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Abstract

Identifying latent variables and causal structures from observational data is essen-
tial to many real-world applications involving biological data, medical data, and
unstructured data such as images and languages. However, this task can be highly
challenging, especially when observed variables are generated by causally related
latent variables and the relationships are nonlinear. In this work, we investigate the
identification problem for nonlinear latent hierarchical causal models in which ob-
served variables are generated by a set of causally related latent variables, and some
latent variables may not have observed children. We show that the identifiability of
both causal structure and latent variables can be achieved under mild assumptions:
on causal structures, we allow for the existence of multiple paths between any
pair of variables in the graph, which relaxes latent tree assumptions in prior work;
on structural functions, we do not make parametric assumptions, thus permitting
general nonlinearity and multi-dimensional continuous variables. Specifically, we
first develop a basic identification criterion in the form of novel identifiability guar-
antees for an elementary latent variable model. Leveraging this criterion, we show
that both causal structures and latent variables of the hierarchical model can be
identified asymptotically by explicitly constructing an estimation procedure. To the
best of our knowledge, our work is the first to establish identifiability guarantees for
both causal structures and latent variables in nonlinear latent hierarchical models.

1 Introduction

Classical causal structure learning algorithms often assume no latent confounders. However, in
real-world scenarios, it is usually impossible to enumerate and measure all task-related variables.
Neglecting latent confounders may lead to spurious correlations among observed variables. Hence,
much effort has been devoted to handling the confounding problem. For instance, FCI and its variants
[30, 26, 10, 2] leverage conditional independence constraints to locate possible latent confounders
and estimate causal structures among observed variables, assuming no causal relationships among
latent variables. This line of approaches ends up with an equivalence class, which usually consists of
many directed acyclic graphs (DAGS).

Later, several types of approaches have been proposed to tackle direct causal relations among latent
variables. These approaches are built upon principles such as rank constraints [29, 22, 15], matrix
decomposition [6, 7, 3], high-order moments [28, 4, 34, 1, 8], copula models [11], and mixture
oracles [20]. Pearl [25], Zhang [38], Choi et al. [9], Drton et al. [13], Zhou et al. [40], Huang et al.
[16] extend such approaches to handle tree structures where only one path is permitted between any
pair of variables. Recently, Huang et al. [15] propose to use rank-deficiency constraints to identify
more general latent hierarchical structures. A common assumption behind these approaches is that
either the causal relationships should be linear or the variables should be discrete. However, the
linearity assumption and the discrete-variable assumption are rather restrictive in real-world scenarios.
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Figure 1: Examples of latent hierarchical graphs satisfying Conditions 2.3. x; denotes observed variables
and z; denotes latent variables. The node size represents the dimensionality of each variable. We note that our
graph condition permits multiple paths between two latent variables (e.g., z1 and z4 in Figure 1b), thus more
general than tree structures.

Moreover, these approaches only focus on structure learning without identifying the latent variables
and corresponding causal models. For a detailed literature review, please refer to Appendix A.

In this work, we identify the hierarchical graph structure and latent variables simultaneously for
general nonlinear latent hierarchical causal models. Specifically, we first develop novel identifiability
guarantees on a specific latent variable model which we refer to as the basis model (Figure 2). We
then draw connections between the basis-model identifiability and the identification of nonlinear
latent hierarchical models. Leveraging this connection, we develop an algorithm to localize and
estimate latent variables and simultaneously learn causal structures underlying the entire system.
We show the correctness of the proposed algorithm and thus obtain identifiability of both the latent
hierarchical causal structure and latent variable variables for nonlinear latent hierarchical models.

In sum, our main contributions are as follows.

* Analogous to independence tests in PC algorithm [30] and rank-deficiency tests in Huang et al.
[15], we develop a novel identifiability theory (Theorem 3.2) as a fundamental criterion for locating
and identifying latent variables in general nonlinear causal models.

* We show structure identification guarantees for latent hierarchical models admitting continuous
multi-dimensional variables (c.f., one-dimensional and often discrete [25, 9, 15, 35]), general non-
linear (c.f., linear [25, 15, 35]) structural functions, and general graph structures (c.f., generalized
trees [25, 9, 15]).

* Under the same conditions, we provide identification guarantees for latent variables, which to the
best of our knowledge is the first attempt in cases of nonlinear hierarchical models.

* We accompany our theory with an estimation method that can asymptotically identify the causal
structure and latent variables for nonlinear latent hierarchical models and validate it on multiple
synthetic and real-world datasets.

2 Nonlinear Latent Hierarchical Causal Models

In this section, we introduce notations and formally define the latent hierarchical causal model.
We focus on causal models with directed acyclic graph (DAG) structures and denote the graph
with G, which consists of the latent variable set Z := {z1,...,2,,}, the observed variable set !
X := {x1,...,Xp}, and the edge set E. Each variable is a random vector comprising potentially
multiple dimensions, i.e., X; € R4 and z; € R%; , where d, and dzj stand for the dimensionalities
of x; € X and z; € Z, respectively. Both latent variables and observed variables are generated
recursively by their latent parents:

Xi = Gz, (Pa(xi)a Eﬂui) Zj = Gz (Pa(zj)7 Ezj)7 ()
where Pa(z;) represents all the parent variables of z; and €., represents the exogenous variable
generating z;. Identical definitions apply to those notations involving x;. Exogenous variables €,
€., are independent of each other and could also comprise multiple dimensions. We now define a
general latent hierarchical causal model with a causal graph G := (Y, E) in Definition 2.1.
Definition 2.1 (Latent hierarchical causal model).

1 The variable set Y consists of the observed variable set X and the latent variable set Z, i.e.,
Y =XUZ.

'We refer to leaf variables in the graph as observed variables for ease of exposition. The theory in this work
is also applicable when some non-leaf variables happen to be observed, which we discuss in Append C.2



Figure 2: The basis model. v, and v, are generated
from nonlinear functions g; and g> which can be distinct
and non-invertible individually. We also admit depen-
dence between z and s, as indicated by the dashed edge.

ii Each variable in Y follows the generating process described in Equation 1.
iii The distribution over Y is Markovian and faithful to the graph G.

In light of the given definitions, we formally state the objectives of this work:
1. Structure identification: given observed variables X, we would like to recover the edge set E.

2. Latent-variable identification: given observed variables X, we would like to obtain a set of

variables Z := {z,...,%y} where z; and #; are identical up to an invertible mapping for
i € [m], i.e., z; = h;(z;), where h; is an invertible function.

Definition 2.1 gives a general class of latent hierarchical causal models. On the functional constraint,
the general nonlinear function form (Equation 1) renders it highly challenging to identify either
the graph structure or the latent variables. Prior work [25, 9, 35, 15] relies on either linear model
conditions or discrete variable assumptions. In this work, we remove these conditions to address the
general nonlinear case with continuous variables. On the structure constraint, generally speaking,
the identification of arbitrary causal structures is impossible. For instance, tree-like structures are
assumed in prior work [25, 9, 15] to obtain structural identifiability. In the following, we present
more general structural conditions for which we show identifiability.

Definition 2.2 (Pure children). v; is a pure child of another variable v, if v; is the only parent of v;
in the graph, i.e., Pa(v;) = {v;}.
Condition 2.3 (Structural conditions).

i Each latent variable has at least 2 pure children.
ii There are no directed paths between any two siblings.

Intuitively, Condition 2.3-i allows each latent variable to leave a sufficiently large footprint for
identification. This excludes some fundamentally unidentifiable structures. For instance, a latent
variable with no pure children can be merged into its children without affecting the overall generating
process. We require fewer pure children than prior work [29, 22] and place no constraint on the
number of neighboring variables as in [15, 35].

Condition 2.3-ii avoids potential triangle structures in the latent hierarchical model. Triangles present
significant obstacles for identification — in a triangle structure formed by z; — z, — z3 and z; — zs3,
it is difficult to discern how z; influences z3 without functional constraints, as there are two directed
paths between them. We defer the discussion of how to use our techniques to handle more general
graphs that include triangles to Appendix C.1. Condition 2.3-ii is widely adopted in prior work,
especially those on tree structures [25, 9, 13] (which cannot handle multiple undirected paths between
variables as we do) and more recent work [15]. To the best of our knowledge, only Xie et al. [35]
manage to handle triangles in the latent hierarchical structure, which, however, heavily relies on
strong assumptions on both the function class (linear functions), distribution (non-Gaussian), and
structures (the existence of neighboring variables).

3 Identifiability of Nonlinear Latent Hierarchical Causal Models

This section presents the identifiability and identification procedure of causal structures and latent
variables in nonlinear latent hierarchical causal models, from only observed variables X. First, we
introduce a latent variable model (i.e., the basis model) as illustrated in Figure 2, whose identifiability
underpins the identifiability of the hierarchical model. By establishing the connection between the
basis model and the hierarchical model in Theorem 3.4, we show by construction that both the causal
structure and latent variables are identifiable in the hierarchical model in Theorem 3.5.

3.1 Basis Model Identifiability

We present the data-generating process of the basis model in Equation 2 and illustrate it in Figure 2:

vi = g1(z,81) Vo = g2(2,82), ()



where vy € Vi CR%1, vy € Vo C R%2, 2 € Z CR%, 51 € S; C R%1, and sy € Sy C R%:2 are
variables consisting of potentially multiple components. The data-generating process admits potential
dependence between z and so and dependence across dimensions in each variable. We denote the
entire latent variable ¢ := [z, s1, s2] € C and the mapping from c to (vi,va)as g : C — Vi X Va.

Below, we first introduce notations and basic definitions that we use throughout this work.
Indexing: For a matrix M, we denote its i-th row as ML, ., its j-th column as M. ;, and its (i,7) entry
as M, ;. Similarly, for anindex setZ C {1,...,m} x {1,...,n}, wedenote Z; . := {j|(¢,7) € I}
and Z. ; := {i|(i,7) € }.

Subspaces: We denote a subspace of R™ defined by an index set S as R%, where R% := {z ¢ R" :
Support of a matrix-valued function: We define the support of a matrix-valued function M(x) :
X — R™ ™ as Supp(M) := {(4,7) : Ix € X,s.t., M(x);; # 0}, i.e., the set of indices whose
corresponding entries are nonzero for some x € X.

In Theorem 3.2 below, we show that the latent variable z shared by v; and v is identifiable up to an
one-to-one mapping by estimating a generative model (P s, , Ps, , §) according to Equation 2. We
denote the support of Jacobian matrix J, and J4 as G and G respectively and denote by T a matrix
with the same support as T'(c) in J5(¢) = J4(c)T(c).
Assumption 3.1 (Basis model conditions).
i [Invertibility]: The joint mapping g(c) = (v1,Va) is invertible.
ii [Subspace span]: For all i € {1,...,d,, + dy,}, there exists {c¥)
span({Jg(c(e))L; ‘égzi’l:‘) = Ré“ _and [JQ(C(Z))T]L: € R;C p
iii [Edge Connectivity]: Forall j, € {1,...,d,}, there exist i,,, and i,,, such that (i,,,5.) € G
and (ivz,jz) € g

‘Zgzi’l: ‘, such that

Theorem 3.2. Under Assumption 3.1, if a generative model (P s, , Ds, , §) follows the data-generating
process in Equation 2 and matches the true joint distribution:

Dvivs (V1,V2) = Puyvo (V1,V2), V(Vi, v2) €V XV, 3
then the estimated variable z and the true variable z are equivalent up to a one-to-one mapping.

The proof can be found in Appendix B.1.

Interpretation. Intuitively, we can infer the shared latent variable z from only observational data
(v1,v2), in a sense that the estimated variable z contains all the information of z without mixing
any information from s; and s». This notion of blockwise-identifiability is extensively employed in
identifiability theory [5, 17, 23, 32, 33, 21].

Discussion on assumptions. Assumption 3.1-i assumes the overall invertibility and is strictly weaker
than the invertibility of each causal model as in [33, 24].

Assumption 3.1-ii guarantees that the influence of z changes adequately across its domain. This
eliminates situations where the Jacobian matrix is partially constant, causing it to insufficiently
capture the connection between the observed and latent variables. To circumvent such situations and
make the assumption hold, one can restructure latent variables by merging redundant components.

Assumption 3.1-iii is a formal characterization of the common cause variable z in the basis model.
This assumption excludes the scenario where some dimensions of z only influence one of v; and
Vo, in which case these dimensions of z are not truly the common cause of v; and vy and should be
modeled as a separate variable rather than part of z.

Comparison to prior work. Theorem 3.2 allows the most general conditions, comparing to similar
data-generating processes in prior work [24, 33]. First, Theorem 3.2 does not necessitate the
invertibility for g1 () and go(-) individually as in [24, 33]. Essentially, the invertibility of g; and g2
amounts to asking that the information of z is duplicated and stored in both v; and v5. In contrast,
Assumption 3.1-i only requires that information is stored in (v, vsy) jointly. In contrast to the
identical generating function assumption g1 (-) = g2(-) in [33], the two generating functions g (+)
and go(-) can be distinct in Theorem 3.2. Additionally, Theorem 3.2 allows for dependence between
z and s, which is absent in [24].

These relaxations significantly expand the applicability of the basis model. For example, the distinc-
tion between g; and gs is indispensable in our application to the hierarchical model, as we cannot



assume each latent variable generates its many children and descents through the same function. This
is also the case for many other causal structure/variable learning problems, such as measurement
models, which we discuss in Section 3.2. Moreover, our proof techniques are distinct from prior work
along this line, which can be of independent interest to the community.

3.2 Local Identifiability of Latent Hierarchical Models

In this section, we build the connection between the basis model and the hierarchical model. Specifi-
cally, we show in Theorem 3.4 that a careful grouping of variables in the hierarchical model enables
us to apply Theorem 3.2 to identify latent variables and their causal relations in a local scope.

To invoke Theorem 3.2, we adjust Assumption 3.1 in basis models to obtain Assumption 3.3 for
hierarchical models.

Assumption 3.3 (Hierarchical model conditions).

i [Information-conservation]: Any z € Z and exogenous variable € can be expressed as functions
of all observed variables, i.e., z = f,(X) and e = f.(X).

ii [Subspace span]: For each variable z and any set A, CY suchthat 1)z 1 X|A, and 2) A,
does not contain directed paths, any invertible function g : R™ — R"™ with z included in its
input and A, as its output satisfies the subspace span condition (i.e., Assumption 3.1-ii).

iii [Edge connectivity]: The function between each latent variable z and each of its children z' has

a Jacobian J, such that for all j € {1,...,d.}, there exists i € {1,...,d.}, such that (i,7) is
in the support of J.

Theorem 3.4. In a latent hierarchical causal model that satisfies Condition 2.3 and Assumption 3.3,

we consider x; € X as vy and X\ vy as vq in the basis model (Figure 2). 2 With an estimation model

(Dz,s5 Ds, » §) that follows the data-generating process in Equation 2, the estimated z is a one-to-one

mapping of the parent(s) of v1, i.e., z = h(Pa(v1)) where h(-) is an invertible function.

The proof can be found in Appendix B.2.

Interpretation. Theorem 3.4 shows that invoking Theorem 3.2 with the assignment v; = x and
vy = X\{x} can identify the parents of x in the hierarchical model. Intuitively, we can identify latent
variables one “level” above the current level X. Moreover, as the estimated variables are equivalent
to true variables up to one-to-one mappings, we take a step further in Section 3.3 to show that this
procedure can be applied to the newly estimated variables iteratively to traverse the hierarchical
model “level” by “level”. In the degenerate case where v, does not have any parents, i.e., the root of
the hierarchical model, the identified variable z in the basis model corresponds to the v itself — we
can regard s; as a constant and g; (-) as an identity function in Theorem 3.2.

Discussion on assumptions. Assumption 3.3-i, corresponding to Assumption 3.1-i for the basis
model, is a minimal form of invertibility for the identifiability of latent variables. Intuitively, it states
that the information in the system is preserved without unnecessary duplication. Without this, the
information of latent variables would be lost through the transformations and cannot be identified.

Assumption 3.3-ii is a direct extension of Assumption 3.1-ii to the hierarchical case, with A, playing
the role of (vy, vs). Thus, it is a general condition as discussed for Assumption 3.1-ii.

Assumption iii excludes degenerate cases where an edge connects components that do not influence
each other. This can always be fulfilled by explicitly modeling such inactive connectivity in the graph.
Further, when v; = x is a pure child of a latent variable z, Condition 2.3-i ensures that vo always
contains at least one pure child or descendant of z to fulfill Assumption 3.1-iii.

Implications on measurement causal models. Despite being an intermediate step towards the
global structure identification, Theorem 3.4 is a standalone contribution: it can be applied to general
nonlinear measurement models with arbitrary latent structures and identify all the latent variables.
Then, the latent structures in the measurement model can be identified by performing existing causal
discovery algorithms, such as the PC algorithm [31], on the identified latent variables. We leave the
detailed presentation of this application as future work.

3.3 Global Identifiability of Latent Hierarchical Causal Models

Equipped with the local identifiability (i.e., Theorem 3.4), the following theorem shows that all causal
structures and latent variables are identifiable in the hierarchical model.

?To avoid cluttering, we slightly abuse the bold lowercase font to represent either an individual vector or a
vector set (which can be viewed as a concatenation).
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Figure 3: Evolution of active set A in Algorithm 1. We mark the active set A with shaded gray circles before
each iterations of Algorithm 1, with Figure 3a, Figure 3b, and Figure 3c corresponding to iteration 1, 2, and 3.
Before iteration 1, A is set to X by default. At iteration 1, z2, z3, and z4 can be estimated by the basis model;
however, only z4 can be updated into A. Otherwise, directed paths would be introduced by z2 and zs.

Theorem 3.5. Under assumptions in Theorem 3.4, all latent variables Z in the hierarchical model
can be identified up to one-to-one mappings, and the causal structure G can also be identified.

Comparison to prior work. Theorem 3.5 handles general nonlinear cases, whereas prior work [25,
9, 15, 35] is limited to linear function or discrete latent variable conditions. Structure-wise, our
identifiability results apply to latent structures with V-structures and potentially triangle structures
beyond generalized trees as studied in prior work [9, 25, 15], require fewer pure children and no
neighboring variables in comparison with [35, 15], and can determine directions for each edge (c.f.,
Markov-equivalent classes in Huang et al. [15]).

Proof sketch with search procedures. The proof can be found in Appendix B.3. In particular,
we develop a concrete algorithm (i.e., Algorithm 1) and show that it can successfully identify the
causal structure and latent variables asymptotically. We give a proof sketch of Theorem 3.4 below by
navigating through Algorithm 1 and illustrate it with an example in Figure 3.

Stage 1: identifying parents with the basis model (line 4-line 5). As shown in Theorem 3.4, the
basis model can identify the latent parents of leaf-level variables in the hierarchy. In Figure 3a, we
can identify zo when applying the basis model with the assignment v; := {x;} and v := X \ v;.
Naturally, the basic idea of Algorithm 1 is to iteratively apply the basis model to the most recently
identified latent variables to further identify their parents. In Algorithm 1, we define as active set A
the set of variables to which we apply the basis model. For example, A equals to X in the first round
(Figure 3a) and becomes {x1, X2, X3, Z4, X7, Xg, X9 } in the second round (Figure 3b).

Stage 2: merging duplicate variables (line 6). As multiple variables in A can share a parent, dictionary
P(-) may contain multiple variables that are one-to-one mappings to each other. Line 6 detects such
duplicates and represents them with one variable. In Figure 3a, setting v, to any of X1, X2, and x3
would yield an equivalent variable of z;. We merge the three equivalents by randomly selecting one.

Stage 3: detecting and merging super-variables (line 7 - line 9). Due to the potential existence of
V-structures, variables in A may have multiple parents and produce super-variables in P. For instance,
at the second iteration of Algorithm 1 (i.e., Figure 3b), the basis model will be run on v; = z4 and
vy = {x1,X2, X3, X7, Xs, X9} and output an variable equivalent to the concatenation (z2, z3). Line 7
to line 9 detect such super-variables by testing whether each variable z in P is equivalent to a union
of other variables in P. If such a union Z := {Z1, ..., 2,, } exists, we will replace z with Z in all its
occurrences. In Figure 3b, we would split the variable equivalent to [z», z3] into variables of z, and
z3 individually. If Z is tested to be a super-variable, i.e., it can perfectly predict another variable 2’
in P and 2’ cannot predict z perfectly, and the equivalent union cannot be found, we will track z in
line 9 to prevent it from being updated into A at line 16.

Stage 4: detecting and avoiding directed paths in A (line 12-line 14). Ideally, we would like to repeat
line 4 to line 9 until reaching the root of the hierarchical model. Unfortunately, such an approach
can be problematic, as this would cause variables in active set A to have directed paths among them,
in contrast to leaf variables X in Theorem 3.4. In Figure 3a, P would contain {z», z3, 24 }, as each
of these latent variables has pure observed children in X. However, due to direct paths within P,
i.e., zo — z4 and z3 — 24, we cannot directly substitute X with {z,, z3, z4 } in A. To resolve this
dilemma, we proactively detect directed paths emerging with newly estimated variables and defer the
local update of such estimated variables to eliminate direct paths. For directed path detection, we
introduce a corollary of Theorem 3.4 as Corollary 3.6.



Algorithm 1 Identification of Latent Hierarchical Models. A: the active set, X: the observed variable set,
P/JointP: dictionaries that store the relations between variables in A and estimated variables.

1: Initialize the active set: A + X;

2: while A # () do

3: initialize an empty set R and empty dictionaries P, JointP;

4: for each active variable a € A do

5: ‘ estimate the basis model with vi =a and vo =A\{a} to obtain z, and P <~ PU {(a, z) };
6.

7

8

merge equivalent variables in P;
for each variable z in P do

: if 32’ € P that 2 can perfectly predict but 2’ cannot predict Z then

9: ‘ if 3Z C P that perfectly predicts 2, then replace z with Z; else: R« R U {2};

10: cluster variables in P into {Z; };~, where Z; is either a singleton or contains spouse variables;
11: store each cluster Z; and its children set H; as a pair (Z;, H;) into JointP;
12: for each pair (Z;, H;) € JointP do

13: estimate the basis model with vi =Z; and vo = A\ H; to obtain an variable Zic;

14: if 3z’ € Z; such that Z can perfectly predict z’, then R +— R U Z;

15: for each pair (Z;,H;) € JointP do
16: \ if no variables in Z; has been tracked by R, i.e., Z; N R = (), then substitute H; with Z; in A.
17: remove independent variables from A.

18: Return: all the past active sets A and parent sets P.

R? =0.75 4+ 0.03
Z

R? =0.77 £ 0.03 R? =0.76 + 0.02 2
Z VA R? —O84i000/\11~? = 0.90 £ 0.00
Z2 Z3

R? —OQOiOOCi/\Rz—OQOiOOO R2_088i003/\R2—091i000 R? = 0.90 £ 0.00 5§ ;\
PN /J\/i\ AV

X1 X2 X3 X4 X3 X4 X1 X2

(a) A balanced tree. (b) With V-structure. (c) An unbalanced tree.

Figure 4: Evaluated hierarchical models. We denote the estimation R? scores around corresponding latent
variables. We can observe that all latent variables can be identified decently, justifying our theoretic results.

Corollary 3.6. Under assumptions in Theorem 3.4, for an arbitrary variable z from Pa(A), we
consider vi := z and vy := A\(Ch(z) N A) (i.e., the active set excluding z’s identified children),
estimating the basis model yields z which is equivalent to z up to an one-to-one mapping.

Corollary 3.6 can be obtained by setting v as an ancestor of vy and s; as a degenerate variable (i.e.,
a deterministic quantity) in Theorem 3.4. Leveraging Corollary 3.6, we can detect whether each
newly identified latent variable in P would introduce directed paths into A if they were substituted
in. If directed paths exist, the variable z would contain the same information as v; := z, which
prediction tests can evaluate. In this event, we will suppress the update of the z at this iteration. That
is, we still keep its children in A. This directed-path detection is conducted in lines 12- 14, after
properly grouping variables that share children in lines 10- 11. As shown in Figure 3b, z5 and z3 are
not placed in A, even if they are found in the first iteration. This update only happens when z4 has
been placed in A at the second iteration.

In general, a latent variable enters A only when all its children reside in A. We can show that A
contains all the information of unidentified latent variables — A d-separates the latent variables that
have not been placed in A and those were in A once. Equipped with such a procedure, we can
identify the hierarchical model iteratively until completion.

4 Experimental Results

In this section, we present experiments to corroborate our theoretical results in Section 3. We start
with the problem of recovering the basis model in Section 4.2, which is the foundation of the overall
identifiability. In Section 4.3, we present experiments for hierarchical models on a synthetic dataset
and two real-world datasets.

4.1 Experimental Setup

Synthetic data generation. For the basis model (Figure 2), we sample z ~ N(0,1), s; ~ N (0,1),
and s, ~ N(Az + b, I), where the dependence between z and s, is implemented by randomly



d,=dy, =d., =2 d,=d,, =2.d, =3 d,=dy, =dy, =4 d,=d,, =4,d,, =6
Joint invertibility (Ours) 0.94 £0.01 0.90£0.05 0.89 £0.05 0.82£0.14
Individual invertibility [33] 0.65 +0.01 NA 0.68 +0.01 NA

Table 1: The basis model identifiability. We show the identifiability for z under various data
dimensionalities d, ds, , and d, for z, s1, so. We compare our results with prior work that assumes
both g; and g, are invertible individually. NA indicates that the model is not applicable when the
dimensionalities of s; and s differ.

constructed matrix A and bias b. We choose the true mixing function g as a two-layer multilayer
perceptron (MLP) with Leaky-ReLU activation functions. We apply element-wise max{z, 0} to z
before inputting [z, s1] to g; and element-wise min{z, 0} to z before inputting [z, s3] to g2, so that
v is generated by the positive elements of z and v4 is generated by the negative elements of z. This
way, g1 and go are jointly invertible but not individually invertible. For latent hierarchical models
(Figure 4), we sample each exogenous variable ¢ as € ~ A (0,I) and each endogenous variable z is
endowed with a distinct generating function g, parameterized by an MLP, i.e., z = g,(Pa(z), &,).

Real-world datasets. We adopt two real-world datasets with hierarchical generating processes,
namely a personality dataset and a digit dataset. The personality dataset was collected through an
interactive online personality test [27]. Participants were requested to provide a rating for each
question on a five-point scale. Each question was designed to be associated with one of the five
personality attributes, i.e., agreeableness, openness, conscientiousness, extraversion, and neuroticism.
The corresponding answer scores are denoted as a;, 0, etc, as indicated in Figure 5. We use responses
(around 19,500 for each question) to six questions for each of the five personality attributes. For
the digit dataset, we construct a multi-view digit dataset from MNIST [12]. We first randomly crop
each image to obtain two intermediate views and then randomly rotate each of the intermediate
views independently to obtain four views. This procedure gives rise to a latent structure similar
to that in Figure 4a. We feed images to a pretrained ResNet-44 [14] for dimensionality reduction
(28 x 28 — 64) and run our algorithm on the produced features.

Estimation models. We implement the estimation model (g1, g2, f ) following Equation 2, where f
can be seen as an encoder that transforms (v1, vo) to the latent space and (g1, §2) act as the decoders
generating v; and vy respectively. We parameterize each module with an MLP with Leaky-ReLLU
activation. Training configurations can be found in Appendix D.

Evaluation metrics. Due to the block-wise nature of our identifiability results, we adopt the
coefficient of determination R? between the estimated variables z and the true variables z, where
R? = 1 suggests that the estimated variable z can perfectly capture the variation of the true variable z.
We apply kernel regression with Gaussian kernel to estimate the nonlinear mapping. Such a protocol
is employed in related work [33, 21]. We repeat each experiment over at least 3 random seeds.

4.2 Basis Model Identification

The results for the basis model are presented in Table 1 and Figure 9. We vary the number of
components of each latent partition (d, ds, , ds,). We can observe that the model with individual
invertibility (as assumed in prior work [33, 24]) can only capture around half of the information in z,
due to their assumption that both g; and g, are invertible, which is violated in this setup. In contrast,
our estimation approach can largely recover the information of z across a range of latent component
dimensions, verifying our Theorem 3.2. Moreover, prior work [33] assumes g; = g», and therefore
cannot be applicable when the dimensionalities of s; and s, differ (e.g., d;, = 2, ds, = 3), hence
the “NA” in the table. Figure 9 in Appendix D.2 shows scatter-plots of the true and the estimated
components with d, = ds;;, = ds, = 2. We can observe that components of z and those of z are
highly correlated, suggesting that the information of z is indeed restored. In contrast, Z contains very
little information of s;, consistent with our theory that a desirable disentanglement is attainable.

4.3 Hierarchical Model Identification

Synthetic data. We present the evaluation of Algorithm 1 on latent hierarchical models in Figure 4,
Table 2, and Table 4- 5 in Appendix D.3. In Figure 4, we can observe that all variables can be
estimated decently, despite a slight recovery loss from a lower to a higher level. Such loss can be
mitigated by more careful tuning of the deep learning model. Table 2 presents the pair-prediction
scores within pairs of estimations while learning the V-structure model in Figure 4b. We can observe
that scores within the sibling pairs (x1,X2) and (x4, X5) are much higher than non-sibling pairs.



Figure 5: The causal structure of the personality dataset
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Figure 6: Multi-view digit dataset results. Figure 6a: (v1,v2) and (vs, v4) form two clusters, as they share
the aspect-ratio factor within the cluster while distinct in the rotation-angle factor. Table 6b: each box (a, b)
shows the R? score obtained by applying the estimated variable produced by treating one specific view a as v1
to predict the estimated variable produced by treating view b as vi.

Notably, the estimate from v; = x3 can perform accurate prediction over other estimates, whereas
the other estimates fail to capture it faithfully. This is consistent with Theorem 3.4: the basis model
with v; = x3 will output an variable equivalent to the concatenation of z; and z3, which explains
the asymmetric prediction performances. These results empirically corroborate Theorem 3.5.
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in the first level, which is consis- lable 2: Pairwise predictions among estimated variables in Figure 4b.
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f)nd set r.eveahng more detalle'd estimation. In particular, the estimate from vi = x3 can predict other
information about _the _data — 1t estimates accurately, whereas not the other way round, confirming our
suggests that conscientiousness,  theory that v; = x3 will recover the information of both z; and zs.
agreeableness, and neuroticism

are closely related at the intermediate level, whereas extraversion and neuroticism are more closely
related. Some observed variables are not shown in the figure, as they are not clustered with other
variables, suggesting they are not closely related to the system. This may provide insights into the
efficacy of the design of certain questions.

Digit dataset. Figure 6a and Table 6b present the causal structure learned from the multi-view digit
dataset. We can observe that we can automatically cluster the two views sharing more latent factors.
This showcases that our theory and approach can handle high-dimensional variables, whereas prior
causal structure learning work mostly assumes that all variables are one-dimensional.

5 Conclusion

In this work, we investigate the identifiability of causal structures and latent variables in nonlinear
latent hierarchical models. We provide identifiability theory for both the causal structures and latent
variables without assuming linearity/discreteness as in prior work [25, 9, 15, 35] while admitting
structures more general than (generalized) latent trees [25, 9, 15]. Together with the theory, we devise
an identification algorithm and validate it across multiple synthetic and real-world datasets.

In future research, we aim to integrate our theoretical insights into scalable continuous-optimization-
based algorithms [39] and deep learning. We believe that our work facilitates the understanding of
the underlying structure of highly complex and high-dimensional datasets, which is the foundation
for creating more interpretable, safer, and principled machine learning systems.
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Appendix for “Identification of Nonlinear Latent Hierarchical
Models"

A Detailed Literature Review

Previous causal discovery approaches, which allow latent confounders and causal relationships among
those latent variables, either assume linear causal relationships or assume discrete data. Representative
approaches along this line include rank deficiency-based methods, matrix decomposition-based
methods, generalized independent noise condition-based methods, and mixture oracles-based methods.
(1) Rank deficiency-based. By testing the rank deficiency over cross-covariance matrices over
observed variables, one is able to locate latent variables and identify the causal relationships among
them in linear-Gaussian models. Silva et al. [29], Kummerfeld and Ramsey [22] make use of the
Tetrad condition, a special case of the rank-deficiency constraints, to handle the case where each
observed variable is influenced by only one latent parent, and each latent variable has at least three
pure measured children. The Tetrad condition has also been used to identify a latent tree structure [25].
Recently, the rank-deficiency constraints have been extended to identify more general hierarchical
structures [15]. (2) Matrix decomposition-based. It has been shown that, under certain conditions, the
precision matrix can be decomposed into a low-rank matrix and a sparse matrix, where the low-rank
matrix represents the causal structure from latent variables to observed variables and the sparse matrix
gives the structural relationships over observed variables. To achieve such decomposition, certain
assumptions are imposed on the structure [6, 7, 3], e.g., there should be three times more measured
variables than latent variables. (3) Generalized independent noise (GIN) condition-based. The GIN
condition is an extension of the independent noise condition in the existence of latent confounders,
relying on higher-order statistics to identify latent structures. In particular, Xie et al. [34] proposes a
GIN-based approach that allows multiple latent parents behind every pair of observed variables and
can identify causal directions among latent variables. Moreover, Adams et al. [1] gives necessary and
sufficient structural constraints in the linear, non-Gaussian or heterogeneous case, to identify the latent
structures. (4) Mixture oracles-based method-based. Recently, Kivva et al. [20] proposed a mixture
oracles-based method to identify the latent variable graph that allows nonlinear causal relationships.
However, it requires that the latent variables are discrete and each latent variable has measured
variables as children. Thanks to the discreteness assumption, it can handle general DAGs over latent
variables. On the other hand, regarding the scenario of latent hierarchical structures, most previous
work along this line assumes a tree structure and requires that each variable has only one dimension
and that the data is either linear-Gaussian or discrete [25, 38, 9, 13, 16]. In contrast, we address
the general nonlinear case with continuous variables. Moreover, our conditions allow for multiple
undirected paths between two variables and thus are more general than tree-based assumptions in
prior work.

Another related research line is latent-variable identifiability literature. Hyvarinen et al. [18], Khe-
makhem et al. [19], Kong et al. [21] have shown that with an additional observed variable to modulate
latent independent variables, the latent independent variables are identifiable. Recently, Yao et al.
[36, 37] allow time-delayed causal relationships among latent variables. However, for time-delayed
causal relations, the causal direction is fixed and predefined, and moreover, they assume that all latent
variables have measured variables as children, avoiding the hierarchical cases. Prior work[33, 24]
studies latent-variable models related to our proposed basis model (which serves as a tool and is
defined in Section 2) in this work, but with more restrictive functional and statistical assumptions. To
the best of our knowledge, no prior work has managed to identify latent variables or causal structures
in nonlinear latent hierarchical models.

B Proofs

B.1 Proof for Theorem 3.2

The original proof is replicated here for reference.

In Theorem 3.2, we show that the latent variable z shared by v; and v is identifiable up to an
one-to-one mapping by estimating a generative model (p, s, , Ps, , §) according to Equation 2. We
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denote the support of Jacobian matrix J, and J4 as G and G respectively and denote by T a matrix
with the same support as T'(c) in J4(¢) = J4(c)T(c).

Assumption 3.1 (Basis model conditions).
i [Invertibility]: The joint mapping g(c) = (v1,Va) is invertible.
ii [Subspace span]: For all i € {1,...,d,, + dy,}, there exists {c¥) ngi’l", such that
span({39(e®)i. 1 2y) = RE and [35(e)T);. € Ry .

iii [Edge Connectivity]: Forall j, € {1,...,d,}, there exist i,,, and i,,, such that (i,,,j.) € G
and (iy,,j.) € G.

Theorem 3.2. Under Assumption 3.1, if a generative model (P s, , Ds, , §) follows the data-generating
process in Equation 2 and matches the true joint distribution:

Dvive (V1,V2) = Pyyve (V1, V2), V(Vi,v2) €V XV, (3)

then the estimated variable z and the true variable z are equivalent up to a one-to-one mapping.

Proof. We first define the indeterminacy function:
h:=g§tog,

which is a smooth and invertible function & : C — C thanks to Assumption 3.1-i. According to the
chain rule and inverse function theorem, we have the following relation among the Jacobian matrices:

J5(€) = Jy(c) -3, (c). @)
For ease of exposition, we denote M(c) := J; *(c) in the following.

We define the support notations as follows:

G := supp(Jy),
g := supp(J5),
T := supp(M).
Because of Assumption 3.1-ii, for any i € {1,...,d,, + d,,}, there exists {c(z)}‘zg:ifl, such that

Gi,: .
span({J(c);. 1i2) = Rg;
Since {Jg(c(e))i7:}|ég:i’l’| forms a basis of Réj , for any jo € G ., we can express canonical basis

de .
vector e, € Ry as:

€jo = Z Qy - Jg(c(é))i,w (@)
Legi,.

where ay € R is a coefficient.

Then, following Assumption 3.1-ii, there exists a deterministic matrix T such that

Tjs =€, T= > ar Jy(c!), TeRY (6)
LegG;,. "

where € is due to the fact that each element in the summation belongs to Rdg°
Therefore,
Vj€Gi.,Tj. € Rdg
Equivalently, we have:
V(i,j) €6, {i}xT;. Cg. @)
We would like to show that z is not influenced by s; and s», which is equivalent to T;_ ;. = 0 for

j.€{l,...,d.}and j; € {d. +1,...,d.}.
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We first will prove this for j; € {d,+1,...,d,+ds, } by contradiction. Suppose that 3(j,, js,) € T
with j, € {1,...,d,} and js, € {d. +1,...,d, +ds, }.

Thanks to Assumption 3.1-iii, there must exist i,,, € {dy, +1,...,dy, +dy, }, such that, (i,,,j.) € G.
It follows from Equation 7 that:

{ivz} x 73271 cg = (iv2’j§1) €g. (®)
However, due to the structure of g, [Jg,]i,, j., = 0, which results in a contradiction. Therefore, such
(44,, 75, ) does not exist. The same reasoning gives rise to that (j,,7s,) € 7 with j, € {1,...,d,}
and j;, € {d. +ds, +1,...,d.}. Therefore, we have shown that T;_ ;. =0forj. € {1,...,d.}
and j; € {d, +1,...,d.}. As T is invertible, it follows from the block-matrix inverse formulae
that T;, . = 0forj; € {1,...,d.} and j; € {d. +1,...,d.} In conclusion, z is not influenced by
(s1,s2). Thus, we have shown that there is a one-to-one mapping between z and z. O

B.2 Proof for Theorem 3.4

The original theorem is copied below.

Assumption 3.3 (Hierarchical model conditions).

i [Information-conservation]: Any z € Z and exogenous variable € can be expressed as functions
of all observed variables, i.e., z = f,(X) and e = f.(X).

ii [Subspace span]: For each variable z and any set A, CY suchthat 1)z 1 X|A, and 2) A,
does not contain directed paths, any invertible function g : R™ — R"™ with z included in its
input and A, as its output satisfies the subspace span condition (i.e., Assumption 3.1-ii).

iii [Edge connectivity]: The function between each latent variable z and each of its children z' has
a Jacobian J, such that for all j € {1,...,d.}, there exists i € {1,...,d./}, such that (i,7) is
in the support of J.
Theorem 3.4. In a latent hierarchical causal model that satisfies Condition 2.3 and Assumption 3.3,
we consider x; € X as vy and X\ vy as Vo in the basis model (Figure 2). 3 With an estimation model
(Pz,s5 Dsy » §) that follows the data-generating process in Equation 2, the estimated z is a one-to-one
mapping of the parent(s) of v1, i.e., z = h(Pa(v1)) where h(-) is an invertible function.

Proof. We show that performing estimation following the generating process Equation 2 to any
vi = x; € X and vo = X\ vy is equivalent to the estimation of the model in Figure 2 with
z = Pa(vy). Therefore, the identifiability result ensues, thanks to Theorem 3.2.

First, we show that for each selection of vy, we can locate (z, s1,S2) such that the conditions for the
basis model in Theorem 3.2 are satisfied. We choose (z, s1, s2) as follows.

» We choose the z to be all parents of v;: z := Pa(vy)
* We choose s; to be exogenous variables that cause v; together with z: 51 := &y,

* To obtain so, we trace back (traversing backward every edge) from the v5 recursively and
execute the following steps. At each step of backtracking, we include any cause (exogenous
variables and endogenous variables) that is not situated on any directed path from z to vs.
The backtracking for each path halts when the most recent step recovers an endogenous
variable out of the directed paths, or it reaches z. We note that such a choice for s5 is not
unique — the above procedure is only one instance.

Invertibility. From (z, s1, s2) to (v1, va), we can observe that (z, s1, s2) by construction include all
the information to generate (v, va), i.e., X, as (2, s, ) d-separate their parents/ancestors from
(v1, va) and contain all necessary exogenous variables. From (vq, vq) to (2, s1, S2), we can observe
that as the tuple (v1, vo) comprises the entire observable set X, which contains the information of all
latent exogenous and endogenous variables according to the general invertibility (Assumption 3.3-i)
of the hierarchical model. Therefore, the mapping is invertible.

3To avoid cluttering, we slightly abuse the bold lowercase font to represent either an individual vector or a
vector set (which can be viewed as a concatenation).
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Conditional independence: v, | va|z. As z is chosen to be the parents of v, and there is no
edge among the observables X (i.e., leaf variables), the local Markov property implies conditional
independence.

Subspace span. As (vy,vy) := X satisfies the tree conditions in Assumption 3.3-ii w.r.t., z := Pa(z),
the subspace span condition follows from Assumption 3.3-ii.

Edge connectivity. We assume that in the hierarchical model, the function between each latent
variable z and each of its pure child z’ has a non-degenerate Jacobian matrix in a sense that for all
je{l,...,d,}, thereexists i € {1,...,d, }, such that (, ) is included in the Jacobian matrix’s
support (i.e., Assumption 3.3-iii). Therefore, since each latent variable has at least 2 pure children
(i.e., Condition 2.3-i) and v; contains 1 variable, at least 1 pure child of z or a descendant of a
pure child of z will appear in vo. Thus, for each j € {1,...,d.}, there exist 4,, and i,, such that
both (i,,, j) and (i,,, j) are contained in the support of the Jacobian matrix, which fulfills the edge
connectivity condition (i.e., Assumption 3.1-iii).

Thus, it follows from Theorem 3.2 that z is a one-to-one mapping to the true z.

B.3 Proof for Theorem 3.5

Theorem 3.5. Under assumptions in Theorem 3.4, all latent variables Z in the hierarchical model
can be identified up to one-to-one mappings, and the causal structure G can also be identified.

Proof. We will show by induction that each iteration of Algorithm 1 fulfills the following conditions:

Condition B.1 (Active-set conditions).

i Each element in the active set A is a one-to-one mapping of a distinct variable in'Y .
ii There are no directed paths among variables in A.

iii. The graph is d-separated by A into latent variables Z a that have not been included in A and
those Z 5 that were in A (but not now): Za 1 Zz|A.

We will first verify the base case where active set A is assigned observable set X. Condition B.1-i is
automatically satisfied due to the initial assignment. As X are all leaf variables, there are no directed
paths within X, and therefore Condition B.1-ii is satisfied. Condition B.1-iii is also met trivially, as
Z 5 = () at the initial step. So far, we have verified the base case.

Now, we make the inductive hypothesis that all conditions hold before an iteration and show that
these conditions are maintained after the iteration.

We first note that Condition B.1-i, Condition B.1-ii, and Condition B.1-iii in the inductive hypothesis
enable us to apply Theorem 3.4 to the modified graph consisting of variables in A as the bottom layer
and all latent variables that have not been placed in A. This modified graph satisfies the structural
properties required by Theorem 3.4:

* All paths end at active (observed) variables.

* There are no directed paths among the active variables.

We now analyze the updates to A made at Step 16 in Algorithm 1 after each iteration. For a specific
variable z € P(A), there are the following cases.

Case B.2 (One-iteration cases).

i z has only pure children and all of them are in A.
ii z has only pure children and not all of them are in A.

iii z has coparents and all its children and its co-parents’ children are in A.
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iv z has coparents and not all its children and its co-parents’ children are in A.

For Case B.2-i, when each pure child a of z is treated as v1, the basis model will yield z. So, there
are certainly estimates of z in P(a). As z possesses at least 2 pure children all of which belong to A,
there will be duplicates, i.e., multiple equivalent one-to-one mappings of z, which we merge into one
at Step 6. Therefore, for each pure child a of z, the only element in P(a) is a identical one-to-one
mapping of z. It follows that JointP contains a pair (Z, H) where Z consists of z alone and H
contains all its pure children. This fact, together with Condition B.1-iii, implies that Zy would be
the parent of z, which cannot perfectly predict z at Step 14. Therefore, Algorithm 1 will substitute all
the pure children of z with the estimate of z in A.

We now switch to Case B.2-ii. Analogous to the process in Case B.2-i, after Step 6 we will have
P(a) = {z} for each active pure child. However, as not all pure children of z are active, JointP({z})
does not include all of the pure children of z and A \ H certainly contains descendants of z. It
follows from Corollary 3.6 that zy Will be a one-to-one mapping of z and can predict it perfectly at
Step 14. Therefore, z will not be updated to A at this iteration.

For Case B.2-iii, we will show that the update takes place for z and its coparents. Without loss of
generality, we assume that z only has one coparent z’. As both z has multiple pure children (i.e.,
Condition 2.3-i) and all of them are in A, the dictionary P will contain z and z’ in their keys and P(z)
and P(z’) contain their pure children respectively. Suppose a is a shared child of z and z’, then P(a)
would be a singleton set containing a one-to-one mapping of z”’ := [z, z'], after Step 6. At Step 9,
z'" will be recognized as a combination of z and z’ and replaced with them. It follows that JointP
will contain a pair (Z, H) such that Z = (z,z’) and H is composed of all the children of the two
coparents. At Step 16, both z and z’ will be updated into A.. Cases with more than one coparents can
be dealt with in the same manner.

For Case B.2-iv, we show that the update will not be carried out for z and its coparents. Following
the notation in Case B.2-iii, we assume that z has a coparent z’, and these two share at least one
active child. If neither z nor z’ has any pure active children, they will be regarded as a supernode
7' = [z,2'] and the corresponding H contains only the shared active children. Then, A \ H will
certainly contain descendants of both z and z’. Consequently, Zs Will be equivalent to the supernode
7" and predicts it perfectly at Step 14. In this case, neither z and z’ will be updated into A. If only
one of z and z’ has no pure children in A, then neither of them will be updated into A due to Step 9.
Without loss of generality, we assume that z’ does not have any active pure children, whereas z does.
Then, there will be no estimated z’ in the values of P, but there will be estimated z and (z,z’). As a
results, Step 9 will prevent z and z’ from updated to A. If both z and z’ have active pure children,
then there will be a pair (Z, H) in JointP such that Z = {z,z’'} and H contains all their active
children. As H does not contain all the children of z and z’, the A \ H will contain descendants of at
least one of z and z’. Then Z; will contain all information of at least one of z and z’ and predicts it
perfectly at Step 16, which aborts the update of z and z’. Therefore, no updates will happen in this
case.

As each of the newly estimated variables in the values of JointP is a one-to-one mapping to a distinct
variable in Z, the iteration preserves Condition B.1-i.

For Condition B.1-ii, we can observe that if z is updated into A at this iteration, all its children would
be in A at the beginning of this iteration and get removed at Step 16. Therefore, the update would
not introduce directed paths to A. Condition B.1-iii holds for the same reason: the newly introduced
variables in the active set A at the end of the iteration separate their children in the active set A at the
beginning of the iteration and all undiscovered latent variables.

So far, by induction, we have shown that Condition B.1-iii, Condition B.1-ii, and Condition B.1-iii
hold at the end of each iteration. Given the analysis above, at each iteration, we update variables
whenever all their children and their coparents’ children are active, i.e., Case B.2-1 and Case B.2-iii,
and the causal relations between the parents and the children are encoded in JointP.

We further argue that at every iteration, there exists at least one undiscovered latent variable that has
all its children in A. We focus on the trimmed graph consisting of Za and A, where Z 5 refers to
all undiscovered variables. As the graph is of finite size and all variables in Z 5o have directed paths
ending at active variables in A, the active variable a farthest from the root does not have siblings in
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Figure 7: A specific case to demonstrate how we can avoid assuming specific functional classes.

Z a ; otherwise, there would be a’ (i.e., the child of a’s sibling in Z ) in A that was further from the
root than a.

In sum, we have shown that there will exist at least one update at each iteration, and each update will
lead to the discovery of new latent variables and correct causal structures. Therefore, Algorithm 1
can successfully identify the underlying hierarchical causal graph and each latent variable up to
one-to-one mappings.

O

B.4 [Illustration of a Specific Case

Figure 7 shows a specific case to demonstrate how we can avoid assuming specific functional classes.
For active set A = {23,724, 25}, if we treat z, as vy, z; will become z in the basis and [z4, 5] will
become vo. This set of (z, v, va) satisfies Assumption 2-i, as all information about z; is contained
by z9, z4, and z5. Assumption 2-iii and Assumption 2-ii are direct consequences of Assumption 3.3-
iii and Assumption 3.3-ii. Also, we can always find an independent variable s; := €, in the basis
model. Therefore, Theorem 3.4 guarantees the estimated z to be an one-to-one mapping of z;.

C Relaxation of Structural Conditions

C.1 Relaxation of Condition 2.3-ii

We remark that Condition 2.3-ii is introduced to simplify the presentation of our main results
— as the first step of nonlinear-latent-hierarchical causal discovery, we wish to present the basic
techniques more clearly — handling triangles involves additional components of the algorithm and
could potentially compromise the readability.

We give an example in Figure 8 with a triangle structure to illustrate how our theory and algorithm
can handle triangles. We refer to variables in a triangle under the following convention: 1) root: the
variable which is the cause of the other two variables (e.g., z; in Figure 8), 2) sink: the variable which
is the effect of the other two variables (e.g., z3 in Figure 8), and 3) bridge: the variable which is the
effect of the root variable and the cause of the sink variables (e.g., z in Figure 8).

In the following, we illustrate the procedures to recognize and handle triangle structure by navigating
through Figure 8. First, the directed path detection procedure portrayed in Section 3.3 can pinpoint
the directed path between the bridge variable and the sink variable (e.g., zo and z3). We need to
determine whether the two variables indeed belong to a triangle. To this end, we can lump the bridge
variable and the sink variable together as v;. We perform the basis model estimation over v; and the
active set A excluding v;’s children. In Figure 8, we perform the basis model over vi = [z2, 23]
and A = {z2, 23, X7, Xs, X9 }, Which returns an estimate of z,. Further, we can determine that the
bridge variable z5 and the estimated variable from the lumped v; constitute the parents of the sink
variable z3 by mutual prediction, which ascertains the two variables are indeed the bridge variable
and the sink variable of a triangle, respectively. In this example, we find that the estimated variables
of z, and z; together contain identical information to the estimated variable of z3, which reveals
that z, and z3 are the bridge variable and the sink variable of a triangle. This concludes the triangle
detection procedure. With this knowledge, we can handle the triangle structure by lumping the bridge
variable z3 and the sink variable z3 into a super-variable and proceed with this modification.
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Figure 8: An example of triangle structures, i.e., Z1, Zo, and zs.

C.2 Admitting Non-leaf variables into X

Identical to the directed path detection detailed in Section 3.3, Corollary 3.6 can detect non-leaf
observed variables and exclude them from the initial active set X in Algorithm 1. Thus, the problem
can be reduced back to the case without observed non-leaf variables, which can be tackled by
Algorithm 1.

D Experiments

D.1 Additional Experimental Details

We provide additional details of experiments in Section 4. For the basis model evaluation in

Section 4.2, then encoder f and decoders (g1, g2) are 4-layer MLP’s with a hidden dimension 30
times as large as the input data and Leaky-ReLLU (o = 0.2) activation functions. For the synthetic
hierarchy experiments in Section 4.3, the model layers are 8 and 50 times as large as the input data.
For the personality dataset in Section 4.3, the model layers are 4 and 8 times as large as the input
data. For the multi-view digit dataset in Section 4.3, the model layers are 4, and 4 times (encoder)
and 2 times (decoder) as large as the input data The model configurations are summarized in Table 3.

# encoder layers  # decoder layers encoder widths ~ decoder width
Basis models (Section 4.2) 4 4 30x% 30x
Synthetic hierarchy (Section 4.3) 8 8 50x 50%
Personality dataset (Section 4.3) 4 4 8x 8x
Digit dataset (Section 4.3) 4 4 4x 2%

Table 3: Estimation model configuration for each experiment.

We apply Adam to train each model for 20, 000 steps with a learning rate of 1e — 3. For hierarchical
models, we consistently use 2-layer MLPs for generating functions and set the exogenous variable
dimensionality as 2. We conduct our experiments on two V-100 Nvidia GPUs. Synthetic data
experiments in Section 4.2 and Section 4.3 take around half an hour and two hours for one run,
respectively. Personality dataset experiments and digit dataset experiments call for three hours for
one round.

D.2 Additional Results on the Basis Model
Figure 9 visualizes the dependence between the estimated components and the true components. We

can observe that the z is highly correlated with z whereas s; has little correlation with z, which
verifies Theorem 3.2 that we can successfully identify z.

D.3 Additional Results on Synthetic Hierarchical Models.
Table 4 and Table 5 contain the mutual prediction scores for the hierarchical structures in Figure 4a

and Figure 4c. We can observe that the estimated variables that yield high mutual prediction scores
are indeed under the same causal cluster, which gives signals for structure learning.
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Figure 9: The scatter plot between the estimated Z and the true (z,s;). The scatter points
are obtained in an estimation run with d, = ds;; = ds, = 2. We can observe that the estimated
components of z are highly correlated with those of z and have little correlation with those s,
empirically verifying Theorem 3.2.

X1 X2 X3 X4
X1 X 0.83 +0.03 0.57+0.04 0.504+0.08
x5 | 0.86 +0.01 PN 0.58 £0.03 0.52£0.04
X3 0.6 +0.02 0.59 £+ 0.05 X 0.77 £+ 0.00
x4 | 0.59+0.02 0.59+0.05 0.81+0.04 X

Table 4: Pairwise predictions among estimates in Figure 4a. Each box (a, b) shows the R? score obtained
by applying the estimate produced by treating a as v; to predict the estimate produced by treating b as v;. We
can observe that the prediction scores within sibling pairs (x1,x2) and (x3, x4) are noticeably higher than other
pairs, showing a decent structure estimation.

D.4 Additional Results on the Personality Dataset

We randomly and evenly partition each set of six questions into two variables. Following this
procedure, we have observed ten variables ¢y, co, a1, ag, nj, No, €1, €2, 01, and 0s, each of 3-
dimension. The Letter in each variable name indicates the attribute to which the variable belongs,
to facilitate readability. Figure 10 contains the results. Analogous to Figure 5, the learned structure
faithfully reflects the questionnaire structure — questions designed for the same personality trait are
clustered together.

Zy X3 X4 X5
Zy X 0.81 £0.011 0.48 £0.006  0.52 + 0.000
x3 | 0.87 £0.002 X 0.47+£0.003 0.54 £ 0.002
x4 | 0.57£0.000 0.52 £ 0.006 X 0.77 £ 0.005
x5 | 0.58 £0.001 0.57+0.015 0.81 + 0.000 X

Table 5: Pairwise predictions among estimated variables in Figure 4c. The pattern is consistent
with Table 4 and Table 2.
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Figure 10: The casual graph learned by our method, where each observed variable (c, a, n, e, 0) is
of three dimensions.
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