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Abstract
It is crucial to automatically construct knowl-
edge graphs (KGs) of diverse new relations to
support knowledge discovery and broad appli-
cations. Previous KG construction methods,
based on either crowdsourcing or text mining,
are often limited to a small predefined set of
relations due to manual cost or restrictions in
text corpus. Recent research proposed to use
pretrained language models (LMs) as implicit
knowledge bases that accept knowledge queries
with prompts. Yet, the implicit knowledge
lacks many desirable properties of a full-scale
symbolic KG, such as easy access, navigation,
editing, and quality assurance. In this paper,
we propose a new approach of harvesting mas-
sive KGs of arbitrary relations from pretrained
LMs. With minimal input of a relation defini-
tion (a prompt and a few shot of example entity
pairs), the approach efficiently searches in the
vast entity pair space to extract diverse accurate
knowledge of the desired relation. We develop
an effective search-and-rescore mechanism for
improved efficiency and accuracy. We deploy
the approach to harvest KGs of over 400 new
relations from different LMs. Extensive human
and automatic evaluations show our approach
manages to extract diverse accurate knowledge,
including tuples of complex relations (e.g., "A
is capable of but not good at B"). The
resulting KGs as a symbolic interpretation of
the source LMs also reveal new insights into
the LMs’ knowledge capacities.

1 Introduction

Symbolic knowledge graphs (KGs) are a power-
ful tool for indexing rich knowledge about entities
and their relationships, and are useful for informa-
tion access (Google, 2012), decision making (Yang
et al., 2021; Santos et al., 2022), and improving
machine learning in general (Li et al., 2019; Wang
et al., 2019; Tan et al., 2020; Xiong et al., 2017).

∗Equal contribution. Code available at https://github.
com/tanyuqian/knowledge-harvest-from-lms. Demo
available at https://lmnet.io
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Figure 1: Different example paradigms of harvesting knowl-
edge. Text mining extracts knowledge of relations explicitly
mentioned in the text. KG completion produces tail entities
to complete knowledge of preexisting relations. Our method
is capable of harvesting knowledge of arbitrary new relations
from LMs.

It has been a long-term desire to construct KGs
of diverse relations to comprehensively character-
ize the structures between entities. The traditional
crowdsourcing-based approach (Speer et al., 2017;
Fellbaum, 2000; Sap et al., 2019) tends to cover
only a restricted relation set, such as ConceptNet
(Speer et al., 2017) that contains a small set of 34
relations. The popular method based on text mining
(Luan et al., 2019; Zhong and Chen, 2020; Wang
et al., 2021b) has a similar limitation, as the text
understanding models can often recognize only a
predefined set of relations included in training data.
Some open-schema text mining approaches (e.g.,
based on syntactic patterns) exist (Tandon et al.,
2014; Romero et al., 2019; Zhang et al., 2020b;
Nguyen et al., 2021), yet the extracted relations are
limited to those explicitly stated in the text, miss-
ing all others that are not mentioned or do not have
exact match with the text in the corpus. Similarly,
KG completion approaches (Bordes et al., 2013;
Bosselut et al., 2019; Yao et al., 2019) is restricted
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Method Module(s) Outcome Arbitrary relation

Text mining (Zhang et al., 2020a; Nguyen et al., 2021) NER, CR, RE, etc.1 KG ✗

LAMA (Petroni et al., 2019), LPAQA (Jiang et al., 2020) LMs tail entity ✓
COMET (Bosselut et al., 2019) Finetuned GPT-2 tail entity ✗

Symbolic Knowledge Distillation (West et al., 2022) GPT-3 KG ✓2

BertNet (ours) LMs KG ✓

Table 1: Categorization of works on automatic knowledge extraction. Compared to other categories of approaches, our method
extracts full explicit KGs of arbitrary new relations from any LMs.

to the preexisting relations (Figure 1).
On the other hand, large language models (LMs)

pretrained on massive text corpus, such as BERT

(Devlin et al., 2019) and GPT-3 (Brown et al.,
2020), have been found to encode a significant
amount of knowledge implicitly in their parameters.
Recent research attempted to use LMs as flexible
knowledge bases by querying the LMs with arbi-
trary prompts (e.g., "Obama was born in " for
the answer "Hawaii") (Petroni et al., 2019). How-
ever, such implicit query-based knowledge falls
short of many desirable properties of a full-scale
KG such as ConceptNet (AlKhamissi et al., 2022),
including easy access, browsing, or even editing
(Zhu et al., 2020; Cao et al., 2021), as well as
assurance of knowledge quality thanks to the sym-
bolic nature (Anderson et al., 2020). Symbolic
Knowledge Distillation (SKD, West et al., 2022)
explicitly extracts a knowledge base from GPT-3.
However, the approach exclusively relies on the
strong in-context learning capability of GPT-3 and
thus is not applicable to other rich LMs such as
BERT (Devlin et al., 2019) and ROBERTA (Liu
et al., 2019). Moreover, its use of a quality dis-
criminator trained on existing KGs can limit its
generalization to new relations not included in the
training data.

In this paper, we propose a new approach of
harvesting massive KGs of arbitrary new relations
from any pretrained LMs. Given minimal user in-
put of a relation definition, including a prompt and
a few shot of example entity pairs, our approach
automatically searches within the LM to extract an
extensive set of high-quality knowledge about the
desired relation. To ensure search efficiency in the
vast space of entity pairs, we devise an effective
search-and-rescore strategy. We also adapt the pre-
vious prompt paraphrasing mechanism (Jiang et al.,

1"NER", "CR", "RE" refer to "named entity recognition",
"coreference resolution", "relation extraction", respectively.

2SKD has an optional filter that requires existing KG to
finetune, which doesn’t work for arbitrary relations.

2020; Newman et al., 2021) and enhance with our
new rescore strategy for prompt weighting, leading
to consistent and accurate outcome knowledge.

We apply our approach on a range of LMs of
varying capacities, such as ROBERTA, BERT, and
DISTILBERT. In particular, we harvest knoweldge
of over 400 new relations (an order of magnitude
more than ConceptNet relations) not available in
preexisting KGs and previous extraction methods.
Extensive human and automatic evaluations show
our approach successfully extracts diverse accurate
knowledge, including tuples for complex relations
such as “A is capable of, but not good at,
B” and 3-ary relations such as “A can do B at
C”. Interestingly, the resulting KGs also serve as a
symbolic interpretation of the source LMs, reveal-
ing new insights into their knowledge capacities in
terms of varying factors such as model size, pre-
training strategies, and distillation.

2 Related Work

Knowledge graph construction Popular knowl-
edge bases or KGs are usually constructed with
heavy human labor. For example, WordNet (Fell-
baum, 2000) is a lexical database that links words
into semantic relations; ConceptNet (Speer et al.,
2017) is a large commonsense knowledge graph
presented as a set of knowledge triples; ATOMIC
(Sap et al., 2019) is a crowd-sourced social com-
monsense KG of if-then statements. Recently, Au-
tomatic Knowledge Base Construction (AKBC) as
a research focus has led to various approaches (sum-
marized in Table 1). Text mining-based works aim
for knowledge extraction from text. A typical in-
formation extraction system (Angeli et al., 2015) is
composed of several sub-tasks like coreference res-
olution, named entity recognition, and relationship
extraction. Some works on commonsense knowl-
edge extraction include WebChild (Tandon et al.,
2014), TransOMCS (Zhang et al., 2020a), DIS-
COS (Fang et al., 2021), Quasimodo (Romero et al.,
2019), ASCENT (Nguyen et al., 2021). These ex-



traction pipelines are based on linguistic pattern,
and involve complex engineering such as corpus
selection, term aggregation, filtering, etc. Recent
attempts also utilize LMs for AKBC. Wang et al.
2021a finetuned LMs for link prediction. Feldman
et al. 2019; Bouraoui et al. 2020 utilized LMs to
score entity pairs collected from the Internet or
missing edges in existing KGs. COMET (Bosselut
et al., 2019) is a generative LM trained to predict
tail entities given head entities and relations. West
et al. 2021 distill the knowledge in GPT-3 to a gen-
erative LM. By prompting GPT-3 (Brown et al.,
2020) with examples, they produced ATOMIC10x

to teach the student model. Yet, this method re-
quires the strong few-shot learning ability of GPT-3
and is not generally applicable to most LMs. To
the best of our knowledge, our framework is the
first to construct a KG by extracting purely from
an LM (with the minimal definition of relations
as input). The new paradigm can also be seen as
optimizing a symbolic KG with (pretrained) neu-
ral models as supervision (Hu and Xing, 2022),
which inverts the conventional problem of using
symbolic knowledge to learn neural networks (Hu
et al., 2016).

LMs as knowledge bases Another line of works
attempted to use LMs as knowledge bases (LAMA,
Petroni et al. 2019). These works are also known as
factual probing because they measured how much
knowledge is encoded in LMs. This is usually im-
plemented by prompting methods and leveraging
the masked LM pretraining task. LPAQA (Jiang
et al., 2020) proposes to use text mining and para-
phrasing to find and select prompts to optimize
the prediction of a single or a few correct tail enti-
ties, instead of extensively predicting all the valid
entity pairs like in our framework. AutoPrompt
(Shin et al., 2020), Qin and Eisner, 2021 and OP-
TIPrompt (Zhong et al., 2021) learn discrete or
continuous prompts automatically with an addi-
tional training set. Though making prompts un-
readable, these methods achieve higher accuracy
on the knowledge probing tasks. Our framework
differs from these works in that we aim to explicitly
harvest knowledge graphs instead of measuring the
knowledge in a simplified setting.

Consistency of LMs Consistency is a significant
challenge for LMs, which stresses that they should
not produce conflicting predictions across infer-
ence sessions. For example, models should be-

have invariantly under inputs with different surface
forms but the same meaning. Elazar et al. 2021
analyzed the consistency of pretrained LMs with
respect to factual knowledge. Jiang et al. 2020 used
paraphrasing to improve factual probing. Newman
et al. 2021 trains an additional layer on top of word
embedding to improve consistency. Recently, con-
sistency is also shown helpful to improve the rea-
soning ability of large LMs (Wang et al., 2022;
Jung et al., 2022; Hao et al., 2023). In our frame-
work, the extracted entity pairs for each relation
are enforced to consistently satisfy a diverse set of
prompts and regularized by several scoring terms.

3 Harvesting KGs from LMs

This section presents the proposed framework
for extracting a relational KG from a given pre-
trained LM, where the LM can be arbitrary fill-
in-the-blank models such as BERT (Devlin et al.,
2019), ROBERTA (Liu et al., 2019), BART (Lewis
et al., 2020), or GPT-3 (with appropriate instruc-
tions) (Brown et al., 2020). The KG consists of
a set of knowledge tuples in the form ⟨HEAD EN-
TITY (h), RELATION (r), TAIL ENTITY (t)⟩. Our
approach utilizes the LM to automatically har-
vest a large number of appropriate entity pairs
(h1, t1), (h2, t2), . . ., for every given relation r.
This presents a more challenging problem than tra-
ditional LM probing tasks, which typically predict
a single tail entity or a small number of valid tail
entities given a head entity and relation.

Our approach for extracting knowledge tu-
ples of a specific relation of interest, such as
"potential_risk" as depicted in Figure 2, only
requires minimal input information that defines the
relation. This includes an initial prompt, such as
"The potential risk of A is B" and a small
number of example entity pairs, such as ⟨EATING

CANDY, TOOTH DECAY⟩. The prompt provides the
overall semantics of the relation, while the exam-
ple entity pairs clarify possible ambiguities. For
new relations not included in existing KGs, it is
impractical to require a large set (e.g., hundreds)
of example entity pairs as in previous knowledge
probing or prompt optimization methods (Petroni
et al., 2019; Jiang et al., 2020; Shi et al., 2019;
Zhong et al., 2021). In contrast, our approach ne-
cessitates only a small number of example entity
pairs, for example, as few as 2 in our experiments,
which can easily be collected or written by users.

In the following sections, we describe the core



Prompt SetSampleThe potential risk of 
eating candy is tooth 
decay.

Paraphrase

Candy can potentially 
cause tooth decay.

Extract
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cause B.
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(playing game, fail the exam)
...

The potential risk 
of A is B.
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Figure 2: An overview of the knowledge harvesting framework. Given the minimal definition of the relation as input (an initial
prompt and a few shot of example entity pairs), the approach first automatically creates a set of prompts expressing the relation
in a diverse ways (§3.1). The prompts are weighted with confidence scores. We then use the LM to search a large collection of
candidate entity pairs, followed by re-scoring/ranking that yields the top entity pairs as the output knowledge (§3.2).

components of our approach, namely the auto-
matic creation of diverse prompts with confidence
weights (§3.1) and the efficient search to discover
consistent entity pairs (§3.2) that compose the de-
sired KGs. Figure 2 illustrate the overall frame-
work.

3.1 Creating Diverse Weighted Prompts
Our automated approach utilizes input information,
specifically the initial prompt and several exam-
ple entity pairs, to generate a set of semantically
consistent but linguistically diverse prompts for
describing the relation of interest. The generated
prompts are assigned confidence weights to accu-
rately measure consistency of knowledge in the
subsequent step (§3.2).

To generate diverse prompts for a desired re-
lation, we begin by randomly selecting an entity
pair from a example set and inserting it into an
initial prompt to form a complete sentence. This
sentence is then passed through an off-the-shelf
text paraphrase model, which produces multiple
paraphrased sentences with the same meaning. By
removing the entity names, each paraphrased sen-
tence results in a new prompt that describes the
desired relation. To ensure a wide range of expres-
sions of the relation, we retain only those prompts
that are distinct from one another in terms of edit
distance. This process is repeated by continuously
paraphrasing the newly created prompts until a min-
imum of 10 prompts for the relation have been
collected.

The automatic generation of prompts can be im-
precise, resulting in prompts that do not accurately

convey the intended relation. To mitigate this, we
propose a reweighting method that utilizes compat-
ibility scores to calibrate the impact of each prompt
in the subsequent knowledge search step. Specifi-
cally, we evaluate the compatibility of new prompts
with example entity pairs by measuring the like-
lihood of the prompts under a LM, considering
both the individual entities and the entity pair as a
whole. This allows us to determine the appropriate
weights for each prompt and improve the precision
of the knowledge search process. Formally, the
compatibility score between an entity pair (h, t)
and a prompt p can be written as:

fLM(⟨h, t⟩, p) = α logPLM(h, t | p)
+ (1− α)min {logPLM(h | p), logPLM(t | p, h)}

(1)

where the first term is the joint log-likelihood un-
der the LM distribution PLM , the second term is
the minimum individual log-likelihood given the
prompt (and the other entity), and α is a balancing
factor (α = 2/3 in our experiments). We com-
pute the average compatibility score of each cre-
ated prompt over all example entity pairs, and the
weight of the prompt is then defined as the softmax-
normalized score across all prompts.

3.2 Efficient Search for Consistent Knowledge
With the set of prompts and corresponding confi-
dence weights obtained in the steps described in
Section 3.1, we proceed to search entity pairs that
consistently align with all prompts. To guide the
searching process and evaluate the compatibility
of searched-out entity pairs (hnew, tnew), we reuse
the previously defined prompt/entity-pair compati-



Relation Entities Relation Entities

prevent (humidity, excessive temperature) potential risk (viruses, virus transmission)

prevent (care, harm) potential risk (prolonged sleep, sleep disorders)

can help (local council, village) potential risk (serious offence, conviction)

can help (therapist, client) ingredient for (electricity, electric lamp)

place for (lake, picnic tables) ingredient for (rice, soup)

place for (studios, live shows) ingredient for (milk, butter)

can but not good (apple tree, wood) can but not good (locomotive, speed trains)

A can do B at C (people, communicate, web) A needs B to C (singers, vocal accompaniment, dance)

A can do B at C (adult couples, marry, marriage) A needs B to C (human lives, survival, flourish)

A can do B at C (skier, ski downhill, mountain) A needs B to C (actors, dialogue, portray characters)

Figure 3: Examples of knowledge tuples harvested from DISTILLBERT (randomly sampled). The first 7 rows shows relations
with two entities (head and tail), and last 3 rows shows more complex relations with 3 entities.

bility function (Eq.1), and intuitively define consis-
tency as the weighted average of its compatibility
with the various prompts, i.e.,

consistency((hnew, tnew)) =
∑

p
wp·fLM((hnew, tnew), p)

(2)

where wp is the prompt weight and the sum is over
all automatically created prompts as above, so that
entity pairs compatible with all prompts are consid-
ered to be consistent.

Based on the consistency criterion, we develop
an efficient search strategy to search for consis-
tent entity pairs. A straightforward approach in-
volves enumerating all possible pairs of entities,
calculating their respective consistency scores, and
selecting the top-K entity pairs with the highest
scores as the resulting knowledge. However, this
approach can be computationally expensive due
to the large vocabulary size V (e.g., V = 50, 265
for ROBERTA) and the high time complexity of
the enumeration process (i.e., O(V 2) even when
each entity consists of only one token). To over-
come this limitation, we have proposed an appro-
priate approximation that leads to a more efficient
search and re-scoring method. Specifically, we first
use the minimum individual log-likelihoods (i.e.,
the second term in the compatibility score Eq.1)
weighted averaged across different prompts (simi-
lar as in Eq.2), to propose a large set of candidate
entity pairs. The use of the minimum individual
log-likelihoods allows us to apply pruning strate-
gies, such as maintaining a heap and eliminating
entities ranked outside top-K in every single search-
ing step. Once we have collected a large number
of proposals, we re-rank them using the full consis-
tency score in Eq.2 and select the top-K instances
as the output knowledge. We describe more nu-

anced handling in the search procedure (e.g., the
processing of multi-token entities, detailed pruning
strategies) in the appendix.

Generalization to complex relations Most ex-
isting KGs or knowledge bases include relations
that are predicates connecting two entities, e.g., "A
is capable of B". However, many real-life rela-
tions are more complex. Our approach is flexible
and easily extensible to extract knowledge about
these complex relations. We demonstrate this in
our experiments by exploring two cases: (1) highly
customized relations that have specific and sophis-
ticated meanings, such as "A is capable of,
but not good at, B". This type of sophisti-
cated knowledge is often difficult for humans to
write down on a large scale. Our automatic ap-
proach naturally supports harvesting this kind of
knowledge given only an initial prompt and a few
example entities that can be collected easily, e.g.,
⟨DOG, SWIM⟩, ⟨CHICKEN, FLY⟩, etc.; (2) N-ary
relations involving more than two entities, such as
"A can do B at C". Our approach can straight-
forwardly be extended to handle n-ary relations
by generalizing the compatibility score and search
strategy accordingly to accommodate more than
two entities.

Symbolic interpretation of neural LMs The
harvested knowledge tuples, as consistently recog-
nized across varying prompts by the LM, can be
considered as the underlying "beliefs" of the LM
about the world (Stich, 1979; Hase et al., 2021).
These fully symbolic and interpretable tuples pro-
vide a means for easily browsing and analyzing the
knowledge capabilities of the black-box LM. For
example, via these outcome KGs, one can compare



Paradigm Method (Size) Relation Set #Relations Accuracy (%) Novelty (%)

Ours

RobertaNet (122.2k) Auto 487 65.3 -

RobertaNet (2.2K) Human 12 81.8 -
RobertaNet (7.3K) Human 12 68.6 -

RobertaNet (23.6k) Human 12 58.6 -

RobertaNet (6.7K) ConceptNet 20 88.0 64.4
RobertaNet (24.3K) ConceptNet 20 81.6 68.8
RobertaNet (230K) ConceptNet 20 55.0 87.0

KG Completion COMET (6.7K) ConceptNet 20 92.0 35.5
COMET (230K) ConceptNet 20 66.6 72.4

Text Mining
WebChild (4.6M) - 20 82.0* -
ASCENT (8.6M) - - 79.2* -

TransOMCS (18.4M) ConceptNet 20 56.0* 98.3

Table 2: Statistics of KGs constructed with different methods. Different paradigms of works can not be directly compared
due to their different settings discussed in Table 1. We put the results together for reference purpose. Novelty refers to the
proportion of entities that do not appear in ConceptNet, so only the methods with ConceptNet relations set have Novelty numbers.
The accuracy with ∗ are from the original papers and subject to different evaluation protocol. As a finetuned knowledge base
completion model, COMET(Bosselut et al., 2019) can only predict the tail entity given a source entity and a relation, we generate
KGs with COMET by feeding it the head entity produced by our ROBERTANET. The bottom block of the table summarizes
the results from some major text mining methods described in Table 1, including WebChild (Tandon et al., 2014), ASCENT
(Nguyen et al., 2021) and TransOMCS (Zhang et al., 2020a).

different LMs to understand the performance im-
pact of diverse configurations, such as model sizes
and pretraining strategies, as demonstrated in our
experiments.

4 Experiments

To evaluate our framework, we extract knowledge
of diverse new relations from various language
models, and conduct human evaluation. We then
make deeper analysis of prompt creation and scor-
ing function in our framework. Finally, by utilizing
our framework as a tool to interpret the knowledge
stored in language models, we have made notewor-
thy observations regarding the knowledge capacity
of black-box models.

4.1 Setup

Relations We evaluate our framework with sev-
eral relation sets: (1) ConceptNet (Speer et al.,
2017): Following Li et al. 2016, we filter the
KG and use a set of 20 common relations (e.g.
HAS_SUBEVENT, MOTIVATED_BY_GOAL). The
initial prompts for these relations are from the Con-
ceptNet repository, and we randomly sample 5 ex-
ample entity pairs from the ConceptNet KG for
each relation. (2) LAMA (Petroni et al., 2019):
Following previous works, we use the T-REx split
(41 relations from WikiPedia, such as capital_of,
member_of). For each relation, the human-written
prompt provided in Petroni et al. 2019 is used as
the initial prompt and we randomly sample 5 exam-
ple entity pairs for each relation. (3) Human: We

write 12 new relations of interests that can hardly be
found in any existing KGs, and manually write an
initial prompt and 5 example entity pairs for them.
The resulting relations include complex relations
as described in Section 3.2. (4) Auto: Besides rela-
tions from existing KGs and human-written ones,
we automatically derive a large set of relations from
E-KAR (Chen et al., 2022), a dataset for analogical
reasoning. In the original dataset, given an entity
pair, e.g. ⟨ID_CARD, IDENTITY⟩, the task is to se-
lect an analogous tuple from multiple choices, e.g.
⟨PRACTICE LICENSE, QUALIFICATION⟩. To turn a
sample in E-KAR into a relation, we use the tuple
in the question and the correct choices as 2 exam-
ple entity pairs, and extract the initial prompt from
the explanation provided in E-KAR (e.g. Proof of
A requires B.), resulting in 487 relations. Some of
the relations are not straightforward, making this
relation set more difficult than other ones. 3

4.2 Extracting Knowledge of Diverse New
Relations

Our framework is applied to extract knowledge
graphs from LMs with relations of ConceptNet,
Auto, and Human. The accuracy of the ex-
tracted knowledge is then evaluated with hu-
man annotation using Amazon Mechanical Turk
(MTurk). Each extracted knowledge tuple is la-
beled for correctness by three annotators using a
True/False/Unjudgeable judge. A tuple is consid-

3For reference, finetuned ROBERTA-LARGE achieves
about 50% accuracy on the original dataset.



Methods Acc Rej

AUTOPROMPT 0.33 0.47
HUMAN PROMPT 0.60 0.27

TOP-1 PROMPT (Ours) 0.69 0.23
MULTI PROMPTS (Ours) 0.73 0.20

Table 3: The portions of accepted and rejected tuples in human
evaluation across settings, with the ROBERTA-LARGE as the
LM.

ered "accepted" if at least two annotators deem it
to be true knowledge, and "rejected" if at least two
annotators rate it as false. Here we refers portion
of accepted tuples as accuracy.

The statistics of our resulting KGs are listed
in Table 2. Besides, we also put the results of
other paradigms of methods, including COMET
for KG completion and text-mining based methods
(Figure 1). Note that the results across different
paradigms are generally not directly comparable
due to vastly different settings. Yet we still collect
the results together for reference purpose. From
our RebertaNet with relation set "Auto", we are
able to extract a reasonably large sets of knowl-
edge (122K), by extracting knowledge with 487
easy-to-collect "Auto" relations. The set of rela-
tion is an order of magnitude larger than the prede-
fined set of relations in both KG completion and
text mining based on ConceptNet as shown in the
table. The accuracy of 65% is at a comparable
level with that of COMET (230K) and TransOMCS
(18.4M), which is reasonable especially consider-
ing our method solely uses an LM as the source
of knowledge without any external training data,
bringing flexibility to dynamically incorporate new
relations. Besides, for our RobertaNet on Concept-
Net relations, although the numbers listed in the
table are not simply comparable, we can still find
that RobertaNet achieves similar accuracy and ab-
solutely higher novelty comparing with the knowl-
edge from COMET, which is already finetuned
using large number of knowledge terms under the
same set of ConceptNet relations. Further, our re-
sults on the "human" relation set demonstrate that
our RobertaNet keeps working comfortably on our
highly realistic relations of user interests, includ-
ing the complex ones as described in section §3.2.
We showcase knowledge samples harvested from
DISTILLBERT in Figure 3.

4.3 Analyzing Automatic Prompt Creation

To evaluate the effect of our automatic creation
of prompts, we compare the generated KGs under

Source LMs Acc Rej

DISTILBERT 0.67 0.24
BERT-BASE 0.63 0.26

BERT-LARGE 0.70 0.22
ROBERTA-BASE 0.70 0.22

ROBERTA-LARGE 0.73 0.20

Table 4: The portions of accepted and rejected tuples in human
evaluation across different LMs, using the MULTI-PROMPTS
approach.

several settings on the Human relations: (1) Multi-
Prompts refers to the the full framework described
in §3 which use the automatically created diverse
prompts in knowledge search. (2) Top-1 Prompt:
To ablate the effect of ensembling multiple prompts,
we evaluate the variant that uses only the prompt
with largest weight (§3.1) for knowledge extraction.
(3) Human Prompt: To further understand the ef-
fectiveness of the automatically created prompts,
we assess the variant that uses the initial prompt of
each relation. (4) AutoPrompt (Shin et al., 2020),
which was proposed to learn prompts by optimiz-
ing the likelihood of tail entity prediction on the
training set. To fit in our setting, we adapt it to opti-
mize the compatibility score (Eq.1) on the example
entity pairs. We omit other prompt tuning work
(e.g., Zhong et al., 2021; Qin and Eisner, 2021) be-
cause they either are difficult to fit in our problem
or require more training data and fail with only the
few shot of example entity pairs in our setting.

We harvest 1000 tuples for each Human rela-
tion, and evaluate them with human annotation.
The annotation results are presented in Table 3
(We also list the detailed results per relation in
Table 5 for reference) Our TOP-1 PROMPT signif-
icantly improves the accuracy up to 9% over the
HUMAN PROMPT, demonstrating the effectiveness
of our prompt searching algorithm in generating
high-quality prompts. MULTI-PROMPTS further
improves the accuracy by an additional 4%, indicat-
ing that the combination of diverse prompts better
captures the semantics of a relation. However, the
method utilizing the optimized prompt by AUTO-
PROMPT results in lower accuracy than the use of
human or searched prompts. This can be attributed
to the insufficient number of example knowledge
tuples used to learn effective prompts for the de-
sired relations.

Based on the results above, we move a step for-
ward to see how the created prompts influence
the subsequent scoring module in the framework.
Specifically, we study both the precision and re-
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Figure 4: Precision-recall on ConceptNet relations.

call of our scoring function parameterized by the
prompts, to see if the automatically created prompts
(§3.1) bring the consistency scoring (§3.2) better
balance of knowledge accuracy (precision) and cov-
erage (recall). To compare with other scoring meth-
ods that are restricted to specific sets of relations,
this experiment was conducted using existing terms
from both the ConceptNet and LAMA datasets.

Specifically, we use the knowledge tuples from
ConceptNet and LAMA as positive samples (§4.1),
and synthesize the same amount of negative sam-
ples with the same strategy in Li et al. (2016) by
random replacing entities or relations in a true
knowledge tuple. Each scoring function ranks the
samples based on the scores from high to low. We
can then compute both the precision and recall of
positive samples at different cut-off points along
the ranking, and plot the precision-recall curves for
each method.

The automatic evaluation setting on given knowl-
edge terms enables us to adapt existing prevalent
works, e.g., KG completion and factual probing
(Table 1), for comparison with our approach: (1)
COMET (Bosselut et al., 2019) is a transformer-
based KG completion model trained to predict the
tail entity t conditioning on the head entity and
relation (h, r) on ConceptNet. We use its log-
likelihood logP (t|h, r) as the score for each given
knowledge tuple. (2) LPAQA (Jiang et al., 2020)
collects a set of prompts on LAMA with text min-
ing and paraphrasing, and optimize their weights
towards the objective of logP (t|h, r) on training
samples.

The resulting precision-recall curves on Concept-
Net and LAMA knowledge are shown in Figure 4
and Figure 5, respectively. Scoring with multiple
prompts always achieves best performance, fol-
lowed by Top-1 prompts and then Human-written
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Figure 5: Precision-recall curve on LAMA relations.

prompts. The finding is consistent with previous
experiments, which verified the effectiveness of our
scoring function design. Our framework also out-
performs other baselines, such as COMET on Con-
ceptNet and LPAQA on LAMA. Though trained
with labeled data, these methods are only optimized
to completing a tail entity given a query, in stead of
scoring an entity pair, which is essential to extract
KGs from LMs.

4.4 Analysis of Knowledge in Different LMs

As previously mentioned in Section §3, the result-
ing knowledge graphs can be viewed as a sym-
bolic interpretation of LMs. We extract knowledge
graphs from 5 distinct language models and submit
them to human annotation evaluation. The findings
are presented in Table 4 (The detailed results per
relation is listed in Table 5), which sheds some
new light on several knowledge-related questions
regarding the LMs’ knowledge capacity.

Does a larger LM encode better knowledge?
The large version of BERT and RoBERTa have the
same pretraining corpus and tasks as their base ver-
sions, but have larger model architecture in terms
of layers (24 v.s. 12), attention heads (16 v.s. 12),
and the number of parameters (340M v.s. 110M).
We can see that the accuracies of BertNet-large and
RoBERTaNet-large are around 7% and 3% higher
than their base version, separately, indicating the
larger models indeed encoded better knowledge
than the base models.

Does better pretraining bring better knowl-
edge? RoBERTa uses the same architecture as
BERT but with better pretraining strategies, like dy-
namic masking, larger batch size, etc. In their corre-
sponding KGs from our framework, RoBERTaNet-
large performs better than BertNet-large (0.73 v.s.
0.70), and RoBERTaNet-base is also better than



BertNet-base (0.70 v.s. 0.63), showing that the bet-
ter pretraining in RoBERTa leads to better knowl-
edge learning and storage.

Is knowledge really kept in the knowledge
distillation process? DistilBERT is trained by
distilling BERT-base, and it reduces 40% param-
eters from the latter. Interestingly, the knowledge
distillation process instead improves around 4%
of accuracy in the result knowledge graph. This
should be attributed to the knowledge distillation
process which might eliminate some noisy infor-
mation from the teacher model.

5 Conclusion

We have developed an automatic framework that
extracts a KG from a pretrained LM (e.g, BERT,
ROBERTA), in an efficient and scalable way, result-
ing in a family of new KGs, which we refer to as
BERTNET, ROBERTANET, etc. Our framework is
capable of extracting knowledge of arbitrary new
relation types and entities, without being restricted
by pre-existing knowledge or corpora. The result-
ing KGs also serve as interpretation of source LMs.

Limitations Our current design and experimental
studies are limited on LMs in the generic domain,
and are not yet been studied in specific domains
such as extracting healthcare knowledge from rele-
vant neural models. We leave the exciting work of
harvesting knowledge from various kinds of neural
networks across applications and domains in the
future work.

Ethical considerations In this work, the har-
vested knowledge is automatically generated by
LMs. We would like to note that the language mod-
els could possibly generate unethical knowledge
tuples, same with the risks of other applications
using language models for generation. We hope
that the knowledge extraction study could offer
techniques to better interpret and understand the
language models, and in turn foster the future re-
search of language model ethics. Since the knowl-
edge graph only consists simple phrases, we think
filtering sensitive words would be effective. No
foreseeable negative societal impacts are caused by
the method itself.
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A Detailed Results of Harvested
Knowledge

In Table 3 and Table 4, we show the human-
annotated results of harvested knowledge in dif-
ferent settings. Here we list the detailed results per
relation in Table 5.

B Preprocessing of ConceptNet

We filter out some linguistic relations (e.g.
etymologically derived from) and some triv-
ial relations (e.g. related to). We only consider
the tuples with confidence higher than 1, and filter
out relations comprising less than 1000 eligible tu-
ples. We don’t directly take the test set from (Li
et al., 2016) because they reserve a lot of tuples for
training, resulting in a small and unbalanced test
set.

C Efficient knowledge tuple search

In the candidate entity pairs proposal step, we
use the minimum token log-likelihoods (shorted as
MTL) instead of the full Equation 2, which allows
us to apply a pruning strategy. The pseudo-code is
shown in Algorithm 1. For simplicity of the pseudo-
code, we only include the case where each entity
is composed of a single token. Appendix ?? illus-
trates the processing of multi-token entities. It’s
worth noting that our algorithm is an exact search
algorithm instead of approximated algorithms like
beam search, which prevents the results from bias-
ing towards more probable head entities.

As a running example, when we are searching
for 100 entity tuples, we maintain a minimum heap
to keep track of the MTL of the entity tuples. The
maximum size of this heap is 100, and the heap
top can be used as a threshold for future search
because it’s the 100-th largest MTL: When we are
searching for a new entity tuple, once we find the
log-likelihood at any time step is lower than the
threshold, we can prune the continuous searching
immediately, because this means the MTL of this
tuple will never surpass any existing tuples in the
heap. If a new entity tuple is searched out without
being pruned, we will pop the heap and push the
MTL of the new tuple. Intuitively, the pruning pro-
cess makes sure that the generated part of the tuple
in searching is reasonable for the given prompt.

Algorithm 1 Efficient Entity Tuple Search
Input: LM: A language model; nr: The entity number for

a tuple of relation r; N : maximum number of candidate
tuples; Pr: The set of prompts describing relation r

Output: tuple_list: A list of N entity tuples
heap←MinHeap()
function DFS(cur_tuple, cur_MTL)

idx←Count(cur_tuple)
if idx = nr then

heap.push((cur_tuple, cur_MTL))
if len(heap) > N then

heap.pop()
end if

end if
for v ∈ Vocab(LM) do

cur_L← log pLM (v|cur_tuple, Pr)
cur_MTL = min(cur_L, cur_MTL)
if Count(cur_tuple > 0) and cur_MTL < heap.top()

then return ▷ Pruning
end if
cur_tuple.append(v)
DFS(cur_tuple, cur_MTL)

end for
end function
DFS(EmptyList(), 0)
tuple_list← list(heap)

D Detailed Experiment setting

We use GPT-3 with the instruction "para-
phrase:sentence" with a few examples as the off-
the-shelf paraphraser. In entity pair searching, we
restrict every entity to appear no more than 10 times
to improve the diversity of generated knowledge
and search out at most 50,000 entity tuples for each
relation. We finally use various score thresholds
to get the outcome KGs in different scales, includ-
ing (1) 50%: taking half of all searched-out entity
pairs with higher consistency for each relation (2)
base-k: Naturally, there are different numbers of
valid tuples for different relations (e.g. tuples of ⟨
. . . , CAPITAL_OF, . . . ⟩ should not exceed 200 as
that is the number of all the countries in the world).
We design a relation-specific thresholding method,
that is to set 10% of the k-th consistency as the
threshold (i.e., 0.1 × consistencyk), and retain all
tuples with consistency above the threshold. We
name the settings base-10 and base-100 when k
is 10 and 100, respectively. We list the truncation
method applied to each variant of ROBERTANET

listed in Table 2:

• RobertaNet (122.2k) - Auto: base-10

• RobertaNet (6.7K) - ConceptNet: base-10

• RobertaNet (24.3K) ConceptNet: base-100

• RobertaNet (230K) ConceptNet: 50%



Table 5: Detailed result of human evaluation. The numbers indicate the portions of accepted and rejected tuples. Ro-l, DB, B-b,
B-l, Ro-b are short for Roberta-large, DistilBert, Bert-large, Bert-base, Roberta-base. Human, Auto, Top-1, and Multi stand for
methods that use Human Prompt, Autoprompt, Top-1 Prompt (Ours), and Multi Prompts (Ours).

Model Ro-l Ro-l Ro-l Ro-l DB B-b B-l Ro-b

Prompt Human Auto Top-1 Multi Multi Multi Multi Multi

BUSINESS 0.60/0.32 0.76/0.13 0.75/0.16 0.88/0.07 0.54/0.27 0.64/0.23 0.76/0.13 0.74/0.19
HELP 0.77/0.12 0.52/0.34 0.92/0.03 0.87/0.05 0.91/0.04 0.81/0.04 0.88/0.06 0.88/0.06

INGREDIENT FOR 0.59/0.33 0.33/0.59 0.73/0.20 0.71/0.24 0.70/0.26 0.55/0.40 0.72/0.23 0.51/0.40
PLACE FOR 0.76/0.10 0.41/0.36 0.63/0.32 0.89/0.07 0.84/0.14 0.78/0.18 0.87/0.11 0.88/0.09

PREVENT 0.42/0.42 0.18/0.67 0.60/0.25 0.40/0.45 0.60/0.32 0.44/0.39 0.62/0.25 0.68/0.25
SOURCE OF 0.76/0.17 0.21/0.67 0.52/0.44 0.60/0.33 0.63/0.36 0.65/0.32 0.75/0.24 0.55/0.37

SEPARATED BY THE OCEAN 0.48/0.38 0.16/0.48 0.56/0.35 0.55/0.40 0.51/0.24 0.57/0.26 0.44/0.46 0.44/0.49
ANTONYM 0.50/0.41 0.10/0.83 0.50/0.48 0.55/0.44 0.38/0.56 0.41/0.56 0.52/0.42 0.75/0.22

FEATURED THING 0.85/0.12 0.38/0.40 0.88/0.06 0.89/0.10 0.37/0.44 0.44/0.40 0.46/0.44 0.65/0.20
NEED A TO DO B 0.71/0.18 0.62/0.21 0.66/0.22 0.79/0.10 0.83/0.12 0.62/0.25 0.65/0.18 0.72/0.17

CAN BUT NOT GOOD AT 0.52/0.34 0.29/0.42 0.61/0.19 0.44/0.21 0.51/0.31 0.60/0.21 0.64/0.22 0.39/0.35
WORTH CELEBRATING 0.47/0.29 0.23/0.51 0.81/0.05 0.85/0.08 0.79/0.12 0.74/0.14 0.84/0.10 0.83/0.10

POTENTIAL RISK 0.40/0.23 0.31/0.45 0.70/0.21 0.76/0.19 0.87/0.05 0.66/0.22 0.72/0.16 0.79/0.08
A DO B AT 0.56/0.33 0.14/0.55 0.79/0.14 0.97/0.03 0.93/0.07 0.93/0.05 0.94/0.06 0.94/0.06
AVERAGE 0.60/0.27 0.33/0.47 0.69/0.22 0.73/0.20 0.67/0.24 0.63/0.26 0.70/0.22 0.70/0.22
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Library is the place for [MASK]

BERT

𝑃𝑃𝐿𝐿𝐿𝐿(ℎ|𝑝𝑝)

𝑃𝑃𝐿𝐿𝐿𝐿(𝑡𝑡|𝑝𝑝, ℎ)

[MASK] [MASK] is the place for [MASK]

BERT

𝑃𝑃𝐿𝐿𝐿𝐿(ℎ1|𝑝𝑝)

Study [MASK] is the place for [MASK]

BERT

𝑃𝑃𝐿𝐿𝐿𝐿(ℎ|𝑝𝑝)=𝑃𝑃𝐿𝐿𝐿𝐿 ℎ1 𝑝𝑝 ∗ 𝑃𝑃𝐿𝐿𝐿𝐿(ℎ2|𝑝𝑝, ℎ1)

𝑃𝑃𝐿𝐿𝐿𝐿(ℎ2|𝑝𝑝, ℎ1)

(Multiple tokens)

Figure 6: We demonstrate the calculation with an example where p ="A IS THE PLACE FOR B". The left two figures shows how
we calculate PLM (h|p) and PLM (t|p, h). In this example, h ="library" when we set both head and tail entities to have one
single token. The right block shows how we calculate the conditional probability of multiple-token entities by decomposing it
into two steps. In this example, the first token of the head entity h1 ="study".

• RobertaNet (2.2K) Human: base-10

• RobertaNet (7.3K) Human: base-100

• RobertaNet (23.6k) Human: 50%

E Human evaluation

We present the screenshot of the instruction in Fig-
ure 7 and question in Figure 8. The inter-annotator
agreement (Krippendorff’s Alpha) is 0.27, showing
fair agreement.

F Compute resource

All of our experiments are running on a single
Nvidia GTX1080Ti GPU. Harvesting a knowl-
edge graph of one relation with Roberta-large takes
about one hour.

G The license of the assets

All the data we used in this paper, including
datasets, relation definitions, seed entity pairs, etc.,
are officially public resources.

H Potential Risks

We identify that our system is minimal in risks. Our
proposed system produce results only based on the
source language models like BERT. The risks of
language models are well studied and our meth-
ods do not perpetuate or add to the known risks.
However, we acknowledge the methods could be
applied to maliciously trained language models and
discourage such uses.



Figure 7: The instruction to annotators

Figure 8: The questions to annotators


