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AbstractÐMost existing studies on linear bandits focus on a
one-dimensional characterization of the overall system. While
being representative, this formulation may fail to model appli-
cations with high-dimensional but favorable structures, such as
the low-rank tensor representation for recommender systems. To
address this limitation, this work studies a general tensor bandits
model, where actions and system parameters are represented
by tensors as opposed to vectors, and we particularly focus on
the case that the unknown system tensor is low-rank. A novel
bandit algorithm, coined TOFU (Tensor Optimism in the Face of
Uncertainty), is developed. TOFU first leverages flexible tensor
regression techniques to estimate low-dimensional subspaces
associated with the system tensor. These estimates are then
utilized to convert the original problem to a new one with
norm constraints on its system parameters. Lastly, a norm-
constrained bandit subroutine is adopted by TOFU, which utilizes
these constraints to avoid exploring the entire high-dimensional
parameter space. Theoretical analyses show that TOFU improves
the best-known regret upper bound by a multiplicative factor that
grows exponentially in the system order. A novel performance
lower bound is also established, which further corroborates the
efficiency of TOFU.

I. INTRODUCTION

The multi-armed bandits (MAB) framework [2], [3] has

attracted growing interest in recent years as it can characterize

a broad range of applications requiring sequential decision-

making. An active research area in MAB is linear bandits [4],

[5], where the actions are characterized by feature vectors.

While being representative, this one-dimensional (i.e., vector-

ized) formulation may fail to capture practical applications

with high-dimensional but favorable structures. We use the rec-

ommender system model to illustrate this limitation. An online

shopping platform needs an effective advertising mechanism

for its products. However, instead of only deciding which item

to promote (as typically considered in standard linear bandits

studies), the marketer also needs to consider many other

factors. For example, the marketer may plan where to place

to promotion (e.g., on the sidebar or as a pop-up) and how

to highlight the promotion (e.g., emphasizing the discounts or

the product quality). The overall strategy with all these factors

will determine the effectiveness of this promotion.

Traditional recommendation strategies often leverage tensor

formulations to capture the joint decisions concerning many

associated factors [6]±[8]. However, as mentioned, existing
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TABLE I
RELATED WORKS AND REGRET COMPARISONS

Algorithm Regret

Vectorized LinUCB [4] Õ(dN
√

T )

Matricized ESTT/ESTS [10] Õ(d⌈
N

2
⌉r⌊

N

2
⌋
√

T )

Tensor Elim. [11]; modified to general actions Õ(dN−1r
√

T )

TOFU (Corollary 1) Õ(d2rN−2
√

T )

Lower bound (Theorem 2) Ω(rN
√

T )

The time horizon is T . The considered system tensor is order-N and of size

(d, d, · · · , d). It also has a multi-linear rank (r, r, · · · , r), where r ≤ d.

bandits strategies are largely restricted to vectorized systems.

Although vectorizing multi-dimensional systems can preserve

element-wise information, structural information is often lost.

Especially, as recognized in [6]±[8], tensors formulated to

characterize recommender systems often process the attractive

property of low-rankness which, however, no longer exists in

the vectorized systems and thus cannot be exploited.

In this work, we study a general problem of tensor bandits

for online decision-making, which extends the standard one-

dimensional setting of linear bandits to a multi-dimensional

and multi-linear one. In particular, each action is represented

by a tensor (as opposed to a vector), and the mean reward

of playing an action is the inner product between its feature

tensor and an unknown system tensor. Then, motivated by

various practical problems, a low-rank assumption is imposed

on the system tensor, and this work aims at leveraging the

low-rank knowledge to facilitate bandit learning. The main

contributions are summarized in the following.

• The studied tensor bandits framework is general in the

sense that it does not have restrictions on the system dimension

and the action structure, which contributes to the generaliza-

tion of linear bandits and extends the applicability of the MAB

study; see Appendix A for related works.

• A novel learning algorithm, TOFU (Tensor Optimism

in the Face of Uncertainty), is proposed for the challenging

problem of low-rank tensor bandits. TOFU adopts flexible

designs of tensor regressions to estimate low-dimensional

subspaces associated with the unknown system tensor. Then,

these estimates are utilized to convert the original problem

into a new one, where the low-rank property is transformed

into the knowledge of norm constraints on the system param-

eters. TOFU finally adopts the LowOFUL subroutine [9] to

incorporate these norm constraints in bandit learning to avoid

exploring the entire high-dimensional parameter space.

• Theoretical analyses demonstrate the effectiveness and

efficiency of TOFU with performance guarantees. In particular,
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the regret of TOFU improves the best-known regret upper

bound by a multiplicative factor of order O((d/r)⌈N/2⌉−2),
where N is the order of the considered system tensor, d is the

length of its modes, and r ≤ d denotes its multi-linear rank.

Note that this improvement becomes more significant in high-

dimensional problems, i.e., growing exponentially w.r.t. N . A

novel regret lower bound is further established, and TOFU is

shown to be sub-optimal only up to a factor of O((d/r)2),
which does not scale with N . The baselines and the main

results are summarized in Table I.

II. PROBLEM FORMULATION

A. Preliminaries on Tensors

An order-N tensor Y ∈ R
d1×d2×···×dN has

∏

n∈[N ] dn
elements and can be viewed as a hyper-rectangle with edges

(referred to as modes) of lengths (d1, d2, · · · , dN ) (see [12],

[13] for comprehensive reviews). The tensor elements are

identified to by their indices along each mode, e.g., Yi1,i2,··· ,iN
denotes the (i1, i2, · · · , iN )-th element of Y , while a block

is denoted by the index set of its contained elements, e.g.,

the block YI1,I2,··· ,IN represents the elements with indices

(i1, i2, · · · , iN ) ∈ I1 × I2 × · · · × IN . Moreover, fibers are

one-dimensional sections of a tensor (as rows and columns in

a matrix); thus an order-N tensor has N types of fibers.

Tensor operations. The inner product between tensor Y and

a same-shape tensor B ∈ R
d1×d2×···×dN is the sum of the

products of their elements:

⟨B,Y⟩ =
∑

i1∈[d1]

∑

i2∈[d2]

· · ·
∑

iN∈[dN ]

Bi1,i2,··· ,iNYi1,i2,··· ,iN .

The Frobenius norm is then defined as ∥Y∥F :=
√

⟨Y,Y⟩.
The mode-n (matrix) product Y ×n B between tensor Y

and matrix B ∈ R
d′

n
×dn outputs an order-N tensor of size

(d1, · · · , dn−1, d
′
n, dn+1, · · · , dN ) with elements:

(Y ×n B)i1,··· ,in−1,i′n,in+1,··· ,iN
=

∑

in∈[dn]

Bi′
n
,inYi1,··· ,in,··· ,iN .

In addition, matricization is the process of reordering tensor

elements into a matrix. The mode-n matricization of tensor Y
is denoted as Mn(Y), whose columns are mode-n fibers of

tensor Y and dimensions are (dn,
∏

n′∈[N ]/{n} dn′). Similarly,

vectorization converts a tensor to a vector with all its elements,

which is denoted as vec(Y) for tensor Y .

Tucker decomposition. Similarly to matrices, tensor decom-

position is a useful tool to characterize the structure of tensors.

In this work, we mainly focus on the Tucker decomposition

illustrated as follows: for tensor Y , with rn denoting the rank

of its mode-n matricization, i.e., rn = rank(Mn(Y)), and Un

the corresponding left singular vectors ofMn(Y), there exists

a core tensor G ∈ R
r1×r2×···×rN such that

Y = G ×1 U1 ×2 U2 ×3 · · · ×N UN =: G ×n∈[N ] Un,

which can be denoted as Y = [[G;U1, · · · , UN ]], and the tuple

(r1, · · · , rN ) is called the multi-linear rank of tensor Y .

Additional notations. Typically, lowercase characters (e.g., x)

stand for scalars while vectors are denoted with bold lowercase

characters (e.g., x). Capital characters (e.g., X) are used

for matrices, and calligraphic capital characters (e.g., X ) for

tensors. In addition, ∥ · ∥2 denotes the Euclidean norm for

vectors and the spectral norm for matrices; for a vector y and

a matrix Γ, we denote ∥y∥Γ :=
√

y⊤Γy.

B. Tensor Bandits

This work considers the following multi-dimensional bandit

problem. At each time step t ∈ [T ], the player has access to an

action set At ⊆ R
d1×d2×···×dN , i.e., the elements are tensors

of size (d1, d2, · · · , dN ). She needs to select one action At

from the set At, and this action would bring her a reward of

rt = ⟨At,X⟩+ εt, (1)

where X ∈ R
d1×d2×···×dN is an unknown tensor of system

parameters and εt is an independent 1-sub-Gaussian noise. We

further denote µA := ⟨A,X⟩ as the expected reward of action

A and, without loss of generality, assume that ∥X∥F ≤ C for

C > 0 and max{∥A∥F : A ∈ ∪t∈[T ]At} ≤ 1.

The agent’s objective is to minimize her regret against the

per-step optimal actions A∗
t := argmaxA∈At

⟨A,X⟩ [2]:

R(T ) :=
∑

t∈[T ]
(⟨A∗

t ,X⟩ − ⟨At,X⟩).

C. The Low-rank Structure

It is possible to view the above problem as a
∏

n∈[N ] dn-

dimensional linear bandits problem by vectorizing the action

tensor At and the system tensor X , which can then be solved

by known algorithms [4], [5]. However, the high-dimensional

structures of this system are not preserved by vectorization.

Especially, one of the most commonly observed structures

in real-world applications (e.g., recommender systems [6]±[8]

and healthcare [14]±[17]) is the low-rankness. We give the

general multi-linear rank assumption of X as follows.

Assumption 1. The unknown system tensor X has a multi-

linear rank of (r1, r2, · · · , rN ) and can be decomposed as

X = [[G;U1, U2, · · · , UN ]].

To simplify the notations, in the following, it is assumed that

d1 = · · · = dN = d while r1 = · · · = rN = r. In practice, the

rank r is often much smaller than the mode length d, especially

for very large d. Hence, the following problem is at the center

of this work: can bandit algorithms be designed to exploit

the low-rank structure of the system tensor? Especially, the

key question is how much performance improvement we can

achieve, compared with the naive regret of Õ(dN
√
T ) [4] that

is obtained by directly vectorizing the actions and the system.

Note that the design and analysis can be extended to the

general case of d1 ̸= · · · ̸= dN and r1 ̸= · · · ≠ rN with minor

notation modifications. Also, without loss of generality, it is

assumed that N is of order O(1) (i.e., a constant) and N ≥ 3.

III. THE TOFU ALGORITHM

The TOFU algorithm (presented in Alg. 1) has two phases: A

and B. Phase A aims at estimating the unknown system tensor

X up to a certain precision, especially its low-dimensional sub-

spaces. With this estimate, the original bandit problem can be
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Fig. 1. An illustration of the projection in Eqn. (4), the blocks with varying amounts of tails in Eqn. (5), and the vectorization in Eqn. (7), where an order-3
tensor (i.e., N = 3) is adopted as an example with d = 5 and r = 2. The projection is performed with the low-dimensional subspaces estimated in Phase
A (see Eqn. (4)) and the projected system tensor is shown to have blocks with zero to N tails. The value q(ρ) is the number of elements in the projected
blocks with less than ρ tails as specified in Eqn. (6), and here an input ρ = 3 is adopted which results in q(3) = d3 − (d − r)3. The norm constraint in
Eqn. (8) is on the other dN − q(ρ) elements, i.e., the projected blocks with at least ρ tails. This constraint is leveraged in Phase B to avoid exploring the
entire high-dimensional parameter space. Note that here with N = 3 and ρ = 3, the designed norm constraint is only on the block with three tails, while
with a larger N , the constraint will cover more blocks if still using ρ = 3 (as in Corollary 1), e.g., blocks with three and four tails for N = 4.

reformulated, such that the new problem has (approximately)

a small number of effective system parameters because the

other parameters have small norms. Then, in Phase B, an

OFU (optimism in the face of uncertainty)-style subroutine

is adopted to solve this norm-constrained problem.

A. Phase A: Estimating Low-dimensional Subspaces

Phase A adopts techniques in low-rank tensor regression

(also known as low-rank tensor factorization or completion

from linear measurements) [17]±[21]. Especially, it considers

the problem of estimating a low-rank tensor X by a collection

of data {(At, rt) : t ∈ [T1]} that are associated with X through

Eqn. (1), where T1 is the amount of collected data samples.

Using the bandits terminology, Phase A is designed to

last T1 steps, during which a dataset of T1 data samples is

collected. With such a dataset, an estimate of X , denoted as

X̂ , can be obtained via low-rank tensor regression techniques.

From another perspective, Phase A can be interpreted as using

forced explorations to estimate the system tensor X .

Clearly, the estimation quality is related to the collected

data, especially the selected arms and the noises. Also, dif-

ferent designs of low-rank tensor regression require different

data collection procedures. To provide a general discussion and

ease the presentation, we denote the adopted tensor regression

algorithm as TRalg(·) and consider the following assumption:

Assumption 2. The dataset DA = {(At, rt) : t ∈ [T1]} and

the tensor regression algorithm TRalg(·) are such that the

output X̂ ← TRalg(DA) satisfies ∥X̂ − X∥F ≤ η(T1) for a

problem-dependent function η(T1).

Under this assumption, regret bounds can be established to

depend on the generic function η(T1). Specific dataset config-

urations and tensor regression algorithms can be incorporated

to establish concrete forms of η(T1), which leads to the

corresponding problem-dependent regret bounds. Examples of

datasets and algorithms that satisfy Assumption 2 with a high

probability can be found in Examples 1 and 2 in Sec. IV with

η(T1) = Õ(
√

dN (dr + rN )/T1).

B. From Subspace Estimates to Norm Constraints

Intuitively, the estimated X̂ and its decomposition matrices

(Û1, Û2, · · · , ÛN ) from Phase A should help the task of bandit

learning. To achieve this goal, the following projection is

generalized from matrix bandits [9]. In particular, a new arm

B̂ can be constructed from the original arm A as follows:

B̂ = A×n∈[N ] [Ûn, Ûn,⊥]
⊤ ∈ R

d×d×···×d, (2)

where Ûn,⊥ is a set of orthogonal basis in the complementary

subspace of Ûn and [·, ·] denotes the concatenation of two

matrices. In other words, Eqn. (2) projects the actions to the

estimated low-dimensional subspaces and their complements.

After some algebraic manipulations, we can establish that

µA = ⟨A,X⟩ = ⟨B̂, Ŷ⟩ (3)

where Ŷ ∈ R
d×d×···×d is a projected system tensor defined as

Ŷ := X ×n∈[N ] [Ûn, Ûn,⊥]
⊤

= G ×n∈[N ] ([Ûn, Ûn,⊥]
⊤Un).

(4)

Thus, the original tensor bandits problem can be reformulated

with the action set B̂t := {B̂ = A ×n∈[N ] [Ûn, Ûn,⊥]
⊤ :

A ∈ At} and the system tensor Ŷ defined above. While this

problem still has dN elements and the system tensor Ŷ is still

unknown, it possesses norm constraints on elements in many

blocks of Ŷ . In other words, the above projection is capable of

turning the low-rank property into the knowledge of parameter

norms, which are specified in the following.

Especially, if Ûn is estimated precisely enough, we can

guarantee that ∥Û⊤
n,⊥Un∥2 is relatively small. In particular,

under Assumption 2, it holds that ∥Û⊤
n,⊥Un∥2 = Õ(η(T1))

(see Lemma 1). Then, with a closer look at the projected tensor

Ŷ , the following observation can be made: elements in many

blocks are close to zero. In particular, the block

Ŷ: r, : r, · · · , : r
︸ ︷︷ ︸

N − k modes

,r + 1 :, , r + 1 :, · · · , r + 1 :
︸ ︷︷ ︸

k modes

= G ×n∈[N−k] (Û
⊤
n Un)×n′∈[N−k+1:N ](Û

⊤
n′,⊥Un′)

︸ ︷︷ ︸

with k tails

,
(5)
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has a norm that scales with Õ((η(T1))
k) (see Lemma 2),

where the notation : r denotes the set [r] while r + 1 :
represents the set [r + 1 : d] (thus the above block

denotes the rN−k(d − r)k tensor elements with indices

(i1, · · · , iN−k, iN−k+1, · · · iN ) ∈ [r]× · · · × [r]× [r+ 1, d]×
· · · × [r + 1, d]}). This property holds similarly for other

symmetrical blocks. As η(T1) typically decays with T1 (be-

cause the estimation quality should increase with more data

samples), the norm of the above block will become smaller as

the length of Phase A increases, which can be captured by a

norm constraint that will be described later.

To ease the exposition, we refer to the above block and its

symmetrical ones as blocks with k tails, meaning the indices

of their elements have k modes in the interval [r+1 : d] (i.e.,

the tail). An illustration of these blocks in an order-3 tensor is

provided in Fig. 1. Furthermore, the number of tensor elements

in blocks with less than k tails is denoted as

q(k) :=
∑k−1

i=0

(
N

i

)

rN−i(d− r)i, (6)

which is an important quantity in later designs and analyses.

Remark 1. Compared with previous works on matrix and

tensor bandits [9]±[11], [24], the essence of this work is the

observation that norm constraints commonly exist for blocks

with different numbers of tails. In particular, [11] directly

extends [9], [24] and only leverages the norm constraint on

the block with N tails. Instead, Section IV will illustrate that

the norm constraints on blocks with at least three tails can be

leveraged together under a suitable η(T1), which then leads to

the obtained performance improvement.

Algorithm 1 TOFU

Input: T ; rank r; dimension N and d; tensor regression alg.
TRalg; length of Phase A T1; confidence parameter δ; tails ρ

1: Sample At ∈ At following the arm selection rule required by
TRalg(·) and observe reward rt, for t ∈ [T1] ▷ Phase A

2: Estimate X̂ = [[Ĝ; Û1, · · · , ÛN ]] with TRalg using DA =
{(At, rt) : t ∈ [T1]}, i.e., X̂ ← TRalg(DA)

3: Set C⊥, λ, λ⊥ as in Theorem 1 ▷ Phase B
4: Initialize Λ(ρ) ← diag(λ, · · · , λ, λ⊥, · · · , λ⊥), where the first

q(ρ) elements are λ; ΨT1
← {y ∈ R

dN : ∥y∥2 ≤ C}
5: for t = T1 + 1, · · · , T do

6: Set B̂t ← {Bt = At ×n∈[N ] [Ûn, Ûn,⊥]
⊤ : At ∈ At}

7: Get b̂t ← argmaxb̂t∈vec(B̂t)
maxy∈Ψt−1

⟨b̂t,y⟩
8: Pull arm At corresponding to b̂t and obtain reward rt
9: Update B̂t with rows {b⊤τ : τ ∈ (T1, t]}

10: Update rt with elements {rτ : τ ∈ (T1, t]}
11: Update Vt ← Λ(ρ) + B̂⊤

t B̂t and ȳ ← V −1
t B̂⊤

t rt

12: Update
√
βt ←

√

log( det(Vt)

det(Λ(ρ))δ2
) +
√
λC +

√
λ⊥C⊥

13: Update Ψt ← {ŷ ∈ R
dN : ∥ŷ − ȳ∥Vt

≤
√
βt}

14: end for

C. Phase B: Solving the Norm-constrained Linear Bandits

As illustrated above, after the projection, norm constraints

can be obtained on some blocks of tensor Ŷ . For flexibility,

we consider that Phase B aims to leverage such constraints

on blocks with at least ρ tails, which contain dN − q(ρ)
elements. The parameter ρ is an input with its value in [N ]
that requires careful designs to balance losses from two phases

and will be specified in Sec. IV (e.g., selected as ρ = 3
in Corollary 1). Equivalently, there exist norm constraints on

parts of the elements in the unknown vector

ŷ := vec(Ŷ) ∈ R
dN

. (7)

If the vectorization of Ŷ is performed first on the block with

zero tail and then gradually on those with one and more tails

(see Fig. 1 for an example), we can compactly express the

norm constraint on blocks with at least ρ tails as

∥ŷq(ρ)+1:dN ∥2 ≤ C⊥, (8)

where the parameter C⊥ will be specified later in Theorem 1.

This condition can be interpreted as that there are approxi-

mately only q(ρ) effective parameters in ŷ while the other

parameters are nearly ignorable due to their constrained norm.

Then, a norm-constrained linear bandits problem with dN

parameters needs to be solved. In particular, the action set

is Φt := vec(B̂t) ⊆ R
dN

at step t, where vec(B̂t) :=
{vec(B̂) : B̂ ∈ B̂t)}, and the expected reward for action

b̂ ∈ Φt is ⟨b̂, ŷ⟩. Additionally, an important norm constraint

on ŷ, i.e., Eqn. (8), is available to the learner. Inspired by

[25], the LowOFUL algorithm is designed in [9] to tackle

such norm-constrained linear bandits. Especially, a weighted

regularization is performed to estimate the system parameter:

at time step t, the following estimate ȳ of ŷ is obtained as

ȳ ← argmin
y
∥B̂ty − rt∥22 + ∥y∥2Λ(ρ) = V −1

t B̂⊤
t rt, where

matrix B̂t ∈ R
t×dN

is constructed with previous action vectors

{b̂τ : τ ∈ (T1, t]} as rows, vector rt ∈ R
t has elements

{rτ : τ ∈ (T1, t]}, matrix Λ(ρ) = diag(λ, · · · , λ, λ⊥, · · · , λ⊥)
(with λ as the first q(ρ) elements and λ⊥ as the others),

and Vt = Λ(ρ) + B̂⊤
t B̂t. Then, an OFU-style arm-selection

subroutine is adopted (lines 5±14 of Alg. 1).

Remark 2. To better understand the projection performed in

Eqns. (2) and (4), an ideal scenario is considered where

the decomposition matrices (U1, · · · , UN ) are exactly known.

Then, the projected action B̂ and system parameter Ŷ both

match their ªexactº versions B = A ×N
n=1 [Un, Un,⊥]

⊤ and

Y = G×n∈[N ]([Un, Un,⊥]
⊤Un) = G×n∈[N ]([Ir,0r×(d−r)]

⊤).
Although Y has dN elements, there are only rN non-zero ones

in G. However, for Ŷ projected via the imperfect estimates

(Û1, · · · , ÛN ), we can only guarantee some blocks of elements

have small norms instead of being exact nulls as in Y .

IV. THEORETICAL ANALYSIS

In this section, we formally establish the theoretical guar-

antee of the TOFU algorithm. First, the following assumption

is adopted on the minimum singular value of the matricized

system tensor, which is commonly used in the study of matrix

bandits [9], [10], [24] and tensor bandits [22].

Assumption 3. It holds that minn∈[N ]{ωmin(Mn(X ))} ≥ ω
for some parameter ω > 0, where ωmin(·) returns the

minimum positive singular value of a matrix.
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Then, the following regret upper bound can be established.

Theorem 1. Under Assumptions 1, 2 and 3, with probability

at least 1 − δ, using ρ ∈ [N ] as input and λ = C−2, λ⊥ =
T

q(ρ) log(1+T/λ) , C⊥ = 2N/2C(η(T1))
ρω−ρ, if T1 is chosen

such that η(T1) ≤ ω, the regret of TOFU can be bounded as

R(T ) ≤ Õ
(

CT1 + dρ−1rN−ρ+1
√
T + C(η(T1))

ρω−ρT
)

.

It is worth noting that this theorem applies to any tensor

regression technique satisfying Assumption 2 and any input

ρ, which demonstrates the flexibility of TOFU. Furthermore,

the above regret bound has three terms. The first term char-

acterizes the dataset collection in Phase A. The second term

represents the learning loss from the q(ρ) major elements in

Phase B. The third one is from the other dN − q(ρ) elements,

which are nearly ignorable but still contribute to the regret.

According to function η(T1), parameters ρ and T1 should

be carefully selected such that the overall regret in Theorem 1

is minimized. Two specific tensor regression techniques from

[22], [23] are considered to instantiate η(T1): the first one

is established with the selected arms having sub-Gaussian

elements, while the second selects random one-hot tensors as

arms. To avoid complicated expressions, confidence parame-

ters δ1, δ2, threshold parameters ι1, ι2 and scale parameters

c1, c2 are adopted in the following, whose values are indepen-

dent of T1 and can be found in the corresponding references.

Example 1 (Section 4.2 of [22]). If T1 > ι1, all elements ofAt

are i.i.d. drawn from 1/dN -sub-Gaussian distributions, and εt
is an independent standard Gaussian noise, with probability

at least 1 − δ1, an estimate X̂ = [[Ĝ;U1, · · · , UN ]] can be

obtained from the tensor regression algorithm proposed in [22]

such that ∥X̂ − X∥2F ≤ c1d
N (dr + rN )/T1.

Example 2 (Corollary 2 of [23]). If T1 > ι2, At is a

random one-hot tensor, and εt is an independent 1-sub-

Gaussian noise, with probability at least 1 − δ2, an estimate

X̂ = [[Ĝ;U1, · · · , UN ]] can be obtained from the tensor

regression algorithm proposed in [23] such that ∥X̂ −X∥2F ≤
c2d

N (dr + rN )/T1.

In these examples, it can be seen that Assumption 2 holds

with a high probability for η(T1) = Õ(
√

dN (dr + rN )/T1).
Then, Theorem 1 leads to the following corollary.

Corollary 1. Under Assumptions 1 and 3, if the conditions

in Example 1 (resp. Example 2) can be satisfied in Phase A,

using the tensor regression algorithm from [22] (resp. [23]) as

TRalg(·), the parameters from Theorem 1 with input ρ = 3,

and the following length for Phase A (resp. with ι2, c2)

T1 = max
{
ι1, c1d

N (dr+rN )ω−2, c
3
5

1 d
3N
5 (dr+rN )

3
5ω− 6

5T
2
5

}
,

with probability at least 1−δ−δ1 (resp. 1−δ−δ2), the regret

of TOFU can be bounded as

R(T ) ≤ Õ
(

CT1 + d2rN−2
√
T
)

The above corollary adopts ρ = 3, i.e., the norm constraint

in Eqn. (8) is on blocks with at least three tails. This choice

is conscious with respect to the function η(T1) from Exam-

ples 1 and 2 as it lays aside as many parameters as possible

without letting them negatively impact the bandit learning. In

particular, with this choice, the length T1 can be optimized

as in Corollary 1 (which is of order O(T 2/5)) and thus the

dominating term (regarding the T -dependency) of the regret

in Corollary 1 is the last one of order Õ(d2rN−2
√
T ).

This obtained regret of order Õ(d2rN−2
√
T ) is compared

with several existing results in the following (see also Table I).

First, if directly adopting linear bandits algorithms such as Lin-

UCB [4] on the vectorized system, a regret of order Õ(dN
√
T )

would incur as the low-rank structure is not used. A second

approach is to matricize the system and adopt algorithms for

matrix bandits [9], [10], [24]. The state-of-the-art ESTT/ESTS

[10] can then achieve a regret of order Õ(d⌈
N

2
⌉r⌊

N

2
⌋
√
T ) (see

Appendix E), which is still inefficient as matricization does

not preserve all the structure information. At last, for [11] on

tensor bandits, if we modify it to have general (instead of

one-hot) tensors as actions, a regret of order Õ(dN−1r
√
T )

occurs as it does not fully consider the high-dimensional

benefits (see Remark 1). Thus, compared with the best existing

regret of order Õ(d⌈
N

2
⌉r⌊

N

2
⌋
√
T ), TOFU has an improvement

of a multiplicative factor of order Õ((d/r)⌈
N

2
⌉−2), which

grows exponentially in N . Hence, this benefit becomes more

significant in higher-order problems.

While TOFU improves existing results, we further compare

it against the following new regret lower bound.

Theorem 2. Assume rN ≤ 2T and for all t ∈ [T ], let At =
A := {A ∈ R

d×d×···×d : ∥A∥F ≤ 1} and εt be a sequence

of independent standard Gaussian noise. Then, for any policy,

there exists a system tensor X ∈ R
d×d×d×···×d with a multi-

linear rank (r, r, · · · , r) and ∥X∥2F = O(r2N/T ) such that

EX [R(T )] = Ω(rN
√
T ), where the expectation is taken with

respect the interaction of the policy and the system.

Compared with this lower bound, TOFU is sub-optimal

only up to an additional O((d/r)2) factor (which does not

scale with N ). We conjecture that a slightly tighter regret

lower bound of order Ω(drN−1
√
T ) can be established, which

reduces to that of Ω(dr
√
T ) in matrix bandits (N = 2) [24].

V. CONCLUSIONS

This work studied a general tensor bandits problem, where

high-dimensional tensors characterize action and system pa-

rameters. Motivated by practical applications, the system ten-

sor is modeled to be low-rank. To tackle this high-dimensional

but low-rank problem, a novel algorithm named TOFU was

proposed. TOFU adopts tensor regression techniques to esti-

mate low-dimensional subspaces associated with the system

tensor. The obtained estimates are then used to transform

the challenging problem of low-rank tensor bandits into an

equivalent but easier one of norm-constrained linear bandits.

The theoretical analysis provided a regret guarantee of TOFU,

which is shown to be exponentially more efficient than ex-

isting results. A novel performance lower bound was also

established, further demonstrating the superiority of TOFU.
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