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Abstract

The statistical modeling of random networks has

been widely used to uncover interaction mecha-

nisms in complex systems and to predict unob-

served links in real-world networks. In many ap-

plications, network connections are collected via

egocentric sampling: a subset of nodes is sam-

pled first, after which all links involving this sub-

set are recorded; all other information is miss-

ing. Compared with the assumption of ªuni-

formly missing at randomº, egocentrically sam-

pled partial networks require specially designed

modeling strategies. Current statistical methods

are either computationally infeasible or based

on intuitive designs without theoretical justifica-

tion. Here, we propose an approach to fit gen-

eral low-rank models for egocentrically sampled

networks, which include several popular network

models. This method is based on graph spec-

tral properties and is computationally efficient

for large-scale networks. It results in consistent

recovery of missing subnetworks due to egocen-

tric sampling for sparse networks. To our knowl-

edge, this method offers the first theoretical guar-

antee for egocentric partial network estimation

in the scope of low-rank models. We evaluate

the technique on several synthetic and real-world

networks and show that it delivers competitive

performance in link prediction tasks.

1 INTRODUCTION

Massive network data that capture complicated dynamics

and interactions in human society, the economy, ecosys-

tems, and biology are now available (Goldenberg et al.,

2010; Newman, 2018). The past 15 years have witnessed

substantial progress in random network models within the
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statistics field. Associated efforts have provided count-

less model options to analyze network data with well-

established theories (Bickel and Chen, 2009; Gao and Ma,

2021; Hoff et al., 2002; Rohe et al., 2011). Drawing in-

sights from complex networks is fundamental to many sci-

entific challenges (Kolaczyk and CsÂardi, 2014; Newman,

2018), such as understanding community structures (Karrer

and Newman, 2011), predicting new links (Liben-Nowell

and Kleinberg, 2007; Zhao et al., 2017), and modeling peer

effects in downstream tasks (Le and Li, 2020).

Missing data is a commonly encountered issue in data anal-

ysis (Little and Rubin, 2019) and plagues network prob-

lems, especially in social networks. Network connections

are frequently obtained through surveys or sampling pro-

cesses. One application of the network model, link pre-

diction, is intrinsically embedded in missing data scenarios

(Kumar et al., 2020; MartÂınez et al., 2016). Moreover, the

missingness in network problems often exhibits unique pat-

terns and calls for specialized modeling strategies.

We consider the missingness from egocentric sampling in

this paper. Egocentric sampling is a widely used mecha-

nism for acquiring network data (Alatas et al., 2016; Ali

and Dwyer, 2009; Arnaboldi et al., 2013; Bandiera and Ra-

sul, 2006). Under this approach, a subset of subjects is

randomly sampled and all their connections are recorded.

Any connections between subjects outside the sample are

missing. Handcock and Gile (2010) designs a model based

on the exponential random graph model (ERGM), which

can handle egocentrically missing data. However, their

model fitting is not computationally feasible for moderately

sized networks in general, though its computation can be

improved in certain settings (Krivitsky and Morris, 2017).

As we will show, this class of models is too restrictive

to make effective link predictions. Li et al. (2023) intro-

duced an algorithm motivated by the CUR decomposition

in computational mathematics (Drineas et al., 2006), which

is computationally efficient and demonstrates strong empir-

ical performance on link prediction tasks. However, the un-

derlying statistical model fitted by their method is unclear.

Theoretical guarantees are not available for the aforemen-

tioned methods. The only family with known theoretical

model-fitting correctness is the stochastic block model fam-

ily, implicitly available from Chen and Lei (2018), includ-



Fitting Low-rank Models on Egocentrically Sampled Partial Networks

ing Chandrasekhar and Lewis (2011) as a special case.

This paper proposes a method to estimate general low-rank

random network models based on egocentrically sampled

partial networks. Our technique can consistently estimate

network models, even for sparse networks whose average

node degree is sublinear in sample size. To our knowledge,

this approach is the first to feature theoretical guarantees for

general low-rank models on egocentrically sampled partial

networks. Our results cover many special cases, most of

which previously had no known model-fitting theory; ex-

amples include the setting of Li et al. (2023), along with

the random dot product model (Young and Scheinerman,

2007) and its generalization (Rubin-Delanchy et al., 2017).

As an unexpected byproduct, our method provides a new

insight into the method of Li et al. (2023): while Li et al.

(2023) motivated their algorithm by a CUR format, their

method indeed fits a general low-rank structure. Addition-

ally, our algorithm is based on the spectral decomposition

of the partial network adjacency matrix, a technique that

is extremely efficient for computation on large-scale net-

works. We empirically demonstrate that our approach dis-

plays competitive performance in dealing with link predic-

tion problems.

2 METHODOLOGY

2.1 Setup

Notations. We will use bold font capital letters, such as

A, to denote a matrix. Akk′ will be used to denote a

submatrix of A (to be defined later), while the element at

the ith row and jth column of A will be denoted by Aij .

Let AT and A
+ be the transpose and Moore-Penrose in-

verse of A, respectively. Furthermore, ∥A∥F is the Frobe-

nius norm of A. For any positive integer n, we define

[n] = {1, 2, · · · , n}.

Let N be the total number of nodes in the full network,

indexed by i = 1, · · · , n. We can represent the network

by its adjacency matrix A ∈ {0, 1}N×N , where Aij = 1
if and only if nodes i and j are connected in the network.

We consider undirected and unweighted networks for pre-

sentation simplicity. In this case, we have A
T = A. In

Section 2.4, we briefly discuss how to extend our method

to handle more general networks. We will study the statisti-

cal properties under the so-called ªinhomogeneous ErdÈos-

Renyi frameworkº. Specifically, we assume there exists a

probability matrix P ∈ [0, 1]N×N such that

Aij ∼ Bernoulli(Pij), i < j independently.

This framework is arguably one of the most prominently

applied for random network modeling. Under it, the as-

sumed network structures are incorporated into matrix P .

We assume a low-rank model for our study and define

K = rank(P ) ≪ N . The family of low-rank models in-

cludes many prevalent random network models such as the

stochastic block model (SBM), the degree-corrected block

model (DCBM) and their generalizations (Airoldi et al.,

2008; Holland et al., 1983; Jin et al., 2017; Karrer and

Newman, 2011; Li et al., 2022; Sengupta and Chen, 2018)

as well as the random dot product model (RDPG) and its

variants (Rubin-Delanchy et al., 2017; Young and Schein-

erman, 2007). Indeed, as studied by Chatterjee (2015),

most popular random network models are approximately

low-rank.

When the network is only partially observed from egocen-

tric sampling, suppose there are n nodes whose connec-

tions are fully observed. Without loss of generality, we can

assume that these nodes are the first n rows and columns

in the adjacency matrix A. Consider the following block

partition:

A =

(

A11 A12

A21 A22

)

,

where A11 ∈ {0, 1}n×n, A12 ∈ {0, 1}n×(N−n), A21 =
A

⊺

12, and A22 ∈ {0, 1}(N−n)×(N−n). Note that A12 =
A

T
21. In our problem, A11, A12 and A21 are observed

while A22 (in red) is missing. We can partition P in the

same way

P =

(

P11 P12

P21 P22

)

.

The goal of model fitting is to recover P from the observed

blocks A11, A12 and A21. The core challenge is to recover

P22 for which no observations are available.

2.2 Low-rank Estimation (LE) Algorithm

A natural approach to the current problem is to use cer-

tain types of low-rank matrix completion (Candès and Plan,

2010; Plan and Vershynin, 2011). However, as shown in Li

et al. (2023), such methods can be slow and suffer from

poor accuracy due to the egocentric missing pattern. Li

et al. (2023) employed an intuitive CUR decomposition

based on the missing structure of A that efficiently com-

putes a low-rank imputation with good empirical perfor-

mance. Yet, the exact reason for this technique’s success is

unclear. We take a more principled approach by leveraging

the low-rank structure precisely, leading to superior perfor-

mance over Li et al. (2023) while also providing theoretical

guarantees.

Specifically, our algorithm is motivated by a self-

consistency property studied by Owen and Perry (2009) for

low-rank matrices.

Lemma 2.1 (Owen and Perry (2009)) For any p× q ma-

trix M with the partition

M =

(

M11 M12

M21 M22

)

,
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Suppose rank(M11) = rank(M), we have

M11 = M12M
+
22M21.

As per this lemma, suppose rank(P11) = K. We can then

exactly compute P22 by P11 and P12. In practice, when

we do not observe P11 and P12, it seems logical to take

A11 and A12 as the ªplug-inº estimators of P11 and P12.

Yet this naive approach will not work well for two rea-

sons. First, due to the binary nature, the Moore-Penrose in-

verse operator on A11 is too noisy to be a good approxima-

tion. Second, directly using A11 ignores the requirement of

rank(P11) = K needed in Lemma 2.1. An additional step

is thus necessary to resolve the two issues simultaneously.

In brief, we first take the optimal rank-K approximation of

A11 as a smoothing step and then take the Moore-Penrose

of the smoothed estimator. The full procedure is described

in Algorithm 1.

Algorithm 1 (LE imputation for the missing network)

Given egocentrically sampled submatrices A11, A12, and

the rank K, complete the following steps:

1. Take the singular value decomposition of A11 =
UDV

T , where D is the diagonal matrix containing

the singular values of A11 in non-increasing order,

and U and V are orthogonal matrices with each col-

umn being a singular vector.

2. Compute P̃11 = U(K)D(K)V
T
(K), in which U(K)

and V(K) are the matrices of the first K columns of U

and V, respectively, and D(K) is the diagonal matrix

of only the first K singular values.

3. Set P̂22 = A
T
12P̃

+
11A12.

4. (Optional) If a strict constraint of all entries within

[0, 1] is desired, truncate all values of P̂22 to [0, 1].

5. Return P̂22.

2.3 Connections and New Insights to Li et al. (2023)

Algorithm 1 turns out to be closely connected to the sub-

space estimation (SE) method of Li et al. (2023). In

particular, suppose we replace the SVD of Steps 1-2 in

Algorithm 1 by the rank-K approximation of Aobs =
(A11,A12) and then take the resulting first n columns as

P̂11. Using P̂11 instead of P̃11 in other calculations would

lead to the SE method. This connection is a bit surprising

given that the SE method is originally designed for matri-

ces with CUR decomposition (see their Theorem 1), a strict

subset of low-rank matrices. Our current connection, there-

fore, reveals a new interpretation for the SE method ± it is

fitting general low-rank models instead of CUR-form mod-

els. As we will show, the LE method comes with theoreti-

cal guarantees for its performance. However, our analysis

could not be extended to the SE method. This is because the

column extraction operation of P̂11 complicates the pertur-

bation analysis. Our intuition is that such a step, though it

uses more information from data (by taking Aobs), also re-

quires a strong signal-to-noise ratio. Our empirical experi-

ments support this conjecture (see Section 4). We leave the

theoretical analysis of the SE estimation for future work.

2.4 Other Considerations

Model tuning by cross-validation. The LE algorithm

takes the rank K as a tuning parameter. In practice, we can

tune a proper K via cross-validation as indicated in Li et al.

(2023). Specifically, we randomly hold out ρ proportion of

the fully observed nodes, denoted by V ⊂ [n] for valida-

tion. The remaining nodes [n] \ V are treated as a smaller

egocentrically sampled partial network, on which the LE

algorithm is applied with a sequence of K. We then eval-

uate the link prediction performance of the LE algorithm

with each K value on the partial network associated with

the hold-out set V . The K value that achieves the high-

est area under the receiver operating characteristic (ROC)

curve (i.e., AUC) is returned. This procedure is repeated

multiple times, and we use the rounded average of the se-

lected ranks as the final rank.

Full matrix recovery. Algorithm 1 only outputs the esti-

mated P̂22. This is because imputing the missing subnet-

work would be the most widely needed step in analyzing

partial network data, and it would be the unique contri-

bution of our paper. Estimation of the full matrix P, as

a global model estimation, is also available. The other

components P11 and P12 can be estimated together with

the low-rank smoothing of the observed component Aobs,

by taking its rank-K truncated SVD. Suppose the result-

ing matrix is P̃obs. We can take its last N − n columns

P̃obs,(n+1):N as P̂12 and the first n column as P̂11. Then

due to symmetric properties, we set P̂21 = P̂
T
12. We can

also force symmetry on P̂11 by taking 1
2 (P̂11 + P̂11)

T as

the estimator of P11. Similar to Step 4 of Algorithm 1, we

can truncate the values of all estimators to [0, 1] as an op-

tional step. Our theoretical properties hold in both cases.

Combined with the output P̂22 of Algorithm 1, the final

estimation of the full matrix P is given by

P̂ =

(

P̂11 P̂12

P̂21 P̂22

)

. (1)

As we will show in the next section, P̂ would be a con-

sistent estimator of P. However, in practice, P may not

be an exactly rank-K matrix. We do not think it is nec-

essary to force the rank of P̂ in most applications. How-

ever, if needed, one can force the rank value with the post-

processing of SVD truncation.

Extension to directed and weighted networks. While we

focus on undirected and unweighted networks, the exten-
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sion to directed and weighted networks can be naturally

made. Notice that Lemma 2.1 holds for general asymmetric

matrices. A and P are no longer symmetric for a directed

network. And the inhomogeneous ErdÈos-Renyi model is

still well defined, with all entries Aij being independently

generated according to Pij . Algorithm 1 can be exactly

applied. Our theoretical results can be similarly derived.

3 THEORETICAL PROPERTIES OF THE

LE ESTIMATOR

As mentioned, one major contribution of our work is the

theoretical guarantee for general low-rank network model

recovery from the partial network, which is not previously

available. We now proceed to introduce our theoretical re-

sults. We first introduce additional notations and our regu-

larity assumptions. Define p∗ = maxij Pij . For any matrix

M, denote its kth largest singular value by σk(M). For two

sequences an and bn, we will write an ≲ bn if there exists

a constant C such that an ≤ Cbn. Correspondingly, we

write bn ≳ an if an ≲ bn. Moreover, if an ≲ bn and

bn ≲ an, we write an ∼ bn.

We make the following assumptions.

Assumption A1 (Low-rank recoverable) The rank of the

model satisfies rank(P11) = rank(P) = K. In particular,

K ≲
√
log n.

Assumption A2 (Well-conditioned model)

np∗ ∼ σK(P11) ≤ σ1(P11) ∼ np∗

Np∗ ∼ σK(P) ≤ σ1(P) ∼ Np∗

Assumption A1 is strictly needed to ensure the validity

of the low-rank recovery on the population matrix P by

Lemma 2.1. In contrast, assumption A2 can be relaxed for

better generality. However, we keep it in the current form

for conciseness and interpretability of our error bound.

Remark 1 Both A1 and A2 are indeed motivated by the

general sparse graphon model of Bickel and Chen (2009).

The sparse graphon framework is arguably the most pop-

ular way to generate the P in the inhomogeneous ErdÈos-

Renyi model (Gao and Ma, 2021; Klopp et al., 2017; Lin

et al., 2020; Mukherjee et al., 2017). In particular, it is not

difficult to see that under the sparse graphon mechanism, if

the true graphon does generate a low-rank P and the ob-

served nodes are uniformly sampled in the egocentric sam-

pling, both A1 and A2 hold almost surely. In particular, the

assumptions hold for the SBM, RDPG and their variants.

Remark 2 Meanwhile, we also want to emphasize that we

do not assume that observed subjects form a random sam-

ple out of all nodes. So our theory is still applicable in sit-

uations of nonuniform sampling or even informative sam-

pling, as long as A2 holds. This property is crucial for

real-world applications. We will provide evidence support-

ing this claim in Section 4.

Theorem 3.1 Under assumptions A1 and A2, further as-

sume that np∗ ≳ log(n) and K ≲
√
log n . If P̂22 is the

estimator of P22 produced by Algorithm 1, we have

∥P̂22 −P22∥F ≲
√
K

(

(

N

n

)3/2
√

KNp∗ +
N2

n2
log n

)

(2)

with probability tending to 1.

The requirement for K can be further relaxed with a more

complicated error bound which we will not pursue. For

illustration, consider the following two special cases

1. Suppose n and N are in the same order (n ∼ N ), we

can see that the error bound on the missing network is

in the order of K
√
np∗+

√
K log n. Since ∥P22∥F ∼

n
√
p∗, we know that ∥P̂22 −P22∥F /∥P22∥F → 0

and the estimation consistency is guaranteed under the

current assumptions.

2. Suppose K is bounded and np∗ = log2 n. Then

the error bound is the order of N2

n2 log n. So

∥P̂22 −P22∥F /∥P22∥F → 0 as long as n ≫ N4/5.

Therefore, though our method allows the sampling

proportion to be vanishing, the decaying rate has to

be slow.

The error bound for the full matrix recovery is a straight-

forward extension of Theorem 3.1 as follows.

Corollary 1 Under the assumptions of Theorem 3.1, for

the full matrix estimator P̂ defined in (1), we have

∥P̂−P∥F ≲
√
K

(

(

N

n

)3/2
√

KNp∗ +
N2

n2
log n

)

with high probability.

Corollary 1 still has the same order error bound as Theo-

rem 3.1. This indicates that the major estimation error for

the full matrix P is still on the unobserved component P22.

Because the components P11 and P12 are observed (with

noises) and the model is low-rank. The recovery of these

terms would be easy. The imputation of the unobserved

subnetwork is the most challenging component of the prob-

lem, and it is our emphasized contribution. Similar to the

previous illustration, the corollary indicates that if N ∼ n,

for example, the full matrix estimation is consistent.

4 SYNTHETIC EXPERIMENTS

In this section, we evaluate the proposed LE method in link

prediction tasks to predict the unobserved subnetwork un-

der several synthetic network models. Our implementation
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is based on R. We include all the egocentric-suitable meth-

ods mentioned in Section 1 as benchmarks as follows.

1. Subspace estimation method (SE) (Li et al., 2023).

This method is based on the CUR decomposition of

a matrix, as a special case of the low-rank model. The

approach is effective for link prediction with compu-

tational scalability. It does not come with theory.

2. LE+. This method is computed as the average of the

LE and SE estimations. This simple hybrid will be

adaptive to better one of the two methods according to

individual scenarios.

3. The neighborhood smoothing method (NS) for

graphon estimation (Zhang et al., 2017). This method

was originally studied under piecewise-smooth dense

graphon models (Bickel and Chen, 2009), and we

adapt it according to the egocentric sampling. The

piecewise-smooth graphon model family overlaps

with some low-rank models, but the two model classes

are not nested. Its theory in egocentrically sampled

and sparse networks is unclear. The computation is

polynomial in N but not well suited to networks with

more than a few thousand nodes. We use the Python

implementation provided from Li et al. (2023) for it.

4. ERGM (Handcock and Gile, 2010). We use the model

version with egocentric sampling and geometrically

weighted edgewise shared partnerships introduced by

Hunter (2007). This ERGM configuration works best

in our evaluation. The model is implemented in the

R package ergm (Handcock et al., 2019). Note that

the ERGM does not follow the inhomogeneous ErdÈos-

Renyi framework in general. This method is the slow-

est among all the benchmarks, and it does not come

with a known theoretical guarantee.

5. SBM model fitting. This approach is adapted to ego-

centric sampling given the model fitting strategy of

Chen and Lei (2018) based on spectral clustering (Lei

and Rinaldo, 2015). It is implemented in the R pack-

age randnet (Li et al., 2021). The model fitting is

known to be consistent if the true model is the SBM.

This model has a high computation speed similar to

that of LE (the proposed method) and SE.

6. DCBM model fitting. Similar to the SBM, the model

fitting strategy of Chen and Lei (2018) is applied

based on the R package randnet.

4.1 Experiment Setup

Following Li et al. (2023), synthetic networks with dimen-

sion N = 500 are generated under four network models.

1. The SBM: In this model, we first randomly as-

sign N nodes to K groups or communities. Let

Z ∈ {0, 1}N×K be a community label matrix, where

Zik = 1 if and only if the node i belongs to the kth

community. With a matrix symmetric matrix B ∈
[0, 1]K×K as the ªcommunity-connectionº matrix, the

probability matrix is P = ZBZ
T . We set K = 5

in our experiments. This model represents an impor-

tant benchmark scenario because it is strictly low-rank

(K = 5) and we do have a model-based method to fit

it consistently via the SBM fitting. Therefore, LE’s

performance under this model gives a measure of its

adaptivity to specific models.

2. The DCBM: The out-in ratio (β), i.e., the ratio of

between-block to within-block edges, is set to be the

ratio of the average between-block edge probability to

within-block edge probability as in the ºcommunity-

connectionº matrix B in the SBM. Similarly, the num-

ber of communities K = 5. The degree parameters

follow the power-law distribution with α = 0.1 and

lower bound 1.

3. The RDPG (product model). Under this model,

we first generate Zi ∈ [0, 1]K for each node i ∈
[N ]. Each coordinate of Zi is generated indepen-

dently from Beta(0.5, 1), following the procedure of

Athreya et al. (2017). The connection probability

between nodes i and j is given by Pij = Z⊤

i Zj .

This model provides a more general low-rank scenario

compared to the SBM, for which no known consis-

tency guarantees were previously available.

4. The latent space model (distance model). For each

node i ∈ [N ], we generate its latent vector Zi ∼
N(0, I5). Then the connection probability between

nodes i and j is set by Pij = [1+exp(∥Zi − Zj∥)]−1

where ∥Zi − Zj∥ is the Euclidean distance between

Zi and Zj . The P of the distance model is not low-

rank. This model thus serves to test the potential to

approximate full-rank models.

The network generated from the above models may not be

sparse. Therefore, after deriving the probability matrix P,

we further scale it to control the average expected degree

of the generated networks. We focus on networks in our

experiments with expected degrees of 20 and 50.

We evaluate the methods based on the mean squared error

(MSE) on the unobserved probability matrix

MSE = ∥P̂22 −P22∥2F /(N − n)2.

Additionally, the performance is also measured by the tim-

ing of model fitting, reflecting the computational efficiency.

Since most of the methods involve tuning procedures for

which the configuration and preference can vary across

users, we do not include the tuning procedure in timing

evaluation and only focus on the model-fitting procedure.



Fitting Low-rank Models on Egocentrically Sampled Partial Networks

We are also aware that the different methods are imple-

mented differently: NS is implemented in Python; LE, SE,

SBM and DCBM are implemented in R; the major compo-

nent of ERGM fitting is implemented in C and called by R

functions. Overall, we believe the comparison of NS, SE,

LE, and SBM is fair, while the ERGM, if implemented sim-

ilarly, would be even more inferior in speed comparison.

All experiments are independently repeated 100 times.

4.2 Evaluation under Missing Completely At

Random

For egocentric missingness with missing-completely-

at-random (MCAR), we randomly sample ρ =
{0.1, 0.2, 0.5, 0.9} of the nodes as observed while the

rest as missing. We will investigate the performance of all

methods in configurations of different synthetic models,

expected degrees and ρ.

4.2.1 Performance Evaluation

Link Prediction Accuracy. Table 1 displays the predic-

tion errors under the SBM, DCBM, product, and distance

models, respectively, with various levels of sampling pro-

portions and sparsity levels.

Under the SBM model, the SBM model-fitting is generally

the best method since it fits the correct model. LE, SE,

LE+ and NS all have similar performances and are inferior

to the SBM. LE is generally more accurate than SE, and its

advantage increases with the sampling proportion ρ. The

only case when SE is better is when ρ is very low (0.1)

while the network is dense (50). This coincides with our

theoretical conjecture. LE+ can be better or similar to the

better one of the two.

Under the DCBM model, LE+ is generally the best method,

while LE and SE have similar performance. The compar-

ison between LE, SE and LE+ remains similar. A surpris-

ing result is that DCBM model fitting does not produce the

best result and is inferior to SBM model fitting under low-

degree sparse networks.

Under the product and distance models, LE and LE+ are

essentially the best ones. These experiments demonstrate

the effectiveness of the proposed estimator to fit general

low-rank structures and even beyond that.

One interesting fact may be that SBM performs well under

sparse networks (Deg.= 20) regardless of the generating

model. This may be explained by its parsimony, reducing

the variance in estimation when little information is avail-

able from the observed data.

Timing Comparison. Table 2 summarizes the average

computing time of all the methods under evaluation. The

ERGM is by far the slowest and generally not applicable

for networks with over a few hundred nodes. NS is feasible

Table 1: MSE of Link Prediction Performance on Synthetic

Networks (10−3).

Model (ρ,Deg.) LE SE LE+ NS ERGM SBM DCBM

SBM

(0.1,20)
4.81 5.33 4.19 7.79 9.15 6.43 8.16

(0.139) (0.228) (0.101) (0.098) (0.056) (0.467) (0.37)

(0.1,50)
14.4 12.5 11.2 17.7 43.1 6.71 13.8

(0.246) (0.236) (0.149) (0.285) (0.1) (0.161) (0.168)

(0.2,20)
2.87 2.88 2.44 4.51 9.23 2.41 3.26

(0.043) (0.049) (0.031) (0.037) (0.036) (0.043) (0.046)

(0.2,50)
7.44 7.6 6.96 10.2 42.8 3.03 8.25

(0.105) (0.087) (0.069) (0.165) (0.069) (0.054) (0.133)

(0.5,20)
1.35 1.52 1.35 2.04 9.8 0.763 1.96

(0.016) (0.017) (0.014) (0.021) (0.026) (0.02) (0.021)

(0.5,50)
3.54 4.02 3.64 5.1 43.4 0.823 3.4

(0.027) (0.05) (0.035) (0.087) (0.129) (0.039) (0.077)

(0.9,20)
1.05 1.43 1.27 1.24 10.5 0.548 1.81

(0.018) (0.041) (0.033) (0.021) (0.108) (0.027) (0.047)

(0.9,50)
2.18 3.82 2.87 1.78 45.5 0.584 2.6

(0.026) (0.08) (0.044) (0.035) (0.561) (0.043) (0.078)

DCBM

(0.1,20)
7.2 8.38 6.21 8.46 10.2 9.84 10.4

(0.14) (0.231) (0.138) (0.084) (0.051) (0.67) (0.495)

(0.1,50)
20.4 16.4 14.7 21.9 50.2 13.6 16.3

(0.229) (0.208) (0.131) (0.172) (0.112) (0.183) (0.225)

(0.2,20)
4.37 4.01 3.43 5.06 10.3 3.67 4.23

(0.043) (0.045) (0.028) (0.04) (0.034) (0.065) (0.043)

(0.2,50)
9.12 8.67 8.1 14.6 50.3 7.51 7.91

(0.139) (0.076) (0.079) (0.135) (0.055) (0.183) (0.152)

(0.5,20)
1.68 1.98 1.69 2.76 11.1 1.43 1.98

(0.022) (0.024) (0.018) (0.023) (0.032) (0.032) (0.027)

(0.5,50)
3.39 3.69 3.46 8.93 50.6 5.95 3.08

(0.028) (0.035) (0.036) (0.107) (0.175) (0.093) (0.148)

(0.9,20)
1.04 1.44 1.23 1.93 13.1 1.21 1.43

(0.023) (0.043) (0.028) (0.051) (0.16) (0.06) (0.07)

(0.9,50)
2.25 2.65 2.53 4.68 54.9 7.73 2.82

(0.052) (0.061) (0.051) (0.196) (0.72) (0.356) (0.098)

product

(0.1,20)
3 3.16 2.37 6.61 7.15 8.48 6.96

(0.136) (0.125) (0.085) (0.079) (0.058) (0.646) (0.297)

(0.1,50)
5.63 5.65 5.12 13.6 33.1 6.49 6.75

(0.049) (0.084) (0.049) (0.126) (0.181) (0.213) (0.104)

(0.2,20)
1.17 1.23 1.06 3.44 7.37 1.77 2.03

(0.011) (0.019) (0.011) (0.025) (0.041) (0.105) (0.049)

(0.2,50)
3.33 3.39 3.24 7.84 33.1 4.7 4.16

(0.02) (0.033) (0.024) (0.046) (0.103) (0.029) (0.031)

(0.5,20)
0.582 0.67 0.592 1.54 7.44 0.855 0.968

(0.005) (0.01) (0.006) (0.01) (0.029) (0.01) (0.013)

(0.5,50)
1.99 2.09 2 4.74 33.2 3.86 3.06

(0.013) (0.021) (0.017) (0.038) (0.065) (0.021) (0.023)

(0.9,20)
0.413 0.665 0.478 1.09 7.44 0.988 1.03

(0.007) (0.021) (0.008) (0.014) (0.072) (0.027) (0.033)

(0.9,50)
1.6 2 1.73 2.9 33.8 3.82 3.07

(0.024) (0.041) (0.026) (0.042) (0.275) (0.062) (0.055)

distance

(0.1,20)
3.85 4.53 3.38 7.2 7.82 9.01 8.32

(0.137) (0.213) (0.124) (0.086) (0.061) (0.651) (0.378)

(0.1,50)
9.87 9.62 9.08 17.5 36.4 10.1 10.7

(0.078) (0.092) (0.06) (0.124) (0.15) (0.203) (0.124)

(0.2,20)
1.87 1.86 1.73 4.19 7.86 2.22 2.61

(0.017) (0.02) (0.014) (0.03) (0.041) (0.05) (0.035)

(0.2,50)
7.49 7.45 7.18 11.6 36.7 8.47 8.3

(0.028) (0.045) (0.026) (0.051) (0.093) (0.03) (0.044)

(0.5,20)
1.34 1.38 1.31 2.26 8.05 1.53 1.73

(0.005) (0.008) (0.006) (0.011) (0.027) (0.01) (0.012)

(0.5,50)
6.22 6.34 5.8 8.72 37.7 8.17 7.35

(0.026) (0.026) (0.02) (0.041) (0.054) (0.031) (0.029)

(0.9,20)
2.13 2.23 2.18 2.78 9.69 2.53 2.61

(0.011) (0.02) (0.016) (0.016) (0.07) (0.017) (0.017)

(0.9,50)
9.49 9.5 9.1 12.7 46.1 13.4 12

(0.049) (0.054) (0.047) (0.051) (0.266) (0.073) (0.062)

but is still slower than the other methods. The comparison

between LE, SE, SBM and DCBM can be different across

network configurations, but overall, they are all compara-

bly efficient in speed.

Summary. Overall, the LE method renders competitive

accuracy in all settings even when the model is full-rank

(but can be approximated by low-rank structures). The

closely related SE method is inferior to LE, except in low-

sampling-high-density cases. LE+ can generally achieve

adaptive performance by combining LE and SE.
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Table 2: Timing Comparison between Benchmark Methods

on Synthetic Networks (In Milliseconds).

Model (ρ,Deg.) LE SE LE+ NS ERGM SBM DCBM

SBM

(0.1,20)
7.09 9.39 9.32 134 27000 36.9 46

(2.5) (2.97) (1.71) (0.176) (147) (1.1) (2)

(0.1,50)
3.78 7.55 11.2 133 35000 13.2 31.3

(0.108) (2.4) (2.42) (0.0811) (248) (0.387) (0.744)

(0.2,20)
10.9 7.55 12 150 21400 37.1 49.4

(3.07) (1.63) (0.144) (0.0346) (127) (1.1) (2.09)

(0.2,50)
9.66 11.8 15.2 151 30100 13.6 31.7

(2.62) (3.08) (1.65) (0.0678) (183) (1.57) (0.913)

(0.5,20)
24.3 28.6 46.9 197 11400 19.1 52.2

(2.9) (4.05) (2.24) (0.0479) (114) (1.52) (1.14)

(0.5,50)
26.8 25.6 50.8 197 21400 19.8 25.6

(2.98) (3.08) (1.99) (0.0921) (168) (2.19) (1.63)

(0.9,20)
78.2 72.6 197 307 8080 25.2 79.2

(3.38) (2.88) (3.84) (0.706) (88.4) (1.59) (1.44)

(0.9,50)
72.6 79.2 212 311 18700 28.8 36.5

(1.76) (3.67) (4.77) (0.109) (193) (0.69) (0.915)

DCBM

(0.1,20)
7.56 4.75 11.9 139 26700 46.5 48.9

(2.53) (0.0665) (2.63) (0.261) (133) (2.04) (0.981)

(0.1,50)
10.1 5.81 9.23 138 35600 18.1 34.5

(3.31) (1.73) (1.77) (0.109) (216) (0.385) (0.811)

(0.2,20)
8.16 6.71 18.1 148 21200 43.7 52.1

(1.73) (0.141) (2.92) (0.219) (129) (1.52) (2.2)

(0.2,50)
5.75 7.57 16.6 147 30500 17.4 36.6

(0.115) (1.76) (2.9) (0.166) (207) (0.281) (1.68)

(0.5,20)
20.9 24.8 44.6 185 11200 21.2 49.5

(2.78) (3.23) (1.67) (0.257) (121) (0.3) (1.96)

(0.5,50)
20.9 18 51.2 185 21600 26 27.8

(2.87) (0.136) (3.81) (0.202) (162) (1.52) (0.732)

(0.9,20)
67.3 68.9 185 251 8180 22 68.5

(2.44) (2.52) (3) (0.485) (91.3) (1.58) (2.99)

(0.9,50)
68.9 72.5 196 249 18900 64.4 43.4

(1.31) (2.97) (4.17) (0.254) (175) (1.82) (2.38)

product

(0.1,20)
8.57 5.33 7.22 136 26900 48.6 55.8

(3.03) (1.57) (0.0859) (0.158) (143) (1.07) (2.09)

(0.1,50)
3.25 8.62 12.1 137 35700 37.2 42.7

(0.0948) (2.98) (2.94) (0.178) (264) (0.875) (3.35)

(0.2,20)
10.5 7.26 11.3 147 21600 54.6 59.9

(3.08) (1.68) (0.146) (0.186) (127) (1.39) (2.33)

(0.2,50)
6.7 8.75 14.6 147 30800 54 42.2

(1.71) (2.43) (2.55) (0.12) (227) (0.635) (0.906)

(0.5,20)
23.1 26.2 44.9 180 11100 63.5 74.2

(2.96) (3.81) (2.36) (0.431) (108) (1.77) (2.31)

(0.5,50)
19.5 17.9 44.9 180 21900 80.8 69.2

(1.74) (1.65) (2.38) (0.303) (172) (0.668) (2.95)

(0.9,20)
66.6 65.8 188 247 7690 102 98.6

(2.65) (2.81) (3.16) (0.393) (94.3) (1.98) (2.67)

(0.9,50)
66.3 64.2 187 246 19200 93.6 76.6

(2.28) (2.1) (2.96) (0.318) (170) (0.613) (2.34)

distance

(0.1,20)
4.85 5.9 7.03 138 27000 55 55.1

(1.47) (1.74) (0.164) (0.249) (133) (2.12) (0.827)

(0.1,50)
3.22 8.28 7.65 137 35600 42.8 36.7

(0.0602) (2.66) (1.49) (0.095) (226) (0.901) (0.814)

(0.2,20)
5.14 7.49 16.2 147 21500 64.9 58

(0.0914) (1.68) (2.93) (0.229) (142) (2.75) (2.06)

(0.2,50)
5.05 5.45 16.2 148 30600 61.4 44.3

(0.0567) (0.0868) (3.1) (0.147) (240) (0.788) (0.976)

(0.5,20)
18 18.7 46.4 183 11100 69 68.5

(0.129) (1.61) (3.67) (0.37) (103) (2.52) (1.26)

(0.5,50)
22.5 20.4 45.1 183 21800 91.1 67.9

(2.56) (2.27) (3.47) (0.295) (166) (0.851) (2.07)

(0.9,20)
68.3 67.1 164 250 7700 110 96.5

(2.65) (0.687) (5.2) (0.561) (91.2) (2.73) (1.53)

(0.9,50)
68.9 74.4 158 246 19100 108 72.6

(2.47) (3.76) (2.9) (0.283) (174) (0.75) (1.94)

4.3 Evaluation under Missing Not At Random

All methods are also evaluated under the missing-not-at-

random (MNAR) scenario, where the sampling probabil-

ity of a node depends on its degree (in A). Two settings

are evaluated: the positive setting (+), where nodes with

higher degrees are more likely to be sampled; and the neg-

ative setting (−), where nodes with lower degrees are more

likely to be sampled. Based on the adjacency matrix A,

the nodes are divided into three groups by the descending

order of their node degrees by proportions 33%, 34% and

33%. The three groups are sampled at δ+ = {1.5, 1, 0.5}
or δ− = {0.5, 1, 1.5} respectively of ρ = {0.2, 0.5}. For

example, the first group under ρ = 0.2 and the positive

setting is sampled at ρ̃ = δ+ρ = 1.5× 0.2 = 0.3.

Tables 3±4 display the MSE of the prediction error under

the four generating models, with varying sampling propor-

tions and sparsity levels for both positive and negative set-

tings. The result is consistent with the findings under uni-

form sampling. Under the SBM model, SBM still has the

best general performance. Under other settings, LE+ is

generally the best method while LE and SE have compa-

rable performance. Timing comparison is not included as

it is similar to that of uniform sampling.

Table 3: MSE of Link Prediction Performance on Synthetic

Networks, Positive MNAR Setting (10−3).

Model (ρ,Deg.) LE SE LE+ NS ERGM SBM DCBM

SBM

(0.2,20)
2.05 2.14 1.89 3.48 10.4 1.72 2.54

(0.023) (0.023) (0.016) (0.026) (0.032) (0.026) (0.03)

(0.2,50)
6.41 6.11 5.85 6.68 41.7 2.49 6.37

(0.083) (0.061) (0.048) (0.062) (0.13) (0.035) (0.117)

(0.5,20)
1.12 1.06 1.04 1.37 9.66 0.549 1.14

(0.014) (0.01) (0.009) (0.008) (0.033) (0.009) (0.012)

(0.5,50)
3.88 4.19 3.78 3.82 37 1.26 5.94

(0.015) (0.045) (0.023) (0.028) (0.082) (0.038) (0.12)

DCBM

(0.2,20)
3.6 3.39 2.9 4.4 11.4 2.97 3.63

(0.036) (0.038) (0.025) (0.024) (0.032) (0.032) (0.045)

(0.2,50)
7.26 7.2 6.92 12 51.3 6.61 6.24

(0.103) (0.055) (0.048) (0.087) (0.069) (0.123) (0.131)

(0.5,20)
1.12 1.26 1.13 2 11.1 1.07 1.16

(0.014) (0.012) (0.01) (0.016) (0.039) (0.019) (0.02)

(0.5,50)
2.4 2.6 2.45 6.53 44.9 4.5 2.17

(0.018) (0.024) (0.021) (0.068) (0.105) (0.049) (0.125)

product

(0.2,20)
0.93 0.961 0.87 2.91 8.94 1.39 1.46

(0.006) (0.012) (0.008) (0.021) (0.032) (0.05) (0.023)

(0.2,50)
2.8 2.83 2.71 6.33 36.9 4.77 3.9

(0.013) (0.026) (0.015) (0.021) (0.073) (0.033) (0.037)

(0.5,20)
0.392 0.43 0.392 1 8.39 0.702 0.58

(0.003) (0.005) (0.003) (0.005) (0.028) (0.006) (0.006)

(0.5,50)
1.4 1.46 1.4 3.19 35.2 3.4 2.16

(0.007) (0.013) (0.008) (0.019) (0.066) (0.022) (0.015)

distance

(0.2,20)
1.58 1.57 1.51 3.52 9.35 1.93 2.07

(0.008) (0.011) (0.007) (0.022) (0.028) (0.048) (0.022)

(0.2,50)
6.8 6.74 6.54 9.92 40.2 8.26 7.7

(0.02) (0.026) (0.017) (0.02) (0.073) (0.026) (0.044)

(0.5,20)
1.13 1.15 1.12 1.73 8.94 1.31 1.3

(0.003) (0.006) (0.003) (0.004) (0.029) (0.006) (0.006)

(0.5,50)
5.5 5.44 5.17 7.35 38.7 7.08 6.15

(0.017) (0.016) (0.016) (0.02) (0.067) (0.019) (0.015)

Summary. Overall, no extreme change in performance is

observed across the tested missingness mechanisms. This

indicates that non-uniform sampling does not severely af-

fect our method LE and any benchmark methods, support-

ing our theoretical claim that our method is applicable for

non-uniform sampling as long as A1 holds.

5 LINK PREDICTION IN REAL-WORLD

NETWORKS

In this section, we evaluate our approach to link predic-

tion on real-world networks. We consider three examples:

two social networks and one airline traffic network. We

wish to demonstrate the merits and limitations of our ap-

proach. In the first two examples, our method outperforms

other benchmarks, indicating that the low-rank model as-

sumption is reasonable. In the third example, the NS

method works better. As such, the network may not be
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Table 4: MSE of Link Prediction Performance on Synthetic

Networks, Negative MNAR Setting (10−3).

Model (ρ,Deg.) LE SE LE+ NS ERGM SBM DCBM

SBM

(0.2,20)
4.13 4.1 3.37 5.59 8.16 3.78 4.26

(0.039) (0.083) (0.044) (0.03) (0.02) (0.109) (0.069)

(0.2,50)
11.3 9.5 9.1 18 42.5 4.85 9.89

(0.198) (0.095) (0.093) (0.139) (0.056) (0.121) (0.158)

(0.5,20)
2.55 2.75 2.33 4.39 10.1 1.75 3.08

(0.03) (0.041) (0.027) (0.036) (0.025) (0.048) (0.028)

(0.5,50)
5.49 6.23 5.59 18.8 53.9 0.638 5.46

(0.057) (0.069) (0.048) (0.183) (0.089) (0.047) (0.124)

DCBM

(0.2,20)
5.02 4.72 3.95 5.85 9.33 4.23 5.01

(0.04) (0.052) (0.029) (0.03) (0.022) (0.072) (0.071)

(0.2,50)
11.2 9.95 9.41 18 49.2 9.35 9.64

(0.144) (0.093) (0.075) (0.1) (0.054) (0.199) (0.214)

(0.5,20)
2.49 2.87 2.38 4.02 11.3 2.21 3.04

(0.027) (0.029) (0.02) (0.026) (0.032) (0.039) (0.048)

(0.5,50)
4.7 5.32 4.79 15.4 57.9 9.66 5.13

(0.034) (0.05) (0.035) (0.118) (0.163) (0.106) (0.27)

product

(0.2,20)
1.5 1.54 1.35 3.92 5.82 3.24 2.61

(0.012) (0.025) (0.017) (0.025) (0.022) (0.217) (0.064)

(0.2,50)
4.2 4.03 3.85 9.84 29 5.14 4.89

(0.022) (0.03) (0.024) (0.034) (0.057) (0.051) (0.046)

(0.5,20)
0.866 1 0.861 2.24 6.46 1.33 1.49

(0.006) (0.013) (0.008) (0.011) (0.021) (0.029) (0.015)

(0.5,50)
2.78 2.88 2.76 8.58 32.1 5.32 4.16

(0.015) (0.025) (0.018) (0.033) (0.056) (0.036) (0.03)

distance

(0.2,20)
2.3 2.37 2.06 4.53 6.48 3.31 3.3

(0.023) (0.044) (0.018) (0.026) (0.021) (0.146) (0.068)

(0.2,50)
8.33 8.27 7.94 13.5 32.9 9.01 9.13

(0.029) (0.047) (0.025) (0.034) (0.051) (0.043) (0.046)

(0.5,20)
1.7 1.79 1.68 3.01 7.34 1.98 2.31

(0.008) (0.014) (0.009) (0.009) (0.021) (0.017) (0.017)

(0.5,50)
7.55 7.74 6.96 13.3 37.5 10.5 9.08

(0.03) (0.035) (0.026) (0.037) (0.05) (0.038) (0.028)

well-approximated with a low-rank structure, whereas the

graphon structure underlying the NS method might be more

suitable.

5.1 Data Information

The first network is the Enron email network of Priebe

et al. (2005) between 184 employees of the Enron com-

pany; edges indicate employees’ email communication.

The second network is a faculty friendship network be-

tween 81 faculty members at a UK university (Nepusz

et al., 2008). The last network contains 755 airports in

the United States, based on the U.S. Bureau of Transporta-

tion Statistics, where two airports are connected if there

is a direct passenger flight between them. For simplicity,

we ignore edge directions and weights. The average node

density, betweenness centrality, and closeness centrality of

each node are shown in Figure 1. Overall, the airport net-

work exhibits much stronger heterogeneity in topological

features. The nodes are, on average, much less connected

and much less central, while special hub airports provide

highly dense and central connections. Such strong topo-

logical heterogeneity suggests that the low-rank model may

not be able to approximate this network well, as might oc-

cur in real-world situations (Seshadhri et al., 2020). As

demonstrated in the link prediction evaluation, this topo-

logical variation does lead to a preference for different link

prediction strategies.

5.2 Performance Evaluation

Contrary to our synthetic experiments, it is impossible to

evaluate the MSE of the missing probability matrix. In-

stead, we specifically evaluate the methods based on their

link prediction accuracy on the unobserved entries (A22).

Because the entries in A22 are binary, for a given threshold

on values of P̂22, we get

TPR =
#{Correctly predicted edges}

#{Total existing edges}

FPR =
#{Incorrectly predicted edges}
#{Total existing non-edges} .

Varying the threshold and plotting the true positive rate

(TPR) against the false positive rate (FPR) produces a ROC

curve. We evaluate the link prediction accuracy using the

area under the ROC curves (AUC) as our metric for link

prediction performance. ROC curve is a commonly used

performance metric in link prediction problems (Liben-

Nowell and Kleinberg, 2007; Zhao et al., 2017).

Figure 1: Attributes of Real Networks; Node Degree (Left),

Betweenness (Middle), and Closeness (Right).

5.2.1 Evaluation under MAR

The same sampling mechanism as for synthetic networks is

applied. Results for the three networks are summarized in

Table 5. For the Enron and UK faculty networks, LE+ has

the best prediction performance among all methods. Mean-

while, LE has comparable performance to LE+ and is bet-

ter than other methods. The low-rank model is thus suit-

able for these two networks. The NS method also delivers

reasonably good performance thanks to its generality. For
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the U.S. airport network, under low sampling proportions

ρ = {0.1, 0.2}, LE, SE, LE+, NS and DCBM are similar

and are inferior to the SBM method. Under higher sam-

pling proportions ρ = {0.5, 0.9}, the NS method has the

best performance, while the other benchmark methods per-

form similarly. This pattern implies that all low-rank meth-

ods perform no better than a block approximation while

missing additional structures which the NS method might

integrate. Such an observation conveys that low-rank mod-

els may not be feasible for this airport network. Also, this

is consistent with the synthetic experiments where SBM

performs the best under very low sampling proportions due

to its simplicity. The missing values for the UK faculty

network under the sampling proportion ρ = 0.1 is not pro-

duced because it has a small network size (N = 81) inap-

propriate for such a low value of ρ.

Table 5: Predictive AUC on Three Networks.

Dataset ρ LE SE LE+ NS ERGM SBM DCBM

enron

0.1
0.7 0.699 0.724 0.634 0.508 0.663 0.68

(0.004) (0.005) (0.005) (0.004) (0.003) (0.003) (0.004)

0.2
0.784 0.774 0.803 0.718 0.508 0.713 0.741

(0.003) (0.003) (0.004) (0.004) (0.003) (0.004) (0.004)

0.5
0.874 0.85 0.882 0.824 0.527 0.774 0.788

(0.003) (0.002) (0.002) (0.003) (0.004) (0.003) (0.003)

0.9
0.903 0.882 0.909 0.845 0.64 0.805 0.828

(0.005) (0.005) (0.004) (0.006) (0.009) (0.009) (0.007)

UK faculty

0.2
0.728 0.701 0.731 0.631 0.51 0.657 0.667

(0.007) (0.006) (0.009) (0.007) (0.002) (0.008) (0.006)

0.5
0.837 0.792 0.842 0.77 0.516 0.724 0.739

(0.004) (0.005) (0.004) (0.005) (0.003) (0.007) (0.007)

0.9
0.845 0.768 0.846 0.785 0.606 0.733 0.747

(0.012) (0.016) (0.012) (0.016) (0.014) (0.02) (0.018)

US airports

0.1
0.76 0.776 0.775 0.742 0.502 0.835 0.798

(0.006) (0.006) (0.006) (0.005) (¡0.001) (0.002) (0.003)

0.2
0.822 0.82 0.837 0.817 0.505 0.859 0.837

(0.003) (0.004) (0.003) (0.002) (¡0.001) (0.002) (0.002)

0.5
0.878 0.89 0.893 0.893 0.527 0.893 0.876

(0.003) (0.004) (0.003) (0.002) (0.001) (0.002) (0.002)

0.9
0.89 0.91 0.92 0.931 0.535 0.903 0.884

(0.006) (0.005) (0.005) (0.005) (0.004) (0.007) (0.008)

5.2.2 Evaluation under MNAR

Real network results again suggest that our method is ap-

plicable for non-uniform sampling as long as assumption

A1 holds. Results for the three networks are summarized

in Tables 6±7. Similar to the synthetic experiments, when

compared with the uniform-sampling setting, the positive

setting, which puts more weight on high-degree nodes, im-

proves the performance of all methods and the negative set-

ting does the opposite.

6 DISCUSSION

We have introduced an LE algorithm to fit low-rank models

on egocentrically sampled partial networks. The approach

is computationally efficient and presents theoretical guar-

antees for its correctness. Our technique is the first known

consistent method for general low-rank models under ego-

centric sampling, and it does not require ªmissing com-

pletely at randomº assumptions. It can accurately predict

missing links when the true model is low-rank or can be

Table 6: Predictive AUC on Three Networks, Positive

MNAR Setting.

Dataset ρ LE SE LE+ NS ERGM SBM DCBM

enron

0.2
0.803 0.792 0.822 0.743 0.514 0.728 0.748

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

0.5
0.85 0.838 0.864 0.802 0.538 0.776 0.746

(0.004) (0.005) (0.004) (0.003) (0.004) (0.005) (0.005)

UK faculty

0.2
0.747 0.732 0.774 0.657 0.512 0.662 0.686

(0.004) (0.006) (0.004) (0.005) (0.002) (0.008) (0.006)

0.5
0.802 0.777 0.801 0.732 0.524 0.736 0.733

(0.008) (0.008) (0.007) (0.006) (0.004) (0.006) (0.008)

US airports

0.2
0.833 0.836 0.84 0.832 0.508 0.866 0.842

(0.003) (0.005) (0.004) (0.002) (<0.001) (0.002) (0.002)

0.5
0.833 0.849 0.845 0.835 0.526 0.843 0.787

(0.003) (0.003) (0.003) (0.003) (0.001) (0.004) (0.006)

Table 7: Predictive AUC on Three Networks, Negative

MNAR Setting.

Dataset ρ LE SE LE+ NS ERGM SBM DCBM

enron

0.2
0.752 0.749 0.781 0.699 0.501 0.697 0.723

(0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

0.5
0.855 0.827 0.867 0.807 0.514 0.753 0.777

(0.003) (0.002) (0.002) (0.003) (0.003) (0.003) (0.002)

UK faculty

0.2
0.675 0.651 0.709 0.61 0.513 0.633 0.636

(0.008) (0.009) (0.007) (0.007) (0.002) (0.008) (0.006)

0.5
0.837 0.763 0.833 0.768 0.526 0.703 0.737

(0.004) (0.005) (0.004) (0.005) (0.003) (0.007) (0.006)

US airports

0.2
0.773 0.784 0.788 0.743 0.503 0.851 0.817

(0.006) (0.007) (0.006) (0.006) (<0.001) (0.002) (0.003)

0.5
0.871 0.887 0.892 0.882 0.513 0.883 0.879

(0.002) (0.003) (0.003) (0.002) (0.001) (0.002) (0.002)

approximated by low-rank structures. However, we want

to stress that one may have difficulty determining whether

a partial network is from a low-rank model in practice; no

single mode of link prediction works well in all cases. A

practically preferable approach involves combining meth-

ods to achieve more adaptive performance in various situ-

ations, as studied by Ghasemian et al. (2020); Li and Le

(2021); Peixoto (2018); Yao et al. (2021). Notably, even

in this ensemble setting, having a strong individual method

that works well in numerous situations is still necessary.

We believe the proposed LE approach greatly contributes

to potential candidates as one such model.

The proposed method can be extended in several direc-

tions. One limitation of our theory is the strict low-rank

assumption; theoretical properties for approximately low-

rank models are thus far unknown. A more general the-

ory in these scenarios would largely expand the method’s

scope. As another example, if a sequence of evolving net-

works is observed (subject to egocentric missingness), a

critical but open question concerns how to fit a dynamic

network model compatible with this missingness. We will

leave this and other investigations for future work.

There are several applications in which we can potentially

embed the current method. For example, graph learning

methods such as GNN (Zhou et al., 2020) take networks

as input, and our method can help to handle the semi-

supervised prediction setting when the training data are

only partially observed. Another application is to use our

theory to study the privacy-preserving algorithms for net-

work data (Hehir et al., 2021).
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1 Proofs

In this section, we present the derivation of the error bound in the main paper. In our analysis, we will say some event

happens with high probability if it happens with probability tending to 1 as N → ∞. We use C and c as generic universal

constants that may vary case by case. Let P,A, P̂ be as defined as in the main paper, we introduce the following notations:

• ∥·∥ denotes the spectral norm

• ∥·∥F denotes the Frobenius norm

• p∗ = maxijpij

• λk(M) is the k-th largest eigenvalue of the matrix M

• σk(M) is the k-th largest singular value of the matrix M

Lemma 1.1 (Owen and Perry (2009)). For any p× q matrix M with the partition

M =

(

M11 M12

M21 M22

)

,

Suppose rank(M11) = rank(M), we have

M11 = M12M
+
22M21.

Lemma 1.2 (Lei and Rinaldo (2015)). Let P be the probability under the inhomogeneous Erdös-Renyi model and A be

the adjacency matrix from P. Assume that np∗ ≥ c log n for some constant c > 0. There exists a constant C such that

∥A−P∥ ≤ C
√
np∗ (1)

with high probability.

Lemma 1.3 (Yu, Wang, and Samworth (2015)). Given a symmetric matrix P. Suppose rank(P) = K and let its eigende-

composition be UΣU
T , where Σ = diag(λ1, · · · , λK) contains all the eigenvalues in nonincreasing order. For another

symmetric matrix A in the same dimension, suppose its rank K eigendecomposition is given by ŨΣ̃Ũ
T . There exists an

orthogonal matrix O ∈ R
K×K such that

∥ŨO−U∥F ≤ 3
√
K||A− P ||
λK

. (2)

Lemma 1.4 (Athreya et al. (2017)). Let P be the probability under the inhomogeneous Erdös-Renyi model with rank(P) =
K and A be the adjacency matrix from P. With the notations of Lemma 1.3, and the same orthogonal matrix O, we have

∥OΣ− Σ̃O∥F ≤ C(K2 + log n) (3)

with high probability.

Assumption A1 (Low-rank recoverable). The rank of the model satisifes rank(P11) = rank(P) = K.
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Assumption A2 (Well-conditioned model). There exists a constant ψ > 0 such that

1

ψ
· np∗ ≤ σK(P11) ≤ σ1(P11) ≤ ψ · np∗

1

ψ
·Np∗ ≤ σK(P) ≤ σ1(P) ≤ ψ ·Np∗

Assumption A1 is strictly needed to ensure the validity of the low-rank recovery on the population matrix P by Lemma 1.1.

In contrast, assumptions A2 can be relaxed for better generality. However, we keep it in the current form for conciseness

and interpretability of our error bound. Moreover, both A1 and A2 are indeed motivated by the general sparse graphon

model of Bickel and Chen (2009) and are easy to hold when the egocentric sampling is done randomly on the nodes under

many low-rank models. In particular, we have the following proposition

Theorem 1.5. Under assumptions A1 and A2, further assume that np∗ > c log n and K ≤ c
√
log n for some constant

c > 0, we have

∥P̂22 −P22∥F ≤ C
√
K

(

(

N

n

)3/2
√

KNp∗ +
N2

n2
log n

)

(4)

for some constant C > 0 with high probability.

For illustration, consider the following two special cases

1. Suppose n and N are in the same order, we can see that the error bound on the missing network is in the order

of K
√
np∗ +

√
K log n. Since ∥P22∥F ∼ n

√
p∗, we know that ∥P̂22 −P22∥F /∥P22∥F → 0 and the estimation

consistency is guaranteed under the current assumptions.

2. Suppose K is bounded and np∗ = log2 n. Then the error bound is in the order of N2

n2 log n. So

∥P̂22 −P22∥F /∥P22∥F → 0 as long as n ≫ N4/5. Therefore, though our method allows the sampling propor-

tion to be vanishing, the decaying rate has to be slow.

Proof of Theorem 1.5. Consider the prediction error of the probability matrix P̂22 −P22. We start with the spectral norm

bound. By using the subproductivity of the spectral norm and triangular inequality, we have

∥P̂22 −P22∥ =∥A21P̃
+
11A12 −P21P

+
11P12∥

≤∥(A21 −P21)P
+
11P12∥+ ∥A21(P̃

+
11A12 −P

+
11P12)∥

≤∥A21 −P21∥∥P+
11∥∥P12∥+ ∥A21∥∥P̃+

11A12 −P
+
11P12∥

≤∥A21 −P21∥∥P+
11∥∥P12∥+ ∥A21∥∥P̃+

11A12 −P
+
11A12∥+ ∥A21∥∥P+

11A12 −P
+
11P12∥

≤∥A21 −P21∥∥P+
11∥∥P12∥+ ∥A21∥∥P+

11∥∥A12 −P12∥+ ∥A21∥2∥P̃+
11 −P

+
11∥

≤∥A12 −P12∥∥P+
11∥ (2∥P12∥+ ∥A12 −P12∥) + (∥P21∥+ ∥A12 −P12∥)2 ∥P̃+

11 −P
+
11∥ (5)

=I + II. (6)

Denote the eigendecompositions up to K of P11 and A11 by P11 = UΣU
T and A11 = ŨΣ̃Ũ

T respectively. Note that

since rank(P) = K, the eigendecomposition of P is exact. Note that, since the singular values match the eigenvalues up

to their signs, we have P
+
11 = UΣ

−1
U

T and P̃
+
11 = ŨΣ̃

−1
U

T . We try to control the terms separately.

We want to control the concentration of each component of the A matrix partition. In particular, we are taking the joint

event of Lemma 1.4, and Lemma 1.2 for A and A11. Notice that here np∗ > c log n indicates that Np∗ > c logN due

to the monotonicity of log n/n. Under this condition, therefore, we have ∥A11 −P11∥ ≤ C
√
np∗ and ∥A21 −P21∥ ≤

∥A−P∥ ≤ C
√
Np∗. Under this event, we also have

|λk(A11)− λk(P11)| ≤ ∥A11 −P11∥ ≤
√
np∗, 1 ≤ k ≤ K.

Therefore, due to the assumption that λK(P11) ≥ ψnp∗ and np∗ ≥ c log n, for sufficiently large n, we have

|λK(A11)| ≥
1

2
|λK(P11)|.



Upper bound of term I.

∥P+
11∥ =

1

|λK(P11)|
≤ ψ · 1

np∗
.

Also notice that P12 is a submatrix of P so ∥P12∥ ≤ ψNp∗. So we have

I = ∥A12 −P12∥∥P+
11∥ (2∥P12∥+ ∥A12 −P12∥) ≤ C

N

n

√

Np∗.

Upper bound of term II. Let O ∈ R
K×K be an orthogonal matrix in Lemmas 1.3 and 1.4. Consider the term

∥P̃+
11 −P

+
11∥:

∥P̃+
11 −P

+
11∥ =∥ŨΣ̃

−1
Ũ

T −UΣ
−1

U
T ∥

=∥ŨOO
⊤
Σ̃

−1
Ũ

⊤ −UΣ
−1

U
⊤∥

≤∥ŨO−U∥∥O⊤
Σ̃

−1
Ũ

⊤∥+ ∥UO
⊤
Σ̃

−1
Ũ

⊤ −UΣ
−1

U
⊤∥

≤∥ŨO−U∥∥O⊤
Σ̃

−1
Ũ

⊤∥+ ∥UO
⊤
Σ̃

−1
OO

⊤
Ũ

⊤ −UO
⊤
Σ̃

−1
OU

⊤∥
+ ∥UO

⊤
Σ̃

−1
OU

⊤ −UΣ
−1

U
⊤∥

≤∥ŨO−U∥∥Σ̃−1∥+ ∥UO
⊤
Σ̃

−1
O∥∥O⊤

Ũ
⊤ −U

⊤∥+ ∥U∥∥O⊤
Σ̃

−1
O−Σ

−1∥∥U∥
≤2∥ŨO−U∥∥Σ̃−1∥+ ∥O⊤

Σ̃
−1

O−Σ
−1∥

≤2∥ŨO−U∥∥Σ̃−1∥+ ∥Σ̃−1
O−OΣ

−1∥
≤2∥ŨO−U∥∥Σ̃−1∥+ ∥Σ̃−1∥∥Σ−1∥∥OΣ− Σ̃O∥
=∥Σ̃−1∥

(

2∥ŨO−U∥+ ∥Σ−1∥∥OΣ− Σ̃O∥
)

≤[
1

2
σK(P11)]

−1
{

6

√

K

np∗
+ [σK(P11)]

−1Clog(n)
}

≤C 1

np∗
(

√

K

np∗
+

log n

np∗
).

Therefore, we have

II = (∥P21∥+ ∥A12 −P12∥)2 ∥P̃+
11 −P

+
11∥ ≤ C

(

(

N

n

)3/2
√

KNp∗ +
N2

n2
log n

)

.

Note that this bound for II dominates that for I. Substituting both bounds for I and II into (5) leads to

∥P̂22 −P22∥ ≤ C

(

(

N

n

)3/2
√

KNp∗ +
N2

n2
log n

)

. (7)

Finally, notice that rank(P̂22) and rank(P22) = K, which indicates that rank(P̂22 − P22) ≤ 2K. So we have the

Frobenius norm bound

∥P̂22 −P22∥F ≤ C
√
K

(

(

N

n

)3/2
√

KNp∗ +
N2

n2
log n

)

. (8)

Finally, notice that if even the truncation to [0, 1] is applied, this process would not increase the error at all entries of P̂22,

so the error bound still holds.

The error bound for the full matrix recovery is a straightforward extension of Theorem 1.5.

Corollary 1. Under the assumptions of Theorem 1.5, for the full matrix estimator P̂, we have

∥P̂−P∥F ≤ C
√
K

(

(

N

n

)3/2
√

KNp∗ +
N2

n2
log n

)

with high probability.
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Proof of Corollary 1.

∥P̂−P∥2F = ∥P̂11 −P11∥2F + 2∥P̂12 −P12∥2F + ∥P̂22 −P22∥2F
≤ 2∥P̂11 −P11∥2F + 2∥P̂12 −P12∥2F + ∥P̂22 −P22∥2F
≤ 2∥P̂obs −Pobs∥2F + ∥P̂22 −P22∥2F
≤ 2K∥P̂obs −Pobs∥2 + ∥P̂22 −P22∥2F .

For the first term, under the same high probability event of Theorem 1.5, we have

∥P̂obs −Pobs∥ ≤ ∥P̂obs −Aobs∥+ ∥Pobs −Aobs∥
≤ σK(Aobs) + ∥Pobs −Aobs∥
≤ ∥Pobs −Aobs∥+ σK(Pobs) + ∥Pobs −Aobs∥
≤ 2∥P−A∥
≤ C

√

Np∗.

Combining this result with Theorem 1.5, we have

∥P̂−P∥2F ≤ C

(

KNp∗ +K2

(

N

n

)3

Np∗ +K

(

N

n

)4

log2 n

)

≤ C ′

(

K2

(

N

n

)3

Np∗ +K

(

N

n

)4

log2 n

)

So we have

∥P̂−P∥F ≤ C
√
K

(

(

N

n

)3/2
√

KNp∗ +
N2

n2
log n

)

under the event. From the proof, it can also be seen that the major error for the full matrix estimation is still on the

unobserved component P̂22.

Finally, notice that if even the truncation to [0, 1] is applied, this process would not increase the error at all entries of P̂, so

the error bound still holds.
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