




The energy conservation equation can be written as,

∂e

∂t
= −

∂ϕ

∂x
+ F. (1)

The expression relating thermal energy density and temper-

ature u(x, t) is,

e(x, t) = c(x) · ρ(x) · u(x, t), (2)

where c(x) is the specific heat of the material at x, and ρ(x)
is its density. Fourier’s law of conduction gives a relation

between temperature u(x, t) and flux ϕ(x, t):

ϕ = −σ0 ·
∂u

∂x
, (3)

where σ0 represents conductivity of the material. Substitut-

ing Equations (2) and (3) into Equation (1), we get,

c · ρ ·
∂u

∂t
=

∂

∂x

(

σ0

∂u

∂x

)

+ F, (4)

where F is the heat received by the material per unit time

per unit volume. Substituting k = σ0

cρ and β = 1

cρ we get,

∂u

∂t
=

∂

∂x

(

k
∂u

∂x

)

+ βF, (5)

If we inject heat energy f = fexternal per unit time per unit

volume, and ϵhs = ϵHeatSource is the material absorptivity

for the wavelength corresponding to heat source, then F =
ϵhs ·f . This denotes that the heat F absorbed by the material

is a fraction of the heat f that is supplied.

Our goal is to estimate k, ε from the observations u(x, t)
measured with a thermal camera. However, a thermal cam-

era can only measure radiance and not the temperature di-

rectly. To solve this, we start by assuming that the absorp-

tivity of the object is ε = 1 which gives us the radiation

of an ideal black-body, uC = ublack-body. The relation-

ship between the real and ideal black body temperature is

σu4

black-body = σεu4, where σ is the Boltzmann constant.

This gives us,

ε1/4
∂uC

∂t
=

∂

∂x

(

k
∂

∂x

(

ε1/4uC

)

)

+ β · ϵhs · f. (6a)

We now have an expression relating the measurements of

the thermal camera uC , the input light source f , and the

properties of the material at each spatial location ε and k.

Our goal is to use the measurements to estimate a spatial

distribution of the thermal properties, ε(x, y) and k(x, y).
Equation (6a) is an underconstrained problem as it has

two unknowns for every equation. To regularize the prob-

lem, we assume that the diffusivity and absorptivity are con-

stant over a small neighborhood giving us,

∂uC

∂t
= k

∂2uC

∂x2
+

β · ϵhs

ε1/4
f = k

∂2uC

∂x2
+ ϵ′ · f, (6b)

where ϵ′ = β·ϵhs

ε1/4
. Using the following shorthand notations:

ut =
∂uC

∂t
, uxx =

∂2uC

∂x2
, (7a)

Equation (6b) can be written as:

ut = k · uxx + ϵ′ · f (7b)

We derived all the equations above for the one-

dimensional case for simplicity, but the analysis can be eas-

ily extended to 3 dimensions. By replacing the Laplacian

term uxx from 1-D Equation (7b) by the 3-D Laplacian

∆uxyz = uxx + uyy + uzz , we obtain:

ut = k ·∆uxyz + ϵ′ · f (8)

Equation (8) is central to material classification proposed

in this paper. The term k denotes thermal diffusivity of a

material and ϵ′ is a factor that depends on absorption (in

heat source domain) and emission (in LWIR domain). The

tuple of parameters forms a unique signature for materials

that we use for the downstream task of classification.

2.1. Modeling the source

We use an external source that is switched on for a

known tON duration and switched off. Let x = (x, y, z)
be the combined spatial variable. We model f(x, t) as:

f(x, t) =

{

fs(x), for t ≤ tON

0, for t > tON

}

(9)

where fs(x) is the spatial profile of the external heat source.

For simplicity, we make the following assumptions:

• Our object shape is known and has a flat surface. This

constraint can be relaxed by using a method like Struc-

tured Light to get the shape of object

• The flat surface of the object faces the camera such that

(x, y) coordinates lie in the plane of the surface and z lies

perpendicular to it with z = 0 being at the surface and

increasing as we go inside

• For a given (x, y) the initial temperature is constant for

all z, that is,

u(x, y, z, t = 0) = u(x, y, t = 0) , ∀z ≥ 0 (10)

2.2. Choosing spatial profile of source fs(x)

A spatially-uniform, known-intensity heat source allows

us to estimate ϵ′ from the temporal profile of heating and

cooling. Estimation of k, however, requires spatial varia-

tion in temperature so that diffusion can occur. This can be

seen from the Laplacian term, which will be zero across a

patch of uniform temperature. This problem, in the absence

of source, is the diffusion equation, and hence diffusivity re-

covery from a uniform-temperature patch is mathematically
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Features SVC nuSVC RF MLP

2 68.8% 76.6% 82.8% 76.6%

18 65.6% 82.8% 84.4% 81.2%

50 64.0% 85.9% 84.4% 85.9%

Table 1. Comparing accuracies of classifiers. We experimented

with various classifiers and number of features for our dataset. We

observed that an MLP and nuSVC perform best with 25 features

taken each from the recovered k and ϵ
′ images (window size of 5).

The accuracy did not improve upon adding further features.

a total capture duration of 20s or higher, detailed analysis

on this is presented in the supplementary. Our algorithm

can also handle multiple simultaneous scans as shown in

Fig. 8(a) We placed a graded ruler in the scene next to the

target objects to calibrate the physical size of each pixel.

We perform this calibration every time we move the setup,

but on average our value of spatial ∆x was 0.5 mm (same

for all dimensions). This process could be automated using

structured light methods (refer Sec. 6).

We code the differentiable FD algorithm in python using

PyTorch [24]. We use an ADAM classifier with a decreas-

ing learning rate for 400 epochs. Our system consisting of

an RTX 3060, takes 5 minutes for the process to complete

and recover the k and ϵ′ maps. We captured measurements

for each material in different initial temperatures and orien-

tations. The code along with the dataset has been released.

4.3. Results

In this section, we analyze the experimental observations

made in lab and look at the performance of our parameter

recovery and classification algorithms.

Similar to [10], we chose a few materials from the coarse

categories of fabric, wood, paper, and metals. We made

a dataset consisting of 22 materials or subclasses, applied

our recovery algorithm on the data and used the generated

features to train the classifier. Since metals have very low

absorption and high diffusion, their TSF variation tends to

have a very low magnitude. Since the ϵ′ values are almost

zero for metals, the FD algorithm did not converge for them.

Although we cannot differentiate between different metals,

this can be used as an indicator for metals. The data in

Fig. 6(a) for metals validates the theory for metals. Barring

the conducting materials, we performed FD analysis on the

other materials and present our analysis on them.

Fig. 6 shows a plot of k vs ϵ′ sampled at the center pixels

of their recovered maps. For each measurement, we gen-

erate a feature vector by sampling k vs ϵ′ in a window of

specified size around the center. This feature vector along

with the material label forms our training set for the classi-

fication algorithm. We perform a leave-one-out cross vali-

dation approach to obtain the classification accuracy of our

method. The classification results can be found in the con-

fusion matrix in Fig. 7(b). We obtain an overall accuracy of

85.9% using a multi-layer perceptron (MLP) classifier with

a feature size of 50 pixels. With more features, the sub-

classes become more separable compared to what we see

in Fig. 6(b). We also compare performance with varying

feature sizes and classifiers suitable for dataset Tab. 1.

Materials that have similar diffusivity, and similar ab-

sorptivity for red wavelength (used in our experiments),

produce similar TSFs. This in turn makes the recovered

properties of these materials similar to each other. Such an

issue occurs for brown tissue and wool as seen in Fig. 6(b)

and Fig. 7(b) where the algorithm gets confused between

the two. This can be mitigated by using more lasers like

red, green and blue which gives us a set of absorption coef-

ficients enabling more efficient segregation.

5. Limitations

Our current modeling of thermodynamics requires cer-

tain simplifying assumptions for accurate results, such as

planar geometry and constant temperature on the surface

and bulk of the objects. These assumptions have enabled

robust classification results in our preliminary experiments,

but can be relaxed to extend to complex shaped objects with

varying temperature profiles. Our approach can be com-

bined with approaches for estimating scene geometry such

as structured light [25±27] to estimate material properties

of complex scenes and will be pursued as promising future

direction.

6. Future Work

Our experiments covered a limited set of materials to

show that their TSFs can be used for material classifica-

tion. Collecting a larger dataset that covers varying surface

color, roughness, and geometry will enable a more robust

material classification and will be pursued as future direc-

tion. We used Finite Differences in the forward model of

our analysis. This part can also be potentially replaced

by other approaches such as Physics Informed Neural Net-

works (PINNs) [28±30]. We can also potentially perform

joint estimation of shape and the material properties using

thermal structured Light. A known pattern of laser dots on

the scene can be leveraged to estimate the thermal proper-

ties using the heat diffusion as well as the shape using the

texture that is generated.

6.1. Going Below the Surface

An advantage of thermal material classification over

other methods like spectroscopy is that analyzing the heat

diffusion can give us information that is hidden to the eye

(even the thermal one). Consider a system as shown in

Fig. 8(b), where the top layer is a different material from

the one below it. When we inject heat, the upper layer ab-
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