978-1-6654-7554-9/23/$31.00 ©2023 IEEE

2023 IEEE International Symposium on Information Theory (ISIT)

On High-dimensional and Low-rank Tensor Bandits

Chengshuai Shi, Cong Shen, and Nicholas D. Sidiropoulos
University of Virginia
Charlottesville, VA 22904, USA
{cs7ync, cong, nikos} @virginia.edu

Abstract—Most existing studies on linear bandits focus on a
one-dimensional characterization of the overall system. While
being representative, this formulation may fail to model appli-
cations with high-dimensional but favorable structures, such as
the low-rank tensor representation for recommender systems. To
address this limitation, this work studies a general tensor bandits
model, where actions and system parameters are represented
by tensors as opposed to vectors, and we particularly focus on
the case that the unknown system tensor is low-rank. A novel
bandit algorithm, coined TOFU (Tensor Optimism in the Face of
Uncertainty), is developed. TOFU first leverages flexible tensor
regression techniques to estimate low-dimensional subspaces
associated with the system tensor. These estimates are then
utilized to convert the original problem to a new one with
norm constraints on its system parameters. Lastly, a norm-
constrained bandit subroutine is adopted by TOFU, which utilizes
these constraints to avoid exploring the entire high-dimensional
parameter space. Theoretical analyses show that TOFU improves
the best-known regret upper bound by a multiplicative factor that
grows exponentially in the system order. A novel performance
lower bound is also established, which further corroborates the
efficiency of TOFU.

I. INTRODUCTION

The multi-armed bandits (MAB) framework [2], [3] has
attracted growing interest in recent years as it can characterize
a broad range of applications requiring sequential decision-
making. An active research area in MAB is linear bandits [4],
[5], where the actions are characterized by feature vectors.
While being representative, this one-dimensional (i.e., vector-
ized) formulation may fail to capture practical applications
with high-dimensional but favorable structures. We use the rec-
ommender system model to illustrate this limitation. An online
shopping platform needs an effective advertising mechanism
for its products. However, instead of only deciding which item
to promote (as typically considered in standard linear bandits
studies), the marketer also needs to consider many other
factors. For example, the marketer may plan where to place
to promotion (e.g., on the sidebar or as a pop-up) and how
to highlight the promotion (e.g., emphasizing the discounts or
the product quality). The overall strategy with all these factors
will determine the effectiveness of this promotion.

Traditional recommendation strategies often leverage tensor
formulations to capture the joint decisions concerning many
associated factors [6]-[8]. However, as mentioned, existing
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TABLE I
RELATED WORKS AND REGRET COMPARISONS
Algorithm Regret
Vectorized LinUCB [4] O(dNT)
~ N N
Matricized ESTT/ESTS [10] ol z1pl 21T
Tensor Elim. [11]; modified to general actions O(dN=1r/T)
TOFU (Corollary 1) O(d?2rN=2\/T)
Lower bound (Theorem 2) Q(rNVT)
The time horizon is 7". The considered system tensor is order-N and of size

(d,d, - ,d). It also has a multi-linear rank (r,r,--- ,r), where r < d.

bandits strategies are largely restricted to vectorized systems.
Although vectorizing multi-dimensional systems can preserve
element-wise information, structural information is often lost.
Especially, as recognized in [6]-[8], tensors formulated to
characterize recommender systems often process the attractive
property of low-rankness which, however, no longer exists in
the vectorized systems and thus cannot be exploited.

In this work, we study a general problem of tensor bandits
for online decision-making, which extends the standard one-
dimensional setting of linear bandits to a multi-dimensional
and multi-linear one. In particular, each action is represented
by a tensor (as opposed to a vector), and the mean reward
of playing an action is the inner product between its feature
tensor and an unknown system tensor. Then, motivated by
various practical problems, a low-rank assumption is imposed
on the system tensor, and this work aims at leveraging the
low-rank knowledge to facilitate bandit learning. The main
contributions are summarized in the following.

e The studied tensor bandits framework is general in the
sense that it does not have restrictions on the system dimension
and the action structure, which contributes to the generaliza-
tion of linear bandits and extends the applicability of the MAB
study; see Appendix A for related works.

e A novel learning algorithm, TOFU (Tensor Optimism
in the Face of Uncertainty), is proposed for the challenging
problem of low-rank tensor bandits. TOFU adopts flexible
designs of tensor regressions to estimate low-dimensional
subspaces associated with the unknown system tensor. Then,
these estimates are utilized to convert the original problem
into a new one, where the low-rank property is transformed
into the knowledge of norm constraints on the system param-
eters. TOFU finally adopts the LowOFUL subroutine [9] to
incorporate these norm constraints in bandit learning to avoid
exploring the entire high-dimensional parameter space.

e Theoretical analyses demonstrate the effectiveness and
efficiency of TOFU with performance guarantees. In particular,
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the regret of TOFU improves the best-known regret upper
bound by a multiplicative factor of order O((d/r)N/21-2),
where N is the order of the considered system tensor, d is the
length of its modes, and r < d denotes its multi-linear rank.
Note that this improvement becomes more significant in high-
dimensional problems, i.e., growing exponentially w.r.t. N. A
novel regret lower bound is further established, and TOFU is
shown to be sub-optimal only up to a factor of O((d/r)?),
which does not scale with N. The baselines and the main
results are summarized in Table I.

II. PROBLEM FORMULATION
A. Preliminaries on Tensors

An order-N tensor )V € R xdaxXdn phag HnE[N] dy,
elements and can be viewed as a hyper-rectangle with edges
(referred to as modes) of lengths (dq,ds, -+ ,dn) (see [12],
[13] for comprehensive reviews). The tensor elements are
identified to by their indices along each mode, e.g., Vi, i, ... in
denotes the (1,42, - ,in)-th element of ), while a block
is denoted by the index set of its contained elements, e.g.,
the block Vi, 1,,....1, represents the elements with indices
(i1,82, -+ ,in) € Iy X Iy X --+ x In. Moreover, fibers are
one-dimensional sections of a tensor (as rows and columns in
a matrix); thus an order-N tensor has N types of fibers.
Tensor operations. The inner product between tensor ) and
a same-shape tensor B € R%1xd2XXdn g the sum of the
products of their elements:

<B7y>: Z Z Z Bilﬂé,“'J'Nyil,iz,“-,iN'

i1€[d1] iz€[d2]  in€E[dN]

The Frobenius norm is then defined as || V|| r := /(V, V).
The mode-n (matrix) product ) X, B between tensor )

and matrix B € Rénxdn outputs an order-N tensor of size
(di, -+ ,dp-1,d,,dps1, -+ ,dy) with elements:

xB)A . Lo L= Bir i Vi oo i s v
(y n B, 3 in—1,8,,0n+1, HIN %ﬂnyll, yinyt HIN

in€[dn]

In addition, matricization is the process of reordering tensor

elements into a matrix. The mode-n matricization of tensor
is denoted as M,,(}), whose columns are mode-n fibers of
tensor Y and dimensions are (dy, [ [, c(n)/ (s} dn)- Similarly,
vectorization converts a tensor to a vector with all its elements,
which is denoted as vec()’) for tensor ).
Tucker decomposition. Similarly to matrices, tensor decom-
position is a useful tool to characterize the structure of tensors.
In this work, we mainly focus on the Tucker decomposition
illustrated as follows: for tensor ), with r,, denoting the rank
of its mode-n matricization, i.e., , = rank(M,,(})), and U,
the corresponding left singular vectors of M,,()), there exists
a core tensor G € R™*"2>"X"N gych that

Y=Gx1U; xaUsz x5+ xny Uy =: G Xpe[n] Un,

which can be denoted as Y = [[G; U1, - - - , Un]], and the tuple
(r1,-+-,ry) is called the multi-linear rank of tensor ).

Additional notations. Typically, lowercase characters (e.g., x)
stand for scalars while vectors are denoted with bold lowercase

characters (e.g., «). Capital characters (e.g., X) are used
for matrices, and calligraphic capital characters (e.g., X’) for
tensors. In addition, || - ||2 denotes the Euclidean norm for
vectors and the spectral norm for matrices; for a vector y and

a matrix T, we denote ||y|r := Vy ' Ty.
B. Tensor Bandits

This work considers the following multi-dimensional bandit
problem. At each time step ¢ € [T, the player has access to an
action set A, C Ré1xd2x-Xdn 6 ' the elements are tensors
of size (dyi,ds,--- ,dn). She needs to select one action Ay
from the set A;, and this action would bring her a reward of

re = (A, X) + e, (D

where X' € R%1xd2XXdn jg an unknown tensor of system
parameters and ¢, is an independent 1-sub-Gaussian noise. We
further denote p4 := (A, X') as the expected reward of action
A and, without loss of generality, assume that ||X||p < C for
C > 0 and max{||Al|r : A € UserAs} < 1.

The agent’s objective is to minimize her regret against the
per-step optimal actions A} := argmax 4, (A, X) [2]:

R(T) := ZtE[T](< £ X) — (A, X)).
C. The Low-rank Structure

It is possible to view the above problem as a Hne[ N] dp-
dimensional linear bandits problem by vectorizing the action
tensor A; and the system tensor X', which can then be solved
by known algorithms [4], [5]. However, the high-dimensional
structures of this system are not preserved by vectorization.
Especially, one of the most commonly observed structures
in real-world applications (e.g., recommender systems [6]—[8]
and healthcare [14]-[17]) is the low-rankness. We give the
general multi-linear rank assumption of X as follows.

Assumption 1. The unknown system tensor X has a multi-
linear rank of (r1,r9, -+ ,rn) and can be decomposed as
X =[[G;U1,Us,--- ,Un]].

To simplify the notations, in the following, it is assumed that
di =---=dy =dwhile 1y = --- = ry = r. In practice, the
rank r is often much smaller than the mode length d, especially
for very large d. Hence, the following problem is at the center
of this work: can bandit algorithms be designed to exploit
the low-rank structure of the system tensor? Especially, the
key question is how much performance improvement we can
achieve, compared with the naive regret of O(dN VT ) [4] that
is obtained by directly vectorizing the actions and the system.

Note that the design and analysis can be extended to the
general case of d; # -+ - # dy and r1 # - -+ # r with minor
notation modifications. Also, without loss of generality, it is
assumed that NV is of order O(1) (i.e., a constant) and N > 3.

III. THE TOFU ALGORITHM

The TOFU algorithm (presented in Alg. 1) has two phases: A
and B. Phase A aims at estimating the unknown system tensor
X up to a certain precision, especially its low-dimensional sub-
spaces. With this estimate, the original bandit problem can be
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Fig. 1. An illustration of the projection in Eqn. (4), the blocks with varying amounts of tails in Eqn. (5), and the vectorization in Eqn. (7), where an order-3
tensor (i.e., N = 3) is adopted as an example with d = 5 and r = 2. The projection is performed with the low-dimensional subspaces estimated in Phase
A (see Eqn. (4)) and the projected system tensor is shown to have blocks with zero to N tails. The value g(p) is the number of elements in the projected

blocks with less than p tails as specified in Eqn. (6), and here an input p = 3 is adopted which results in ¢(3) = d3 — (d —

. The norm constraint in

r)3

Eqn. (8) is on the other d¥ — ¢(p) elements, i.e., the projected blocks with at least p tails. This constraint is leveraged in Phase B to avoid exploring the
entire high-dimensional parameter space. Note that here with N = 3 and p = 3, the designed norm constraint is only on the block with three tails, while
with a larger NV, the constraint will cover more blocks if still using p = 3 (as in Corollary 1), e.g., blocks with three and four tails for NV = 4.

reformulated, such that the new problem has (approximately)
a small number of effective system parameters because the
other parameters have small norms. Then, in Phase B, an
OFU (optimism in the face of uncertainty)-style subroutine
is adopted to solve this norm-constrained problem.

A. Phase A: Estimating Low-dimensional Subspaces

Phase A adopts techniques in low-rank tensor regression
(also known as low-rank tensor factorization or completion
from linear measurements) [17]-[21]. Especially, it considers
the problem of estimating a low-rank tensor X’ by a collection
of data { (A, 7¢) : ¢t € [T1]} that are associated with X" through
Eqn. (1), where T} is the amount of collected data samples.

Using the bandits terminology, Phase A is designed to
last 77 steps, during which a dataset of 77 data samples is
collected. With such a dataset, an estimate of X, denoted as
X, can be obtained via low-rank tensor regression techniques.
From another perspective, Phase A can be interpreted as using
forced explorations to estimate the system tensor X.

Clearly, the estimation quality is related to the collected
data, especially the selected arms and the noises. Also, dif-
ferent designs of low-rank tensor regression require different
data collection procedures. To provide a general discussion and
ease the presentation, we denote the adopted tensor regression
algorithm as TRalg(-) and consider the following assumption:

Assumption 2. The dataset Dy = {(Ay, 1) : t € [T1]} and
the tensor regression algorithm TRalg(-) are such that the
output X < TRalg(Dy) satisfies |X — X||p < n(T}) for a
problem-dependent function n(Ty).

Under this assumption, regret bounds can be established to
depend on the generic function (7} ). Specific dataset config-
urations and tensor regression algorithms can be incorporated
to establish concrete forms of n(7}), which leads to the
corresponding problem-dependent regret bounds. Examples of
datasets and algorithms that satisfy Assumption 2 with a high
probability can be found in Examples 1 and 2 in Sec. IV with
77(T1) = O( dN(dT + ’I“N)/T1).

B. From Subspace Estimates to Norm Constraints

Intultlvely, the estimated X and its decomposition matrices
(U 1, U2, . U ) from Phase A should help the task of bandit
learning. To achieve this goal, the following projection is
generalized from matrix bandits [9]. In particular, a new arm
B can be constructed from the original arm A as follows:

B=A XnelN] [Un, Uml]T S RdXdeXd,

2
where Um 1 is a set of orthogonal basis in the complementary
subspace of U, and [-,-] denotes the concatenation of two
matrices. In other words, Eqn. (2) projects the actions to the
estimated low-dimensional subspaces and their complements.

After some algebraic manipulations, we can establish that

pa=(AX) = (B,Y) )

where ) € R9*4xxd i5 3 projected system tensor defined as
V=X Xpein) [Uns Un, i ]"

=G Xpnen] ([Uns Un, 1] TUR).

Thus, the original tensor bandits problem can be reformulated
with the action set B, := {B = A Xpen [UmUn n

A € A;} and the system tensor Y defined above. While this
problem still has d"V elements and the system tensor Y is still
unknown, it possesses norm constraints on elements in many
blocks of Y. In other words, the above projection is capable of
turning the low-rank property into the knowledge of parameter
norms, which are specified in the following.

Especially, if U, is estimated precisely enough, we can
guarantee that ||U] 1 Unll2 is relatively small. In particular,
under Assumption 2, it holds that ||U, J_U lo = O( (Th))
(see Lemma 1). Then, with a closer look at the projected tensor
J), the following observation can be made: elements in many
blocks are close to zero. In particular, the block

“4)

y:?“,:r,--- crr+1a,r4+1:0--- r+1:
N — k modes - k modes - (5)
=G XneN—t] (Up Un) XpreN—tt1:8 Uy 1 Un),
with & tails
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has a norm that scales with O((1(T}))*) (see Lemma 2),
where the notation : r denotes the set [r] while r + 1 :
represents the set [r + 1 d] (thus the above block
denotes the 7V=%(d — r)¥ tensor elements with indices
(1, S IN—ky IN—kt 1, in) € [1] X oo X [r] X [r+1,d] x

- X [r 4+ 1,d]}). This property holds similarly for other
symmetrical blocks. As 7(71) typically decays with 77 (be-
cause the estimation quality should increase with more data
samples), the norm of the above block will become smaller as
the length of Phase A increases, which can be captured by a
norm constraint that will be described later.

To ease the exposition, we refer to the above block and its
symmetrical ones as blocks with & tails, meaning the indices
of their elements have & modes in the interval [r+1 : d] (i.e.,
the tail). An illustration of these blocks in an order-3 tensor is
provided in Fig. 1. Furthermore, the number of tensor elements
in blocks with less than k£ tails is denoted as

= 5 (Pt

which is an important quantity in later designs and analyses.

(6)

Remark 1. Compared with previous works on matrix and
tensor bandits [9]-[11], [24], the essence of this work is the
observation that norm constraints commonly exist for blocks
with different numbers of tails. In particular, [11] directly
extends [9], [24] and only leverages the norm constraint on
the block with NV tails. Instead, Section IV will illustrate that
the norm constraints on blocks with at least three tails can be
leveraged together under a suitable 7(7} ), which then leads to
the obtained performance improvement.

Algorithm 1 TOFU

Input: 7T'; rank r; dimension N and d; tensor regression alg.
TRalg; length of Phase A T4; confidence parameter J; tails p
1: Sample A; € A; following the arm selection rule required by
TRalg(-) and observe reward ¢, for ¢ € [Ti] > Phase A
2: Estimate X = [[Q;Ul,--;,UN]] with TRalg using Da =
{(A¢,re) s t € [Th]}, e, X + TRalg(Da)
3: Set C'1, A\, AL as in Theorem 1

> Phase B

4: Initialize A(p) < diag(\, -+ , A\, AL, -+, A1), where the first
q(p) elements are \; Up, < {y € R?" lylls < C}

S5 fort=T1+1,---,7T do

6: Set Bt <—{Bt=¢4t Xne[N] [Un,Un,J_]T T Ay GAt}

7: Get b, + arg MAXp, ¢ yeo(s,) MAXyew, (b, y)

8: Pull arm A; corresponding to b, and obtain reward 7

9: Update B; with rows {b] : 7 € (T1,t]}

10: Update r; with elements {r : 7 € (T1,t]}

11: Update Vi < A(p) + B/ B, and § + V[lBtT'rt

12: Update /B; + log(%) +VAC + VAL 0L

13:  Update U; « {§ € R : ||§ — gllv, < VBi}
14: end for

C. Phase B: Solving the Norm-constrained Linear Bandits

As illustrated above, after the projection, norm constraints
can be obtained on some blocks of tensor ). For flexibility,
we consider that Phase B aims to leverage such constraints

on blocks with at least p tails, which contain d" — ¢(p)
elements. The parameter p is an input with its value in [NV]
that requires careful designs to balance losses from two phases
and will be specified in Sec. IV (e.g., selected as p = 3
in Corollary 1). Equivalently, there exist norm constraints on
parts of the elements in the unknown vector

g = vec(Y) € RV . )

If the vectorization of ji is performed first on the block with
zero tail and then gradually on those with one and more tails
(see Fig. 1 for an example), we can compactly express the
norm constraint on blocks with at least p tails as

®)

where the parameter C'; will be specified later in Theorem 1.
This condition can be interpreted as that there are approxi-
mately only ¢(p) effective parameters in y while the other
parameters are nearly ignorable due to their constrained norm.

Then, a norm-constrained linear bandits problem with av
parameters needs to be solved. In particular, the action set
is ®, := vec(B;) C R at step t, where vec(B;) =
{vec(B) : B € B,)}, and the expected reward for action
b € ®, is (b, 7). Additionally, an important norm constraint
on gy, i.e., Eqn. (8), is available to the learner. Inspired by
[25], the LowOFUL algorithm is designed in [9] to tackle
such norm-constrained linear bandits. Especially, a weighted
regularization is performed to estimate the system parameter:
at time step ¢, the following estimate g of y is obtained as
g < argmin, || By — r]|3 + ||?JH%(,)) =V, 'B, r;, where

|‘gq(p)+1:dNH2 < CLa

matrix B, € Rt*4" is constructed with previous action vectors
{b. : 7 € (T1,t]} as rows, vector 7, € R! has elements
{rr : 7 € (T1,t]}, matrix A(p) = diag(A,--- , A, AL, -+, A1)
(with A as the first g(p) elements and A, as the others),
and V; = A(p) + B, B;. Then, an OFU-style arm-selection
subroutine is adopted (lines 5-14 of Alg. 1).

Remark 2. To better understand the projection performed in
Eqgns. (2) and (4), an ideal scenario is considered where
the decomposition matrices (Ui, --- ,Uy) are exactly known.
Then, the projected action B and system parameter Y both
match their “exact” versions B = A x2_, [U,,U, 1] and
Y= anG[N] ([U'm Un,J_]TUn) = gan[N] ([Ira Orx(dfr)]—r)
Although Y has d" elements, there are only N non-zero ones
in G. However, for ) projected via the imperfect estimates
(U LU ~), we can only guarantee some blocks of elements
have small norms instead of being exact nulls as in ).

IV. THEORETICAL ANALYSIS

In this section, we formally establish the theoretical guar-
antee of the TOFU algorithm. First, the following assumption
is adopted on the minimum singular value of the matricized
system tensor, which is commonly used in the study of matrix
bandits [9], [10], [24] and tensor bandits [22].

Assumption 3. It holds that min, e[ N){wWmin(Mn (X))} > w
for some parameter w > 0, where wmin(-) returns the
minimum positive singular value of a matrix.
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Then, the following regret upper bound can be established.

Theorem 1. Under Assumptions 1, 2 and 3, with probability
at least 1 — 0, using p € [N] as input and A\ = C=2, \| =
m, C, = 2N2C(n(Ty))Pw=", if Ty is chosen
such that n(T1) < w, the regret of TOFU can be bounded as

R(T) < O(CTy + d*= N =0T 4 Cn(Th))Pw™T).

It is worth noting that this theorem applies to any tensor
regression technique satisfying Assumption 2 and any input
p, which demonstrates the flexibility of TOFU. Furthermore,
the above regret bound has three terms. The first term char-
acterizes the dataset collection in Phase A. The second term
represents the learning loss from the ¢(p) major elements in
Phase B. The third one is from the other d~ — ¢(p) elements,
which are nearly ignorable but still contribute to the regret.

According to function 7(7}), parameters p and 77 should
be carefully selected such that the overall regret in Theorem 1
is minimized. Two specific tensor regression techniques from
[22], [23] are considered to instantiate 7(77): the first one
is established with the selected arms having sub-Gaussian
elements, while the second selects random one-hot tensors as
arms. To avoid complicated expressions, confidence parame-
ters d1, Jo, threshold parameters ¢1,15 and scale parameters
c1, co are adopted in the following, whose values are indepen-
dent of 77 and can be found in the corresponding references.

Example 1 (Section 4.2 of [22]). If T} > t1, all elements of A,
are i.i.d. drawn from 1/ dN -sub-Gaussian distributions, and &,
is an independent standard Gaussian noise, with probability
at least 1 — &y, an estimate X = [[G;Uy,--- ,Uy]] can be
obtained from the tensor regression algorithm proposed in [22]
such that || X — X||% < e d (dr +rN) /T

Example 2 (Corollary 2 of [23]). If T4 > (o, A¢ is a
random one-hot tensor, and e; is an independent 1-sub-
Gaussian noise, with probability at least 1 — o, an estimate
X = [[G;Uy, -+ ,UnN]] can be obtained from the tensor
regression algorithm proposed in [23] such that | X — X% <
codN (dr + ) /Ty.

In these examples, it can be seen that Assumption 2 holds

with a high probability for n(Ty) = O(y/d™ (dr +rN)/T}).

Then, Theorem 1 leads to the following corollary.

Corollary 1. Under Assumptions 1 and 3, if the conditions
in Example 1 (resp. Example 2) can be satisfied in Phase A,
using the tensor regression algorithm from [22] (resp. [23]) as
TRalg(-), the parameters from Theorem 1 with input p = 3,
and the following length for Phase A (resp. with 19, c2)

3
Ty = max {¢1, c1d™ (dr+rM)w ™2, ¢} d%s (errrN)%w*gT% 3

with probability at least 1 — 6 — 01 (resp. 1 —§ —d3), the regret
of TOFU can be bounded as

R(T) < O(CTy +d*r"—*VT)

The above corollary adopts p = 3, i.e., the norm constraint
in Eqn. (8) is on blocks with at least three tails. This choice

is conscious with respect to the function n(77) from Exam-
ples 1 and 2 as it lays aside as many parameters as possible
without letting them negatively impact the bandit learning. In
particular, with this choice, the length 77 can be optimized
as in Corollary 1 (which is of order O(T?/)) and thus the
dominating term (regarding the 7T-dependency) of the regret
in Corollary 1 is the last one of order O(d?rN=2y/T).

This obtained regret of order O(d?rN~2y/T) is compared
with several existing results in the following (see also Table I).
First, if directly adopting linear bandits algorithms such as Lin-
UCB [4] on the vectorized system, a regret of order O(dN VT )
would incur as the low-rank structure is not used. A second
approach is to matricize the system and adopt algorithms for
matrix bandits [9], [10], [24]. The state-of-the-art ESTT/ESTS
[10] can then achieve a regret of order O(dl 2 17l 2)/T) (see
Appendix E), which is still inefficient as matricization does
not preserve all the structure information. At last, for [11] on
tensor bandits, if we modify it to have general (instead of
one-hot) tensors as actions, a regret of order O(dN~1ry/T)
occurs as it does not fully consider the high-dimensional
benefits (see Remark 1). Thus, compared with the best existing
regret of order O(d! 1L 21/T), TOFU has an improvement
of a multiplicative factor of order O((d/r)[*1-2), which
grows exponentially in N. Hence, this benefit becomes more
significant in higher-order problems.

While TOFU improves existing results, we further compare
it against the following new regret lower bound.

Theorem 2. Assume r™ < 2T and for all t € [T), let A; =
A= {A € RIXPxd | A||z < 1} and &, be a sequence
of independent standard Gaussian noise. Then, for any policy,
there exists a system tensor X € RIX4xXdXXd vith q multi-
linear rank (r,r,---,r) and | X||% = O(r*N/T) such that
Ex[R(T)] = Q(rNV/T), where the expectation is taken with
respect the interaction of the policy and the system.

Compared with this lower bound, TOFU is sub-optimal
only up to an additional O((d/r)?) factor (which does not
scale with N). We conjecture that a slightly tighter regret
lower bound of order Q(dr™ ~'+/T) can be established, which
reduces to that of Q(dr+/T) in matrix bandits (N = 2) [24].

V. CONCLUSIONS

This work studied a general tensor bandits problem, where
high-dimensional tensors characterize action and system pa-
rameters. Motivated by practical applications, the system ten-
sor is modeled to be low-rank. To tackle this high-dimensional
but low-rank problem, a novel algorithm named TOFU was
proposed. TOFU adopts tensor regression techniques to esti-
mate low-dimensional subspaces associated with the system
tensor. The obtained estimates are then used to transform
the challenging problem of low-rank tensor bandits into an
equivalent but easier one of norm-constrained linear bandits.
The theoretical analysis provided a regret guarantee of TOFU,
which is shown to be exponentially more efficient than ex-
isting results. A novel performance lower bound was also
established, further demonstrating the superiority of TOFU.
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