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Abstract

Robust and non-destructive material classification is a
challenging but crucial first-step in numerous vision appli-
cations. We propose a physics-guided material classifica-
tion framework that relies on thermal properties of the ob-
ject. Our key observation is that the rate of heating and
cooling of an object depends on the unique intrinsic proper-
ties of the material, namely the emissivity and diffusivity. We
leverage this observation by gently heating the objects in the
scene with a low-power laser for a fixed duration and then
turning it off, while a thermal camera captures measure-
ments during the heating and cooling process. We then take
this spatial and temporal “thermal spread function” (TSF)
to solve an inverse heat equation using the finite-differences
approach, resulting in a spatially varying estimate of dif-
fusivity and emissivity. These tuples are then used to train
a classifier that produces a fine-grained material label at
each spatial pixel. Our approach is extremely simple re-
quiring only a small light source (low power laser) and a
thermal camera, and produces robust classification results

with 86% accuracy over 16 classes'.

1. Introduction

Material classification is an important task pertinent to
a diverse set of fields including but not limited to medicine
and biology [!], chip manufacturing, recycling [2, 3], land
and weather monitoring using satellites, and vision and
robotics. Robust material classification is particularly crit-
ical in separating various parts of an object based on their
constituent materials [2,3]. Common tools for material clas-
sification span a large spectrum including simple tools such
as infrared spectroscopy, hyperspectral imaging to more ex-
otic tools such as ultrasound, and x-ray fluorescent imagers.

Material classification primarily relies on various dimen-
sions of light including bidirectional reflectance function

ICode: https://github.com/aniketdashpute/TSF
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Figure 1. Material classification with thermal properties. Ma-
terials have unique thermodynamics that enables robust classifica-
tion. We propose a simple setup composed of (a) a 60mW laser as
a heat source and a thermal camera to capture the heat profile (in-
set). This results in a (b) stack of images we call Thermal Spread
Function (TSF) that encodes heating and cooling effect around the
laser dot. The TSF data is used to (c) estimate diffusivity map and
(d) the external heat source term using inverse Finite Difference
Method, which is then used to (e) classify the material robustly.

(BRDF) slices [4], color and NIR images [5], frequency
and depth-dependent ToF distortion [6], spectral imaging
methods [7,8], multi-modal methods [9], and thermal imag-
ing [10]. Methods based on RGB images are popular due
to availability of RGB cameras and large labled datasets,
but suffer from lack of robustness. In contrast, spectrum-
based imaging based methods enable accurate classification
but often require complex optical systems such as hyper-
spectral cameras, and are sensitive to external illumination
conditions.

Human perception of materials is often multi-modal,
such as relying on touch and vision to accurately classify
material. This act of touching further involves a thermody-
namic exchange that relies on the material composition of
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the object. A metallic object results in rapid conduction of
heat whereas non-metallic objects like ones made of wood
result in slower transfer rate. Thus the intrinsic thermal
properties provides an insight into the material properties
that is often missed or confused by vision alone. Previous
work in contact ways of knowing conductivity - haptic sens-
ing [11,12], and haptic displays [13, 14] leveraged this idea
by developing “an artificial fingertip”. The drawback of this
method is that it is invasive - it requires to touch the scene
and thus can lead to interfering with it. Thermal characteri-
zation for recycling has also been done using a spectrometer
and a fluxmeter [15].

Thermal Imaging methods enable contact-free estima-
tion of thermal properties, thus allowing us to classify ma-
terials rapidly and in a non-destructive manner. One of the
most popular contact-less methods for determining thermal
diffusivity is the laser flash method. A laser is flashed on
a thin slice (microns thick) of a material and the temper-
ature change is observed from the other side, providing a
quantitative estimate of the thermal diffusivity or conduc-
tivity [16, 17]. This is restrictive due to the constrained lab
setup and requirement of thin slices. Thermal imaging has
also been used for non-destructive infrastructure inspection
where the difference in thermal behaviour of unaltered and
defected zones allow defect detection [18].

We take inspiration from the contact-less methods and
develop a non-invasive thermal imaging system for material
classification. As opposed to previous methods, our method
is robust enough to be used in uncontrolled environments,
and not limited to constrained lab setups. We use a visible
laser beam as an external heat source that shines on a mate-
rial, which absorbs a fraction of this beam corresponding to
optical wavelength . The absorption of this energy leads to
arise in temperature that shows up in the long wave infrared
domain (LWIR) and is captured by the thermal camera. The
thermal camera is used to capture the heating process, and
once the heat source is off, its cooling (refer Fig. 1). We
define the temperature transients obtained from the heating-
cooling as its Thermal Spread Function (TSF) and use it
for robustly classifying materials.

A key challenge with using TSF for classifying materials
is that a thermal camera requires a known emissivity (¢) (ra-
tio of radiated energy of the object to that of a black-body)
for accurately estimating the temperature. To overcome this
ambiguity, we leverage a physically accurate heat diffusion
equation (see Sec. 2) that carefully models the thermody-
namic interactions between the ambient scene and the ob-
ject. This estimated TSF is then used for training a material
classifier which enables robust material classification.

Our approach and main contributions

When objects are heated through radiation on surface
and allowed to cool down, they display characteristic tem-
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Figure 2. Heating and capturing process. We use an external
heat source to heat the object and a thermal camera to observe the
heating and cooling effect. Refer Sec. 2 for detailed explanation.

perature changes. These changes are based on their initial
temperature, surface absorption, and heat diffusivity. We
inject heat through a small portion on the surface of a ma-
terial which diffuses throughout the body over time. If we
observe a small patch of material in the vicinity of injection,
we observe the diffusion - both during the injection phase
and during the cooling phase after no external heat is sup-
plied. We call this varying 2D temperature profile as the
Thermal Spread Function (TSF) of the material.

We measure the TSF of the material through a Long
Wave Infrared (LWIR) thermal camera. We derive diffu-
sivity and an absorption factor from the TSF to characterize
the material as these properties are independent of the ini-
tial temperature of the object. Our main contributions are
the following.

» We first derive a physically accurate model that character-
izes the Thermal Spread Functions (TSFs) as a function
of initial temperature of the object and an object’s ther-
modynamic properties.

e We then use a Finite Differences (FD) Method to solve the
inverse heat problem for recovering parameters related to
diffusion, absorption and emission

* Finally, we design and demonstrate a simple optical setup
for non-invasively recovering the thermodynamic proper-
ties and using them to classify materials.

2. Background

We discuss the relevant heat equations and their physical
significance below. For more detailed steps and explana-
tion, please refer to [19,20].

Heat Diffusion

Consider the scene shown in Fig. 2 where an object is
illuminated by an external heat source. Let e denote the
thermal energy density, ¢ represent the heat flux (energy per
unit time per unit surface area) across the object boundary
and F' be the heat absorbed per unit time per unit volume.
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The energy conservation equation can be written as,

de ¢

—=—-———+F 1

ot~ 0w M
The expression relating thermal energy density and temper-
ature u(z, t) is,

e(z,t) = c(x) - p(x) - u(z,t), (2)

where c(x) is the specific heat of the material at x, and p(x)
is its density. Fourier’s law of conduction gives a relation
between temperature u(z, t) and flux ¢(z,t):

6=—00- o0
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X

where o represents conductivity of the material. Substitut-
ing Equations (2) and (3) into Equation (1), we get,

ou 0 ou
C'P‘atax(ffoax>+F, “)

where F' is the heat received by the material per unit time
per unit volume. Substituting k = Z—g and 8 = # we get,

du 0 <k6u

3 = or (K52) + 0P ©

If we inject heat energy f = fexternal PEr Unit time per unit
volume, and €5 = €xeatSource 1S the material absorptivity
for the wavelength corresponding to heat source, then F' =
€ns- f- This denotes that the heat F" absorbed by the material
is a fraction of the heat f that is supplied.

Our goal is to estimate k, € from the observations u(z, t)
measured with a thermal camera. However, a thermal cam-
era can only measure radiance and not the temperature di-
rectly. To solve this, we start by assuming that the absorp-
tivity of the object is ¢ = 1 which gives us the radiation
of an ideal black-body, uc = Uplack-body- The relation-
ship between the real and ideal black body temperature is
OUppakbody = 0€U*, Where o is the Boltzmann constant.
This gives us,

0 0 0
i _ 0 (kax (51/4%)) LB f (6)

We now have an expression relating the measurements of
the thermal camera uc, the input light source f, and the
properties of the material at each spatial location € and k.
Our goal is to use the measurements to estimate a spatial
distribution of the thermal properties, €(x, y) and k(x,y).

Equation (6a) is an underconstrained problem as it has
two unknowns for every equation. To regularize the prob-
lem, we assume that the diffusivity and absorptivity are con-
stant over a small neighborhood giving us,

8211,0 ﬂ * €hs 8211,0

3uc
=k + o174 f:kaxz

ot Ox2

+¢e-f, (6b)

where ¢/ = i 7+ Using the following shorthand notations:

- 8UC o 82uc
Uy = o Ugy = o2 (7a)

Equation (6b) can be written as:
ut:k’uzz+€/'f (7b)

We derived all the equations above for the one-
dimensional case for simplicity, but the analysis can be eas-
ily extended to 3 dimensions. By replacing the Laplacian
term u,, from 1-D Equation (7b) by the 3-D Laplacian
AlUgyy = Ugy + Uyy + U, We obtain:

Ut:k'Aum’yz"'_G/'f 3

Equation (8) is central to material classification proposed
in this paper. The term k denotes thermal diffusivity of a
material and €' is a factor that depends on absorption (in
heat source domain) and emission (in LWIR domain). The
tuple of parameters forms a unique signature for materials
that we use for the downstream task of classification.

2.1. Modeling the source

We use an external source that is switched on for a
known top duration and switched off. Let x = (z,y, 2)
be the combined spatial variable. We model f(x,t) as:

f(x,t) = { gf(x)’

where f,(x) is the spatial profile of the external heat source.
For simplicity, we make the following assumptions:

fort < ton } ©)

fort > ton

* Our object shape is known and has a flat surface. This
constraint can be relaxed by using a method like Struc-
tured Light to get the shape of object

* The flat surface of the object faces the camera such that
(z,y) coordinates lie in the plane of the surface and z lies
perpendicular to it with z = 0 being at the surface and
increasing as we go inside

* For a given (x,y) the initial temperature is constant for
all z, that is,

w(z,y,z,t =0) =u(z,y,t =0),Vz2>0 (10)

2.2. Choosing spatial profile of source f,(x)

A spatially-uniform, known-intensity heat source allows
us to estimate ¢’ from the temporal profile of heating and
cooling. Estimation of k, however, requires spatial varia-
tion in temperature so that diffusion can occur. This can be
seen from the Laplacian term, which will be zero across a
patch of uniform temperature. This problem, in the absence
of source, is the diffusion equation, and hence diffusivity re-
covery from a uniform-temperature patch is mathematically
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(a) Thermal Spread Function (b) TSF sampled at various locations
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Figure 3. Thermal Spread Function. (a) The images captured
by the thermal camera as the laser was switched on (top row), and
then off (second row) are shown. We call this stack of images
the thermal spread function as it encodes the spatial and temporal
spread of thermal radiation in the object. In (b), dashed blue line
graph on top shows the measured temperature at the point where
the laser was projected and the bottom solid green and

line plots show temperature 5 pixels away from center. TSF carries
a unique signature about the material which is evident from the
temperature plots.

identical to depth from Gaussian defocus on a texture-free
patch [21,22]. Therefore, a useful illumination pattern must
contain spatial gradients to enable robust estimation of dif-
fusivity parameter. So we decided to use focused points on
the scene that generate the required heat profile and hence
the texture to get gradients.

2.3. Inverse Heat Problem

Given k, €/, fs(x) and initial conditions, we can leverage
the forward model to obtain temperature profile throughout
the volume. However, we can only capture the surface mea-
surements at various time steps. This requires us to solve the
inverse heat problem of recovering the thermal parameters
k and €. This is a challenging underconstrained problem.
We relax the problem to make it invertible by leveraging as-
sumptions made in Sec. 2.1. Given the assumptions, we can
use Finite Difference method [23], Green’s function-based
approach [20], or a simple curve fitting-based approach to
solve for the spatial distribution of &, ¢’. We discuss their
details in Sec. 3.2.

3. Proposed approach
3.1. Heating & Cooling - Thermal Spread Functions

A known external heat source f5(z) that injects heat into
the materials for time ¢ increases the temperature of the
object. The injected heat will increase temperature at the
points of injection and this rise in temperature leads to dif-
fusion of heat across the rest of the material.

This combined phenomenon of absorption and diffusion
creates a distinct temperature profile over the surface that is
observed by the thermal camera. This temperature profile
varies over time as more heat is absorbed, leading to in-

crease in the temperature variation over the material, which
in turn leads to more diffusion. Once the heat source is
switched off, heat diffusion occurs until all points in that
object are at the same temperature. A thermal camera mea-
sures this time-varying temperature on the surface of the ob-
ject which we define as the Thermal Spread Function (TSF)
of the material. For a given material, the TSF depends on
initial temperature, and the spatial profile and intensity of
external heat source f5(x). Fig. 3 demonstrates the TSF for
some common material in a scene.

We parameterize the TSF as a function of the parameters
k and €' from Eq. (8). This gives us two-fold advantage, (1)
it spares us from processing large data for each TSF directly
for the classification problem, and (2) TSFs are dependent
on initial temperature, so TSF by themselves cannot be used
without accounting for the change in initial temperature.

3.2. Finite Difference Method for Inverse Heat
problems

Given initial conditions, k, €, and external heat source
fs(x), we can use many heat propagation methods to obtain
the temperature distribution over time. Some of the methods
include Finite Element Analysis (including FEA Softwares
like Ansys, Abaqus), convolving with heat kernels (Green’s
functions) or Finite Difference (FD) Numerical Methods.

We choose FD method for our forward propagation
model as they enable a computationally tractable way to
obtain k and €’ via gradient descent-based optimization. We
present below a short analysis of the steps for forward prop-
agation using FD (please refer [20,23] for detailed analysis).
Using the explicit Forward Time, Centered Space method,
we obtain time derivatives with a forward difference as:

t+1 t
@ =u = u-’I;’tJ»Z B uﬂc,y,z (11)
ot ' At '

Similarly, central difference approximation to the Lapla-
cian term can be written as follows (writing only the x term,

other terms can be written similarly):

2 t ot ¢
Ou - Ugi1,y,z = 2y T Up1y .
0x2 e (Az)? ’

12)

The complete Laplacian term can then be written as a
sum of Uz, Uyy and u,.. Substituting Eqs. (11) and (12)
into Eq. (8), we obtain:

wtlt, =l A [k(x,y,2) - Al + € (z,y,2) - fH(2)]
(13)

Eq. (13) is the time stepping equation where we obtain
the temperature values for time-step ¢ + 1 given the val-
ues at time-step ¢. We start these calculations by applying
the initial conditions which give us values at ¢ = 0. Other
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Figure 4. Differentiable finite difference (FD) method for estimating thermal parameters. Computing the diffusivity and emissivity of
an object requires solving the heat equation. We propose a novel iterative approach using FD method. We implement a forward operator
that takes diffusivity and absorptivity as inputs and uses FD method to generate the TSF for a given set of time stamps. The generated
TSF is compared against the measured TSF from the camera with an MSE loss function. We then perform multiple iterations to refine
the estimates of diffusivity and absorptivity. Since we leverage physics of TSF, the results are highly accurate, and robust to noise in

measurements.

relevant boundary conditions are applied during each step
as required. Using this method, we can obtain temperature
values at any spatial and temporal point by time-stepping.
Refer to Fig. 4 for a visualization of the process.

Thus, given the initial conditions, boundary conditions,
and all thermal properties, we can define the forward model
using FD as follows:

Fooul=0 ul o, ky, € — ul, (14)

implying the temperature at (z,y, z,t) can be obtained as
u(z,y, z,t) = F(k, e, x,y,2,1t).

This function F forms the basis of our optimization pro-
cess. This constitutes our forward model where we optimize
for k and €’ given all the boundary and initial conditions,
and external heat source. We constrain this optimization
process using the ground truth 2D images we have of the
surface temperature of the object over time.

3.3. Drawbacks of Image Based Analysis

As discussed in Sec. 2.3, one of the other methods to
solve for k and ¢’ is to do data-based curve fitting. So we
need to solve for k and ¢ given a set of linear equations,
where we would know the values of u; and the Laplacian
term Au, , . Ideally once we have uc(x,y, 2, ), the time
derivative and Laplacian can be calculated using finite dif-
ference approximation. The drawback here is that we do
not have uc(x, y, z, t) for all values of z but only for z = 0.
This means from the image based values uc(z,y, z = 0,t),
we can get u; and only the x and y terms of the Laplacian
Auy . but not the z term u,,. So if we do the data-based
curve fitting on this surface data, we will be ignoring the u, .
term which leads to inaccurate results. Fig. 5(a, b) demon-

(a) Image Based Method (b) Inverse FD (ours)
Diffusivity k Absorption €’ Diffusivity k Absorption €’

Figure 5. Drawbacks of using u; and u., directly from im-
ages. Image based method (a) gives a 2D Laplacian term (Eq. (8))
assuming 2D diffusion. This leads to inaccurate donut-shaped re-
sults. Our method - inverse FD (b) recovers accurate diffusivity
and absorption in the region of heat diffusion by also accounting
for diffusion in depth.

strates the inaccuracies observed in the recovered values of
diffusivity k& over the surface of the material.

Notice the doughnut shaped diffusivity result obtained
for k in Fig. 5(a). Intuitively, this is because we ignore the
diffusion taking place in the depth dimension. This is one
of the main reasons we shift from the data-based solution to
Finite Difference (FD) Method described in Sec. 3.2.

3.4. Classification of Materials based on £, ¢’

Once we convert our TSF into the thermal parameters,
we use those to characterize the materials and classify them
into different categories and also identify them. We make
4 categories of materials - fabric, wood, paper, and metals.
We have a dictionary of 22 different materials, each material
falling into one of the four categories.

For known materials, we create a scatter plot using the
recovered values of diffusivity k& and absorption parameter
¢’ as shown in Fig. 6(b). For each material, we take multiple
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Figure 6. Material classification with thermal properties (k, €'). (a) TSFs at center pixel for 13 materials. The curves for heat conductors
- Stainless Steel, Aluminium, Brass, Copper and Graphite are almost flat, owing to their high diffusivity and low absorptivity; TSF for
cotton is flat due to its high transmissivity. We use the other TSFs to obtain the (k, ¢’) tuples as shown in (b). The plot (b) shows clustering
of diffusivity and absorptivity for various materials. Expectedly, the tuple of thermal properties form separate natural clusters corresponding
to each material which enables us to use simple classification approaches. Here, we use a random forest classifier that takes a few values

of (k, €') around the center as input and outputs the material class.

readings by changing its orientation and initial temperature.
Our method is robust to these variations and gives clusters
of data points for each of the materials. Once we have this
dictionary, we can use the recovered k and ¢ obtained from
an unknown material and classify it into one of the material
classes. We use a multi-layer perceptron (MLP, one hidden
layer with 90 neurons) as our classifier for its simplicity and
speed, and its suitability for small dataset. We train the MLP
classifier on the dictionary we create and use that to classify
a new material based on k and €. We also experiment and
compare performance with other suitable classifiers - Sup-
port Vector Classifiers (SVC, nuSVC), and Random Forest
classifier (RF) (refer Tab. 1, Sec. 4.3).

4. Experimental Setup & Results
4.1. Simulations

We use ANSYS Fluent FEM Analysis Software for sim-
ulating the heat diffusion process. We use a custom function
to define the heat injection which we allow to penetrate to
a certain depth. We model this injection to be equivalent
of using a relatively high power laser to heat the objects.
Modeling the laser means that we also need to simulate the
Gaussian beam profile of the heating source.

We can choose one of the existing materials or can cre-
ate a new one based on the properties from Eq. (5) and
Eq. (6b). We model the custom heat injection based on our
laser source and choose its intensity accordingly. We as-
sume same surface penetration depth for all materials (the
penetration is so low that we can assume it only hits the
surface layer of our discretized voxel grid). We run the sim-
ulations for 40 seconds, with the heat source being on for

ton = 20 seconds. We use a timestep At of 0.25s. The
total size of our object is 5S0mm x 50mm x 30mm where
each discretized voxel size is Az = Ay = Az = 0.5mm.

For the simulation process, we define a mesh on a cuboid
and only take the surface readings from the simulation. A
thermal camera would also provide us only surface read-
ings, so we use these simulated surface contours as ground
truth to train our FD model and test its performance. We
used a material from ANSYS library (wood) with ther-
mal properties as - density p = 700 kg/m3, specific heat
Cp = 2310 J/(kg K) and thermal conductivity ¢ = 0.173
W/(m K). From Eq. (5), the thermal diffusivity of this mate-
rial is 1.069 x 10~7 m2/s. When we solve the inverse prob-
lem stated above using our FD optimization framework, we
obtain a diffusivity value of 1.066 x 10~7 m?/s, which is
very close to that of the ground truth value.

4.2. Experimental Setup

Fig. 1(a) shows our experimental setup. We use a FLIR
A655sc thermal camera, which has a resolution of 640 x
480, and works in the LWIR range from 7-15 pum, and a
633 nm, 60 mW laser with an Aruduino controlled relay
switch. This power rating ensures that the laser is powerful
enough to heat while safe enough to use. We control the
system remotely as any warm body present near the setup
can hamper with the readings because of thermal radiation.

We use a spatially varying source, a gaussian profiled
laser beam. We use a total capture time of 60 seconds, in
which the laser in on for tpnx = 20 seconds. In the stream-
ing mode of the camera, we capture 300 frames for 60 sec-
onds, implying each time step measures At = 0.20 seconds.
We found that our approach resulted in similar results for
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Features SVC  nuSVC RF MLP

2 68.8% 76.6% 82.8% 76.6%
18 65.6% 82.8% 844% 81.2%
50 64.0% 859% 844% 85.9%

Table 1. Comparing accuracies of classifiers. We experimented
with various classifiers and number of features for our dataset. We
observed that an MLP and nuSVC perform best with 25 features
taken each from the recovered k and ¢’ images (window size of 5).
The accuracy did not improve upon adding further features.

a total capture duration of 20s or higher, detailed analysis
on this is presented in the supplementary. Our algorithm
can also handle multiple simultaneous scans as shown in
Fig. 8(a) We placed a graded ruler in the scene next to the
target objects to calibrate the physical size of each pixel.
We perform this calibration every time we move the setup,
but on average our value of spatial Ax was 0.5 mm (same
for all dimensions). This process could be automated using
structured light methods (refer Sec. 6).

We code the differentiable FD algorithm in python using
PyTorch [24]. We use an ADAM classifier with a decreas-
ing learning rate for 400 epochs. Our system consisting of
an RTX 3060, takes 5 minutes for the process to complete
and recover the k and ¢’ maps. We captured measurements
for each material in different initial temperatures and orien-
tations. The code along with the dataset has been released.

4.3. Results

In this section, we analyze the experimental observations
made in lab and look at the performance of our parameter
recovery and classification algorithms.

Similar to [10], we chose a few materials from the coarse
categories of fabric, wood, paper, and metals. We made
a dataset consisting of 22 materials or subclasses, applied
our recovery algorithm on the data and used the generated
features to train the classifier. Since metals have very low
absorption and high diffusion, their TSF variation tends to
have a very low magnitude. Since the €' values are almost
zero for metals, the FD algorithm did not converge for them.
Although we cannot differentiate between different metals,
this can be used as an indicator for metals. The data in
Fig. 6(a) for metals validates the theory for metals. Barring
the conducting materials, we performed FD analysis on the
other materials and present our analysis on them.

Fig. 6 shows a plot of k vs ¢’ sampled at the center pixels
of their recovered maps. For each measurement, we gen-
erate a feature vector by sampling & vs ¢ in a window of
specified size around the center. This feature vector along
with the material label forms our training set for the classi-
fication algorithm. We perform a leave-one-out cross vali-
dation approach to obtain the classification accuracy of our
method. The classification results can be found in the con-

fusion matrix in Fig. 7(b). We obtain an overall accuracy of
85.9% using a multi-layer perceptron (MLP) classifier with
a feature size of 50 pixels. With more features, the sub-
classes become more separable compared to what we see
in Fig. 6(b). We also compare performance with varying
feature sizes and classifiers suitable for dataset Tab. 1.

Materials that have similar diffusivity, and similar ab-
sorptivity for red wavelength (used in our experiments),
produce similar TSFs. This in turn makes the recovered
properties of these materials similar to each other. Such an
issue occurs for brown tissue and wool as seen in Fig. 6(b)
and Fig. 7(b) where the algorithm gets confused between
the two. This can be mitigated by using more lasers like
red, green and blue which gives us a set of absorption coef-
ficients enabling more efficient segregation.

5. Limitations

Our current modeling of thermodynamics requires cer-
tain simplifying assumptions for accurate results, such as
planar geometry and constant temperature on the surface
and bulk of the objects. These assumptions have enabled
robust classification results in our preliminary experiments,
but can be relaxed to extend to complex shaped objects with
varying temperature profiles. Our approach can be com-
bined with approaches for estimating scene geometry such
as structured light [25-27] to estimate material properties
of complex scenes and will be pursued as promising future
direction.

6. Future Work

Our experiments covered a limited set of materials to
show that their TSFs can be used for material classifica-
tion. Collecting a larger dataset that covers varying surface
color, roughness, and geometry will enable a more robust
material classification and will be pursued as future direc-
tion. We used Finite Differences in the forward model of
our analysis. This part can also be potentially replaced
by other approaches such as Physics Informed Neural Net-
works (PINNs) [28—30]. We can also potentially perform
joint estimation of shape and the material properties using
thermal structured Light. A known pattern of laser dots on
the scene can be leveraged to estimate the thermal proper-
ties using the heat diffusion as well as the shape using the
texture that is generated.

6.1. Going Below the Surface

An advantage of thermal material classification over
other methods like spectroscopy is that analyzing the heat
diffusion can give us information that is hidden to the eye
(even the thermal one). Consider a system as shown in
Fig. 8(b), where the top layer is a different material from
the one below it. When we inject heat, the upper layer ab-
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Figure 7. Material library and classification results: We applied our recovery and classification algorithm on our dictionary of materials
(a), and show the classification results using confusion matrix in (b). We use random forest as our classifier and use leave-one-out cross
validation technique for testing our algorithm. We get an overall accuracy of 81.3%.
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Diffractive
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Figure 8. Extending our approach. (a) Our setup can be extended
to accommodate simultaneous scans. (b) We ran simulations to un-
derstand the performance of our approach on multi-layered mate-
rials (b) and to analyse the possibility of recovering thermal prop-
erties below the surface. We recovered diffusivity of layers 1 and
2 (c, d) with 0.01% error, showing promise in “’seeing the hidden”

sorbs it based on its surface and absorption properties, while
the diffusion is affected by the diffusivity of both the upper
layer and the layer underneath. We analyzed this problem
in simulation where we assume a known thickness of up-
per layer but unknown thermal parameters. We used the FD
forward model and optimized for diffusivity values - for the
surface as well as the underneath layer, and the absorption
coefficient of the surface layer. Fig. 8(c,d) show the recov-
ered thermal properties for our simulations. We assumed a
thickness of 0.5 mm and obtained the diffusivity values of

the two layers with 0.01% error. This shows promise in the
approach and is a good direction for future work.

7. Conclusion

Tapping into the intrinsic properties of objects such as
a material’s thermodynamic constants (k, €) enables robust
classification, and alleviates some of the challenges faced
by the more common visible camera-based approaches. We
proposed a simple optical setup consisting of a light source
and thermal camera that captures the TSF of the scene. We
then used a novel FD-based iterative solver that robustly es-
timates k, € which was used for the downstream task of ma-
terial classification. Thermal material classification can be
used as a complementary modality along with existing tech-
niques including visible sensing. In biometrics, spoofing-
based attacks such as using a mannequin for a real human
become easier to detect due to the complementary strengths
of thermal and visible cameras. Hence our work also has
the potential to impact numerous areas in vision and secu-
rity surveillance.
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