vulnerabilities. Many of the generated patches are un-
compilable patches. (2) Fine-tuning with general APR data improves
LLMs’ vulnerability-fixing capabilities. (3) Our new VJBench reveals
that LLMs and APR models fail to fix many Common Weakness
Enumeration (CWE) types, such as CWE-325 Missing cryptographic
step and CWE-444 HTTP request smuggling. (4) Codex still fixes
8.7 transformed vulnerabilities, outperforming all the other LLMs
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and APR models on transformed vulnerabilities. The results call for
innovations to enhance automated Java vulnerability repair such
as creating larger vulnerability repair training data, tuning LLMs
with such data, and applying code simplification transformation to
facilitate vulnerability repair.
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1 INTRODUCTION

Software vulnerabilities, such as buffer overflows and SQL injec-
tions, have a critical impact on global economies and can harm
millions of users. Once a vulnerability is discovered, it is often cru-
cial to fix it promptly to minimize the potential for exploitation.
Yet, recent studies [43, 52] find that the average time to fix a vulner-
ability (time between the discovery and the fix) varies between 60
to 79 days, which is still too long and provides ample opportunities
for attackers to exploit these vulnerabilities. For example, for the
severe Apache Log4Shell vulnerability reported on November 24,
2021, the first fix was deployed by Apache 12 days after the report.
During these 12 days, both Cloudflare and Cisco reported several
attacks exploiting the vulnerability [34]. Moreover, the initial fix
proved insufficient, leaving Log4Shell vulnerable until a complete
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fix was released more than one month later. As a result, there is a
need for faster vulnerability-fixing solutions.

Most vulnerability benchmarks and vulnerability repair solutions
focus either on C/C++ [19, 29-31, 36, 42, 46, 53, 67] or binaries [10,
48, 54, 60, 72]. There is a lack of solutions and benchmarks for Java,
despite it being a widely-used programming language (the third
most popular language in the open-source community [32]) with
many severe vulnerabilities.

Java has been used to implement important servers, includ-
ing web servers and services (e.g., Tomcat, Spring, CFX, Log4]),
which are especially vulnerable to attackers. Consequently, many
of the most critical vulnerabilities are in Java software. For exam-
ple, Google assessed that the Log4Shell vulnerability in the Log4]
package affected 17,000 Maven projects [7], and Microsoft even
reported that nation-state attackers exploited the vulnerability [2].

Benchmarks and solutions for other programming languages
often do not work or work poorly for fixing Java vulnerabilities.
For example, the most common vulnerabilities in C/C++ are buffer
overflows [24, 59]. Java, as a type-safe language, is designed to
avoid buffer overflows. Thus, most C/C++ techniques focusing on
buffer overflow vulnerabilities are irrelevant to Java. We need new
benchmarks and techniques for fixing Java security vulnerabilities.

Instead of building a technique to fix Java vulnerabilities au-
tomatically, we study and compare the space and feasibility of
applying two types of techniques—learning-based automated pro-
gram repair and LLMs—to fix Java security vulnerabilities auto-
matically. First, learning-based program repair has gained pop-
ularity [18, 21, 22, 40, 47, 75, 75, 76, 76]. These encoder-decoder
approaches learn from a large number of pairs of bugs and their
fixes (in open-source projects) to fix unseen Java software bugs
automatically. It would be interesting to study how effective such
learning-based program repair models are in fixing a subset of soft-
ware bugs, i.e., software vulnerabilities.

Secondly, LLMs have recently been applied to source code [17,
25, 37, 40, 50, 63, 73] and are pre-trained models that have been
trained on a tremendous amount of source code (e.g., the entirety of
GitHub). Different from APR models, pre-trained LLMs learn from
large corpus of source code (instead of pairs of bugs and their fixes)
for various tasks such as identifier tagging and code completion.
Despite learning to perform tasks different from repairing, recent
study [38, 74] shows that pre-trained LLMs have competitive capa-
bilities of fixing general Java bugs [41, 44]. It would be interesting
to study how effective such LLMs are for a different task, i.e., fixing
software vulnerabilities, when they do not see how bugs are fixed.

Thirdly, it would be interesting to compare deep learning (DL)-
based APR techniques’ and LLMs’ capabilities of fixing Java vulnera-
bilities. DL-based APR techniques and LLMs represent two angles of
applying models for a different task. Applying DL-based APR tech-
niques to fix vulnerabilities is using models learned from a general
dataset for a specific subset of the dataset (software vulnerability
is a type of software bug). Applying LLMs to fix vulnerabilities is
using models learned from a different format of dataset (sequences
of code) for another format (pairs of buggy and fixed code). Since
LLMs do not require pairs of bugs and their fixes, LLMs are typically
built from data that is orders of magnitude larger than the training
data used to train APR models. Would more data win or data-format
matching win?
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Lastly, pre-trained LLMs are often fine-tuned to adapt to different
downstream tasks [8, 26, 33, 65, 73]. A recent study [38] shows
that fine-tuning improves LLMs’ fixing capabilities by at least 31%.
However, given the lack of Java vulnerability data, it is unrealistic
to fine-tune LLMs for fixing Java vulnerabilities. Thus, it would be
interesting to study how effective LLMs fine-tuned with general APR
data are in fixing software vulnerabilities. And when compared with
DL-based APR techniques, would more data plus fine-tuning win or
data-format matching win?

1.1 Our Approach

We conduct the first study to evaluate and compare APR tech-
niques’ and LLMs’ abilities of fixing Java vulnerabilities. We evalu-
ate five LLMs (Codex [1], CodeT5 [73], CodeGen [55], PLBART [8]
and InCoder [28]), four LLMs that are fined-tuned with general
APR data, and four APR techniques (CURE [40], Recoder [76], Re-
wardRepair [75], and KNOD [39]) on two Java vulnerability bench-
marks (Vul4] and a new VJBench that we create). There are two
main challenges.

First, there are few benchmarks available for evaluating Java
vulnerability repair tools. While Vul4] [16] contains 79 reproducible
Java vulnerabilities, they belong to only 25 CWEs, i.e., types of
vulnerabilities. In addition, 60% of the CWEs in the dataset (15
types of vulnerabilities) are covered by only a single reproducible
vulnerability.

To address this challenge, we develope new benchmarks. We
analyze the entire National Vulnerability Database (NVD) [4] to
identify reproducible real-world Java vulnerabilities that are suit-
able for vulnerability repair evaluation, and use these to create
our VJBench benchmark. These vulnerabilities cover an additional
twelve CWE types not included by the Vul4] dataset and add more
vulnerabilities to four CWE types with which Vul4] has only one
vulnerability associated. The new benchmark can facilitate the
evaluation of future Java vulnerability repair techniques.

The second challenge arises from the fact that Codex was trained
on a substantial code corpus collected from GitHub [17] and the
training dataset is unreleased. Since the projects in Vul4] and
VJBench are public repositories on GitHub, one cannot be certain
that the vulnerabilities in Vul4] and VJBench are not in Codex’s
training data. This is a major known threat to the validity of eval-
uation [11, 69]. While dataset HumanEval [17] is not in Codex’s
training data, it is for Python code completion and does not contain
Java vulnerabilities. Creating new real-world benchmarks is not
only expensive [16, 41], but might also be impracticable if LLMs
have been trained on all public datasets.

Our best-effort solution to mitigate this challenge is to transform
the vulnerability code in existing benchmarks. We use two types of
code transformation: identifier renaming and code structure change.
These transformations generate new equivalent programs that still
retain the vulnerabilities but are not included in any open-source
dataset that Codex and other LLMs may have seen. As a result, we
create VJBench-trans, a benchmark of transformed vulnerabilities,
by applying two transformation strategies on vulnerabilities from
Vul4] and VJBench.
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1.2 Contributions

Our paper makes the following contributions:

o We conduct the first study that evaluates the fixing capabilities
of five LLMs, four fine-tuned LLMs, and four APR techniques
on real-world Java vulnerabilities from two benchmarks Vul4]J
and our new V]Bench. Our findings include:

— Existing LLMs and APR techniques fix very few Java vulner-
abilities. Codex fixes 10.2 (20.4%) vulnerabilities on average,
exhibiting the best fixing capability. (Section 6.1)

fixing capabilities. Fine-tuned InCoder fixes 9 vulnerabili-

ties, exhibiting competitive fixing capability to Codex’s. (Sec-

tion 6.1)

Codex has the highest compilation rate of 79.7%. Other LLMs

(fine-tuned or not) and APR techniques have low compilation

rates (the lowest being 6.4% with CodeT5 and the rest between

24.5% to 65.2%), showing a lack of syntax domain knowledge.

(Section 6.1)

LLMs and APR models, except Codex, only fix vulnerabilities

that require simple changes, such as a single deletion or

variable/method replacement. (Section 6.2)

Our new VJBench reveals that LLMs and APR models fail

to fix many CWE types including CWE-172 Encoding error,

CWE-325 Missing cryptographic step, CWE-444 HTTP re-

quest smuggling, CWE-668 Exposure of resource to wrong

sphere, and CWE-1295 Debug messages revealing unneces-

sary information. (Section 6.2)

e We create two Java vulnerability benchmarks for automated
program repair: (1) VJBench, which contains 42 reproducible
real-world Java vulnerabilities that cover twelve new CWE types,
and (2) VjBench-trans, which contains 150 transformed Java
vulnerabilities.

e We use code transformations to mitigate the threat that LLMs
and black-box Codex may have seen the evaluated benchmarks.

e We evaluate LLMs and APR techniques’ fixing capabilities on
transformed vulnerabilities (VJBench-trans).

— Code transformations make LLMs and APR techniques fix
fewer number of vulnerabilities. Some models such as Codex
and fine-tuned CodeT5 are more robust to code transforma-
tions. On the other hand, some transformations make the
vulnerabilities easier to fix. (Section 6.3)

e We provide implications and suggestions for future directions
(Section 6).

2 NEW BENCHMARK OF JAVA
VULNERABILITIES

A Java APR benchmark must contain reproducible Java vulnera-
bilities with test cases exposing the vulnerabilities. While there
is an abundance of such benchmarks for Java bugs, including De-
fects4] [41], QuixBugs [44], Bugs.jar [66], and Bears [49], the only
Java vulnerability benchmark for APR is Vul4] [16]. Vul4] contains
79 vulnerabilities from 51 projects covering 25 CWE types. Despite a
valuable first step, Vul4] offers limited coverage of CWE categories
as explained in Introduction. In addition, only 35 of these vulnera-
bilities are applicable for evaluating state-of-the-art learning-based

Fine-tuning with general APR data improves LLMs’ vulnerability-
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Figure 1: CWE Type Distribution of VJBench (* denotes the
new CWE types not included in Vul4]).

APR systems [40, 75, 76] since these APR models only fix single-
hunk bugs. Specifically, 39 of the 79 vulnerabilities are single-hunk.
We can only reproduce 35 of the 39 vulnerabilities, as two bugs
fail to compile, and two bugs are not reproducible with the Docker
container provided by the Vul4]J authors.

To extend this benchmark, we collect Java vulnerabilities follow-
ing prior work [41]: i) The vulnerability should only be related to
Java source code, ii) The fixing commit should contain at least one
test case that passes on Vy;, but fails on Vg, iii) The fixing patch
should only include changes that fix the vulnerability and should
not introduce unrelated changes such as features or refactoring,
and iv) the vulnerability is not already in Vul4].

We download all available vulnerability data in JSON format on
May 13, 2022 from NVD. We parse this data and obtain a list of
7,116 GitHub projects by collecting the reference URLSs of these
vulnerabilities. We exclude projects which have less than 50% of
their code in Java, resulting in 400 Java projects containing 933
unique vulnerabilities. We then try to identify the fixing commits
for each of the 933 vulnerabilities by manually checking the ref-
erence links provided in the vulnerability report or by searching
the vulnerability ID in the GitHub repository if no link is provided.
We find vulnerability-fixing commits for 698 vulnerabilities. Then
we manually filter out 185 vulnerabilities whose fixing commits
contain non-Java changes and 314 vulnerabilities that do not have
test cases in their fixing commits. We now have 199 vulnerabilities,
each with test cases and a corresponding Java-only fixing commit.
We then successfully reproduce 42 Java vulnerabilities that are not
included in Vul4], using building tools such as Maven or Gradle.

We end up with a dataset of 42 new reproducible real-world
Java vulnerabilities from thirty open-source projects. In detail,
our dataset consists of 27 multi-hunk vulnerabilities from twenty-
two projects and 15 single-hunk vulnerabilities from eleven projects.
As Figure 1 shows, these 42 vulnerabilities covers a total of 23 CWE
types. Furthermore, our dataset introduces 12 new CWE types (de-
noted by * in Figure 1) not included in Vul4] and supplements four
CWE types (CWE-78, CWE-200, CWE-310, CWE-863) for which
Vul4] only has one example.

Table 1 describes the 15 new single-hunk vulnerabilities of twelve
CWE types in our VjBench benchmark. There are six new unique
CWE types of vulnerabilities not present in Vul4]. As a result, there
are 15 vulnerabilities from V]Bench and 35 vulnerabilities from
Vul4], a total of 50 vulnerabilities that we use in our study.
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Table 1: List of the 15 new single-hunk vulnerabilities cate-
gorized by their corresponding CWE. The vulnerability IDs
compose of the project name and the bug index. * denotes
the six new CWE types that our benchmark adds compared
to Vul4]. Jenkins-1 and Flow-2 both belong to two CWE cate-
gories.

CWE  Description Vulnerability IDs
20 Improper Input Validation Pulsar-1
22 Improper limitation of path name Halo-1
to a restricted directory
74 Improper Neutralization of Elements Ratpack-1
in Output ('Injection’)
79 Cross-site Scripting Json-sanitizer-1
172" Encoding error Flow-1
200 Exposure of sensitive information Jenkins-1, Jenkins-2, Jenkins-3
325  Missing cryptographic step Jenkins-1
347*  Improper Verification of BC-Java-1
Cryptographic Signature
444*  HTTP request smuggling Netty-1, Netty-2
611 Improper restriction of XML external ~ Quartz-1, Retrofit-1
entity reference
668"  Exposure of resource to wrong sphere ~ Flow-2
1295*  Debug messages revealing Flow-2
unnecessary information
unk no specific CWE category Jinjava-1

Table 2: Input Formats of Large Language Models

Model Input Format
Comment buggy lines (BL) with hint “BUG:” and “FIXED:”
Codex Prefix prompt: Beginning of the buggy function to BL comment
Suffix prompt: Line after BL comment to end of the buggy function
CodeT5 Mask buggy lines with <extra_id_0> and input the buggy function
CodeGen Input beginning of the buggy method to line before buggy lines
PLBART Mask buggy lines with <mask> and input the buggy function
InCoder Mask buggy lines with <mask> and input the buggy function
Tuned LLMs  Comment buggy lines and input the buggy function

3 LARGE LANGUAGE MODELS AND APR
TECHNIQUES

3.1 Large Language Models

We select five LLMs, i.e., Codex, PLBART, CodeT5, CodeGen and
InCoder, because they are (1) state-of-the-art, (2) capable of per-
forming code generation tasks without any modifications to the
models or additional components (e.g., CodeBERT [26] GraphCode-
BERT [33] are excluded), and (3) trained with enough source code
so that they can understand code to some extent (e.g., we exclude
T5 [65], GPT-2 [64], GPT-Neo [13] and GPT-J [71], whose training
data is over 90% text). In this work, we study the LLMs in two
settings: as is and fine-tuned with general APR data.

3.1.1 Large Language Models As Is. In this section, we introduce
the details of the studied LLMs and how to use them for fixing
vulnerabilities. Table 3 provides the model sizes and their training
data information.

Codex [17]: Codex is a GPT-3-based [15, 17] language model with
12B parameters trained on both natural language and source code.
We use the davinci-002 model (as of July 2022), which is supposed
to be the most accurate Codex model [1]. We focus on Codex’s
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Prefix:
private int extend(int v, final int t){ ...
/* BUG:
* while (v < vt) {
* FIXED:
*/
Suffix:
vt = (-1 << t) +1; ...
Expected Output:
if (v < vt) {

Figure 2: An example input to Codex and its expected output

insertion mode as it provided the best results in our preliminary
study among the three main modes: completion, insertion, and edit.

CodeT5 [73]: CodeT5 is an encoder-decoder transformer model [70]
pre-trained with an identifier-aware denoising objective and with
bimodal dual generation tasks. It is trained on a corpus of 5.2 mil-
lion code functions and 8.3 million natural language sentences from
open-source repositories in six programming languages including
Java. In this work, we use the largest CodeT5 model released, which
has 770M parameters.

CodeGen [55]: CodeGen models are a series of autoregressive
decoder-only transformers trained for conversational program syn-
thesis. Their training data consists of 354.7B natural language to-
kens from THEPILE dataset and 150.8B programming language
tokens extracted from a subset of the Google BigQuery database.
In this work, we apply the CodeGen model which contains 6B pa-
rameters (the larger model with 16B parameters is not used due to
the limitation of our machine).

PLBART [8]: PLBART uses an encoder-decoder transformer ar-
chitecture with an additional normalization layer on the encoder
and decoder. It’s pre-trained on functions extracted from Java
and Python GitHub repositories via denoising autoencoding. Two
PLBART models of different sizes are available, and we use the
larger model containing 400M parameters.

InCoder [28]: InCoder models follow XGLM [45]’s decoder-only
architecture and are pre-trained on the masked span prediction task.
Its pre-training data comes from open-sourced projects on GitHub
and GitLab, and StackOverflow posts. There are two InCoder models
of different sizes released, and we use the larger one which contains
6B parameters.

Input Formats: Table 2 illustrates the input format we used for
each model. For Codex, we adopt an input format similar to the one
used in prior work [58]. The prompt includes the commented buggy
code with hint words “BUG:" and “FIXED:" to signify the location
of the bug and to guide Codex towards generating a fixed version
of the code. If the number of input tokens exceeds the maximum
number for a model, we truncate the code and input the code around
the buggy lines. Since it is unclear how the commented buggy line
prompts will affect the models’ fixing capabilities, we experiment
with the input with and without commented buggy lines for each
model. Figure 2 shows an example of the input and expected output
of Codex with buggy lines commented by /* BUG .. FIXED /.

3.1.2  Fine-Tuned Large Language Models. We also study the fixing
capabilities of fine-tuned LLMs, since fine-tuning is a common
technique to adapt a pre-trained LLM to a specific downstream task,
such as code summarization or code translation [26, 28, 65, 73].
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Table 3: Model size (number of parameters) and training data
size of the five LLMs we apply and report in this work

Codex CodeT5 CodeGen PLBART InCoder

#Parameters 12B 770M 6B 400M 6B
Training Data NL  45.0TB - 1.1TB 79.0GB 57.0GB
Raw Size PL  159.0GB - 436.3GB  576.0GB  159.0GB
Training Data NL 499.0B - 354.7B 6.7B -
#Tokens PL 100.0B - 150.8B 64.4B -
Training Data NL - 5.2M - 47.0M -
#Instances PL - 8.3M - 680.0M -

However, due to the lack of vulnerabilities as fine-tuning data, we
use the LLMs fine-tuned with general APR data, shared by existing
work [38]. Prior work [38] fine-tuned LLMs with a training dataset
containing 143,666 instances collected from open-source GitHub
Java projects [76]. Each data instance is a pair of buggy code and
fixed code. In detail, [38] used the Adam optimizer with a learning
rate of 1e >, set batch size to one and fine-tuned for one epoch. The
fine-tuned LLMs are supposed to be adjusted to vulnerability fixing
task to some extent due to the similarity between vulnerability
fixing and general bug fixing. We perform a search and confirm
that none of the vulnerabilities we study in this work is present in
the APR training data used to fine-tune the LLMs.

We cannot fine-tune Codex, since it does not offer any fine-
tuning API and there is also no fine-tuned Codex available. The
last row of Table 2 describes the input format for using fine-tuned
LLMs, where the buggy lines are given as commented lines, and
the entire function is input into the fine-tuned LLMs to generate
the patched lines [38].

3.2 APR Techniques

We select four state-of-the-art learning-based APR techniques trained
for Java bugs. These APR techniques need to be open-sourced so
that we can run them on our new vulnerability benchmarks.

CURE [40] applies a small language model (pre-trained with 4.04M
code instances) to the CoCoNuT’s [47] encoder-decoder architec-
ture to learn code syntax and propose a new code-aware strategy to
remove invalid identifiers and increase the compilation rate during
inference. CURE is trained with 2.72M APR instances.

Recoder [76] uses an tree-based deep learning network that is
trained on 82.87K APR training instances. It focuses on generating
edits to modify buggy ASTs to form the patched ASTs.

RewardRepair [75] includes compilation in the calculation of the
model’s loss function to increase the number of compilable (and
correct) patches. This is different from CURE as the loss function
increases the number of compilable patches during training. Overall,
RewardRepair is trained with 3.51M APR training instances.

KNOD [39] proposes a novel three-stage tree decoder to generate
the patched ASTs, and also uses domain-knowledge distillation to
modify the loss function to let the models learn code syntax and
semantics. KNOD is trained with 576K APR training instances, and
is the state-of-the-art DL-based APR techniques.
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public static void checkDirectoryTraversal(...) {

1f (pathToCheck. star‘tszth(par‘entPath normalize())) { ... }
throw new ForbiddenExcepotion(...): K

(a) Before identifier renaming
public static void examineUnauthorizedPathAccess(...) {

1f (examinePath. startsw:Lth(basePath normallze())) { ...}
throw new ProhibitedException(...): }

(b) After identifier renaming

Figure 3: Identifier renaming for Halo-1. Functions
"startsWith" and "normalize" remain intact as they are Java
library functions.

if (!(value.getClass().equals(String.class)) || ...)

(a) Before function chaining

Class value_class = value.getClass()
if (!(value_class.equals(String.class)) || ...)

(b) After function chaining

Figure 4: Function chaining for VUL4]J-30

if (pathToCheck.startsWith(parentPath.normalize())) {...}

(a) Before function-argument passing

Path normalizedParentPath = parentPath.normalize();
if (pathToCheck.startsWith(normalizedParentPath)) {...}

(b) After function-argument passing

Figure 5: Function-argument passing for Halo-1.

4 CODE TRANSFORMATION

To address the challenge of training-testing data overlap, we need
to create vulnerabilities and their fixes that have not been seen by
existing LLMs or APR techniques. We generate unseen vulnerabili-
ties by transforming existing vulnerabilities to their semantically
equivalent forms. None of the APR models and LLMs, including
Codex, have seen these transformed buggy code and the corre-
sponding fixes in their training set. We apply two categories of
transformations to Vul4]J and V]Bench, which are described below:

(1) Identifier Renaming: To prevent LLMs and APR models from
simply memorizing the exact correct patches associated with iden-
tifier names, we rename identifiers in the buggy code and the corre-
sponding fixed code. All variables, functions, and classes defined in
the project are renamed using synonyms for the original identifier
names according to Java specifications. We use synonyms to keep
the word meaning of the original identifiers. We do not rename
identifiers from external libraries or default Java class libraries,
since one often cannot modify external libraries. Figure 3 shows an
example of identifier renaming for Halo-1.

We first use the tool src2abs [6] to extract all variable, func-
tion, and class names in the buggy function, and filter out those
identifiers from Java or third-party libraries. We tokenize each
identifier based on camel case or snake case conventions, then use
NLTK WordNet [3] to generate synonyms for each word. After that,
we reassemble these synonyms to form a complete identifier. We
manually review and adjust the synonyms to ensure they fit the
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code context. Since some APR techniques need to extract identifiers
from the whole project, we rename the identifiers used in the buggy
function across the entire project.

(2) Code Structure Change: We define six transformation rules
to change code structures.

If-condition flipping: negates an if-condition and swaps the
code blocks in the if and else branches.

Loop transformation: converts a for loop to a while loop and
vice versa.

Conditional-statement transformation: turns a ternary ex-
pression (var = cond ? exprTrue: exprFalse;)into an if-else
statement (if (cond) {var = exprTrue;} else {var = exprFalse; }),
and transform a switch statement into multiple if and elseif state-
ments, and vice versa.

Function chaining: merges multiple function invocations into
one call chain, or conversely splits a function call chain into
separate function invocations. Figure 4 shows an example where
value.getClass().equals(...); is split into Class value_class
= value.getClass(); and value_class.equals(...);.

Function-argument passing: If a locally defined variable or
object is only used as a function argument, we replace the func-
tion argument with its definition statement, or we extract the
function call that is passed as a function argument into a sepa-
rate variable/object definition. Figure 5 shows an example where
the argument parentPath.normalize() is extracted and declared
as a local object normalizedParentPath.

Code-order change: alters the order of statements if changing
the order does not affect the execution results. For example,
funcA(); int n =0; canbe transformedinto int n = @; funcA();
as invoking funcA() and declaring int n do not affect each other.

For code structure change, we manually transform the buggy
function. For each buggy function, we apply all applicable trans-
formations at once. We further confirm the equivalence of the
transformed bug by reproducing them using the same test set and
applying semantically equivalent patches to pass the tests.

A new benchmark (V)Bench-trans): In summary, to create bugs
and patches that LLMs have not seen in their training set, we apply
three sets of transformations (identifier renaming only, code struc-
ture change only, and both at the same time) to VJBench and Vul4],
and create VJBench-trans that contains 3X50 = 150 transformed Java
vulnerabilities. We search in GitHub and Google the transformed
code, and find no public code that is the same as the transformed
buggy function.

Recover patches for evaluation: The transformed code is still
realistic and human-readable. However, for the ease of evaluating
the correctness of plausible patches, we maintain a dictionary that
stores the mapping between the renamed identifiers and their origi-
nal names. For each vulnerability, we also write a patched program
for its code structure transformed version, providing a reference
for future dataset users.
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Figure 6: Overview of our study

5 EXPERIMENT SETUP

Figure 6 provides an overview of our study. First, we build a new
dataset of vulnerabilities, V]JBench, that contains 42 new vulnera-
bilities. We use this new dataset and the original dataset (Vul4]) to
benchmark the vulnerability-fixing capabilities of DL-based APR
techniques, LLMs and fine-tuned LLMs. Each language model gen-
erates 10 patches for each bug through inference. For each APR
model, we use its default beam search size and validate its top 10
patches. The generated patches are then validated using test cases
and manual verification of all the patches that pass the test cases.
Then, we apply code transformations on Vul4] and V]JBench to
generate VJBench-trans. Finally, we evaluate the impact of code
transformations on the vulnerability-repair capabilities of all the
LLMs, fine-tuned LLMs and APR techniques.

5.1 Dataset

In this work, we focus on fixing single-hunk Java vulnerabilities
as state-of-the-art DL-based APR models are designed to fix single-
hunk bugs. We filter and obtain 35 single-hunk bugs from Vul4]
dataset. Along with the 15 single-hunk vulnerabilities from VJBench,
we have a total of 50 Java vulnerabilities. We use the perfect fault
localization for these Java vulnerabilities, that is, we use the code
lines that are modified in the developers’ patches as the buggy lines.

5.2 Large Language Model Setups

We evaluate each LLM with two input setups: (1) the buggy lines
are commented as part of the input and (2) without the buggy lines.
We observe that InCoder fixes more vulnerabilites when the input
contains buggy line comments, while the other LLMs perform better
without buggy lines. We then report the best-performing setup for
each model in the rest of this paper. For fine-tuned LLMs, we follow
the input format with buggy line comments used in [38] which is
described in Table 2.

We configure each model to generate 10 patches for each vul-
nerability. For CodeT5, CodeGen, PLBART and InCoder, we set
their beam search size to 10. For Codex, we set its parameter n, the
number of candidates to generate, to 10. Considering the inherent
randomness of the sampling method adopted by Codex, we run it
twenty-five times for each vulnerability to obtain the average re-
sults. We run twenty-five times to control the margin of error small
(<0.3) at 95% confidence level . We set the sampling temperature of
Codex to 0.6, which is shown to have the best performance when
sampling ten candidates in prior work [17]. We set the max number
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of newly generated tokens to 400 for Codex due to its request rate
limit, and to 512 for all other LLMs.

5.3 Patch Validation

Codex insertion mode generates code to be inserted between the
prefix prompt and the suffix prompt. Since we use the code before
and including the buggy line comment as its prefix prompt and
the code after the buggy line comment as its suffix prompt, we
replace the original buggy code with the code that Codex generates.
Similarly, CodeT5 generates code to replace the masked label in its
input. PLBART generates the entire patched function that replaces
the whole buggy function. CodeGen and InCoder are completion
models that generate code to complete the given prefix prompt. We
take the first complete function CodeGen and InCoder generate to
replace the original buggy function. For all the fine-tuned LLMs,
the fine-tuned CodeT5, CodeGen, PLBART and InCoder directly
generate the patched code to replace the buggy code.

For each LLM and APR techniques, we first validate the top-10
patches they generate using the test cases from the project. Follow-
ing prior work [40, 47, 75, 76], plausible patches are patches that
pass all test cases, while correct patches are semantically equivalent
to developer patches, and over-fitted patches are patches that pass
all test cases but are incorrect. We manually inspect each plausible
patch to identify if it is a correct patch.

6 RESULTS AND FINDINGS

We evaluate the vulnerability fixing capabilities of five LLMs, four
fine-tuned LLMs and four DL-based APR techniques on two real-
world Java vulnerability benchmarks.

6.1 RQ1: Vulnerability Fixing Capabilities
We run Codex twenty-five times and report the average number
of fixed vulnerabilities with the margin of error, because Codex’s
patch generation is non-deterministic. For other LLMs, we only run
them once since their patch generation is deterministic (Section 5).
Table 4 shows the fixing capabilities, i.e., the number of vul-
nerabilities that each approach fixes correctly, of five LLMs, four
fine-tuned LLMs and four APR models. We consider the top ten
patches since a recent study shows that almost all developers are
only willing to examine ten patches at most [57]. Results in Table 4
are reported as X/Y, where X is the number of vulnerabilities cor-
rectly fixed by each technique and Y is the number of vulnerabilities
that are plausibly fixed. A vulnerability is plausibly fixed by a model
if the model generates a plausible patch (definition in Section 5.3).

6.1.1 LLMSs vs. APR Techniques. We first compare using LLMs as
is with APR techniques. Here, LLMs as is refers to that we apply
Codex and LLMs under zero-shot learning and without fine-tuning.
Our results show that Codex exhibits the best fixing capability. Out
of a total of 50 vulnerabilities in Vul4] and V]Bench, Codex fixes an
average of 10.2 vulnerabilities with a margin of error of 0.3 (at 95%
confidence). InCoder demonstrates the second best capability, fixing
5 vulnerabilities. The other LLMs and DL-based APR techniques
only fix very few vulnerabilities. Overall, LLMs and APR techniques
show very limited vulnerability fixing capabilities.

Our finding of Codex performing the best on fixing Java vul-
nerabilities is consistent with Codex’s superior performance in
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repairing general bugs [74] and in other domains [1, 17, 27, 58],
possibly due to its significantly larger model size and training data
size as indicated in Table 3. Our result is also consistent with recent
work [38] in showing that LLMs without fine-tuning have competi-
tive fixing capabilities — InCoder fix three more vulnerabilities than
the best APR technique (RewardRepair). However, while [38] shows
that CodeGen, PLBART and InCoder as is can fix 18%-23% general
bug of Java APR benchmarks, our result shows that they can fix
only 4%(2/50)-10%(5/50) vulnerabilities of Vul4] and V]Bench. In
real-world, only about 1~7% of bugs are vulnerabilities, resulting
in few data for models to learn from. This means that, for neural
networks, fixing vulnerabilities is more difficult than general bugs
and requires more domain-specific knowledge.

Finding 1: Existing large language models and APR techniques
fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%) vul-
nerabilities on average, exhibiting the best fixing capability.

6.1.2 LLMSs Fine-Tuned with APR Data. We applied LLMs fined-
tuned with general APR data by [38] on the vulnerability bench-
marks. We cannot fine-tune Codex as OpenAl does not provide a
public API for fine-tuning. Table 4 shows that all the fined-tuned
LLMs fix more vulnerabilities than their original models. In detail,
fine-tuned InCoder fixes 9 vulnerabilities, 4 more than its original
model. The second best models is fine-tuned CodeGen, which fixes
8 vulnerabilities, 6 more than its original model. Fine-tuned CodeT5
and fine-tuned PLBART each fixes 3 and 2 more vulnerabilities.

Overall, fine-tuning with general APR data can improve the
fixing capabilities of LLMs for vulnerabilities. First, fine-tuning
could adapt LLMs to APR tasks better, making LLMs be aware of
generating patches instead of open-ending code or text. Second,
though vulnerabilities have special characteristics (root causes)
compared to general bugs, some vulnerabilities still share similar
repair patterns with general bugs, such as replacing a function
argument with another variable, which can be well learned during
fine-tuning. Given the scarcity of real-world vulnerability data, our
results implicate that fine-tuning LLMs with general APR data can
be beneficial.

Finding 2: Fine-tuning with general APR data improves all
four LLMs’ vulnerability-fixing capabilities. Fine-tuned InCoder
fixes 9 vulnerabilities, exhibiting competitive fixing capability
compared to Codex’s.

We also evaluate the compilation rates (i.e., portions of gen-
erated patches that compile) to study the quality of the patches.
Uncompilable patches cannot be correct patches. Codex, the best
model overall, has a compilation rate of 79.7%, which is significantly
higher than that of the best fine-tuned LLM, fine-tuned InCoder
(55.2%) and the best APR model, Recoder (57.6%). Fine-tuning no-
tably improves CodeT5 and CodeGen’s compilation rates, from 6.4%
to 46.8% and from 35.8% to 47.2% respectively. On the other hand,
the compilation rate of fine-tuned PLBART is 45.2%, slightly lower
than the original PLBART’s compilation rate of 47.8%. Despite the
higher 65.2% compilation rate of InCoder compared to its fine-tuned
model, it generates 82.0% duplicate patches, whereas the fine-tuned
InCoder generates patches with more diverse modifications that re-
sult in more correct fixes. Overall, compared with compilation rates
of repairing general bugs [38], these compilation rates of fixing
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Table 4: Comparison of LLMs and APR models on fixing Java vulnerabilities. For x/y in a cell, x denotes the number of
correctly-fixed bugs, and y is plausibly-fixed bugs (with at least one patch that passes the test cases). RewardR is RewardRepair.

LLMs Fine-Tuned LLMs APR models
Codex CodeT5 CodeGen PLBART InCoder CodeT5 CodeGen PLBART InCoder CURE Recoder RewardR KNOD
VJBench (15) 4.0/ 4.6 0/0 1/2 2/3 2/2 3/4 3/4 2/3 3/4 0/1 1/2 2/3 0/0
Vul4] (35) 6.2/ 10.9 2/2 1/6 0/4 3/4 2/7 5/8 2/6 6/9 1/4 0/4 0/2 1/1
Total (50) 10.2/ 15.5 2/2 2/8 2/7 5/6 5/11 8/12 4/9 9/13 1/5 1/6 2/5 1/1
Compilation Rate (%) 79.7 6.4 35.8 47.8 65.2 46.8 47.2 45.2 55.2 24.5 57.6 37.7 37.3

private int extend(int v, final int t) {
int vt = (1 << (t - 1));
while(v < vt) {

+ if (v < vt) { Developer patch

+ while (v < vt & vt > 0) { t--; Codex's patch

+ while (!v.equals(vt)) { RewardR's patch
}

(a) Vul4J-12 and its uncompilable patches

parser.parseArray(
componentClass, array, fieldName);
componentType, array, fieldName);
componentClass, array, fieldName, null);

+
o

Developer patch
LLMs' patch

(b) Vul4J-1 and its uncompilable patches

Figure 7: Vul4J-12’s and VulJ-1’s developer patch and uncom-
pilable patch

vulnerability are lower. PLBART, CodeGen and InCoder without
fine-tuning when repairing general bugs show an average of 65%—
73% compilation rate [38], outperforming both of their original and
fine-tuned models when repairing vulnerabilities.

Figure 7a shows an example of uncompilable patches of Vul4]-
12: The function signature declares t to be final, thus t’s value is
not allowed to be changed. However, Codex fails to capture this
constraint, even though the function signature is only two lines
above the buggy line. As a result, it generates code t-- to decrease
t’s value which makes the patch uncompilable. Similary, RewardR
ignores the fact that v and vt are both of type int, and invokes the
invalid function equals on them. Figure 7b shows another example
of uncomplable patch for Vul4J-1: parseArray is a method defined
in another class in the project that accepts two or three arguments
only. All the four fine-tuned LLMs generate the same uncompilable
patches where they pass null as the fourth argument, because they
do not have the information that parseArray does not accept four
arguments.

These results suggest that LLMs’ abilities to learn code syntax
could be improved. Recent work [40, 76] are steps in the right direc-
tion to add domain knowledge to models to help them learn code
syntax and semantics. Another direction is prompt engineering,
such as providing method signatures or type information in the
prompt to specify the constraints. This would enable LLMs to uti-
lize syntax information from across the entire project, rather than
being limited to the code within the buggy function.

Finding 3: Codex has the highest compilation rate of 79.7%.
Other LLMs (fine-tuned or not) and APR techniques have low
compilation rates (the lowest of 6.4% with CodeT5 and the rest
between 24.5% to 65.2%), showing a lack of syntax domain knowl-

edge.
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xmlIn = XMLInputFactory.newInstance();
xmlIn.setProperty(XMLInputFactory.IS_SUPPORTING_
EXTERNAL_ENTITIES, Boolean.FALSE);
xmlIn.setproperty(XMLInputFactory.SUPPORT_DTD,
Boolean.FALSE);

+

(a) Vul4J-47 and its developer patch

xmlIn = XMLInputFactory.newInstance();

xmlIn.setProperty(XMLInputFactory.IS_SUPPORTING_
EXTERNAL_ENTITIES, Boolean.FALSE);

xmlIn.setproperty(XMLInputFactory.IS_SUPPORTING_
EXTERNAL_ENTITIES, Boolean.TRUE); Fine-tuned CodeGen's patch

o
o

(b) Vul4J-47 and the incorrect patch generated by fine-tuned Code-
Gen

Figure 8: Java vulnerability Vul4J-47 and its patches

6.2 RQ2: What kinds of vulnerabilities do LLMs
and learning-based APR techniques fix?

Table 5 shows the vulnerabilities that are correctly fixed by the
LLMs, fine-tuned LLMs, and APR techniques. In total, 16 vulnera-
bilities (belonging to ten CWE categories as shown in column CWE
with their description in column Description) from both benchmarks
are fixed by at least one of the models. The IDs of these vulnerabili-
ties are listed under column Vul. ID. Some vulnerabilities belong to
no specific CWE category and are listed as unk.

Vul4]J-47 is a vulnerability that only Codex can fix. Figure 8a
shows the developer patch for Vul4J-47 of type CWE-611 (Im-
proper Restriction of XML External Entity Reference) and CWE-
918 (Server-Side Request Forgery). The correct fix requires insert-
ing a statement xmlIn.setProperty(XMLInputFactory. SUPPORT_DTD,
Boolean.FALSE) to disable the support of Document Type Definition
(DTD), because DTD can be used to perform server-side request
forgery (SSRF) attacks. The original buggy code only disables the
support for external entities by setting the IS_SUPPORTING_EXTERNAL_
ENTITIES property to false, which is not enough to prevent the at-
tack. Figure 8b shows an incorrect patch generated by fine-tuned
CodeGen, which replaces the Boolean.FALSE with Boolean.TRUE. In
general, except Codex, other LLMs and fine-tuned LLMs only fix
vulnerabilities that require simple modifications such as deleting
statements or replacing variable/method names.

On the other hand, Codex fixes 15 out of the 16 vulnerabilities
(the union of all bugs, for which Codex generates at least one cor-
rect patch in twenty-five runs). The one vulnerability fixed by other
LLMs but not Codex is Vul4J-39 of type CWE-200 (Exposure of
Sensitive Information to an Unauthorized Actor). This vulnerability
can be fixed by simply deleting the entire buggy code. However,
for Vul4]-39, Codex generates patches by applying different modifi-
cations to the buggy code, rather than deleting it.
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Table 5: Detailed description of the vulnerabilities fixed by each LLM, fine-tuned LLM, and DL-based APR technique

LLMs Fine-tuned LLMs APR Techniques
Vul.ID CWE Description Codex CodeT5 CodeGen PLBART InCoder CodeT5 CodeGen PLBART InCoder CURE Recoder RewardR KNOD
Vul4J-1 20 Improper Input Validation v v v
Vul4J-4 unk / v v v v
Vul4]-5 unk / v v v
Vul4J-12 835 Infinite Loop v v v v v v
Vul4J-19 unk / v
Vul4]-20 unk / v
Vul4]-25 39 Cross-site Scripting v
Vul4J-39 200 Sensitive Information v v v v v v
Vul4]-47 611 Improper External References v
Vul4]J-50 79  Cross-site Scripting v v v v
Vul4J-59 79  Cross-site Scripting v v
Vul4]-73 522 Protected Credentials v v
Halo-1 22 Path Traversal v v v v
Jenkins-2 200 Sensitive Information v v v v v v
Jenkins-3 200 Sensitive Information Vv v Vv v v v
Ratpack-1 74 Improper Neutralization v v v v v v v
#Total: 16 15 2 2 2 5 5 8 4 9 1 1 2 1

new DefaultHttpHeaders(false);
new DefaultHttpHeaders();

- HttpHeaders nettyHeaders
+ HttpHeaders nettyHeaders

Figure 9: Java vulnerability Ratpack-1 and its developer patch

Ratpack-1, Vul4J-12, Vul4J-39 and Jenkins-2 are four vulnerabili-
ties fixed by the most number (6-7 out of 13) of models. Ratpack-
1 (Figure 9) when initializing DefaultHttpHeaders, sets the con-
structor argument to false, which disables the validation for user-
supplied header values. The correct patch is simply removing false
or changing it to true to enable the validation. The fix for Vul4J-12
(Figure 7a) is to change the keyword while to if, and the fix for
both Jenkins-2 and Vul4]-39 is to simply delete of an if statement
that exposes sensitive information to unauthorized actors. The sim-
plicity of these patches are evident from the number of models that
can fix them.

Finding 4: Large language models and APR techniques, except
Codex, only fix vulnerabilities that require simple changes, such
as deleting statements or replacing variable/method names.

Surprisingly, the nine LLMs and four APR techniques fix none
of the six new CWE types that VJBench adds, which shows that
our V]Bench helps reveal the limitations of existing LLMs and
APR techniques in fixing Java vulnerabilities. This calls for new
techniques that can fix CWE-172, CWE-325, CWE-347, CWE-444,
CWE-668, and CWE-1295. In addition, for CWE-611 that is covered
by Vul4]’s Vul4]J-47, we add two instances of this CWE type (Quartz-
1 and Retrofit-1) in VJBench. Codex fixes Vul4]J-47, but none of
the LLMs and APR techniques fixes the additional Quartz-1 and
Retrofit-1. This shows that V]JBench complements Vul4] even on
CWE categories that Vul4] has already covered.

Figure 10 shows Retrofit-1 of CWE-611 category. None of the
models fixes Retrofit-1. The correct patch is to prevent XML Ex-
ternal Entity attacks by calling xmlInputFactory.setProperty(...)
to disable the support for external entities and DTD. But as LLMs
are not provided with information that the vulnerability is about
XML External Entity attacks (as suggested by the CWE type), they
only make changes on the buggy code (Figure 10b) unrelated to
XML properties. Figure 11 shows Jenkins-1 of CWE-325 (Missing
cryptographic step), a new CWE category that VJBench adds. The
correct fix for the bug is adding if-condition to check the permission
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this.type = type;
+ xmlInputFactory.setProperty(XMLInputFactory.IS_SUPPORTING_
+ EXTERNAL_ENTITIES, false);
+ xmlInputFactory.setProperty(XMLInputFactory.SUPPORT_DTD,
+ false);

(a) Developer patch of Retrofit-1

- this.type
+ this.type

type;
(Class<T>) type;

(b) Incorrect fix generated by InCoder

Figure 10: Java vulnerability Retrofit-1 and its patches.

- for (NodeMonitor monitor : NodeMonitor.getAll())
r.put(monitor.getClass().getName(), monitor.data(this));
if (hasPermission(CONNECT)) {
for (NodeMonitor monitor : NodeMonitor.getAll())
r.put(monitor.getClass().getName(), monitor.data(this));
} Developer patch
for (NodeMonitor monitor : NodeMonitor.getAll())

+
+
+
+
o
+ r.put(monitor.data(this));

Codex's patch

Figure 11: Java vulnerability Jenkins-1 and its patches

before the for-loop to restrict the access to NodeMonitor. As Codex’s
patch shown in Figure 11, all the models fail to fix the bug because
they only apply general modifications to the for-loop and are un-
aware that the bug is related to the permission restriction. Further,
the hasPermission method and the CONNECT variable are declared
outside of the buggy function, thus the models have no knowledge
about their usages. This reflects two problems for LLMs to fix Java
vulnerabilities: (1) With only buggy lines pointed out, LLMs fail
to generate patches targeting the vulnerability. This suggests that
it is necessary to provide LLMs with more information about the
vulnerability, such as CWE types. (2) More project-specific informa-
tion is needed for LLMs to fix vulnerabilities, i.e., providing LLMs
with related methods and variables declared outside of the buggy
function.
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Table 6: Impact of code transformation on LLMs’ and APR models’ vulnerability repair capabilities. For Codex, x + y: x denotes
the average number of correctly fixed bug, and y denotes the margin of error (95% confidence).

LLMs Fine-Tuned LLMs APR Techniques
Codex CodeT5 CodeGen PLBART InCoder CodeT5 CodeGen PLBART InCoder CURE Recoder RewardR KNOD
No transformation 10.2 +0.3 2 2 2 5 5 8 4 9 1 1 2 1
Rename only 8.1 +£0.3 0 1 0 2 4 6 1 7 0 1 1 1
Code structure change only  10.0 +0.3 0 2 2 1 4 6 4 7 0 1 1 2
Rename + code structure change 8.7 +0.4 0 1 1 1 3 4 3 4 0 1 1 0

Finding 5: Our new VJBench benchmark reveals that large
language models and APR techniques fail to fix many CWE
types, including CWE-172 (Encoding error), CWE-325 (Missing
cryptographic step), CWE-444 (HT TP request smuggling), CWE-
668 (Exposure of resource to wrong sphere), and CWE-1295
(Debug messages revealing unnecessary information).

6.3 ROQ3: Fixing Capabilities on Transformed

Vulnerabilities

To mitigate the training-testing data overlapping threat, we apply
code transformations to the benchmarks to study the generalization
abilities of Codex and LLMs on unseen data (Section 4). Table 6
shows the number of vulnerabilities that LLMs as is, fine-tuned
LLMs, and APR techniques can fix in four settings: (1) No transfor-
mation—the original vulnerability dataset, (2) Rename only—only
identifier renaming is applied, (3) Code structure change only—only
code structure change is applied, and (4) Rename + code structure
change—both transformations are applied.

Overall, code transformations make LLMs (fine-tuned or not) and
APR techniques fix fewer vulnerabilities. For example, fine-tuned
InCoder fixes nine vulnerabilities in Vul4] and VJBench (no trans-
formation), but only fixes four fully transformed vulnerabilities
(Rename + Code structure change). The impact of transformation is
smaller on some models, e.g., Codex and fine-tuned CodeT5, demon-
strating these models’ robustness against code transformations and
generalized learning capabilities. This result, to some extent, ad-
dresses the threat of Codex’s non-public training data and reveals
Codex’s strong learning and vulnerability-fixing capability. Many
models only fix two or fewer vulnerabilities without transforma-
tions, thus the impact of transformations cannot be big for these
models. However, we see a general trend across almost all models
that these code transformations make models fix fewer number of
vulnerabilities.

Figure 12a shows an example, Halo-1, whose correct fix is to call
normalize() on pathToCheck to remove any redundant elements
in the file path. This bug can be correctly fixed by Codex, fine-
tuned CodeGen, and fine-tuned InCoder. Yet, after applying both
transformations, only Codex can fix it (Figure 12b).

Different transformations have different effects but each transfor-
mation significantly affects at least one LLM. For example, although
identifier renaming has small effect on fine-tuned CodeT5, it de-
creases the number of vulnerabilities that fine-tuned PLBART fixes
by three. The result shows that our code transformation effectively
tests the generalization ability of LLMs on unseen data.

One interesting observation is that some models fix transformed
vulnerabilities that they cannot fix in the original dataset. This is a
reasonable phenomenon because our transformation may convert a
code snippet into a simpler form for the models to fix. For example,
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public static void checkDirectoryTraversal(...) { ...
- if (pathToCheck.startsWith(parentPath.normalize())) {
+ if (pathToCheck.normalize().startsWith(parentPath)) {

(a) Halo’s original buggy code and its correct patch

public static void examinePathManipulation(...) { ...

- Path normalizedBasePath = basePath.normalize();

- if (!examinePath.startsWith(normalizedBasePath)) {

+ Path normalizedExaminePath = examinePath.normalize();
+ if (!normalizedExaminePath.startsWith(basePath)) {

(b) Halo’s buggy code after Rename+Code structure change and its
correct patch generated by Codex

Figure 12: Halo-1 before and after transformation

- if (... || !'Pattern.compile(getUrlRegex(), ...).matcher(
- String.valueOf(value)).matches()) {

+ if (... || !Pattern.compile(getUrlRegex(), ...).matcher(
+ String.valueOf(value).trim()).matches()) {

(a) VUL4J-30’s original buggy line and its correct patch

String urlRegex = getUrlRegex();

Pattern p = Pattern.compile(urlRegex, ...
- String s = String.valueOf(value);
String s = String.valueOf(value).trim();
Matcher m = p.matcher(s);
if (... || m.matches()) {

)5

o5

(b) VUL4J-30’s buggy line after code transformation and its correct
patch generated by fine-tuned LLMs.

Figure 13: Vul4J-30 before and after code structure change

Vul4]J-30 is a bug that none of the models fixes in its original form,
but its transformed version is fixed by all four fine-tuned LLMs
when code structure transformation is applied. Figure 13 shows
that the fix of Vul4]J-30 is to call trim() on String.valueOf(value).
The original vulnerability is hard to fix as String.valueOf(value)
is a part of a complex if-condition. Yet, after code transformation,
String.valueOf(value) stands out as a single statement, which is
easier for LLMs to repair. This phenomenon suggests that equiva-
lent code transformation could be a promising direction to simplify
the vulnerable code and enhance the effectiveness of fixing vulner-
abilities.

Finding 6: Code transformations make large language models
and APR techniques fix fewer number of vulnerabilities. Some
models such as Codex and fine-tuned CodeT5 are more robust to
code transformations. On the other hand, some transformations
make vulnerabilities easier to fix.

7 THREATS TO VALIDITY

Java vulnerabilities are diverse. It is hard for benchmarks to repre-
sent all of them. Thus, our findings might not generalize to all Java
vulnerabilities. We address this threat by expanding the existing
Java vulnerability benchmark with a new dataset of vulnerabilities.
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We rely on developers’ patches to assess whether a vulnerability
is fixed. Developers may make a mistake in fixing vulnerabilities.
Therefore, our ground truth might be incorrect. We mitigate this
threat by only looking at vulnerabilities that are publicly disclosed
in the NVD dataset that are reproducible and include test cases
indicating that the fixed version is no more exploitable.

Another threat is that Codex (and other LLMs) may have been
trained on the vulnerability patches in Vul4] and V]JBench dataset.
To mitigate this problem, we apply code transformations to cre-
ate semantically equivalent vulnerabilities that are not included in
their training dataset. Then we apply Codex to repair these trans-
formed programs to prove that Codex is indeed able to repair new
vulnerabilities that it has not seen.

8 RELATED WORK
8.1 DL-Based Vulnerability Fixing Techniques

Much work uses DL to fix vulnerabilities. Encoder-decoder ap-
proaches have been proposed for repairing C vulnerabilities: [29]
fine-tuned a CodeT5 model with C vulnerability repair data; [19]
trained a transformer model on a large bug fixing dataset and then
tuned on a small vulnerability fixing dataset, but they use sequence
accuracy as the evaluation metric rather than practical APR settings.
Previous work [35] applied both CodeBERT and GraphCodeBert
to fix vulnerabilities, but they only evaluated on a synthetic vul-
nerability database, the Juliet 1.1 C/C++ test suite [14], which is
a benchmark for evaluating static analyzers only. As a result, the
vulnerabilities in the dataset are isolated and simplified to fit within
a few lines and are not representative of code vulnerabilities in
the production. Our work is different since we use a dataset of
real-world vulnerabilities for our evaluation, making our results
closer to what researchers and developers can expect of the quality
of LLM vulnerability repair in real-world production code.

Prior work [58] applied LLMs with zero-shot learning to repair
seven hand-crafted C/Python vulnerabilities and 12 real-world C
vulnerabilities. They explored the effectiveness of different prompt
templates and used the static analysis tool CodeQL or C sanitizers to
detect the vulnerabilities to incorporate the obtained error messages
into the input prompts. Our work differs from [58] in several main
aspects. First, we study not only LLMs but also DL-based APR tools
and LLMs fine-tuned with general APR data. Second, we evaluate
our approach on a larger dataset of 50 real-world Java vulnerabilities.
Third, we apply code transformations to mitigate the data leakage
problem and suggest a new direction of using transformations to
simplify the repair for some vulnerabilities. Most vulnerabilities
in Vul4] and V]JBench cannot be detected by state-of-the-art Java
security analysis tools, so we cannot incorporate error messages in
the input prompts as [58] did.

8.2 Vulnerability Benchmarks

Previous work proposed benchmarks and datasets to help evaluate
vulnerability fixing approaches. Maestro [61] propose a platform
for benchmarking tools on Java and C++ vulnerabilities. As Mae-
stro does not support running LLMs and APR models, we directly
use the same Java vulnerability dataset, Vul4] [16], with our new
dataset VJBench. Other benchmarks and datasets of real-world vul-
nerabilities have been proposed [12, 24, 56, 62]. However, these
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datasets only contain code snippets from the fixing commits and do
not have test cases. Therefore, such datasets can only support code
matching when evaluating the correctness of patches, and cannot
be used in automated program repair in practice.

8.3 LLMs for Repair and Other Tasks

Researchers use LLMs to improve many software engineering tasks
such as automated program repair [40, 50, 63], auto-complete sug-
gestions [25], and pair-programming [37]. Much work also dis-
cusses the implication of LLMs for software developers [23, 27, 51]
and current limitations of LLMs [9, 20, 68]. Our work explores a
different application domain of LLMs, with its own challenges (vul-
nerabilities are notoriously difficult to fix [52]) that have not been
well explored yet.

9 CONCLUSION

This work is the first to investigate LLMs’ and DL-based APR mod-
els’ capacity at repairing vulnerabilities in Java. We evaluate five
LLMs, four fine-tuned LLMs, and four DL-based APR techniques on
two real-world Java vulnerability benchmarks including a new one
that we create. We use code transformations to address the training
and testing data overlapping threat of LLMs and create a new Java
vulnerability repair benchmark VJBench, and its transformed ver-
sion V]Bench-trans. We find that existing LLMs and APR models fix
very few Java vulnerabilities, and call for new research innovations
to improve automated Java vulnerability repair such as creating
larger vulnerability repair training datasets, fine-tuning LLMs with
such data, exploring few-shot learning, and leveraging simplifying
transformations to improve program repair.

Replication package: Our benchmark and artifacts are available
at [5].
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