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Abstract

The statistical modeling of random networks has
been widely used to uncover interaction mecha-
nisms in complex systems and to predict unob-
served links in real-world networks. In many ap-
plications, network connections are collected via
egocentric sampling: a subset of nodes is sam-
pled first, after which all links involving this sub-
set are recorded; all other information is miss-
ing. Compared with the assumption of “uni-
formly missing at random”, egocentrically sam-
pled partial networks require specially designed
modeling strategies. Current statistical methods
are either computationally infeasible or based
on intuitive designs without theoretical justifica-
tion. Here, we propose an approach to fit gen-
eral low-rank models for egocentrically sampled
networks, which include several popular network
models. This method is based on graph spec-
tral properties and is computationally efficient
for large-scale networks. It results in consistent
recovery of missing subnetworks due to egocen-
tric sampling for sparse networks. To our knowl-
edge, this method offers the first theoretical guar-
antee for egocentric partial network estimation
in the scope of low-rank models. We evaluate
the technique on several synthetic and real-world
networks and show that it delivers competitive
performance in link prediction tasks.

1 INTRODUCTION

Massive network data that capture complicated dynamics
and interactions in human society, the economy, ecosys-
tems, and biology are now available (Goldenberg et al.,
2010; Newman, 2018). The past 15 years have witnessed
substantial progress in random network models within the
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statistics field. Associated efforts have provided count-
less model options to analyze network data with well-
established theories (Bickel and Chen, 2009; Gao and Ma,
2021; Hoff et al., 2002; Rohe et al., 2011). Drawing in-
sights from complex networks is fundamental to many sci-
entific challenges (Kolaczyk and Csardi, 2014; Newman,
2018), such as understanding community structures (Karrer
and Newman, 2011), predicting new links (Liben-Nowell
and Kleinberg, 2007; Zhao et al., 2017), and modeling peer
effects in downstream tasks (Le and Li, 2020).

Missing data is a commonly encountered issue in data anal-
ysis (Little and Rubin, 2019) and plagues network prob-
lems, especially in social networks. Network connections
are frequently obtained through surveys or sampling pro-
cesses. One application of the network model, link pre-
diction, is intrinsically embedded in missing data scenarios
(Kumar et al., 2020; Martinez et al., 2016). Moreover, the
missingness in network problems often exhibits unique pat-
terns and calls for specialized modeling strategies.

We consider the missingness from egocentric sampling in
this paper. Egocentric sampling is a widely used mecha-
nism for acquiring network data (Alatas et al., 2016; Ali
and Dwyer, 2009; Arnaboldi et al., 2013; Bandiera and Ra-
sul, 2006). Under this approach, a subset of subjects is
randomly sampled and all their connections are recorded.
Any connections between subjects outside the sample are
missing. Handcock and Gile (2010) designs a model based
on the exponential random graph model (ERGM), which
can handle egocentrically missing data. However, their
model fitting is not computationally feasible for moderately
sized networks in general, though its computation can be
improved in certain settings (Krivitsky and Morris, 2017).
As we will show, this class of models is too restrictive
to make effective link predictions. Li et al. (2023) intro-
duced an algorithm motivated by the CUR decomposition
in computational mathematics (Drineas et al., 2006), which
is computationally efficient and demonstrates strong empir-
ical performance on link prediction tasks. However, the un-
derlying statistical model fitted by their method is unclear.
Theoretical guarantees are not available for the aforemen-
tioned methods. The only family with known theoretical
model-fitting correctness is the stochastic block model fam-
ily, implicitly available from Chen and Lei (2018), includ-
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ing Chandrasekhar and Lewis (2011) as a special case.

This paper proposes a method to estimate general low-rank
random network models based on egocentrically sampled
partial networks. Our technique can consistently estimate
network models, even for sparse networks whose average
node degree is sublinear in sample size. To our knowledge,
this approach is the first to feature theoretical guarantees for
general low-rank models on egocentrically sampled partial
networks. Our results cover many special cases, most of
which previously had no known model-fitting theory; ex-
amples include the setting of Li et al. (2023), along with
the random dot product model (Young and Scheinerman,
2007) and its generalization (Rubin-Delanchy et al., 2017).
As an unexpected byproduct, our method provides a new
insight into the method of Li et al. (2023): while Li et al.
(2023) motivated their algorithm by a CUR format, their
method indeed fits a general low-rank structure. Addition-
ally, our algorithm is based on the spectral decomposition
of the partial network adjacency matrix, a technique that
is extremely efficient for computation on large-scale net-
works. We empirically demonstrate that our approach dis-
plays competitive performance in dealing with link predic-
tion problems.

2 METHODOLOGY

2.1 Setup

Notations. We will use bold font capital letters, such as
A, to denote a matrix. Ay will be used to denote a
submatrix of A (to be defined later), while the element at
the 4th row and jth column of A will be denoted by A;;.
Let AT and AT be the transpose and Moore-Penrose in-
verse of A, respectively. Furthermore, ||A || is the Frobe-
nius norm of A. For any positive integer n, we define
[n] ={1,2,--- ,n}.

Let N be the total number of nodes in the full network,
indexed by ¢« = 1,--- ,n. We can represent the network
by its adjacency matrix A € {0,1}V*¥, where 4;; = 1
if and only if nodes ¢ and j are connected in the network.
We consider undirected and unweighted networks for pre-
sentation simplicity. In this case, we have A7 = A. In
Section 2.4, we briefly discuss how to extend our method
to handle more general networks. We will study the statisti-
cal properties under the so-called “inhomogeneous Erdos-
Renyi framework”. Specifically, we assume there exists a
probability matrix P € [0, 1]V > such that
A;; ~ Bernoulli(P;;), ¢ <j independently.

This framework is arguably one of the most prominently
applied for random network modeling. Under it, the as-
sumed network structures are incorporated into matrix P.
We assume a low-rank model for our study and define
K = rank(P) < N. The family of low-rank models in-

cludes many prevalent random network models such as the
stochastic block model (SBM), the degree-corrected block
model (DCBM) and their generalizations (Airoldi et al.,
2008; Holland et al., 1983; Jin et al., 2017; Karrer and
Newman, 2011; Li et al., 2022; Sengupta and Chen, 2018)
as well as the random dot product model (RDPG) and its
variants (Rubin-Delanchy et al., 2017; Young and Schein-
erman, 2007). Indeed, as studied by Chatterjee (2015),
most popular random network models are approximately
low-rank.

When the network is only partially observed from egocen-
tric sampling, suppose there are n nodes whose connec-
tions are fully observed. Without loss of generality, we can
assume that these nodes are the first n rows and columns
in the adjacency matrix A. Consider the following block

partition:
A A
A_ =
( Ao Ag >’

where Ay € {0,1}"%", Ay € {0,1}*(N=) Ay =
Al,, and Ay € {0, 1}(V=m)x(N=n) " Note that A1y =
AQTl. In our problem, Aj;, Ajo and Ay are observed
while Ao (in red) is missing. We can partition P in the

same way
P11 Py
P= .
( P21 P )
The goal of model fitting is to recover P from the observed

blocks A11, A1 and Asq. The core challenge is to recover
P55 for which no observations are available.

2.2 Low-rank Estimation (LE) Algorithm

A natural approach to the current problem is to use cer-
tain types of low-rank matrix completion (Candes and Plan,
2010; Plan and Vershynin, 2011). However, as shown in Li
et al. (2023), such methods can be slow and suffer from
poor accuracy due to the egocentric missing pattern. Li
et al. (2023) employed an intuitive CUR decomposition
based on the missing structure of A that efficiently com-
putes a low-rank imputation with good empirical perfor-
mance. Yet, the exact reason for this technique’s success is
unclear. We take a more principled approach by leveraging
the low-rank structure precisely, leading to superior perfor-
mance over Li et al. (2023) while also providing theoretical
guarantees.

Specifically, our algorithm is motivated by a self-
consistency property studied by Owen and Perry (2009) for
low-rank matrices.

Lemma 2.1 (Owen and Perry (2009)) For any p X q ma-
trix M with the partition

M2

My )7

My,
M =
( Moy
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Suppose rank(My;) = rank(M), we have

M = M12M;2M21~

As per this lemma, suppose rank(P1;) = K. We can then
exactly compute Pys by P17 and P5. In practice, when
we do not observe Py, and Py, it seems logical to take
A1 and Ay, as the “plug-in” estimators of P17 and P1o.
Yet this naive approach will not work well for two rea-
sons. First, due to the binary nature, the Moore-Penrose in-
verse operator on A 1; is too noisy to be a good approxima-
tion. Second, directly using A, ignores the requirement of
rank(P11) = K needed in Lemma 2.1. An additional step
is thus necessary to resolve the two issues simultaneously.
In brief, we first take the optimal rank- K approximation of
A1, as a smoothing step and then take the Moore-Penrose
of the smoothed estimator. The full procedure is described
in Algorithm 1.

Algorithm 1 (LE imputation for the missing network)
Given egocentrically sampled submatrices Ay, A12, and
the rank K, complete the following steps:

1. Take the singular value decomposition of A1, =
UDVT, where D is the diagonal matrix containing
the singular values of A11 in non-increasing order,
and U and V are orthogonal matrices with each col-
umn being a singular vector.

2. Compute P, = U(K)D(K)V(TK), in which U g
and 'V iy are the matrices of the first K columns of U
and V, respectively, and D () is the diagonal matrix
of only the first K singular values.

3. Set Pyy = AT,PH Aqs.

4. (Optional) If a strict constraint of all entries within
[0, 1] is desired, truncate all values of Pag to [0, 1].

5. Return f’gg.

2.3 Connections and New Insights to Li et al. (2023)

Algorithm 1 turns out to be closely connected to the sub-
space estimation (SE) method of Li et al. (2023). In
particular, suppose we replace the SVD of Steps 1-2 in
Algorithm 1 by the rank-K approximation of A,y =
(A11, A1) and then take the resulting first n columns as
f’u. Using 1511 instead of f’u in other calculations would
lead to the SE method. This connection is a bit surprising
given that the SE method is originally designed for matri-
ces with CUR decomposition (see their Theorem 1), a strict
subset of low-rank matrices. Our current connection, there-
fore, reveals a new interpretation for the SE method — it is
fitting general low-rank models instead of CUR-form mod-
els. As we will show, the LE method comes with theoreti-
cal guarantees for its performance. However, our analysis

could not be extended to the SE method. This is because the
column extraction operation of P complicates the pertur-
bation analysis. Our intuition is that such a step, though it
uses more information from data (by taking As), also re-
quires a strong signal-to-noise ratio. Our empirical experi-
ments support this conjecture (see Section 4). We leave the
theoretical analysis of the SE estimation for future work.

2.4 Other Considerations

Model tuning by cross-validation. The LE algorithm
takes the rank K as a tuning parameter. In practice, we can
tune a proper K via cross-validation as indicated in Li et al.
(2023). Specifically, we randomly hold out p proportion of
the fully observed nodes, denoted by V' C [n] for valida-
tion. The remaining nodes [n] \ V are treated as a smaller
egocentrically sampled partial network, on which the LE
algorithm is applied with a sequence of K. We then eval-
uate the link prediction performance of the LE algorithm
with each K value on the partial network associated with
the hold-out set V. The K value that achieves the high-
est area under the receiver operating characteristic (ROC)
curve (i.e., AUC) is returned. This procedure is repeated
multiple times, and we use the rounded average of the se-
lected ranks as the final rank.

Full matrix recovery. Algorithm 1 only outputs the esti-
mated P,. This is because imputing the missing subnet-
work would be the most widely needed step in analyzing
partial network data, and it would be the unique contri-
bution of our paper. Estimation of the full matrix P, as
a global model estimation, is also available. The other
components P17 and P15 can be estimated together with
the low-rank smoothing of the observed component A s,
by taking its rank-K truncated SVD. Suppose the result-
ing matrix is laobs. We can take its last N — n columns
f’ob&(nﬂ):N as P15 and the first n column as f’u. Then
due to symmetric properties, we set Py = lA)lT2 We can
also force symmetry on Py by taking %(13’11 + Pu)T as
the estimator of P1;. Similar to Step 4 of Algorithm 1, we
can truncate the values of all estimators to [0, 1] as an op-
tional step. Our theoretical properties hold in both cases.
Combined with the output Py of Algorithm 1, the final
estimation of the full matrix P is given by

f,:(l?n 1?12>. (1)
Py Py

As we will show in the next section, P would be a con-
sistent estimator of P. However, in practice, P may not
be an exactly rank-K matrix. We do not think it is nec-
essary to force the rank of P in most applications. How-

ever, if needed, one can force the rank value with the post-
processing of SVD truncation.

Extension to directed and weighted networks. While we
focus on undirected and unweighted networks, the exten-
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sion to directed and weighted networks can be naturally
made. Notice that Lemma 2.1 holds for general asymmetric
matrices. A and P are no longer symmetric for a directed
network. And the inhomogeneous Erdds-Renyi model is
still well defined, with all entries A;; being independently
generated according to F;;. Algorithm 1 can be exactly
applied. Our theoretical results can be similarly derived.

3 THEORETICAL PROPERTIES OF THE
LE ESTIMATOR

As mentioned, one major contribution of our work is the
theoretical guarantee for general low-rank network model
recovery from the partial network, which is not previously
available. We now proceed to introduce our theoretical re-
sults. We first introduce additional notations and our regu-
larity assumptions. Define p* = max;; P;;. For any matrix
M, denote its kth largest singular value by o (M). For two
sequences a,, and b, we will write a,, < b, if there exists
a constant C' such that a,, < Cb,,. Correspondingly, we
write b, 2 a, if a, < b,. Moreover, if a, < b, and

bn < ay, we write a,, ~ by,.
We make the following assumptions.

Assumption A1 (Low-rank recoverable) The rank of the
model satisfies rank(P1;) = rank(P) = K. In particular,

K < Vlogn.
Assumption A2 (Well-conditioned model)
np* ~ ox(P11) < o1(P11) ~ np”
Np* ~ ok (P) < 01(P) ~ Np*

Assumption Al is strictly needed to ensure the validity
of the low-rank recovery on the population matrix P by
Lemma 2.1. In contrast, assumption A2 can be relaxed for
better generality. However, we keep it in the current form
for conciseness and interpretability of our error bound.

Remark 1 Both Al and A2 are indeed motivated by the
general sparse graphon model of Bickel and Chen (2009).
The sparse graphon framework is arguably the most pop-
ular way to generate the P in the inhomogeneous Erdos-
Renyi model (Gao and Ma, 2021; Klopp et al., 2017; Lin
et al., 2020; Mukherjee et al., 2017). In particular, it is not
difficult to see that under the sparse graphon mechanism, if
the true graphon does generate a low-rank P and the ob-
served nodes are uniformly sampled in the egocentric sam-
pling, both Al and A2 hold almost surely. In particular, the
assumptions hold for the SBM, RDPG and their variants.

Remark 2 Meanwhile, we also want to emphasize that we
do not assume that observed subjects form a random sam-
ple out of all nodes. So our theory is still applicable in sit-
uations of nonuniform sampling or even informative sam-
pling, as long as A2 holds. This property is crucial for

real-world applications. We will provide evidence support-
ing this claim in Section 4.

Theorem 3.1 Under assumptions Al and A2, further as-
sume that np* 2 log(n) and K < \/logn . If Pay is the
estimator of Pao produced by Algorithm 1, we have

N N 3/2 N2
P2 — Posllr S VK (n> VEKNp* + —logn

@)
with probability tending to 1.

The requirement for K can be further relaxed with a more
complicated error bound which we will not pursue. For
illustration, consider the following two special cases

1. Suppose n and N are in the same order (n ~ N), we
can see that the error bound on the missing network is
in the order of K \/np* ++/K log n. Since ||Paz | r ~
n+/p*, we know that HP22 — P22||F/||P22HF — 0
and the estimation consistency is guaranteed under the
current assumptions.

2. Suppose K is bounded and np* = log2 n. Then
the error bound is the order of Jx—jlog n. So
|Pas — Pasl|p/||Pazllr — 0 as long as n > N4/5,
Therefore, though our method allows the sampling
proportion to be vanishing, the decaying rate has to
be slow.

The error bound for the full matrix recovery is a straight-
forward extension of Theorem 3.1 as follows.

Corollary 1 Under the assumptions of Theorem 3.1, for
the full matrix estimator P defined in (1), we have

~ N 3/2 N2
|P-P|r SVK (n) \/KNp*—&—?logn
with high probability.

Corollary 1 still has the same order error bound as Theo-
rem 3.1. This indicates that the major estimation error for
the full matrix P is still on the unobserved component Py,.
Because the components P1; and P4 are observed (with
noises) and the model is low-rank. The recovery of these
terms would be easy. The imputation of the unobserved
subnetwork is the most challenging component of the prob-
lem, and it is our emphasized contribution. Similar to the
previous illustration, the corollary indicates that if N ~ n,
for example, the full matrix estimation is consistent.

4 SYNTHETIC EXPERIMENTS

In this section, we evaluate the proposed LE method in link
prediction tasks to predict the unobserved subnetwork un-
der several synthetic network models. Our implementation
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is based on R. We include all the egocentric-suitable meth-
ods mentioned in Section 1 as benchmarks as follows.

1. Subspace estimation method (SE) (Li et al., 2023).
This method is based on the CUR decomposition of
a matrix, as a special case of the low-rank model. The
approach is effective for link prediction with compu-
tational scalability. It does not come with theory.

2. LE+. This method is computed as the average of the
LE and SE estimations. This simple hybrid will be
adaptive to better one of the two methods according to
individual scenarios.

3. The neighborhood smoothing method (NS) for
graphon estimation (Zhang et al., 2017). This method
was originally studied under piecewise-smooth dense
graphon models (Bickel and Chen, 2009), and we
adapt it according to the egocentric sampling. The
piecewise-smooth graphon model family overlaps
with some low-rank models, but the two model classes
are not nested. Its theory in egocentrically sampled
and sparse networks is unclear. The computation is
polynomial in IV but not well suited to networks with
more than a few thousand nodes. We use the Python
implementation provided from Li et al. (2023) for it.

4. ERGM (Handcock and Gile, 2010). We use the model
version with egocentric sampling and geometrically
weighted edgewise shared partnerships introduced by
Hunter (2007). This ERGM configuration works best
in our evaluation. The model is implemented in the
R package ergm (Handcock et al., 2019). Note that
the ERGM does not follow the inhomogeneous Erdos-
Renyi framework in general. This method is the slow-
est among all the benchmarks, and it does not come
with a known theoretical guarantee.

5. SBM model fitting. This approach is adapted to ego-
centric sampling given the model fitting strategy of
Chen and Lei (2018) based on spectral clustering (Lei
and Rinaldo, 2015). It is implemented in the R pack-
age randnet (Li et al., 2021). The model fitting is
known to be consistent if the true model is the SBM.
This model has a high computation speed similar to
that of LE (the proposed method) and SE.

6. DCBM model fitting. Similar to the SBM, the model
fitting strategy of Chen and Lei (2018) is applied
based on the R package randnet.

4.1 Experiment Setup

Following Li et al. (2023), synthetic networks with dimen-
sion N = 500 are generated under four network models.

1. The SBM: In this model, we first randomly as-
sign N nodes to K groups or communities. Let

Z € {0,1}N*K be a community label matrix, where
Z;i. = 1 if and only if the node ¢ belongs to the kth
community. With a matrix symmetric matrix B €
[0, 1]5 K as the “community-connection” matrix, the
probability matrix is P = ZBZT. We set K = 5
in our experiments. This model represents an impor-
tant benchmark scenario because it is strictly low-rank
(K = 5) and we do have a model-based method to fit
it consistently via the SBM fitting. Therefore, LE’s
performance under this model gives a measure of its
adaptivity to specific models.

2. The DCBM: The out-in ratio (), i.e., the ratio of
between-block to within-block edges, is set to be the
ratio of the average between-block edge probability to
within-block edge probability as in the “community-
connection” matrix B in the SBM. Similarly, the num-
ber of communities K = 5. The degree parameters
follow the power-law distribution with o = 0.1 and
lower bound 1.

3. The RDPG (product model). Under this model,
we first generate Z; € [0,1]% for each node i €
[N]. Each coordinate of Z; is generated indepen-
dently from Beta(0.5, 1), following the procedure of
Athreya et al. (2017). The connection probability
between nodes i and j is given by P;; = ZZ;.
This model provides a more general low-rank scenario
compared to the SBM, for which no known consis-
tency guarantees were previously available.

4. The latent space model (distance model). For each
node i € [N], we generate its latent vector Z; ~
N(0,I5). Then the connection probability between
nodes i and j is setby P;; = [1+exp(||Z; — Z;||)] !
where ||Z;, — Z;|| is the Euclidean distance between
Z; and Z;. The P of the distance model is not low-
rank. This model thus serves to test the potential to
approximate full-rank models.

The network generated from the above models may not be
sparse. Therefore, after deriving the probability matrix P,
we further scale it to control the average expected degree
of the generated networks. We focus on networks in our
experiments with expected degrees of 20 and 50.

We evaluate the methods based on the mean squared error
(MSE) on the unobserved probability matrix

MSE = ||[P3; — Pas||Z/(N —n)?.

Additionally, the performance is also measured by the tim-
ing of model fitting, reflecting the computational efficiency.
Since most of the methods involve tuning procedures for
which the configuration and preference can vary across
users, we do not include the tuning procedure in timing
evaluation and only focus on the model-fitting procedure.
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We are also aware that the different methods are imple-
mented differently: NS is implemented in Python; LE, SE,
SBM and DCBM are implemented in R; the major compo-
nent of ERGM fitting is implemented in C and called by R
functions. Overall, we believe the comparison of NS, SE,
LE, and SBM is fair, while the ERGM, if implemented sim-
ilarly, would be even more inferior in speed comparison.
All experiments are independently repeated 100 times.

4.2 Evaluation under Missing Completely At
Random

For egocentric missingness with missing-completely-
at-random (MCAR), we randomly sample p =
{0.1,0.2,0.5,0.9} of the nodes as observed while the
rest as missing. We will investigate the performance of all
methods in configurations of different synthetic models,
expected degrees and p.

4.2.1 Performance Evaluation

Link Prediction Accuracy. Table 1 displays the predic-
tion errors under the SBM, DCBM, product, and distance
models, respectively, with various levels of sampling pro-
portions and sparsity levels.

Under the SBM model, the SBM model-fitting is generally
the best method since it fits the correct model. LE, SE,
LE+ and NS all have similar performances and are inferior
to the SBM. LE is generally more accurate than SE, and its
advantage increases with the sampling proportion p. The
only case when SE is better is when p is very low (0.1)
while the network is dense (50). This coincides with our
theoretical conjecture. LE+ can be better or similar to the
better one of the two.

Under the DCBM model, LE+ is generally the best method,
while LE and SE have similar performance. The compar-
ison between LE, SE and LE+ remains similar. A surpris-
ing result is that DCBM model fitting does not produce the
best result and is inferior to SBM model fitting under low-
degree sparse networks.

Under the product and distance models, LE and LE+ are
essentially the best ones. These experiments demonstrate
the effectiveness of the proposed estimator to fit general
low-rank structures and even beyond that.

One interesting fact may be that SBM performs well under
sparse networks (Deg.= 20) regardless of the generating
model. This may be explained by its parsimony, reducing
the variance in estimation when little information is avail-
able from the observed data.

Timing Comparison. Table 2 summarizes the average
computing time of all the methods under evaluation. The
ERGM is by far the slowest and generally not applicable
for networks with over a few hundred nodes. NS is feasible

Table 1: MSE of Link Prediction Performance on Synthetic
Networks (10™3).

Model | (p.Deg) | LE SE LE+ NS ERGM SBM DCBM
0120 | 281 533 419 779 915 643 316
’ (0.139)  (0.228) (0.101) (0.098) (0.056) (0.467) (0.37)
o150 | A4 25 1z 177 431 6.71 38
’ (0.246) (0.236) (0.149) (0.285) (0.1) (0.161) (0.168)
(02200 | 287 288 o4& — 43 923 241 3126
’ (0.043)  (0.049) (0.031) (0.037) (0.036) (0.043) (0.046)
0250 | TH 76 6.96 102 428 303 825
SBM ’ (0.105)  (0.087) (0.069) (0.165) (0.069) (0.054) (0.133)
0520y | 13 152 135 204 98 0763 196
- (0.016) (0.017) (0.014) (0.021) (0.026) (0.02) (0.021)
Oss0) | 334 A 3 51 34 0823 34
’ (0.027)  (0.05) (0.035) (0.087) (0.129) (0.039) (0.077)
©0920) | 105 143 127 124 105 0548 18I
’ (0.018) (0.041) (0.033) (0.021) (0.108) (0.027) (0.047)
©0950) | 218 382 287 178 455 0584 26
i (0.026)  (0.08) (0.044) (0.035) (0.561) (0.043) (0.078)
0120 | 72 838 621 846 102 984 104
- (0.14)  (0231) (0.138) (0.084) (0.051) (0.67) (0.495)
o150 | 24 164 47 219 502  13.6 163
- (0.229)  (0.208) (0.131) (0.172) (0.112) (0.183) (0.225)
©0220) | 237 4o 343 506 103 367 423
" (0.043) (0.045) (0.028) (0.04) (0.034) (0.065 (0.043)
0250) | 012 867 81 146 503 751 791
DCBM ’ (0.139)  (0.076) (0.079) (0.135) (0.055) (0.183) (0.152)
(0.520) | 168 198 169 276 11 143 108
e (0.022) (0.024) (0.018) (0.023) (0.032) (0.032) (0.027)
©0550) | 29 369 34 893 506 595 3.8
’ (0.028) (0.035) (0.036) (0.107) (0.175) (0.093) (0.148)
0920, | 104 144 123 1.93 31 121 143
’ (0.023) (0.043) (0.028) (0.051) (0.16) (0.06)  (0.07)
©0950) | 225 265 255 468 549 77T 2®
’ (0.052) (0.061) (0.051) (0.196) (0.72) (0.356) (0.098)
©.1.20) 3 316 237 66l 7.15 848 696
’ (0.136) (0.125) (0.085) (0.079) (0.058) (0.646) (0.297)
01s0) | 203 565 52 36 331 649 675
’ (0.049) (0.084) (0.049) (0.126) (0.181) (0.213) (0.104)
©0220) | 17 123 106 344 737 177 2.03
’ (0.011) (0.019) (0.011) (0.025) (0.041) (0.105) (0.049)
©0250) | 3B 339 32 78 i 47 116
product ’ (0.02)  (0.033) (0.024) (0.046) (0.103) (0.029) (0.031)
(0.520) | 0382067 05 158 7TA 085 0968
’ (0.005) (0.01) (0.006) (0.01) (0.029) (0.01) (0.013)
0550) | 199 209 2 474 332 386 3.06
(0.013) (0.021) (0.017) (0.038) (0.065) (0.021) (0.023)
0920, | 0413 0665 0478 109 — 7A4 0988 103
(0.007) (0.021) (0.008) (0.014) (0.072) (0.027) (0.033)
©0950) | 16 2 173 29 338 382 307
’ (0.024)  (0.041) (0.026) (0.042) (0.275) (0.062) (0.055)
©120) | 385 453 338 72 782 90l 832
’ (0.137)  (0213) (0.124) (0.086) (0.061) (0.651) (0.378)
©O.150) | 987 962 908 175 364 10.1 10.7
’ (0.078) (0.092) (0.06) (0.124) (0.15) (0.203) (0.124)
©0220) | 187 18 173 419 786 222 261
’ (0.017)  (0.02) (0.014) (0.03) (0.041) (0.05) (0.035)
0250) | A TAS 708 116 367 847 83
distance (0.028) (0.045) (0.026) (0.051) (0.093) (0.03) (0.044)
©0s20) | 1# 138 131 226 805 153 173
s (0.005) (0.008) (0.006) (0.011) (0.027) (0.01) (0.012)
©0s50) | 622 63 58 872 377 817 735
’ (0.026) (0.026) (0.02) (0.041) (0.054) (0.031) (0.029)
©0o20) | I3 223 208 278 969 253 26l
’ (0.011)  (0.02) (0.016) (0.016) (0.07) (0.017) (0.017)
©0950) | 9% 95 9.1 127 461 34 2
’ (0.049) (0.054) (0.047) (0.051) (0.266) (0.073) (0.062)

but is still slower than the other methods. The comparison
between LE, SE, SBM and DCBM can be different across
network configurations, but overall, they are all compara-
bly efficient in speed.

Summary. Overall, the LE method renders competitive
accuracy in all settings even when the model is full-rank
(but can be approximated by low-rank structures). The
closely related SE method is inferior to LE, except in low-
sampling-high-density cases. LE+ can generally achieve
adaptive performance by combining LE and SE.
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Table 2: Timing Comparison between Benchmark Methods
on Synthetic Networks (In Milliseconds).

example, the first group under p = 0.2 and the positive
setting is sampled at p = §,p = 1.5 x 0.2 = 0.3.

4.3 Evaluation under Missing Not At Random

All methods are also evaluated under the missing-not-at-
random (MNAR) scenario, where the sampling probabil-
ity of a node depends on its degree (in A). Two settings
are evaluated: the positive setting (4), where nodes with
higher degrees are more likely to be sampled; and the neg-
ative setting (—), where nodes with lower degrees are more
likely to be sampled. Based on the adjacency matrix A,
the nodes are divided into three groups by the descending
order of their node degrees by proportions 33%, 34% and
33%. The three groups are sampled at 6. = {1.5,1,0.5}
or 6_ = {0.5,1, 1.5} respectively of p = {0.2,0.5}. For

Model [ (p,Deg) | LE SE LE+ NS ___ERGM _SBM__DCBM Tables 3—4 display the MSE of the prediction error under

7.09 939 932 34 27000 369 6 . . . .

O120 | oS 0on  aah 176 (4D (L @) the four generating models, with varying sampling propor-

378 755 2 33 35000 132 313 : : e :

O150) | o8 oh @dn 0081 (48 (038 (07 qons and sparsny. levels for both. positive ar.ld negative seF-
02.20) (;%3) (Z‘Z; o 1&4) o 5236) 2(1‘2“7)? (317411) (3963) tings. The result is consistent with the findings under uni-
0250, 9.66 118 152 TST 30100 136 317 form sampling. Under the SBM model, SBM still has the
> 2.62 3.08 165 (0.0678) (183)  (1.57) (0913 . .
sBM Gy G0y (o) Qo7 (8 sh O best general performance. Under other settings, LE+ is
0| e ww e owm aw asy dib generally the best method while LE and SE have compa-
03501 ho8)  @308) (199 (©0921) (168) (2.19) (163) rable performance. Timing comparison is not included as
782 2.6 197 307 8080 252 792 e . .
0.9.20) (3.38) (2.88) (3.84)  (0.706)  (88.4) (1.59)  (1.44) it is similar to that of uniform Sampllng.
0950 | 726 792 212 301 18700 288 365
i 176)  (3.67) (@77 (0.109)  (193)  (0.69) (0.915) . L .
120 | 7% 475 119 30 26700 465 489 Table 3: MSE of Link Prediction Performance on Synthetic
- (253) (00665 (263)  (0261) (133) (204 (0981) . . _3
150 | 10T 5381 9.23 138 35600 IS.1 345 Networks, Positive MNAR Setting (107°).
- 331 (173) (177 (0.109)  (216) (0.385) (0.811)
©220) | 16 671 18.1 148 21200 437 521 Model | (pDeg) | LE SE LB+ NS ERGM SBM DCBM

(1.73) (0.141) (2.92) (0.219) (129) (1.52) 2.2) 505 214 189 348 104 172 554

(0.2.50) (05 '17155) (Z‘%) ('26;;6) (Oli‘g@ igggg’ (0';841) 5663) 0220} 0023) (0023 (0016) (0.026) (0.032) (0.026) (0.03)
DCBM 09 28 #6185 1000 202 85 ©250) | 041 611 585 668 417 249 637

O | @9 @29 aen  ©sn w03 (%) SBM | e Tos 137 96 0S8 T8

0550 | 5% 18 N oy e e ©3520 | G014y (001) (0009 (0.008) (0.033) (0.009) (0.012

2.87)  (0.136)  (3.81)  (0.202)  (162)  (1.52) (0.732) (0.014)  (0.01)  (0.009) (0.008) (0.033) (0.009) (0.012)
09.20) 67.3 68.9 185 251 8180 22 68.5 (0.5,50) 3.88 4.19 3.78 3.82 37 1.26 5.94

Q4 (@252 () (0485 (913) (158) (2.99) (0.015) (0.045) (0.023) (0.028) (0.082) (0.038) (0.12)
050 | 689 725 196 249 18900 644 434 ©0220) | 38 339 29 a4 4 297 363

2 (131) Q97  (@A17) (0254 (175 (182 (238) = (0.036) (0.038) (0.025 (0.024) (0.032) (0.032) (0.045)
0120 | 857 533 722 136 26000 486 558 0250 | 726 72 6.92 2 513 661 624
L (3.03) (157 (0.0859) (0.158) (143) (1.07)  (2.09) DCBM L (0.103) (0.055) (0.048) (0.087) (0.069) (0.123) (0.131)

325 8.62 12.1 137 35700 372 427 Cl 1.12 1.26 1.13 2 11.1 1.07 1.16
(0.1,50) (0.5.20)

U 00948)  (298)  (294)  (0.178)  (264)  (0.875) (3.35) - 0.014) (0.012) (0.01) (0.016) (0.039) (0.019) (0.02)
0220 10.5 7.26 11.3 147 21600 54.6 59.9 ©5.50) 24 26 245 6.53 449 45 217

G08 (168 (0.146) (0.186) (127) (1.39) (@33) >0 | (0.018)  (0.024) (0.021) (0.068) (0.105) (0.049) (0.125)

o | S E T e o o |09 D ot T T
product arh @4 @55 012 @227 (0635 (0906) -2, 0.006) (0.012) (0.008) (0.021) (0.032) (0.05 (0.023)

23.1 26.2 449 180 11100 63.5 74.2
(05,20) (2.96) (3.81) (2.36) 0.431) (108) (1.77) (2.31) (0.2,50) 2.8 2.83 2.71 6.33 369 477 3.9

s S e T T — 57 o 0.013) (0.026) (0.015 (0.021) (0.073) (0.033) (0.037)
(05,50) (1.7’4) (1.(;5) (2.3‘8) (0.303) (172) (0.6-68) (2.9‘5) P (0.5,20) 0.392 043 0.392 1 8.39 0702 058

o 55 T 60— T0r—— o5 ¢ (0.003) (0.005) (0.003) (0.005 (0.028) (0.006) (0.006)
092001 065 @81) (16  (0393) (943) (198) (2.67) ©s50) | 14 146 14 319 352 34 2.16
om0 | 03 17 57 27619000936 766 ’ 0.007) (0.013) (0.008) (0.019) (0.066) (0.022) (0.015)
09,50 (2.28) @1 (296)  (0.318)  (170)  (0.613) (2.34) 02.20) 1.58 1.57 1.51 3.52 9.35 1.93 2.07
(0.1.20) 4.85 59 7.03 138 27000 55 55.1 > (0.008) (0.011) (0.007) (0.022) (0.028) (0.048) (0.022)

G TES TS0 428 367 0259 | G @0 001D 00 007 0026 004
(0.1,50) y . . p p distance .

(0.0602) (2.66) (1.49) (0.095) (226) (0.901) (0.814) (0.5.20) 1.13 1.15 1.12 1.73 8.94 1.31 1.3
0220y | 14 749 16.2 147 21500 649 58 > (0.003)  (0.006) (0.003) (0.004) (0.029) (0.006) (0.006)
- (0.0914)  (1.68) (293)  (0.229)  (142)  (2.75)  (2.06) (0.5.50) 55 5.44 517 7.35 38.7 7.08 6.15
02.50) 5.05 5.45 16.2 148 30600 61.4 443 = (0.017) (0.016) (0.016) (0.02) (0.067) (0.019) (0.015)
dist o 0.0567) (0.0868)  (3.1)  (0.147)  (240)  (0.788) (0.976)
istance 05200 18 187 464 183 11100 69 685
- (0.129) (1.61) (3.67) (0.37) (103) (2.52) (1.26)

225 20.4 45.1 183 21800 91.1 67.9 : :
©550) | 58 a7 @D 0295 (166 (085D (O Summary. Overall, no extr'em.e change in perff)rmance is
0920 | 083 67.1 164 250 7700 TI0  96.5 observed across the tested missingness mechanisms. This

(2.65) (0.687) (5.2) (0.561) 91.2) (2.73) (1.53) . . . .

o5 | 689 7ad 158 246 19100 108 726 indicates that non-uniform sampling does not severely af-
o (2.47) (3.76) 2.9) (0.283) (174) (0.75) (1.94)

fect our method LE and any benchmark methods, support-
ing our theoretical claim that our method is applicable for
non-uniform sampling as long as A1 holds.

S LINK PREDICTION IN REAL-WORLD
NETWORKS

In this section, we evaluate our approach to link predic-
tion on real-world networks. We consider three examples:
two social networks and one airline traffic network. We
wish to demonstrate the merits and limitations of our ap-
proach. In the first two examples, our method outperforms
other benchmarks, indicating that the low-rank model as-
sumption is reasonable. In the third example, the NS
method works better. As such, the network may not be
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Table 4: MSE of Link Prediction Performance on Synthetic
Networks, Negative MNAR Setting (10~2).

Model | (pDeg) | LE SE LB+ NS ERGM SBM DCBM
0220 | A1 4l 337 559 816 378 426
=01 0.039) (0.083) (0.044) (0.03) (0.02) (0.109) (0.069)
©02s0) | 113 95 91 18 25 48 989
SBM P9 1 (0.198) (0095 (0.093) (0.139) (0.056) (0.121) (0.158)
©Osa0) | 23 275 233 439 101 175 308
> 0.03)  (0.041) (0.027) (0.036) (0.025) (0.048) (0.028)
(©Oss0) | 399 623 559 188 539 0638 546
2201 0057) (0.069) (0.048) (0.183) (0.089) (0.047) (0.124)
0220 | 302 472 395 585 933 4} SO0
’ 0.04)  (0.052) (0.029) (0.03) (0.022) (0.072) (0.071)
(©02s0) | 112 995 — odl 18 92 935 964
DCBM P01 0.144)  (0.093) (0.075)  (0.1)  (0.054) (0.199) (0.214)
©Osa0)| 249 287 238 402 113 220 304
2201 0027) 0029)  (0.02) (0.026) (0.032) (0.039) (0.048)
©Oss0) | A7 532 479 154 579 966 513
2201 0034)  (0.05)  (0.035) (0.118) (0.163) (0.106) (0.27)
©0220) | 13 154 135 392 582 324 26l
=201 0012) 0.025) (0.017) (0.025) (0.022) (0.217) (0.064)
0250 | A2 403 385 om 29 514 489
P91 0022)  (0.03)  (0.024) (0.034) (0.057) (0.051) (0.046)
product 0520, | 0566 I 0861 224 646 133 149
O3200 | 0006) (0.013) (0.008) (©O11) (0.021) (0.029) (0.015)
(©ss0) | 278 28 276 858 31 532 4I6
2201 0015 (0.025) (0.018) (0.033) (0.056) (0.036) (0.03)
0220 | 23 237 206 453 648 34l 33
=201 0023) (0.044) (0.018) (0.026) (0.021) (0.146) (0.068)
(©2s0) | 83 827 794 135 329 901 913
distance P9 1 0.029) (0.047) (0.025) (0.034) (0.051) (0.043) (0.046)
©0s20) | 17 179 168 301 734 198 231
=220 1 0.008) (0.014) (0.009) (0.009) (0.021) (0.017) (0.017)
©ss0)| 73 774 69 133 375 105 908
: 0.03) (0.035) (0.026) (0.037) (0.05 (0.038) (0.028)

well-approximated with a low-rank structure, whereas the
graphon structure underlying the NS method might be more
suitable.

5.1 Data Information

The first network is the Enron email network of Priebe
et al. (2005) between 184 employees of the Enron com-
pany; edges indicate employees’ email communication.
The second network is a faculty friendship network be-
tween 81 faculty members at a UK university (Nepusz
et al., 2008). The last network contains 755 airports in
the United States, based on the U.S. Bureau of Transporta-
tion Statistics, where two airports are connected if there
is a direct passenger flight between them. For simplicity,
we ignore edge directions and weights. The average node
density, betweenness centrality, and closeness centrality of
each node are shown in Figure 1. Overall, the airport net-
work exhibits much stronger heterogeneity in topological
features. The nodes are, on average, much less connected
and much less central, while special hub airports provide
highly dense and central connections. Such strong topo-
logical heterogeneity suggests that the low-rank model may
not be able to approximate this network well, as might oc-
cur in real-world situations (Seshadhri et al., 2020). As
demonstrated in the link prediction evaluation, this topo-
logical variation does lead to a preference for different link
prediction strategies.

5.2 Performance Evaluation

Contrary to our synthetic experiments, it is impossible to
evaluate the MSE of the missing probability matrix. In-
stead, we specifically evaluate the methods based on their
link prediction accuracy on the unobserved entries (As2).
Because the entries in A5, are binary, for a given threshold
on values of f’gg, we get

#{Correctly predicted edges}
#{Total existing edges}
#{Incorrectly predicted edges}
#{Total existing non-edges}

TPR =

FPR =

Varying the threshold and plotting the true positive rate
(TPR) against the false positive rate (FPR) produces a ROC
curve. We evaluate the link prediction accuracy using the
area under the ROC curves (AUC) as our metric for link
prediction performance. ROC curve is a commonly used
performance metric in link prediction problems (Liben-
Nowell and Kleinberg, 2007; Zhao et al., 2017).
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Figure 1: Attributes of Real Networks; Node Degree (Left),
Betweenness (Middle), and Closeness (Right).

5.2.1 Evaluation under MAR

The same sampling mechanism as for synthetic networks is
applied. Results for the three networks are summarized in
Table 5. For the Enron and UK faculty networks, LE+ has
the best prediction performance among all methods. Mean-
while, LE has comparable performance to LE+ and is bet-
ter than other methods. The low-rank model is thus suit-
able for these two networks. The NS method also delivers
reasonably good performance thanks to its generality. For
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the U.S. airport network, under low sampling proportions
p = {0.1,0.2}, LE, SE, LE+, NS and DCBM are similar
and are inferior to the SBM method. Under higher sam-
pling proportions p = {0.5,0.9}, the NS method has the
best performance, while the other benchmark methods per-
form similarly. This pattern implies that all low-rank meth-
ods perform no better than a block approximation while
missing additional structures which the NS method might
integrate. Such an observation conveys that low-rank mod-
els may not be feasible for this airport network. Also, this
is consistent with the synthetic experiments where SBM
performs the best under very low sampling proportions due
to its simplicity. The missing values for the UK faculty
network under the sampling proportion p = 0.1 is not pro-
duced because it has a small network size (/N = 81) inap-
propriate for such a low value of p.

Table 5: Predictive AUC on Three Networks.

Dataset P LE SE LE+ NS ERGM SBM DCBM
01 0.7 0.699 0.724 0.634 0.508 0.663 0.68
© | (0.004) (0.005) (0.005) (0.004) (0.003) (0.003) (0.004)
0.784 0.774 0.803 0.718 0.508 0.713 0.741

enron 02| 0003 (0.003) (0.004) (0.004) (0.003) (0.004) (0.004)
0s | 0874 085 0882 0824 0527 0774  0.788

=] (0.003) (0.002) (0.002) (0.003) (0.004) (0.003) (0.003)

0o | 0903 0882 0909 0845 064 0805 0828

7| (0.005) (0.005) (0.004) (0.006) (0.009) (0.009) (0.007)

0a| 0728 0701 0731 063 051 0657 0667

““ ] (0.007)  (0.006) (0.009) (0.007) (0.002) (0.008) (0.006)

0s | 0837 0792 0842 077 0516 0724 0739

UK faculty | " | (0.004) (0.005) (0.004) (0.005) (0.003) (0.007) (0.007)
0.845  0.768 0.846  0.785 0.606 0.733 0.747

091 0012) (0016) (0012) (0016) (0014 (0.02) (0.018)

01| 076 0776 07755 0742 0502 0835 0798
| (0.006) (0.006) (0.006) (0.005) (;0.001) (0.002) (0.003)

0o | 0822 082 0837 0817 0505 0859 0837
US airports (0.003) (0.004) (0.003) (0.002) (;0.001) (0.002) (0.002)
0s | 0878 089 0893 0893 0527 0893 0876
<] (0.003) (0.004) (0.003) (0.002) (0.001) (0.002) (0.002)

0o | 089 09I 092 0931 0535 0903 0884

(0.006) (0.005) (0.005) (0.005) (0.004) (0.007) (0.008)

5.2.2 Evaluation under MNAR

Real network results again suggest that our method is ap-
plicable for non-uniform sampling as long as assumption
Al holds. Results for the three networks are summarized
in Tables 6-7. Similar to the synthetic experiments, when
compared with the uniform-sampling setting, the positive
setting, which puts more weight on high-degree nodes, im-
proves the performance of all methods and the negative set-
ting does the opposite.

6 DISCUSSION

We have introduced an LE algorithm to fit low-rank models
on egocentrically sampled partial networks. The approach
is computationally efficient and presents theoretical guar-
antees for its correctness. Our technique is the first known
consistent method for general low-rank models under ego-
centric sampling, and it does not require “missing com-
pletely at random” assumptions. It can accurately predict
missing links when the true model is low-rank or can be

Table 6: Predictive AUC on Three Networks, Positive
MNAR Setting.

Dataset P LE SE LE+ NS ERGM SBM  DCBM
02 0.803 0.792 0.822 0.743 0.514 0.728 0.748
1 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

0.85 0.838 0.864 0.802 0.538 0.776 0.746

enron

05 (0.004) (0.005) (0.004) (0.003) (0.004) (0.005) (0.005)

02 0.747 0.732 0.774  0.657 0.512 0.662 0.686

UK faculty 1 (0.004) (0.006) (0.004) (0.005) (0.002) (0.008) (0.006)
05 0.802 0.777 0.801 0.732 0.524 0.736 0.733

" | (0.008) (0.008) (0.007) (0.006) (0.004) (0.006) (0.008)

02 0.833 0.836 0.84 0.832 0.508 0.866 0.842

US airports (0.003) (0.005) (0.004) (0.002) (<0.001) (0.002) (0.002)

0.833 0849  0.845  0.835 0.526 0.843 0.787

05 (0.003) (0.003) (0.003) (0.003) (0.001) (0.004) (0.006)

Table 7: Predictive AUC on Three Networks, Negative
MNAR Setting.

Dataset P LE SE LE+ NS ERGM SBM  DCBM
02 0.752 0.749 0.781 0.699 0.501 0.697 0.723
1 (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
0.855 0.827 0.867 0.807 0.514 0.753 0.777

enron
0.5

0.2

UK faculty 05| 083 0763 0833 0768 0526 0703 0737
21 0.004) (0.005 (0.004) (0.005 (0.003) (0.007) (0.006)

02| 0773 0784 0788 0743 0503 0851 0817

US airports 0.006) (0.007) (0.006) (0.006) (<0.001) (0.002) (0.003)

0.871 0.887 0.892 0.882 0.513 0.883 0.879

05 (0.002) (0.003) (0.003) (0.002)  (0.001) (0:002) (0.002)

approximated by low-rank structures. However, we want
to stress that one may have difficulty determining whether
a partial network is from a low-rank model in practice; no
single mode of link prediction works well in all cases. A
practically preferable approach involves combining meth-
ods to achieve more adaptive performance in various situ-
ations, as studied by Ghasemian et al. (2020); Li and Le
(2021); Peixoto (2018); Yao et al. (2021). Notably, even
in this ensemble setting, having a strong individual method
that works well in numerous situations is still necessary.
We believe the proposed LE approach greatly contributes
to potential candidates as one such model.

The proposed method can be extended in several direc-
tions. One limitation of our theory is the strict low-rank
assumption; theoretical properties for approximately low-
rank models are thus far unknown. A more general the-
ory in these scenarios would largely expand the method’s
scope. As another example, if a sequence of evolving net-
works is observed (subject to egocentric missingness), a
critical but open question concerns how to fit a dynamic
network model compatible with this missingness. We will
leave this and other investigations for future work.

There are several applications in which we can potentially
embed the current method. For example, graph learning
methods such as GNN (Zhou et al., 2020) take networks
as input, and our method can help to handle the semi-
supervised prediction setting when the training data are
only partially observed. Another application is to use our
theory to study the privacy-preserving algorithms for net-
work data (Hehir et al., 2021).
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1 Proofs

In this section, we present the derivation of the error bound in the main paper. In our analysis, we will say some event
happens with high probability if it happens with probability tending to 1 as N — oo. We use C' and c as generic universal
constants that may vary case by case. Let P, A, P be as defined as in the main paper, we introduce the following notations:

* ||-|| denotes the spectral norm

* ||| # denotes the Frobenius norm

* p* = max;;p;;

o A\p(M) is the k-th largest eigenvalue of the matrix M

* 0,(M) is the k-th largest singular value of the matrix M

Lemma 1.1 (Owen and Perry (2009)). For any p X q matrix M with the partition

M1 Myo
M = ,
( Mz Moo

Suppose rank(My1) = rank(M), we have
My, = M;oM7; My,

Lemma 1.2 (Lei and Rinaldo (2015)). Let P be the probability under the inhomogeneous Erdds-Renyi model and A be
the adjacency matrix from P. Assume that np* > clogn for some constant ¢ > 0. There exists a constant C such that

A —P|| < Cvnp* (0

with high probability.

Lemma 1.3 (Yu, Wang, and Samworth (2015)). Given a symmetric matrix P. Suppose rank(P) = K and let its eigende-
composition be USUT, where ¥ = diag(\1,--- , A\i) contains all the eigenvalues in nonincreasing order. For another
symmetric matrix A in the same dimension, suppose its rank K eigendecomposition is given by UXUT. There exists an
orthogonal matrix O € RE*K such that

3VK|A - PJ|
i '

|0 -U|p < )

Lemma 1.4 (Athreya et al. (2017)). Let P be the probability under the inhomogeneous Erdos-Renyi model with rank(P) =
K and A be the adjacency matrix from P. With the notations of Lemma 1.3, and the same orthogonal matrix O, we have

0% — 20||r < C(K? +logn) 3)

with high probability.
Assumption A1 (Low-rank recoverable). The rank of the model satisifes rank(P1;) = rank(P) = K.
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Assumption A2 (Well-conditioned model). There exists a constant 1 > 0 such that

1
m np* <ox(P11) < o1(P11) <9 -np”

NP < 0x(P) < u(P) < 0 N

Assumption Al is strictly needed to ensure the validity of the low-rank recovery on the population matrix P by Lemma 1.1.
In contrast, assumptions A2 can be relaxed for better generality. However, we keep it in the current form for conciseness
and interpretability of our error bound. Moreover, both Al and A2 are indeed motivated by the general sparse graphon
model of Bickel and Chen (2009) and are easy to hold when the egocentric sampling is done randomly on the nodes under
many low-rank models. In particular, we have the following proposition

Theorem 1.5. Under assumptions Al and A2, further assume that np* > clogn and K < c+/logn for some constant
c > 0, we have

~ N 3/2 N2
P22 — Pos||r < CVEK (n) \/KNp*—kFlogn 4)

for some constant C' > 0 with high probability.

For illustration, consider the following two special cases

1. Suppose n and N are in the same order, we can see that the error bound on the missing network is in the order
of K\/np* + vV Klogn. Since ||Paz||r ~ ny/p*, we know that |Pay — Pas||r/||Paz||r — 0 and the estimation
consistency is guaranteed under the current assumptions.

2. Suppose K is bounded and np* = log?n. Then the error bound is in the order of ]T\Z—jlogn. So

|Pas — Pasl|p/||Pa2llr — 0 as long as n > N*/5. Therefore, though our method allows the sampling propor-
tion to be vanishing, the decaying rate has to be slow.

Proof of Theorem 1.5. Consider the prediction error of the probability matrix P,y — Pay. We start with the spectral norm
bound. By using the subproductivity of the spectral norm and triangular inequality, we have
[Pz — P =[|A2i P, Aty — Py Py Py

<||(A21 — Po1)P P + [[Ag (P Ay — PPy
<||A21 = Por[[|PF, P12l + | A1 [ [P Arz — PPy
<[|Ag1 = P [[PT, P12l + A2 [P A1z — P AL + Az ||| P A1 — P Pro|
<[|Az1 — Por [ [PT 1P 12| + | A1 [P | A1z — Pra|l + [[Ax [P}, — P ||
<A1z — Piof[|PF,[| 2P 2]l + [[A12 — Piall) + (I[Por] + A1z — Pia]) [IPF, = PHI - (5
—T +IT. )

Denote the eigendecompositions up to K of P17 and A;; by Py = U U7 and A = Uxu” respectively. Note that
since rank(P) = K, the eigendecomposition of P is exact. Note that, since the singular values match the eigenvalues up
to their signs, we have P{;, = UX U7 and P], = UX~'U7. We try to control the terms separately.

We want to control the concentration of each component of the A matrix partition. In particular, we are taking the joint
event of Lemma 1.4, and Lemma 1.2 for A and A;;. Notice that here np* > clogn indicates that Np* > clog N due
to the monotonicity of logn/n. Under this condition, therefore, we have ||A1; — P11]| < Cy/np* and ||As; — Poy|| <
|A — P|| < Cy/Np*. Under this event, we also have

IAe(A11) — A (P11)| < [JA1 —Pyq|| < vVp*, 1 <k < K.

Therefore, due to the assumption that A (P11) > ¢¥np* and np* > clogn, for sufficiently large n, we have

1
Ak (A11)| > §|/\K(P11)\-



Upper bound of term 7.
1

" k(P

Also notice that Py5 is a submatrix of P so |P12]] < ¥ Np*. So we have

Pl SV

T = ||A1z — Pio|l[|PF ] 2P 12|l + A1z — Pra)) < N —VNp*.

Upper bound of term Z7. Let O € REXK be an orthogonal matrix in Lemmas 1.3 and 1.4. Consider the term
P, — P
1P}, — Pi|| =[O0 — Us~'UT|
=00 "= UT —ux~luT|
<O -U|loT="UT| +|uoT="1uT —uz~luT|
<O -U||oT=" 10T+ [uoT=t00'UT —UuOo "= toU"|
+ HUOTE*IOUT —-uUzlu’
<[00 — U[||£~"| + [UOTE10[|0TTT —UT ||+ |U[|0TE'0 - =~|||U]
<200~ U[|E' |+ |07 0 -5
<2|TO -~ U||E'| + £ 0 - 0=~
<200 - U[|=~!| + ==~ [|0x — SO
=[I=7" (2100 ~ U] + |=![|0x — =O)

1 K logn
np np np

Therefore, we have

~ N 3/2 N2
T = (|Pall + A1z — Pio|)* [P, - PH | < C <<n> VENp™ + —5 10gn> '

Note that this bound for ZZ dominates that for Z. Substituting both bounds for Z and ZZ into (5) leads to
~ N 3/2 N2
[P22 — Poof < C (n) VENp* + —glogn | (7

Finally, notice that rarlk(ng) and rank(Ps2) = K, which indicates that I‘al’lk(lsgg — Pgy) < 2K. So we have the
Frobenius norm bound

N N 3/2 N2
[Pa2 — Paslr < CVK (n> vV KNp* + oy logn | . ¥

Finally, notice that if even the truncation to [0, 1] is applied, this process would not increase the error at all entries of P,
so the error bound still holds. O

The error bound for the full matrix recovery is a straightforward extension of Theorem 1.5.

Corollary 1. Under the assumptions of Theorem 1.5, for the full matrix estimator P, we have

~ N 3/2 N2
P -P|r <CVK (n) \/KNp*—l—Flogn

with high probability.
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Proof of Corollary 1.

[P —Pl% = P11 — Pua|[F + 2|[Pr2 — Praf|7 + P22 — Pas -
<2|[P1y — Puill3 +2[P12 — Pual[f + [Pz — Pooll
< 2|[Pops — PosF + [Pz — Poalf3
< 2K|[Pobs — Pos|® + | P22 — Poa| 3.

For the first term, under the same high probability event of Theorem 1.5, we have

IPobs — Pobs|| < [|Pobs — Agbs|| + [[Pobs — Aos||
< ok (Aobs) + [|Pobs — Aobsl|
< [[Pobs — Aobs|| + 0k (Pobs) + [[Pobs — Aobs||
<2[P - A

< C/Np*.

Combining this result with Theorem 1.5, we have

. N\* N\* N\* N\*
|P-P|E<C (KNp* +K? <n) Np* + K (n> log? n> <’ <K2 <n) Np* + K <n> log®n

So we have
N N 3/2 N2
P —Pllr <CVK <n> VENp* + —5 logn

under the event. From the proof, it can also be seen that the major error for the full matrix estimation is still on the
unobserved component Po,.

Finally, notice that if even the truncation to [0, 1] is applied, this process would not increase the error at all entries of P, so
the error bound still holds.

O
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