


representation dictionary [51], where the activation nonlin-

earity dictates the atoms of the dictionary. For example,

the sine activation creates a pseudo-Fourier transform rep-

resentation of the signal that is maximally concentrated in

the frequency domain [51].

An important conclusion one can draw from the past four

decades of harmonic analysis research is that Fourier meth-

ods are suboptimal for representing the kinds of signals that

feature in typical vision tasks [24]. These kinds of signals,

e.g., natural images from photographs, are much more con-

cisely and robustly represented using wavelet atoms that are

optimally concentrated in space±frequency. Sparse compo-

sitions of wavelet atoms are known to have excellent bi-

ases for representing images; cf. the seminal work in com-

puter vision (e.g., Laplacian pyramid), computational neu-

roscience [30], and the JPEG2000 compression standard.

In this paper, we introduce Wavelet Implicit neural

REpresentation (WIRE), a new INR based on a complex

Gabor wavelet activation function (see Figure 1). Through

a wide range of experiments, we demonstrate that WIRE

defines the new state of the art in INR accuracy, train-

ing time, and robustness. We showcase that WIRE’s in-

creased robustness is particularly useful for solving difficult

vision inverse problems, including image denoising (robust-

ness), image inpainting and super-resolution (superior inter-

polation), and 2D computed tomography (CT) reconstruc-

tion (solving higher-dimensional inverse problems). WIRE

also outperforms other INRs for signal representation tasks

such as overfitting images and learning point cloud occu-

pancy volumes. Finally, we show that WIRE enables faster,

more robust novel view synthesis with neural radiance fields

(NeRF) [27] from critically few training views.

2. Prior Work

Regularization for inverse problems. Inverse problems

involve estimating a signal from a linear or nonlinear set of

measurements. Inevitably, the measurements are degraded

by noise (such as camera readout or photon noise), or

the problem is ill-conditioned, necessitating regularization.

There are many forms of regularization, including ridge re-

gression, Lasso [45], total variation (TV) [9], and sparsity-

based [7] techniques that seek to penalize the ℓ1 norm the

signal or some transform thereof. In the past decade, data-

driven regularization, including overcomplete dictionary-

based [4] and generative network-based [29, 35, 36] tech-

niques, have been developed. The classical model-based

approaches are inadequate for severely ill-conditioned prob-

lems, while the data-driven ones critically depend on data.

Convolutional neural networks (CNNs). CNNs, the

most popular neural network architectures in computer vi-

sion for the past decade, have been shown to exhibit strong

implicit biases that favor image-like signals. This has been

demonstrated with works like deep image prior (DIP) [47]

and its variations [13, 19] that produce remarkable results

on image-related linear inverse problems without any prior

training data. However, such CNN-based priors are tied to a

discrete grid-like signal representation which is not applica-

ble to problems such as novel view synthesis, or for solving

ordinary and partial differential equations, and not scalable

for very high dimensional signals such as 3D tomographic

volumes, gigapixel images, or large point clouds.

Deep image prior. Neural networks, and particularly

CNNs, exhibit implicit biases due to their specific archi-

tectures (such as a UNet [37]), implying that even untrained

neural networks can be used for regularization. This was

leveraged to build a deep image prior (DIP) [47] that pro-

duces outputs that tend to look like images. While DIP of-

fers superior regularization to analytical approaches, it often

exhibits good performance only when over-parameterized

and are tied to a grid-like discretized representation of the

signal, implying DIPs do not scale to high dimensional sig-

nals such as point clouds with a large number of points. The

issue of computational cost has been addressed to a certain

extent by the deep decoder [19] and the DeepTensor [38],

but they still need the signal to be defined as a regular data

grid such as a 2D matrix or 3D tensor.

Implicit representations. INRs are continuous learned

function approximators based on multilayer perceptrons

(MLPs). The continuous nature of INRs is particularly ap-

pealing when dealing with irregularly sampled signals such

as a point clouds. Since its first widespread usage in novel

view synthesis in graphics [27], INRs have pervaded nearly

all fields of vision and signal processing including render-

ing [22], computational imaging [5, 11], medical imag-

ing [49], and virtual reality [14].

The popular choice of the ReLU nonlinearity in stan-

dard neural networks has been empirically shown to result

in poor approximation accuracy in INRs. This has been

remedied by several modifications to the MLP including

the so-called positional encoding [28, 43], as well as var-

ious choices of nonlinearity such as the sinusoidal func-

tion [41] and the Gaussian function [33]. A closely related

work is the Gabor wavelet-based multiplicative filter net-

works (MFN), where the output after each layer is multi-

plied by a Gabor filter. The output then results in a combina-

tion of exponentially many Gabor wavelets, thereby result-

ing in large capacity. Numerous architectural changes have

also been proposed that leverage multiscale properties of vi-

sual signals to accelerate the INR training procedure includ-

ing adaptive block decomposition [25], kilo-NeRF [34], and

predicting the Laplacian pyramid of the signal [39].

INRs can now train on signals nearly instantly [28]

thanks to these numerous advances. However, the high ca-
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Hašan, and Ravi Ramamoorthi. NeuMIP: Multi-resolution

neural materials. ACM Trans. Graphics, 40(4):1±13, 2021.

1, 2
[23] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman

Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey

Pennington. Wide neural networks of any depth evolve as

linear models under gradient descent. In Adv. Neural Info.

Processing Systems, 2019. 4
[24] StÂephane Mallat. A wavelet tour of signal processing. Else-

vier, 1999. 2, 4
[25] Julien NP Martel, David B Lindell, Connor Z Lin, Eric R

Chan, Marco Monteiro, and Gordon Wetzstein. Acorn:

Adaptive coordinate networks for neural scene representa-

tion. arXiv preprint arXiv:2105.02788, 2021. 2
[26] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3D reconstruction in function space. In IEEE

Comp. Vision and Pattern Recognition (CVPR), 2019. 5
[27] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In IEEE European Conf. Computer Vision (ECCV),

2020. 1, 2, 7
[28] Thomas MÈuller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM Trans. Graph., 41(4):102:1±

102:15, 2022. 1, 2
[29] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovit-

skiy, and Jason Yosinski. Plug & play generative networks:

Conditional iterative generation of images in latent space. In

IEEE Comp. Vision and Pattern Recognition (CVPR), 2017.

2
[30] Bruno A Olshausen and David J Field. Emergence of simple-

cell receptive field properties by learning a sparse code for

natural images. Nature, 381(6583):607±609, 1996. 2
[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

18515



Adv. Neural Info. Processing Systems. 2019. 4
[32] Yuhui Quan, Mingqin Chen, Tongyao Pang, and Hui Ji.

Self2self with dropout: Learning self-supervised denoising

from single image. In IEEE Comp. Vision and Pattern

Recognition (CVPR), 2020. 5, 6
[33] Sameera Ramasinghe and Simon Lucey. Beyond periodicity:

Towards a unifying framework for activations in coordinate-

mlps. In IEEE European Conf. Computer Vision (ECCV),

2021. 2, 3, 4
[34] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas

Geiger. Kilonerf: Speeding up neural radiance fields with

thousands of tiny mlps. arXiv preprint arXiv:2103.13744,

2021. 2
[35] JH Rick Chang, Chun-Liang Li, Barnabas Poczos, BVK Vi-

jaya Kumar, and Aswin C Sankaranarayanan. One network

to solve them all±solving linear inverse problems using deep

projection models. In IEEE Intl. Conf. Computer Vision

(ICCV), 2017. 2
[36] Yaniv Romano, Michael Elad, and Peyman Milanfar. The

little engine that could: Regularization by denoising (red).

SIAM J. Imaging Sciences, 10(4):1804±1844, 2017. 2
[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In Intl. Conf. Medical Image Computing and Computer-

Assisted Intervention, 2015. 2
[38] Vishwanath Saragadam, Randall Balestriero, Ashok Veer-

araghavan, and Richard G Baraniuk. Deeptensor: Low-

rank tensor decomposition with deep network priors. arXiv

preprint arXiv:2204.03145, 2022. 2
[39] Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan,

Richard Baraniuk, and Ashok Veeraraghavan. Miner: Mul-

tiscale implicit neural representations. In European Conf.

Computer Vision, 2022. 2
[40] Jerome M Shapiro. Embedded image coding using zerotrees

of wavelet coefficients. IEEE Trans. Signal Processing,

41(12):3445±3462, 1993. 3
[41] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-

tions with periodic activation functions. Adv. Neural Info.

Processing Systems, 2020. 1, 2, 3, 4
[42] Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg,

and Ulugbek S Kamilov. Coil: Coordinate-based inter-

nal learning for imaging inverse problems. arXiv preprint

arXiv:2102.05181, 2021. 1
[43] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-

tures let networks learn high frequency functions in low di-

mensional domains. Adv. Neural Info. Processing Systems,

2020. 2, 4
[44] Jiaxiang Tang. Torch-ngp: a pytorch implementation of

instant-ngp, 2022. https://github.com/ashawkey/torch-ngp.

7
[45] Robert Tibshirani. Regression shrinkage and selection via

the lasso. J. Royal Statistical Society: Series B (Method-

ological), 58(1):267±288, 1996. 2
[46] Massimiliano Todisco, HÂector Delgado, and Nicholas Evans.

Constant Q cepstral coefficients: A spoofing countermeasure

for automatic speaker verification. Computer Speech & Lan-
guage, 45:516±535, 2017. 4

[47] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In IEEE Comp. Vision and Pattern Recog-

nition (CVPR), 2018. 2, 5
[48] Michael B. Wakin, Jason N. Laska, Marco F. Duarte, Dror

Baron, Shriram Sarvotham, Dharmpal Takhar, Kevin F.

Kelly, and Richard G. Baraniuk. Compressive imaging for

video representation and coding. In PCS Proc., 2006. 3
[49] Yuehao Wang, Yonghao Long, Siu Hin Fan, and Qi Dou.

Neural rendering for stereo 3d reconstruction of deformable

tissues in robotic surgery. In Intl. Conf. Medical Image Com-

puting and Computer-Assisted Intervention, 2022. 2
[50] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: from error visibil-

ity to structural similarity. IEEE Trans. Image Processing,

13(4):600±612, 2004. 5
[51] Gizem YÈuce, Guillermo Ortiz-JimÂenez, Beril Besbinar, and

Pascal Frossard. A structured dictionary perspective on im-

plicit neural representations. In IEEE Comp. Vision and Pat-

tern Recognition (CVPR), 2022. 2, 4

18516


