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Abstract

In many automated motion planning systems, vehicles are tasked with tracking a reference path or trajec-
tory that is safe by design. However, due to various uncertainties, real vehicles may deviate from such
references, potentially leading to collisions. This paper presents rigorous reachable set bounding methods for
rapidly enclosing the set of possible deviations under uncertainty, which is critical information for online
safety verification. The proposed approach applies recent advances in the theory of differential inequali-
ties that exploit redundant model equations to achieve sharp bounds using only simple interval calculations.
These methods have been shown to produce very sharp bounds at low cost for nonlinear systems in other
application domains, but they rely on problem-specific insights to identify appropriate redundant equations,
which makes them difficult to generalize and automate. Here, we demonstrate the application of these meth-
ods to tracking problems for the first time using three representative case studies. We find that defining
redundant equations in terms of Lyapunov-like functions is particularly effective. The results show that this
technique can produce effective bounds with computational times that are orders of magnitude less than
the planned time horizon, making this a promising approach for online safety verification. This perfor-
mance, however, comes at the cost of low generalizability, specifically due to the need for problem-specific
insights and advantageous problem structure, such as the existence of appropriate Lyapunov-like functions.

Keywords: Reachability analysis, safety verification, collision avoidance, autonomous driving
Categories (2), (3), and (5)

1 Introduction

This paper presents rigorous reachable set bound-
ing methods for verifying the safety of automated
vehicles tracking reference paths or trajectories under
uncertainty. Tracking is important in automated driv-
ing systems for road vehicles, motion planning for
autonomous robots, etc. [1]. However, the paths and
trajectories computed by such systems, which are safe

by design, are not followed exactly due to uncertain-
ties in the vehicle and its environment, which can
lead to collisions or other constraint violations. Thus,
methods for ensuring safety in real time are essential.

The literature on vehicle safety verification
addresses several distinct problems based on how
the control inputs are handled. One class of meth-
ods assumes the inputs obey a probability distribution
modeling the action of human drivers and computes
the likelihood of a collision [2, 3]. These methods are
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designed to generate warnings for human drivers, not
for use in automated systems. The computation of safe
inputs is discussed in [2], but safety is only ensured
for nominal vehicle dynamics with no uncertainty.

A second class of methods treats the inputs as
degrees of freedom and aims to compute inputs that
guarantee safe trajectories [4, 5]. This is typically
decomposed into the computation of a nominally safe
reference path or trajectory followed by synthesis of a
robustly safe tracking controller. The reference can be
computed by established graph search, optimization,
or sampling approaches [1]. In contrast, synthesizing
arobustly safe feedback law is a major challenge. This
can be done by solving appropriate Hamilton-Jacobi-
Isaacs equations, but this is often prohibitive [5, 6]. An
alternative is to use robust or tube-based model pre-
dictive control [4, 7]. However, this requires either the
solution of a robust open-loop optimal control prob-
lem at each sampling time or the a priori construction
of a robustly invariant tube, both of which are pro-
hibitive for nonlinear models. Another approach is to
compute a robust control barrier function (R-CBF) [8,
9]. Combined with an appropriate Lyapunov function,
an R-CBF can be used to formulate an optimization-
based feedback law that ensures safety. However, the
required optimization only takes a tractable form for
systems with affine dependence on both controls and
uncertainties. Moreover, there are no existing methods
for computing R-CBFs for general nonlinear systems.

A third class of methods considers the simpler
problem of verifying safety for a fixed control input
or feedback law [10-14]. This addresses a critical
subtask that can be used within larger algorithms for
synthesizing safe controllers or motion plans. Some
methods compute the probability of safety violations
using sampling or stochastic reachable sets [10, 11].
These methods cannot make rigorous safety guaran-
tees. Moreover, sampling is prohibitive with more than
a few uncertain quantities. Alternatively, some meth-
ods aim to provide rigorous safety guarantees subject
to bounded uncertainties using reachability analysis
[12—-14]. However, computing accurate reachable set
enclosures for nonlinear systems is a significant chal-
lenge. Most approaches resort to linearized models
[4, 12, 13], which does not ensure safety. A rigorous
method for nonlinear models is given in [14]. For the
example therein, the method verifies the safety of a
trajectory ~ 2x faster than the real vehicle traverses
it. While this is promising, there is still a need for
more efficient methods. Autonomous vehicles often

update their trajectories every few milliseconds [15],
so verification on a similar time-scale is desirable.

The methods in this paper fall within the third class
above. Given a model, a fixed reference path or trajec-
tory, and a fixed tracking controller, we are interested
in computing a rigorous enclosure of the reachable set
of the closed-loop system under uncertainty. Effective
tracking controllers are available and widely used for
many vehicle models, so a method for verifying their
safety in real-time is likely to be useful within practi-
cal iterative approaches for the harder problem of safe
controller synthesis.

Many methods are available for bounding the
reachable sets of continuous-time nonlinear systems,
but they often exhibit an unworkable compromise
between accuracy and efficiency. The method in [16],
which was used for safety verification in [14], prop-
agates zonotopic enclosures over discrete time steps
using a conservative linearization technique. This is
effective in many cases, but the linearization error
bound can become conservative. Moreover, high-order
zonotopes and/or partitioning may be required to
achieve high accuracy, which can lead to high cost.
Another class of methods propagates enclosures over
discrete time steps by constructing Taylor expansions
of the states with respect to time and then bounding
the coefficients and remainder term [17]. While early
methods used interval arithmetic, contemporary meth-
ods achieve much higher accuracy using so-called
Taylor model arithmetic [18, 19]. However, high accu-
racy may require high-order Taylor models, which
also comes at high cost. Notably, these costs can
be effectively moved offline in some applications by
pre-computing reachable sets for a library of motion
primitives [20, 21].

A final class of reachability methods is based
on the theory of differential inequalities (DI). These
methods compute enclosures as the solutions of an
auxiliary system of ordinary differential equations
(ODEs). The standard DI method computes inter-
val enclosures using an auxiliary system constructed
via interval arithmetic [22]. This is very efficient,
which is attractive for online verification, but usually
yields very conservative bounds. More recent methods
replace intervals with polytopes [23], Taylor models
[24], or mean-value enclosures [25]. These produce
much tighter bounds, but are less efficient. Another
category of DI methods aims to use model redun-
dancy to mitigate the conservatism of the standard
DI method while largely retaining its speed. These
approaches identify constraints that are redundant
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with the dynamics (a.k.a. invariants), such as conser-
vation laws, non-negativity of certain states, etc., and
exploit them to tighten the bounds continuously as
they are propagated forward in time [25-27]. Impor-
tantly, this method can be applied to systems that do
not satisfy any known invariants by manufacturing
invariants [27]. This involves embedding the system
within a higher-dimensional system that obeys invari-
ants by design (see Section 2). Redundancy-based
DI methods have proven to be remarkably effective
for many case studies, including systems that natu-
rally satisfy invariants and many that do not [25-27].
However, this approach requires significant problem
insight to apply effectively. To date, successful strate-
gies have only been clearly demonstrated for chemical
engineering models comprised of dynamic mass and
energy balances.

This paper demonstrates the use of redundancy-
based DI for vehicle tracking problems for the first
time. This is challenging for three primary reasons.
First, the models we consider do not naturally obey
any invariants. Moreover, compared to mass and
energy balance models, it is much more difficult to
identify effective manufactured invariants. Second, the
presence of a feedback law causes an interval depen-
dency problem that leads to very conservative bounds
if not addressed (see Section 2). Finally, the models of
interest involve several functions whose interval eval-
uations are either not well-defined or violate Lipschitz
conditions required by DI methods.

To address these issues, we first develop new
Lipschitz interval evaluations for several functions.
Next, we demonstrate the application of redundancy-
based DI for three case studies in detail. In all
cases, we address the feedback dependency problem
through appropriate coordinate transformations. We
then show that manufactured invariants defined in
terms of Lyapunov-like functions are highly effec-
tive at reducing conservatism. In all cases, we obtain
reachability bounds that are much more accurate than
standard DI or state-of-the-art zonotope methods with
computational times that are orders of magnitude less
than the planned time horizons. Although the bounds
leave significant room for improvement, they appear
accurate enough to support many online safety verifi-
cation tasks, particularly outdoors. This performance,
however, comes at the cost of low generalizability
due to the need for problem-specific insights and
advantageous problem structure (i.e., the existence of
appropriate Lyapunov-like functions).

1.1 Problem Statement

Let I = [ty,t7] be a time horizon of interest, let fj :
Dpg CRxR™ x R™ x R™ — R™, let K : Dy C R x
R™ x R™ — R™_ and consider the following closed-
loop system with input u, disturbance w, and state x:

x(1) =fo(t,x(t),w(t),u(r)), ae. 1 €1, (la)
u(t) = x(¢,x(¢),w(t)), (1b)
X(t()) = X. (Ic)

We aim to compute reachability bounds for (1)
under a given tracking controller k. We assume all
states can be measured and allow k to depend on
w(t) in case some disturbances are measured. The
dependence of k on the reference path or trajec-
tory is suppressed for brevity. Defining f(¢,z,v) =
fo(r,z,v,x(t,2,v)), (1) is equivalent to

x(r) =£(z,x(t),w(t)), ae. t €1, (2a)
X([()) = Xp. (2b)

Denote the space of Lebesgue integrable functions
y:I—Rby L'(I). Let W C R™ be a compact interval
and define the set of admissible disturbances as

W ={we (L'(D)™ :w(t) €W forae.t€}. (3)

Let Xo C R™ be a compact interval of admissible
initial conditions. Let «7€ (I, R") be the space of abso-
lutely continuous functions from 7 into R". We assume
(2) has a unique solution x € /¢ (I,R™) for every
(x0,W) € Xo X # and denote it by x(-; xo, W) when
explicit dependence on (x¢, w) is necessary for clarity.

Definition 1 The reachable set of (2) is defined by
Re(r) = {x(; xp,W) : (x0,W) € Xo x #'},

for every ¢ € I. Moreover, functions XL,XU I — R™ are
called state bounds for (2) if Re(t) C [xL(t),xV (1)], vt € I

Our objective is to compute state bounds for path
and trajectory tracking problems of the form (1) with
sufficient accuracy and efficiency for rigorous motion
planning and real-time safety verification tasks.

Remark 1 Our formulation considers uncertainty in the form
of bounded initial conditions xg € Xy and time-varying dis-
turbances w(z) € # . In principle, bounded measurement
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errors could be accommodated by appending them to w(z)
(DI methods apply to the general ODEs (2), so there is
no restriction on how w(z) affects the model). However,
we assumed perfect measurements because some problem-
specific reformulations and simplifications used in the case
studies require the controller to act on the true state. This is
an important limitation to address in future work. We also
do not explicitly account for potential mismatch between the
real vehicle dynamics and the idealized model used for ver-
ification. Approaches for addressing this using conformant
models can be found in [20, 28]. Finally, the important issue
of handling uncertainty in the the locations of obstacles dur-
ing collision checking is not addressed since we focus solely
on the problem of bounding the possible vehicle states.

1.2 Notation

For zl,zV € R", let Z = [2,2Y] denote the interval
{zcR":2F <z <zV}. For D C R, let ID denote
the set of all intervals Z such that Z C D. Forh: D C
R" — R™, an interval function H : Dy C ID — IR™ is
an inclusion function for h on Dy if H(X) D {h(x) :
x € X} for every X € Dy. If h can be written as a finite
composition of basic arithmetic operations such as
addition, multiplication, and intrinsic univariate func-
tions (—x, x"*, e¥, etc.), then an inclusion function can
be readily computed using interval arithmetic [29].

The space of intervals IR" is a metric space
under the Hausdorff metric dy(Z1,2>) = max{||z} —
25w, |12V — 2¥ ||} [29]. Thus, following standard
metric space definitions, the open ball of radius € > 0
centered at X € IR" is defined by B¢ (X) = {Z € IR":
du(X,Z) < €}. A set 2 C IR is open if for every
Z € 9 there exists a € > 0 such that B¢(Z) C 2.
Moreover, a function F : Dr C IR" — IR™ is locally
Lipschitz continuous on Dr if for every Z € D, there
exist constants M, € > 0 such that dy (F(X),F(Y)) <
Mdy(X,Y) for every X,Y € B¢(Z) N Dp.

2 Differential Inequalities

This section introduces the differential inequalities
(DI) methods used in this paper. Let F' : D C IDy —
IR be an inclusion function for f in (2) and denote
[fL.#U] = F. The following notation for selecting an
individual face of an interval is required.

Definition 2 For every i € {1,...,n,}, define the face selec-
tion operators B, BV : IR™ — IR™ by

Bf(2"2"]) = {z € [2",2"] :zi =2},

B (12"2"])) = {z € [¢".2"] 15 =] }.

The standard DI method originally proposed in
[22] computes state bounds X (¢) = [xE(r),xY (¢)] as
the solutions of the following system of ODEs:

xtl"(t):fiL([tatLBiL(X(t))?W)v 4)
i (1) = £ (0,0, B7 (X (1)), W),
X(l‘o) = Xp.

Briefly, the rationale is as follows. At #y, we have
x(t0) € [xL(20),xY (1)]. In order for, e.g., x(¢) to
remain lower than x;(¢) for 7 > 1y, it is sufficient to
require that xiL decreases faster than any trajectory x;
with (X9, W) € Xo x #/; i.e., xk(t) < x;(t). However,
more careful analysis shows that it is only necessary to
have i (1) <%;(t) at those t € I for which x;(¢) = xk(1).
This weaker requirement is achieved by bounding f;
over B (X (t)) rather than X (¢) in (4).

Standard DI is very efficient but often very con-
servative [26]. One key reason is the dependency
problem, which refers to the fact that interval arith-
metic treats multiple instances of a variable as inde-
pendent. For example, x, appears twice in the ODE
X1 = f1(x) = —ax1xp + bxpxs. If Fy is computed using
interval arithmetic, then it will bound the range of fj
assuming these two instances of x, are independent,
leading to overestimation. Dependency is not an inher-
ent weakness of DI, but rather a weakness of the kind
of inclusion function normally used in DI. Indeed, it
can be mitigated using more sophisticated inclusion
functions, but this is less efficient. The problem above
can also be eliminated by rewriting fi as fj(x) =
(—ax) +bx3)x,. DI can produce substantially different
bounds using different expressions for f, even though
they are equivalent in real arithmetic. This is impor-
tant for getting good results from interval methods, but
good rearrangements are not always possible.

A more subtle source of conservatism in DI is the
historical dependency problem [27]. This refers to the
fact that even distinct variables such as x, and x3 in
the example above are not independent after 7y. Thus,
treating these variables as independent when bounding
f also leads to overestimation. Historical dependency
is a weakness of DI itself and cannot be resolved by
refactoring f or using better inclusion functions. It can
be mitigated by propagating non-interval enclosures
because they can capture some of the dependence
between states. However, such methods lose much of
the speed that is attractive in interval methods.

To address this, several papers have developed effi-
cient interval DI methods that compute tighter bounds



Springer Nature 2021 I4TEX template

by exploiting redundant model equations [25-27].
This refers to any relationships involving the states of
a system that are known to be satisfied by all solutions.
Common examples include non-negativity of cer-
tain states, conservation of mass, energy, or chemical
species [26], the unit norm of rotation quaternions in
some vehicle models [30], and other invariants. Such
relationships are useful because they provide informa-
tion about the historical dependency between states.
Redundancy-based DI methods use these to limit the
range of inputs over which f; must be bounded in (4).

Below, we assume redundant information is avail-
able in the form of an a priori enclosure G and present
the main details of the method in [25]. Subsequently,
we discuss how this approach can be applied to sys-
tems with no known G using manufactured invariants.

Assumption 1 An a priori enclosure G C R x R™ x R™ is
known such that every solution of (2) with (xg,w) € Xo X #
satisfies (¢,x(¢),w(r)) € G forallr € I.

The method in [25] makes use of G through a
special kind of inclusion function called %. Given
¢t and intervals Z and V, % computes an interval
enclosure of f(z,z,v) for all (z,v) € Z x V such that
(t,2,v) € G. This is different from F used in standard
DI, which computes an enclosure of f(¢,z,v) for all
(z,v) € Zx V. The function Z also needs to satisfy
several technical conditions detailed in Assumption 2.

Assumption 2 Let #Z : Dy C R x IR™ x IR™ — IR™ be
an interval function satisfying:

1. For any (1,Z,V) € Dy, the set {t} xZxV is
contained in the domain of f, D¢, and

AL {f(t,z,v) : Efzv)vfezg v, } 6)

2. D4 is open with respect to ¢ and Z. Specifically, for
every (f,2,V) € Dy, there exists € > 0 such that
(t,Z,V) € Dy for every t € Be(f) and Z € B¢ (Z).

3. Z is locally Lipschitz continuous with respect to
Z, uniformly with respect to ¢. Specifically, for any
(f,Z,V) € X, there exists €, L > 0 such that

du(%(t,Z,V),%(t,Z2,V)) < Ldu(Z,Z),  (6)

for every t € Be(f) and Z,Z € Be(Z).

Moreover, let %; = [%*, 2" ] be the i component of 2.

Given any such Z, state bounds for (2) can be
computed using the following corollary from [25].

Corollary 1 Suppose that xxV € &/€ (I,R™) are solu-
tions of the following system of ODEs with i € {1,... ny}
and X (t) = [xL(t),xY (1)]:

()= BEBEX(1), W), @)
i () =2 (t,BY (X(1)),W),
X(t0) = Xo- (8)

Then, for every (xo,wW) € Xo X #/, the solution x(-; X9, W) €
AC(1,R™) of (2) satisfies x(t; xo,w) € X(¢) forallt € I

Remark 2 Corollary 1 is a simplified version of the result
in [25]. In [25], G is a subset of R x R x R™ x R™ with
the assumption that (¢,x(r),w(t),%(¢)) € G. The inclusion
property of % is generalized accordingly. Since none of
the redundant relationships defining G in our case studies
depend on X(¢), this dependence is ommitted for simplicity.

In [25], Z is computed in two steps. Given inputs
(t,Z,V) € Dgp, Z and V are first refined by eliminat-
ing regions that violate (¢,z,v) € G. This is done using
a variant of the interval Krawczyk method [29] called
the x-operator and yields intervals Z" and V7 satisfy-
ing Z' x VT 2 (ZxV)N{(z,v) : (t,z,v) € G}. Next,
Z" and VT are used to evaluate a standard inclusion
function for f; i.e., Z(t,Z,V) = F([t,1],Z",V7).

This provides much tighter bounds than standard
DI in many cases, but only applies to systems with
known G. To extend it to general systems, Shen
and Scott [27] introduced manufactured invariants.
Assume that w(¢) = (d(z),p), where d(¢) € R™ is a
time-varying disturbance and p € R" is a vector of
time-invariant uncertain parameters. Shen and Scott’s
procedure begins by choosing a smooth function ¢ :
R™ x R"™ — R™ and defining new state variables by
z(t; x0,W) = ¢ (x(¢; X0, W), p). Next, the new states are
differentiated to form the augmented system

(1) = (e x(0) W), ©
(1) = 22 (x(0). D)8 x(0) W0)),
X(f0) = Xo,

If (x,z) is a solution of (9), then x is a solution of
(2). Therefore, to compute state bounds for (2), it
suffices to do so for (9). But, by design, all solu-
tions of (9) satisfy the manufactured invariants z(t) —
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¢(x(z),p) = 0. Thus, Corollary 1 can be applied with
G={(r,(x,z),(d,p)) : z— ¢(x,p) = 0}. Importantly,
¢ cannot depend on d(¢) since then (9) would involve
the derivative of d(z), which may not be bounded.

This technique has been shown to result in much
tighter bounds than standard DI for many problems
with no known G. However, this requires careful
choice of ¢. The aim is to choose ¢ such that %f
reduces to an expression that does not suffer much
from dependency problems. For example, for X; =
—x1 —r(w,x) and %, = —2x; +r(w,x) with some non-
linear and uncertain term r, a good choice is z = x1 +
x5, which leads to z = —x1 —2xp = —z—x». When the
bounding ODEs (7) are solved for the augmented sys-
tem, simplifications of this sort can cause the bounds
on z to accumulate conservatism slowly or not at all.
In turn, this enables the bounds on x to be effectively
refined using the manufactured invariant during the
evaluation of Z. See [27] for a more detailed explana-
tion. Although the example above is contrived, similar
simplifications can be achieved by simple affine ¢ in
many practical examples, and the improvements in
bound accuracy are stark [27]. However, most of these
examples are drawn from (bio)chemical engineering
and the models share some advantageous features.
Thus, while this technique is broadly applicable in
principle, effective strategies for choosing ¢ have only
been demonstrated for a limited class of models.

In this article, we apply redundancy-based DI to
path and trajectory tracking problems, which raises
several new challenges. First, the systems of interest
are closed-loop, so that f(¢,z,v) = fo(¢,z,v, k(t,2,V)).
This structure ensures that there is a significant inter-
val dependency problem because both z and v appear
twice. If interval arithmetic is applied to f in this form,
the result will certainly be conservative. Bounds on the
range of f(z,-,-) over some interval Z x V computed
in this way would include all values of fo(z,z,v,u)
obtained by pairing any (z,v) € Z x V with any
inputu € x(¢,Z,V), which completely undermines the
desired action of the controller. Second, the systems
we consider do not satisfy any known a priori enclo-
sures. Thus, it is necessary to manufacture invariants.
However, unlike the examples mentioned above, there
are no obvious choices of ¢ that lead to desirable sim-
plifications, so new strategies are needed. Finally, the
systems we consider involve several functions whose
interval evaluations are either not well-defined or vio-
late the Lipschitz property required by Assumption 2,
so new operations must be defined.

Fig. 1: Multi-valued square root y = ++/x (black) with
lower and upper linearizations at £ = 10~# (red).

3 Interval Inclusion Functions

This section presents inclusions for several functions
that do not appear in standard interval libraries. Each
one is designed to be locally Lipschitz so it can be used
in the construction of & satisfying Assumption 2.

The first is the multi-valued square root on
R,. The standard inclusion function is +vX =
[—V/xU,+v/xU]. Unfortunately, this inherits the non-
Lipschitz behavior of y/x at x = 0. To avoid this, we
define a weaker inclusion using upper and lower lin-
earizations around x = € > 0 (see Figure 1). When
xU > &, the inclusion function returns [—\/)TU, —&—\/)TU]
as usual. However, when xU < &, weaker bounds based
on the outer linearizations are returned.

Definition 3 For any € > 0, define v/ : IRT — IR by

7% —VaxU vVxU ifxlU > ¢,
X —
_ 1 WU VE 1 Uy VE] 4 U
NG 5 T3 if x¥ <e.

Theorem 1 IfX € IR" and x € X, then £y/x € VX.

Proof See Subsection 1.1 in Supplementary Information
(S.L.) for this paper. ]

Theorem 2 v/ is Lipschitz continuous on IR*.

Proof See Subsection 1.2 in the S.I. O

Remark 3 Although /" is defined using linear approxi-
mations, Theorem 1 ensures that it always produces a valid
enclosure. It is approximate only in the sense that it returns
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a weaker interval than necessary when xU < €. This is the
concession we must make to ensure Lipschitz continuity.

Next, we consider arcsin, which is not locally Lip-
schitz at x = —1 and x = 1 (Figure 2). In this case, it
suffices for our purposes to simply restrict the domain
of our inclusion function to intervals contained in
(—1,1) and establish local Lipschitz continuity there.

Definition 4 Let D = (—1,1). Define arcsin : ID — IR by
arcsin(X) = [arcsin(x"), arcsin(xV))]. (10)

Theorem 3 For any X € ID and x € X, arcsin(x) €
arcsin(X).

Proof The result follows immediately from the fact that
arcsin is monotonically increasing on (—1,1). O

Theorem 4 arcsin is locally Lipschitz continuous on ID.

Proof See Subsection 1.3 in the S.1. O

Next, consider the multi-valued arccos with both
positive and negative branches. From Figure 2, it
is clear that the inclusion function arccos(X) =
[—arccos(xF), arccos(x%)] is valid, but it inherits the
non-Lipschitz behavior of arccos at —1 and 1. For
our purposes, it suffices to simply exclude —1 from
the domain of our inclusion function. However, we
will need to consider intervals containing 1. Therefore,
we propose a weaker inclusion using upper and lower
linearizations at some € close to 1 (Figure 2).

Definition 5 Let D = (—1,1], choose any € € (0,1), and
define arccos : ID — IR by
[—arccos(xF), arccos (x)]

arccos(X) = [\/1177()&,6)—arccos(s)7

_ﬁ(xL—S)+arccos(e)] if xl' > €.

ifxl <e,

Theorem 5 For any X € ID and x € X, *arccos(x) €
arccos(X).

Proof See Subsection 1.4 in the S.1. (|

arcsin(x)

arccos(x)

o
T

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
0.04

0.02 -

0.02 F 5
1
e

20.04 I I I I I
0.9996 0.99965 0.9997 0.99975 0.9998 0.99985 0.9999 0.99995 1
X

Fig. 2: The arcsin function (top), the multi-valued
arccos function on [—1,1] (middle), and the multi-
valued arccos function near x = 1 with lower and
upper linearizations at € = 0.9999 (red).

Theorem 6 arccos is locally Lipschitz continuous on ID.

Proof See Subsection 1.5 in the S.I. 0
Finally, we define inclusion functions for the fol-

lowing four trigonometric functions (see Figure 3).

Definition 6 Let D={xcR: —m/2 <x < m/2} and define
hy,hy,h3,hq : D — R by

hl(x)={;05§_] e an
wo= {1 070 &
hs(x)—{c_o(s;il - (13)
ha(x) = {;COS(XJ)C;Sin<X) i i 8’ (14)

In the following definition, mid(a, b, ¢) denotes the
middle value of its arguments; i.e., mid(—10,5,4) =4.

Definition 7 Let D={x € R: —m/2 <x < 7/2} and define
H|,Hy,H3,Hy, : ID — IR by

Hy(X) = [y (2Y), hy (x5)], (15)
Hy(X) = [min(hy (x5, hy (xY)), by (mid(x£,0,xY))],  (16)
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Fig. 3: The functions &;—hy4 defined in Definition 6

H3(X) = [h3(mid(x",0,x")), max (hs ("), b3 (x"))], (17)
Hy(X) = [hy(xY), ha(xL))]. (18)

Theorem 7 For any X € ID and x € X, we have hj(x) €
Hi(X), hao(x) € Hy(X), h3(x) € H3(X), and h4(x) € Ha(X).

Proof See Subsection 1.6 in the S.1. a

Theorem 8 H|-H, are locally Lipschitz continuous on ID.

Proof See Subsection 1.7 in the S.1. 0

Finally, we recall the extended intersection XNZ
from [31], which equals X NZ whenever X NZ # 0 and
otherwise returns a singleton on the boundary of X.

Definition 8 Define the extended intersection N : IR" x
IR" — IR" componentwise for all i € {1,...,n} by

(XNZ); = [mid <xl~L,x,U,ziL> ,mid (x,«L,x,U,z,Uﬂ . (19)

Theorem 9 The extended intersection N is Lipschitz contin-
uous on TR" with Lipschitz constant 1.

Proof See Lemma 2.8 in [32]. O

Remark 4 The operations defined in this section will be used
to define Z for the examples in Section 4. Although some of
these operations involve if-else statements, this never results
in a hybrid reachability problem. Notably, % only affects
the dynamics of the bounds, not the real vehicle. Moreover,
these particular if-else statements do not cause discontinu-
ities, as proven in Theorems 2, 4, 6, and 8. Consequently, %
will be locally Lipschitz continuous and the evolution of the
bounds via (7) will therefore be purely continuous.

4 Case Studies

In this section, we apply redundancy-based DI (Corol-
lary 1) to obtain reachability bounds for two trajectory
tracking problems and one path tracking problem.
The first and third examples consider simple unicy-
cle models using different control strategies. This is
the simplest model used in the motion planning lit-
erature that is not fully actuated (due to its limited
turning rate), and is therefore interesting for reachabil-
ity analysis [1]. The second example considers a full
size vehicle model, where both turning rate and accel-
eration are limited. The open-loop model is the same
as in the verification benchmark in [33], but we con-
sider a different control law. All case studies were run
on a laptop with a 2.9 GHz Intel Core i7 processor.
DI methods were implemented in C++ using the ODE
solver CVODE with default settings [34].

4.1 Trajectory Tracking, Unicycle Model

Consider the following model, where (x,y) is the vehi-
cle position (cm), v is the velocity (cm/s), 0 is the
heading angle (rad), and o is the heading rate:

x=vcos(0), (20)
y =vsin(0),
6= o.

The reference trajectory (Xsef,¥ref,Orer) is the solu-
tion of (20) with X,.ro = (180.2,10.34,3.0) and the
piecewise control inputs from Table 1. The actuation
limitis v+26.2m < 65 [35], while the maximum value
in Table 1 is 48.22. Define

Xe = €08(0)(Xpey —x) +sin(6)(Vrey — ),
Ye = *Sin(e)(xref —x) JrC()S(e)()’ref =),
0, =0y — 6. 2n

We use the tracking control law from [35]:

O = Wyef +Vref(k2)’e +k3 Sin(ee)) +di, (22)
V= VrefCOS(ee> +kix. +dy,

with k; = 10 s7!, k = 6.4 x 107 rad/cm?, and
k3 = 0.16 rad/cm. The disturbances d; and d, are not
included in [35] but are assumed to corrupt the inputs
here with d;(t) € [-0.1,0.1] and da(¢) € [-1,1]. We
also assume Xo — X,r0 € Xo = [-5,5] x [-5,5] X
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Table 1: Reference control inputs for Example 4.1

Time (s) [0,1] [1,2] [2,3] [3.4] [4,5]
o (rad/s) | 0.094 -0.680 -1 0.46 1

v (cm/s) 34.6 28.3 22.85 | 36.17 10.1

Time (s) [5,6] [6,7] [7,8] [8,9] | [9,10]
o (rad/s) | -0.915 | -0.2955 1.0 0.478 0

v (cm/s) 19.34 31.405 | 13.131 | 23.09 8.3

200

190 1

X (cm)

=
o]
o

—
S
o

_

[—7/6,7/6]. In [35], it is shown that the vehicle tra-
jectory converges to the reference when di = d, = 0.
Otherwise, the vehicle may not converge exactly. We
aim to compute an enclosure of the real trajectories.
The most straightforward approach for bounding
x, y, and 6 using DI is to apply standard DI directly to
(20) with (22). This requires an inclusion function for
the closed-loop right-hand sides, which can be com-
puted as follows. Given intervals X, Y, and @, intervals
X, Y., and ®, are first computed by evaluating (21)
in interval arithmetic. Then, bounds on the control
inputs V and Q are computed using (22). Finally,
the right-hand sides of (20) are evaluated in interval
arithmetic. The result is shown in Figure 4 (green)
along with 500 sampled trajectories with X, d;, and
d> drawn from uniform distributions (gray). Clearly,
the bounds are very conservative. This is largely due
to a significant dependency problem in the inclusion
function described above. Specifically, 0 affects the
right-hand sides of x and y directly through (20) and
again through the control input v using (22) and (21).
In real arithmetic, this allows the controller to cancel
the systems natural dynamics and impose the desired
behavior. However, in interval arithmetic, the 0 in the
original dynamics is treated as independent from that
in the control law, and the bounds explode quickly.
To mitigate this problem, a better approach is to
apply standard DI to the dynamics of the errors (21):

Xe = WYe — V4 VyepCOSO,, (23)
Ve = —WXe + Vyersin(6,),
O = Wper — O.

Plugging in the control law (22) and simplifying gives

Xe = (wref+vref (kae+k3Sin(9e))+d1)ye 24)
—kixe —da,

Ye = — (@pef + vref (kaye + k3sin(6,)) +di ) xe
+Vrepsin(6,),

ge = _Vref(kzye + k3Sin(9e)) —d.

160 -

150

0.0 0.1 0.2 03 0.4

time (s)
Fig. 4: Example 4.1: Bounds on x produced by apply-
ing standard DI to (20) (green) and (24) (blue) with
500 sampled trajectories (gray).

Applying DI to (24) is expected to be more effec-
tive because the action of the control law is repre-
sented more explicitly in these coordinates and can
be better captured by simple interval computations.
For example, the nonlinear term v, rcos 6, has been
completely cancelled from the right-hand side for x,.
Since this simplification is done analytically, before
the use of interval arithmetic, the dependency prob-
lem is reduced. Once bounds are computed, they can
be mapped back to the original coordinates by interval
evaluation of the inverse transformation

X = Xyef —C0S(Bref — Oc)xe +8in(Orer — 6c)ye, (25)
Y =DYref — Sin(eref — 6, )xe — COS(Gfef = 6c)ye,
9 = Grgf - een

Figure 4 shows that this approach (blue) yields tighter
bounds, but they are still weak and diverge quickly.

To further improve, we now manufacture invari-
ants for (24). The aim is to find a C! function ¢
such that g—ﬁf simplifies to a form that is likely to be
bounded accurately using DI. Inspection of (24) shows
that this cannot be done using any affine ¢, unlike
most models in [27]. Specifically, although there are
common nonlinear terms that would be advantageous
to cancel (e.g. Wy + Vyer (kaye +k3sin(6,)) + dy),
they cannot be cancelled out by any linear combi-
nation of these ODEs. Therefore, a nonlinear ¢ is
needed. For reasons discussed below, an excellent
candidate is the Lyapunov function [35]

W = l(xg—i-yzﬂ— (1 _les(ee)).
2

> (26)
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To use (26) as a manufactured invariant, we define ¥
as a new state variable and augment (24) with the ODE
derived by differentiating #". This ODE benefits from
several algebraic simplifications, ultimately leading to

VRS Vrerkasin?(6,) Cwdyt sin(6,)d| '
kz k2
(27)

Let z = (x.,Ye, 0., %) and p = (d;,d>) be shorthand
for generic augmented state and disturbance vectors.
Then, by definition, the augmented system consisting
of (24) and (27) satisfies Assumption 1 with

G={(t,z,p) € R”: (26) holds}. (28)

It remains to define & satisfying Assumption 2. As
in [25], this is done in two steps. Given (¢,Z, P) € D,
a refined interval Z' x P is first computed such that
{t} x Z" x P' contains ({t} x Z x P)NG. Next, f is
bounded over {t} x Z" x P. In [25], Z" x PT is com-
puted using a variant of the interval Krawczyk method
[29]. Here, we use a custom method based on the
following rearrangements of (26):

xz_2<q//_(l—cos(9e))_1yg)’ (29)

ko 2
2 (1—cos(6,)) 1,
=2 [ S . A ——
Ye (A// ky 2x€ ’

1
cos0, =1—k (”//2(xg+yz)).

Given any Z = X, X ¥, X ®, x V, the right-hand sides
of these equations can be bounded and used to refine
X., Y., and ®,. Moreover, this can be done iteratively.
The complete definition of & is given in Algo-
rithm 1. The refinements are done in the loop, while
f is bounded in lines 13-16. All operations are done
using standard interval arithmetic or the operations
from Section 3, and we choose / = 2. A proof that this
algorithm satisfies Assumption 2 is given in the S.I.
Figure 5 compares the results of applying stan-
dard DI to (24) (Method (i), blue) and applying
redundancy-based DI to the augmented system (24)
and (27) with #Z from Algorithm 1 (Method (ii),
green). The non-smoothness of the bounds in some
figures is caused by the piecewise inputs used to gen-
erate the reference. While the standard DI bounds
rapidly diverge, the redundancy-based DI bounds are
much more accurate and diverge slowly if at all. This

Algorithm 1 % for Example 4.1
1: function Z(t,Z, P)
2 (X65Y67®€7V)<;Zv (PlaPZ)%P
3: fori=1to/do

4 V<+<Vvn <%(X3 +Y2)+ 4(1*0?;(@)))

5. SOx, < X212 (v - U=epl®:l _ 1y2)

6: X, — XN 1/S0x,

7: SQy, + Y22 (V - 7(1*“,’;(@6)) - %Xf)

8: Y, < Y.N /S0y,

9 COSe, + cos(®,)N (1 —ky(V — F¥2 — 1x2))
10: ®, + O.Narccos(COSe, )

11: end for

122 W (koY 4 k3sin®,)

13: X <_(a)ref_|'Vr(?fl}‘_‘—Pl)Ye_lee_P2

14: Yo+ f(a),ef + Vref‘P+P1 )Xe + Vrefsin®e

15: 23 <= — Ve (koYe + k3sin(®,)) — Py

16: Y4 —k1XZ — M — X P +5in(@,) Py /k2
17: return ¥ + (£1,%5,%3,%4)

18: end function

indicates that using the Lyapunov function as a man-
ufactured invariant is very effective at mitigating the
dependency problems discussed in Section 2. Figure
5 also shows the results of bounding (24) using CORA
[36], which is a Matlab implementation of state-of-
the-art reachability techniques based on conservative
linearization (Method (v), yellow). These results are
the best obtained after careful tuning of CORA’s
parameters'. Nevertheless, the bounds rapidly diverge,
nearly overlapping with standard DI. To improve these
bounds, we enabled partitioning in CORA with the
max error before splitting set to 30, 30, and 10 for
Xe, Ve, and 6., and a time step of 0.05s (Method (vi),
cyan). This gave tighter bounds, but they could not be
extended much beyond # = 1 s due to the exponential
cost of the partitioning procedure.

Standard DI required only 0.0009s of computation
time, but integration was stopped early due to diver-
gence of the bounds. Method (ii) using the Lyapunov
function required 0.46s. For context, it took ~ 3s to
simulate 3125 real trajectories, which corresponds to
a grid with only 5 values for each uncertain variable.
With partitioning, CORA required 31s to compute
bounds to ¢ = 1s and more than lh to reach ¢ = 5s.
We conclude that redundancy-based DI offers the best
trade-off between accuracy and efficiency, producing

'CORA 2022 stable with time step 0.01 s, reduction technique ‘girard’, 9
Taylor terms, using linearization without advanced linear error compensation,
zonotope order 7, tensor order 2.
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reasonable bounds with a cost equivalent to sampling
about 480 trajectories and ~ 20x faster than the real
travel time for this vehicle.

When dy =d, =0, ¥ is decreasing [35] and hence
the errors are bounded for all time by the inequal-
o 172 2 (1—cos(6e)) .
ity 5(x; +ye) +—% < ¥ (Xe,0,Ye,0,60). This
raises the question of whether the redundancy-based
DI bounds are substantially better than what can be
inferred from the Lyapunov function alone. This is
addressed in the next two examples, but does not apply
here because 7 may not decrease with nonzero dis-
turbances. This highlights the fact that the validity of
these bounds derives solely from DI theory and does
not hinge on any special properties of the manufac-
tured invariant. In this example, ¥ simply serves as
a useful redundant equation because of the relatively
simple form of (27). This suggests that redundancy-
based DI offers a means to exploit ‘approximate’
(e.g., nominal) Lyapunov functions or invariants to
characterize system behavior under uncertainty.

Figure 6 shows the bounds on the original coor-
dinates (x,y,0) obtained via (25). The accuracy of
redundancy-based DI is retained in the original coor-
dinates. Moreover, although these bounds leave some
room for improvement, they appear accurate enough
to support many motion planning or collision avoid-
ance tasks, particularly for outdoor mobile robots.

Another potentially useful approach for introduc-
ing model redundancy is to write the model in multiple
coordinate systems simultaneously. This could have
advantages if some aspects of the model are more
simply represented in the first coordinate system, and
others in the second. To try this approach, we aug-
mented (24) and (27) with the closed-loop dynamics
in the original coordinates described by (20) with (22).
In addition to (26), the states of this augmented system
also satisfy the invariants (21) and (25). Therefore, we
can define z = (x.,y,, 0., ,x,y,0) and

G=/{(t,z,p) e R : 21), (25), (26) hold} . (30)

To apply the redundancy-based DI using this G, we
modified Algorithm 1 to include refinements based on
(21) and (25) in the loop after line 10 and compute
bounds on the right-hand sides of (20) (which are now
included in the augmented system) after line 16. The
results are shown in Figures 5-6 (Method (iii), pur-
ple). In the error coordinates, the bounds lie entirely
behind those of Method (ii). In the original coordi-
nates, a very slight improvement can be seen, e.g.,
for y just before 4s. We also compared the bounds

40 1
201 |
3 J’V—_J—\_f—/—\—fl_
g 0
- E
X
=201
_40<
0 2 4 6 8 10
time (s)
40 A
20 1
3
L 01
- |
= \
_20_
—40
0 2 4 6 8 10
time (s)
1.5
1.01
0.51
S 0.0
_05_
_10,
-1.5+— T . ; .
0 2 4 6 8 10
time (s)

Fig. 5: Example 4.1: Bounds on (x,,y,.,6,) from (i)
applying standard DI to (24) (blue), (ii) applying
redundancy-based DI to (24) and (27) with invariant
(26) (green), (iii) applying redundancy-based DI to
(24), (27), and (20) with invariants (21), (25), and (26)
(purple), (iv) applying redundancy-based DI to (24)
and (20) with invariants (21) and (25) (red), and (v
& vi) applying CORA to (24) without and with parti-
tioning (yellow & cyan) with 500 sampled trajectories
(gray).
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Fig. 6: Example 4.1: Bounds on (x,y,0) from (i)
applying standard DI to (24) (blue), (ii) applying
redundancy-based DI to (24) and (27) with invariant
(26) (green), (iii) applying redundancy-based DI to
(24), (27), and (20) with invariants (21), (25), and (26)
(purple), and (iv) applying redundancy-based DI to
(24) and (20) with invariants (21) and (25) (red), with
500 sampled trajectories (gray).

obtained by using (21) and (25) without the Lyapunov
function (Method (iv), red). This resulted in diverg-
ing bounds that are only slightly tighter than those
of Method (i) (standard DI). Thus, the redundancy
offered by using both the original and error coordi-
nates simultaneously is ineffective at mitigating the
dependency problem for this example. It appears that
the error coordinates are universally better for interval
computations in this case, so that refinements based
on (21) and (25) have the effect of using (X, Y., ®,) to
tighten (X,Y,®), but rarely the reverse.

4.2 Trajectory Tracking, Car Model

Consider the following extended model of a full size
autonomous road vehicle of length [ =2 m [37]:

X=vcos#,
y=vsinf,
9:vtan67
l
Szul,
V= . (3D

Above, x and y are positions (m), 6 and J are the head-
ing and steering angles (rad), and v is velocity (m/s).
The control variables are the steering angle rate u;
and the acceleration . The reference trajectory is the
solution of the following simplified model from ini-
tial conditions (0 m,0 m,0 rad,10™> m/s) using the
piecewise control inputs in Table 2:

xref = Vref COS 6refa
Vref = Vref sin 6ref;

ere f = Olye fs
‘}ref = . (32)

The benchmark in [33] limits acceleration for a sim-
ilar sized car using the same model to 11 m/s?, while
the maximum value in Table 2 is 10 m/s.

We apply the tracking control law from [37] based
on the global diffeomorphic coordinate transformation

€ = Cos(eref)(x _xref) + Sin(eref)(y _Yref)y
en = —8in(Brer) (x = Xpef) +€08(Oref) (y = Yrer),
eg=0— 9r€f7

V=,

K5 =tan(6)/l. (33)
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Table 2: Reference control inputs for Example 4.2

Time interval (s) [0,0.8] | [0.8,1.6] | [1.6,2.4]
ey (rad/s) 0.1 2.05 1.16
o (m/s%) 10 -4.68 1.59

Time interval (s) [2.4,3.2] [3.2,4] [4,4.8]
ey (rad/s) 23 -0.05 438
o (m/s%) -1.67 29 4.15

Time intervals (s) | [4.8,5.6] | [5.6,6.4] | [6.4,7.2]
ey (rad/s) 5.47 -0.56 223
o, (m/s%) -0.35 -3.63 3.56

Noting that k5 = [I”' + Ik}]u;, define the virtual
control variable @, = [I~" +[k3]u. The control law is

o = —egv+& —ka(ks — &), (34)

@ = Vyer —kier — k3(v—vyer) + ko€l — egKref,

where (k17k2,k3,k4) = (2,3,1,10), Kref = Oref/vref,
and & is defined with h;—hy from Definition 6 by

& =Koy —kilehi(eg) +enha(eg)] —kaeq,  (35)

g = kref — ki [éthl (69) — e,ég(h2(69> + h3 (69))
+énha(eq) +enéohaleq)] —kaép.

We aim to bound the solutions of the closed-loop
system (31), (33)—(35) subject to uncertain initial con-
ditions (e;,en,eq) € [0,1] x [0,1] x [-7/6,7/6]. The
initial conditions of v and x5 are 0. The most straight-
forward approach is to apply standard DI to (31) with
(33)—(35). But, as in Example 4.1, this suffers from
major dependency problems. Again, a better approach
is to bound the error coordinates used in the feedback
law. After some simplification, the error dynamics are

€ =vcoseg — Vref[l — Kiepen),
é, = vsineg — VyrKperé;,
€9 = VKs — VrefKref,
Ks = @,
V= @y. (36)

The results of applying standard DI to (36) with
(34) and (35) are show in Figures 7-8 (blue). The
bounds are significantly tighter than those obtained by
applying DI in the original coordinates (not shown),
but still extremely conservative.

We now manufacture invariants for (36). Follow-
ing Example 4.1, we consider the Lyapunov function

et (m)
<

o
Ja)
N
w
1
w
[=)]
~l

en (m)
b % e oo
O‘/ i

10.0
7.5

5.0
2.5
0.0
—2.54

e (

—5.0
—7.5

-10.0

4 6
time (s)

o
N

Fig. 7: Example 4.2: Bounds on (e, ey, eg) from (i)
applying standard DI to (36) (blue) and (ii) applying
redundancy-based DI to (36) and (38) with invariants
(37) (green) with 500 sampled trajectories (gray).
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Fig. 8: Example 4.2: Bounds on (v,x5) from (i)
applying standard DI to (36) (blue) and (ii) applying
redundancy-based DI to (36) and (38) with invariants
(37) (green) with 500 sampled trajectories (gray).

and the variable es used in the analysis in [37]:

L= [kletz—i—kle,zz—ke% +(V—Vref)2—|-€§]/2,
es = K'g—é. (37)

To use these functions as manufactured invariants, we
define £ and es as new state variables and aug-
ment (36) with their dynamics. After some beneficial
simplifications, these are

jc = —Vresze%g —k3(v— Vref)2 - k4€%,
és = —egv —kyeg. (38)

With z = (e;,en,e9,ks,v,-%c,es5) and p = 0 denot-
ing generic state and disturbance vectors, the system

consisting of (36) and (38) satisfies Assumption 1 with
G ={(t,z,p) € R?: (37) holds} . (39)
We define # by Algorithm 2 with [ = 2, which

includes several refinements based on (37). A proof
that this satisfies Assumption 2 is given in the S.I.

Algorithm 2 % for Example 4.2
function Z(t,Z,P)

1:

2 (Et,EmEg,Kg,V,Lc,E(;) —Z

3 fori=1to/do

4 Ey <V —vpr

5: SQk, + EFNg-(2Le —Ej —kE} — E} —E3)
6 E; < EN/SQOE,

7 SQE, + ExNg-(2Le — E§ —k E} —E} — E3)
8 E, +— E,N+/SOE,

9 SQk, < E}N(2Lc — kE} —k E} — E2 — E3)

10: Eg < EgN+/SOk,

1: SQg, + EXN(2Lc — k| E} —k\E} —E} —E})

12: E, < E,N /SO,

13: SQg; + E}N(2Lc — k| E} —k EZ —E} — E})
14: Es < EsN /SOE;

15: E = Ky — k1 [EtH1(Eg) + EnHa (Epg )] — k2 Eg
16: E5 FEsﬁ(Ka—E)

17: K('; — Kéﬁ(E& —l—E)

18: end for

19: V< Ey+ Vs

20: Y1 < VcosEy —v,ef[l — KrefEn}

21: Yro+V SinEg — Vref KrefEl

22: X3 < VKs = ViefKref

B E & Ky — ki[Zi1H1(Eg) — EZ3(Ha(Ee) +
H3(Eg)) +X3Hz(Eg) + EnX3Ha(Eg)] — kaX3

24: Y44+ —EgV+E—-kEg

25: s (*\}reffklEt7k3Ev+k2ngE9Kref

26: Y6 _VrekaEé — kgE‘% - k4E§

27: Y7+ 7E¢V — k4E5

28: return X < (21722723724725726727)

29: end function

Figures 7-8 show the results of applying standard
DI to (36) (Method (i), blue) and redundancy-based
DI to the augmented system (36) and (38) with &#
from Algorithm 2 (Method (ii), green). While stan-
dard DI rapidly diverges, redundancy-based DI is
much more accurate and does not diverge. Thus, using
a Lyapunov function as a manufactured invariant is
effective for this example as well. A comparison to
CORA was also attempted for this example. To avoid
interval division by zero errors in CORA, we had
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to replace the functions hj—hs from (6) with poly-
nomial approximations, but this had minimal impact
on the trajectories. Unfortunately, CORA still failed
in the first time step with the error “Abort analysis
due to reachable set explosion!”. In terms of compu-
tation time, standard DI required only 0.0018s, but
the integration was stopped early due to divergence of
the bounds. Method (ii) using the Lyapunov function
required 0.222s. For comparison, approximating the
reachable set by simulating solutions on a grid with
20 points for every uncertain initial condition (i.e.,
8000 trajectories) required 14.2s. Thus, Method (ii)
produces the most accurate bounds with a cost equiv-
alent to sampling ~ 125 trajectories and ~ 27 x faster
than the real travel time for this vehicle.

Since % is decreasing by (38), it already implies
that the errors remain within the ellipsoid [kje? +
kie2+ep+ (v—vrer)? +e3]/2 < Z(t = 0). Method
(ii) produces bounds on ¢; and e, that are tighter than
the bounds implied by this ellipsoid before 0.8s, but
equal afterwards, indicating that the Lyapunov func-
tion alone is mostly responsible for the improved
bounds. In contrast, the Lyapunov ellipsoid only
implies that |eg| is bounded by 4.6, which is much
weaker than the bound of ~2.5 furnished by Method
(ii) over most of the time horizon. Thus, the combina-
tion of DI with the Lyapunov function achieves tighter
bounds than can be inferred from either method alone.

Figure 9 shows the bounds on the vehicle’s posi-
tion computed by interval evaluation of

x = cos(Orer)e; —sin(Brer)en + Xrey (40)
y = sin(Brer)e; +coS(Brer)en + Vref
0=eyg+ O,ef.

The use of redundancy in Method (ii) still leads to
vastly tighter bounds than standard DI. However, with
an error of £5m in the xy-plane, these bounds still
leave significant room for improvement and may be
unsuitable for some motion planning tasks. Addi-
tional manufactured invariants that would improve the
bounds further may exist, but we were unable to find
any. As in Example 4.1, we attempted to use the origi-
nal and error coordinates simultaneously, but this gave
no improvement. We conclude that further progress
on problems of this complexity will likely still require
methods based on more sophisticated set arithmetics.
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Fig. 9: Example 4.2: Bounds on (x,y) from (i) apply-
ing standard DI to (36) (blue) and (ii) applying
redundancy-based DI to (36) and (38) with invariants
(37) (green) with 500 sampled trajectories (gray).
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4.3 Path Tracking, Dubins Car

Consider the model (20) again, but now with veloc-
ity as a time-invariant uncertain parameter v € V.
The control objective is to track a smooth path
C = {(xref(8),yrer(s)) : s € R} where (Xpef,Yref) €
©?(R,R?). Define the tangent to C at s by

a re a re
n(s):( ;sf (s), f)sf (s)). 41)

We assume the path is parameterized such that s =0
is the desired starting point and ||n(s)||> = 1 for all
s € R. This implies that, for any s, > 51, s — 51 is the
arclength of the path connecting (Xyof(s1),yref(s1))
and (Xyer(52),Yrer(s2)). Under this assumption, the
curvature of C at s is ¢(s) = || 42 (s)||2. We assume that
¢ = supycp |¢(s)| < 4o and that, for every (x,y) € C,
the circle with radius 1/¢ that is tangent to C at (x,y)
does not contain any points of C in its interior [38].

We use the tracking controller in [38] based on the
curvilinear coordinates defined as follows. Consider a
single trajectory (x(z),y(t),0(¢)) of (20) correspond-
ing to some Xg € Xo, v € V, and @ : [to,t7] — R.
Assume the distance between (x(z),y(r)) and C is less
than 1/¢ for all ¢ € [f,7f]. Then, the projection of
(x(2),y(r)) onto C is well-defined and we may define
the curvilinear coordinate s : [t, 7] — R as

s(t) = ar%lginll (x(@),3(1)) = (res (V) Yrep (1))ll2-
(42)

Following [1], define the x and y coordinate errors by

r(1) = (6(t) = 2xrer (5(0)),3(1) = yrep (s(2)))- - (43)

Moreover, define the tracking error e : [tg,77] — R as
the perp dot product of r with n,

e(t) = x(t)" - n(s(1)) = ru(O)ny(s(r)) = ry (s (s(1)).

Finally, define the reference heading angle 6,.¢(s) at
any point in C as the angle between n(s) and the pos-
itive x-axis, By.f(s) = atan2 (ny(s),n.(s)), and define
the tracking angle error 6, : [fo,7] — R as

0.(t) = 0(t) — Bper(s(1)). (44)

According to [38], the trajectory (s(¢),e(z),6.(2))
defined in this way satisfies the following ODEs:

_ veos(6,)
1—c(s)e’
é=vsin(6,),
g'e —w— M_ (45)
1—c(s)e

Following [38], we apply the tracking feedback law

6,
o Wfs)“’(ssge) — 510 (g2v2(6.) e, (46)

where hy is from Definition 6, g; = 5.71vv2 +0.1,
and go = 4. The reachability problem is to bound
the vehicle position at each ¢ under the control law
(46). For our initial experiments, let v € [5,6] m/s, let
(s0,€0,60) = (0,1,7/6), and let C be a semi-circle
with ¢(s) = 1/30 emanating from (xo,yo) = (0,0).

A complication that did not occur in the trajec-
tory tracking examples is that there is no closed-
form expression for computing (s, e, 6,) from (x,y, 6).
Specifically, s is determined implicitly from (42), and
e and 6, depend on s. Thus, the closed-loop system
cannot be written in the original coordinates in a form
amenable to bounding calculations. The most straight-
forward approach in this case is to directly bound the
error coordinates using (45)—(46). This is advisable
in any case because it potentially reduces the depen-
dency problem as in Examples 4.1 and 4.2. However,
converting these error bounds back to the original
coordinates is also nontrivial and requires special care.

To bound the error coordinates, the simplest
approach is to apply standard DI to (45)-(46). The
dependency problem is significantly reduced by first
substituting the control law into (45) and analytically

c(s)cos(6,)

cancelling * c(s)e to obtain

vcos(6,)

TIC c(s)e’
é=vsin(6,),

ée = 7gleefg2Vh2(ee)e' (47)

However, bounding (47) still produces weak bounds
that start to diverge after 0.4s (Figure 10, Method (i)).
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To improve these bounds, we manufacture an
invariant based on the Lyapunov function [38]

1
L= +(1/2)67). (48)

We define £ as a new state, augment (45) with
Z=-2¢2 (49)
82

and define Z as Algorithm 3 with [ = 2 (see S.I. for
proof of Assumption 2). Figure 10 shows that the
resulting bounds (Method (ii)) are much more accu-
rate than standard DI and do not diverge. Figure
10 also shows the bounds that result if the custom
refinement steps in lines 3-9 of Algorithm 3 are
replaced with the general-purpose k-operator from
[25] (Method (iii)). The custom refinements clearly
lead to significantly tighter bounds.

Algorithm 3 % for Example 4.3
. function Z(t,Z, P)

1
2: (SXEX®,xL)<ZandV «+ P
3: fori=1to/do

4 L+ LAY (E? +(1/82)02)]
5: SQk + E*N(2L— 1 ©7)

6: E +— EN+/SQf

7 SQe, — 3N (g2(2L—E?))

8: 0, +— 0.N 7/ SQ@d

9: end for

10 X+ Vcl(fg_?")

11: Yo VSiH(@e)

12: Y3+ —5.71VV2+0.10, — goVH, (©, )E,
. _ 5.71V/V240.1

13: Y4 a— SQ@)K

14: return X < (X,%5,X3,%4)

15: end function

We now propose additional manufactured invari-
ants to further improve the bounds. Defining ¢; =
veos(6,) and ¢, = vsin(6,) leads to the system

o
1—c(s)e’
é= @,
0, = —16. — g2evh2(6,),
g =8¢
&2

¢, = —vsin(6,)6,,
¢ = vcos(6,)8,. (50)

The solutions of this system satisfy (48) and

¢1 = vcos(6,), (5D
¢, = vsin(6,),
V=07 +93,
% = tan(0,).

To use all of these invariants, we modified % by
adding refinements based on (51) as described in
Algorithm 4, where v arcsin, and arccos are defined
in Section 3 (see S.I. for proof of Assumption 2). The
resulting bounds are shown as Method (iv) in Figure
10. Adding ¢; and ¢ and the corresponding invariants
(51) leads to even further improvement and provides
the tightest bounds among all methods considered.

Algorithm 4 % for Example 4.3 with additional
manufactured invariants
. function Z(¢t,Z, P)
(SXEX®,XLXx P xDy)«ZandV «+ P
fori=1toldo
Execute lines 4-8 in Algorithm 3
@ + Veos(0,)Ndy
(132 — <I>2ﬁV sin(@e)
SQy + V2A(®} + @3)
V «— VN/SOy
$Qq, « PIN(V2 — D))
D @1ﬁ \/SQcpl
$Qq,  PIN(V> —@})
D) < DN /SO0,
COS@E «— COS@eﬁ(‘b] /V)
0, + BO.Narccos(COSe,)
SINg, < sin®,N(P,/V)
0, <+ ©,Narcsin(SINg,)
TANg, < tan®@,N(D, /)
0, + O.Narctan(TANg,)
end for
Iy 125
22 < CI)2
Y3 =571V V2 +0.10, — ngHz(@e)E,
T, *5'7]\{3@5(2@3
Ts < —Vsin(®,)L;
25: Y6 < Vcos(0,)X3
26: return X < (21722723724725726)
27: end function

R AN AN

=
R A U R T

NN N W
o T

The Lyapunov function (48) already implies
3(e2+(1/g2)62) < V(eo, 6. ). From this, it is easily
shown that |e| and |6, | are bounded by 1.04 m and 2.07
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rad. However, these bounds are significantly weaker
than those provided by Methods (ii) and (iv).

Although Method (iv) produces effective bounds
on (s,e, 6,), the goal is ultimately to bound the posi-
tion (x,y). This is challenging because there is no
simple relation giving (x,y) in terms of (s,e, 8,) that
can be evaluated in interval arithmetic. Unlike trajec-
tory tracking, the error coordinates here do not simply
specify deviations from a fixed reference point at each
t. Rather, the interval S(r) contains a range of s val-
ues at each ¢ that indicate different “closest” points
along the reference path, while E(r) contains possible
deviations in the directions normal to the path.

To address this, we now derive a method for map-
ping S(z) and E(t) into a sharp non-interval enclosure
of (x(#),y(¢)). Consider a single trajectory (x(z),y(t))
corresponding to some v € V and X9 € Xp. From
the definition of r(¢), we have that (x(¢),y(r)) =
(Xref(s(1)),yrer(s(t)))+r(t). From the optimality con-
ditions of (42), it can be shown that r(z) is always
orthogonal to n(s(¢)). Moreover, using standard prop-
erties of the perp dot product defining e(¢), we can
infer that r(¢) points —90° relative to n(s(z)) when
e(t) > 0 and 4+90° relative to n(s(¢)) when e(z) < 0.
Combining these facts, we conclude that

B Sin(ere (s(t)>)
r(t) =e(t) |:—COS<9reJ;‘<S(t))):| 7

where the vector on the right is the unit vector with
angle 6,,7(s(t)) — 5. Therefore, for every ¢ € I,

F@}E{meq+e{smww@»}
(1) Yref (s) —08(Bres(s)) |
This set can be visualized in the (x,y)-plane as fol-
lows. For a fixed ¢, we first choose a grid of points
5 € 8(t). Then, for each s, we calculate X, £(s), Yrer(s),
and 6,.(s) and plot the line segment described by
varying e above. The resulting enclosure is shown for
several ¢ values in Figure 11 (purple) using S(¢) and
E(t) from Method (iv). For these results, we used a
longer path with ¢(s) = 1/30 for s € [0,80] m and
c(s) = —1/30 for s € [80,160] m and let the initial
conditions for e and 6, be uncertain with (eg,6,9) €
[0.8,1] x [m/12,7/6]. Tight enclosures of (x,y) are
obtained that remain stable over a long time horizon.
However, they become elongated at later times, indi-
cating that deviations normal to the path are tightly
bounded, while the position along the path is uncer-
tain. This is expected because v is uncertain.

(52)

e € E(t)

seS(t) }

For path tracking problems, one may be uninter-
ested in the time dependence of the bounds and only
concerned with bounding the deviations from the path
at each s. This is awkward with the bounds derived
above because evaluating the maximum deviation at s
requires checking E(¢) for every ¢ such that s € S(z).
A simpler approach is to compute bounds as functions
of s rather than ¢. Note that s = % > 0 provided that
0. € (—%,%)and || < % Therefore, we may apply a
change of variables to (47) to obtain

d

d—i = tan,(1 — c(s)e), (53)
d@e o *glee gzhz(@e)e

ds (1=c(s)e) (vcos@e cos 6, '

Moreover, differentiating (48) gives

42 @620 —c(s)e)
ds ~ gavcos(6,) (>4)

Algorithm 5 % for Example 4.3 using (53)
. function Z(t,Z, P)

1
2: (EX@®,xL)«ZandV + P
3: fori=1tol/do
4: Apply lines 4-8 in Algorithm 3
5: end for
6: ¥ +tan(@®,)(1—¢E)
= —5.71VV240.180,  &H:(O.)E
7: 22 {— (1 *CE) ( Vcos®, - 2C(§S®g )
_\ 5.71VV240.102
8: E3<—_(1_CE)7g2Vcos®ﬁ

9: return £ < (X1,%5,%3)
10: end function

Figure 11 shows the bounds computed by applying
standard DI to (53) and redundancy-based DI to (53)
and (54) with invariant (48). The latter methods uses
Algorithm 5, which is a straightforward modification
of Algorithm 3. The proof that Algorithm 5 satisfies
Assumption 2 is analogous to that for Algorithm 3 and
is omitted for brevity. Both methods provide bounds
on ¢ as a function of s, which can be used to enclose
the vehicle position (x(s),y(s)) at each s as

x(s) xref(S)] [ Sin(eref(s))] }
€ +e tecE(s) p.
it I o R B | RRLEC
This is a line segment for each s that can be visualized
by plotting its right-most and left-most points (relative
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to n(s)) as functions of s. These are given by

xl/r(s) = eL/U (S) Sin(eref(s)) +xref(s)a (55)
W (s) = =Y (5)cos(Bref (s)) + yrer (s),

where (x/,y') and (x",y") are the left and right-most
points and [e,eV]| = E.

Standard DI does not produce effective bounds as
expected. However, the redundancy-based DI bounds
are very tight and offer a slight improvement over
Method (iv). Moreover, the cost is only 0.016s. This is
much more efficient than, e.g., sampling 1000 trajec-
tories (> 0.35s) and orders of magnitude faster than
the real vehicle traverses the path (> 25s for allv € V).

5 Conclusion

Calculating accurate reachable set enclosures is a
critical step towards safe motion planning. In this
paper, advanced differential inequalities (DI) meth-
ods were applied to compute such enclosures for three
representative case studies. Naive application of the
standard DI method, which uses only basic inter-
val computations, produced extremely weak bounds.
This was caused by significant interval dependency,
largely due to the embedded feedback laws. In con-
trast, redundancy-based DI methods produced greatly
improved bounds. With the possible exception of
Example 4.2, these bounds appear tight enough to sup-
port safe motion planning tasks, and the computational
cost was acceptable for online use.

Redundacy-based DI also outperformed the con-
servative linearization approaches in CORA for our
examples. Since CORA uses zonotope calculations
that are usually superior to interval arithmetic, this
provides further evidence for the effectiveness of
invariants. Future developments enabling the use of
invariants within conservative linearization techniques
could be very impactful, possibly yielding methods
with still higher accuracy.

Applying redundancy-based DI required signif-
icant problem-specific insights and should not be
considered an effective general-purpose solution in
its current form. Nevertheless, some strategies were
effective across all case studies. First, it was critical
to formulate the system in coordinates that made the
action of the feedback law at least partially explicit
(i.e., through term cancellations or other simplifica-
tions). Applying DI to the dynamics of the error
coordinates on which the feedback law is based was

generally advantageous. For path tracking, it was also
better to use the arclength coordinate as the indepen-
dent variable rather than time. Second, it was critical
to manufacture effective nonlinear invariants. The case
studies repeatedly showed that using Lyapunov func-
tions as invariants is highly effective. This is likely
because the simplified forms of their time derivatives
express the action of the feedback law in an explicit
manner that can be captured by interval computa-
tions. A key drawback of this strategy is that, for
many models, Lyapunov functions either don’t exist
or only remain valid in a small region. However, as
shown in Example 4.1, DI does not require true Lya-
punov functions and can still make effective use of
approximate ones. In the third example, additional
invariants also led to significant improvements. In con-
trast, attempts to use multiple coordinate systems to
generate invariants were not effective. Third, we found
that custom refinement algorithms were superior to the
general-purpose algorithm in [25].

Although our results are generally positive, there
is substantial room for improvement in both accu-
racy and cost. The development of more effective
manufactured invariants by researchers with deeper
expertise in vehicle dynamics and the underlying
geometry could be extremely beneficial. Combining
the redundancy-based approach with methods based
on more advanced set representations could also be
effective, provided costs can be kept low [16, 23—
25]. Finally, further optimization of the refinement
algorithms could lead to substantial cost reductions.
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Fig. 10: Example 4.3: Bounds on (s,e,6,) from (i)
applying standard DI to (47) (blue), (ii&iii) applying
redundancy-based DI to (47) and (49) with invariant
(48) using Algorithm 3 (green) and the k-operator [25]
(red), and (iv) applying redundancy-based DI to (50)
with invariants (51) and (48) using Algorithm 4 (pur-
ple), along with 500 sampled trajectories (grey).
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Fig. 11: Example 4.3: Position bounds for the entire
path (top) and the beginning of the path (bottom)
computed by applying redundancy-based DI to (50)
with invariants (51) and (48) (purple shaded), applying
standard DI to (53) (blue), and applying redundancy-
based DI to (53) and (54) with invariant (48) (green),
along with 500 sampled trajectories (grey).
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