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A general, two-way coupled, point-particle formulation that accounts for the disturbance 
created by the dispersed particles in obtaining the undisturbed fluid flow field needed 
for accurate computation of the force closure models is presented. Specifically, equations 
for the disturbance field created by the presence of particles are first derived based on 
the inter-phase momentum coupling force in a finite-volume formulation. Solution to 
the disturbance field is obtained using two approaches: (i) direct computation of the 
disturbance velocity and pressure using the reaction force due to particles at computational 
control volumes, and (ii) a linearized, approximate computation of the disturbance velocity 
field, specifically applicable for low Reynolds number flows. In both approaches, the 
computed disturbance field is used to obtain the undisturbed fluid velocity necessary 
to model the aerodynamic forces on the particle. The two approaches are thoroughly 
evaluated for a single particle in an unbounded and wall-bounded flow on uniform, 
anisotropic, as well as unstructured grids to show accurate computation of the particle 
motion and inter-phase coupling. The approach is straightforward and can be applied to 
any Euler-Lagrange formulations of particle-laden flows.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Particle-laden flows, wherein small size solid particles, liquid droplets or gaseous bubbles are dispersed in a fluid flow, 
are widely encountered in many engineering, biological and environmental applications. A wide range of numerical ap-
proaches resolving different scales of fluid and particle motion have been developed for accurate and predictive simulation 
of these flows [37,6]. The point-particle (PP) approach [25], in which particles are assumed spherical, subgrid and modeled
as point sources, has received much attention in modeling particle-laden flows owing to its simplicity and affordability in 
simulating motion of large number of particles, O(106) [5] to O(109) [24].

This approach was originally developed for dilute particulate flows with particles smaller than the fluid length scale 
(or the computational grid size) wherein the presence of particles does not significantly perturb the characteristics of the 
flow, i.e., one-way coupled regime [13]. In modeling this regime, the fluid phase equations are solved irrespective of the 
presence of the particles, while closures for fluid forces acting on particles such as drag, lift, added mass, pressure gradient, 
and history effect are employed to obtain the particle trajectories. Despite the original development of the PP approach 
for one-way coupled regimes, it has been widely applied to modeling two-way coupled regimes wherein the fluid phase is 
indeed perturbed by the presence of particles [13]. Such a scenario may happen when the particle loading (or concentration) 
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locally or globally becomes large, either due to a few large size particles or dense regime of small particles. The effect of 
particles on the carrier phase is then modeled by applying the particle reaction force to the fluid phase equations through a 
momentum source term. In addition, for dense loading, the volume occupied by the particles is also removed when solving 
for the fluid phase equations, by applying volume filtered equations, or volumetric coupling, which results in additional 
source terms in the continuity equation due to spatio-temporal variations in particle volume fraction. Unlike the standard 
approaches, this formulation couples two phases through both momentum and continuity equations [16,4,10,27].

Since particles in PP approach are assumed to be smaller than the grid and the local flow over the particles is considered 
uniform, hence force closures based on uniform flow over a sphere are typically employed. However, to extend the applica-
bility range of PP approach to particles of size on the order of or slightly larger than the computational grid, that receive 
spatially varying flow field, Faxén corrections have been developed [2]. Typical force closures that are derived for a single 
particle rely on the undisturbed fluid flow, which is not readily available in the two-way coupled simulations. By definition, 
the undisturbed flow is the velocity and pressure fields that would exist at the location of a particle if that particle was 
not there in the flow. For multi-particle systems, the undisturbed flow field seen by a particle only corresponds to the flow 
field in the absence of that specific particle, however, includes the disturbed flow created by the neighboring particles. In 
two-way coupled simulations, the fluid phase is altered by the self-induced disturbance of each individual particle through 
inter-phase momentum and mass exchange, and using the available disturbed flow field for force closures results in er-
roneous predictions. The error introduced by using the disturbed field may remain small when the particle size is much 
smaller than the grid, owing to the negligible disturbance of small particles. However, when the particle size is on the order 
of or bigger than the grid resolution, such as those encountered in direct and large-eddy simulations, the disturbance due 
to particles becomes noticeable, hence the errors can become significantly large.

[29] first showed that the PP approach produces wrong prediction for velocity of a single particle settling toward a 
no-slip wall, and in order to improve the predictions, they introduced a velocity-disturbance model, wherein the analytical 
Stokes solution at the location of the particle is superimposed on the background flow to reflect the effect of the particle. 
Unlike PP approach, their model eliminates any dependency of the particle force computations to the undisturbed fluid 
velocity and results in more accurate predictions. Although their model can be applied to both unbounded and wall-bounded 
regimes due to the availability of the Stokes solution for both, it is limited to small particle Reynolds numbers (Rep) and 
at steady state condition for which the analytical solution is available. [17] regularized the PP approach for the unbounded 
flows by deriving analytical equations to remove the self-induced velocity disturbance created by the particles, that is 
also extended to wall-bounded regimes [8]. Their approach requires considerable computational resources to resolve the 
stencil over which the particle force is distributed using a Gaussian filter function. [18,19] originated a method to obtain 
the undisturbed field based on the enhanced curvature in the disturbed velocity field for particle Reynolds numbers of 
Rep<10.0. A C-field library data was built using reverse engineering technique that needs to be added to the current PP 
packages for recovering the undisturbed velocity. Their model is limited to (i) isotropic rectilinear computational grids, (ii) 
flows with particles of maximum size of the grid, and (iii) unbounded regimes. [20] derived an analytical expression for 
recovering the undisturbed velocity in the unbounded regimes based on the steady state Stokes solution that was derived 
as the solution of a feedback force distributed to the background flow using a Gaussian filter. Their model accounts for the 
displaced fluid mass by the particles and is limited to unbounded regimes with small Rep .

Using analytical and empirical expressions, [7] developed a model that corrects the PP approach for cold particle-laden 
flows with Rep<200, with its extension to heated particle-laden flows [22], as well. Despite its applicability for a wide range 
of flow parameters, it is restricted to unbounded flows and a Gaussian filter function for projecting the particle’s reaction 
force. Recently, Evrard et al. [15] used Stokes flow through a regularised momentum source with extension to finite Reynolds 
numbers based on the Oseen flow solution using Green’s functions, to obtain the undisturbed fluid velocity and showed 
good predictions for arbitrary particle-to-grid size ratio and a wide range of particle Reynolds numbers in an unbounded 
flow. [14] developed a generic correction scheme in which each computational cell, that is subjected to the particle force, is 
treated as a solid object that is immersed in the fluid and dragged at a velocity identical to the disturbance created by the 
particle. Although their physics-based model was devised to handle (i) relatively large size particles even larger than the 
grid resolution, (ii) isotropic and anisotropic grids, (iii) flows with finite, but low Rep , and (iv) arbitrary interpolation and 
distribution functions, it is limited to unbounded flows. [28] extended this idea to wall-bounded flows by using empirical 
expressions as well as wall-modified Stokeslet solution. Their approach is applicable to large size particles and extreme 
anisotropic grids, typically employed in wall-bounded turbulent flows. Test cases performed on velocity of a particle in both 
parallel and wall-normal motions showed that when the correction schemes, that are developed for unbounded regimes, are 
employed for correcting particle force in wall-bounded regimes, errors on the same order of magnitude of the uncorrected 
PP scheme can be obtained. Their model is capable of recovering the undisturbed fluid velocity at any arbitrary wall distance 
and asymptotically approaches the regular unbounded correction schemes for particles traveling sufficiently away from the 
no-slip wall. The above correction schemes by Esmaily and Horwitz [14], Pakseresht et al. [28] remove the self-induced 
disturbance for each individual particle when correcting the particle forces, keeping the effects of all the other particles in 
the neighborhood unchanged. Thus, their approaches implicitly account for the effect of neighbors on the individual particle 
force closures; however, in its present form is limited to Rep<10 and tri-linear interpolation on rectilinear grids.

Recently, there has been an effort made to develop new drag laws based on fundamental particle resolved direct nu-
merical studies at high particle volume loadings, wherein the drag closures devised based on explicitly accounting for the 
volume fraction effects as well as disturbed velocity fields. The drag laws are expressed in terms of superficial velocity, that 
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is the product of the volume fraction and disturbed fluid velocity [36,21]. For such models, the notion of undisturbed fluid 
velocity is potentially not necessary. At present, these approaches are developed for moderate-to-dense particle loadings; 
however, for low-to-moderate loadings, the standard drag laws based on the undisturbed fluid velocity are typically used. 
This also indicates two disparate approaches for particle-laden flows: one stemming from the high volume loading applica-
tions with drag laws based on the disturbed fluid velocity; and the other from the dilute loading perspective and based on 
drag laws requiring undisturbed fluid velocity. A general, unified approach is perhaps possible in the future.

Given the importance of the undisturbed field and the restrictions of the existing models, in this work, a general for-
mulation for estimating the disturbance field created by particles is derived. Solution to the disturbance field is obtained 
using two approaches: (i) direct computation of the disturbance velocity and pressure using the particle reaction forces at 
computational control volumes, and (ii) an approximate computation of the disturbance velocity field, based on low par-
ticle Reynolds number assumption. Direct solution of the disturbance field is easily feasible using the same framework of 
the Navier-Stokes solver and is applicable to wall-bounded flows, complex geometries and boundary conditions, anisotropic 
as well as arbitrary, unstructured grids, and a wide range of Rep . This direct solution approach does add additional com-
putational cost, but its versatility, simplicity, and accuracy make it an attractive alternative. To reduce the computational 
cost, and yet keep the same benefits mentioned above, an approximate solution, specifically applicable for low Rep , is also 
presented. Predictions from these two approaches are compared with existing uncorrected models for motion of a parti-
cle in unbounded and wall bounded regimes. Furthermore, the effectiveness of these approaches for a range of grid types 
(structured or arbitrary shaped unstructured), grid anisotropy, and particle Reynolds numbers is evaluated.

The rest of the paper is arranged as follows. Section 2 explains the existing issue in the force computations of the 
standard two-way coupled PP simulations. The mathematical formulations for the direct as well as approximate methods 
are derived in this section, as well. Section 3 validates both methods on a series of numerical test cases for a particle’s 
motion in unbounded and wall-bounded regimes using various grids and flows parameters. Section 4 concludes the paper 
with final remarks and summary of the work.

2. Mathematical formulation

In this section, the existing issue in the force computations of the standard two-way coupled PP approaches is first 
explained. Next, a general framework for correcting this issue is presented followed by a reduced order approximate, but 
computationally efficient method. For sake of simplicity, pressure-based incompressible fluid flow solvers are used here, 
however, the proposed framework can be easily extended to any general flow solution techniques including those for com-
pressible flows.

2.1. The issue

Consider a particle-laden fluid flow as shown in Fig. 1. In a typical point-particle approach in an Euler-Lagrange frame-
work, the particles are assumed subgrid, and their motion is modeled by Newton’s second law as,

dxi,p
dt

= ui,p, (1)

dui,p

dt
=

(
1− ρ f

ρp

)
gi + 1

Vpρp
F t
i,p, (2)

where xi,p and ui,p are particle centroid location and velocity, respectively, ρp is the particle density, Vp is the volume, 
and F t

i,p represents the total fluid forces acting on each individual particle in the i direction. In the point-particle approach, 
since particles are assumed subgrid, the forces can not be computed directly and instead are modeled using the available 
closures for drag, added mass, history effect [25], lift force [32] and Magnus effect [31], among others.

In the two-way coupling approach, the effect of the particles on the carrier fluid is modeled through an equal and 
opposite reaction force of the particles and using an appropriate interpolation kernel, modifying the fluid flow in the vicinity 
of the particles,

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ f

∂p

∂xi
+ ν

∂2ui

∂x2j
− 1

ρ f

Np∑
p=1

f ti,pξ
�(xcv − xp), (3)

∂u j

∂x j
= 0, (4)

where ν is the fluid kinematic viscosity, ρ f is the fluid density, and f ti,p is the particle force per unit volume in the 
i direction. ξ�(xcv − xp) is a kernel function to project the particles forces, that lie within the bandwidth (�), to the 
computational cell center at xcv . Np is the total number of particles that are located within the bandwidth of the projection 
function.
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Fig. 1. Schematic diagram of flow over particles in a general domain with arbitrary boundary conditions and grids: the globally, undisturbed flow (left) and 
two-way coupled flow field (right).

Typical force closure models used in computing the particle motion are based on the fluid flow field that is undisturbed
by the presence of the particle. As an example, the steady state Stokes drag force over a particle with diameter of dp moving 
with velocity of ui,p in a fluid with dynamic viscosity of μ is

F Stokes
i,drag = 3πμdp

(
uun
i,@p − ui,p

)
, (5)

wherein uun
i,@p is the undisturbed fluid velocity at the location of the particle that is not influenced by the presence of the 

particle under consideration—that is, without the particle self-induced disturbance. However, this undisturbed flow field 
is not readily available in a two-way coupled simulation as the self-induced disturbance in the fluid flow created by the 
reaction force of the particle alters the flow velocity and pressure fields. It should be noted that, the undisturbed fluid flow 
needed in the closure models for the motion of a particle refers to the velocity and pressure fields in the absence of that 
particular particle, however, accounts for the disturbance effect created by any of the neighboring particles.

In the present work, a general formulation is developed to compute the undisturbed flow field that removes the dis-
turbance created by all particles and is denoted as uug

i and pug , a globally undisturbed velocity and pressure fields. This 
approach then allows formulating equations for the disturbance field created by all particles in an Eulerian frame. For a 
particle under consideration, the undisturbed flow field at the particle location can then be written as,

uun
i,@p = uug

i,@p +
∑
nbr

δunbr
i,@p, (6)

where δunbr
i,@p is the velocity perturbation created by a neighboring particle at the location of the particle p and in its 

absence. This neighboring effect can be substantial for regimes where inter-particle distance is comparable to the particle 
size. The mean inter-particle distance varies as φ−1/3, where φ is the local particle volume fraction. For example, with φ =
0.01, the nearest neighbor distance is about 3.7 times the particle diameter [1]. For systems with dilute to moderate volume 
loadings of φ ≤ 10−3, the hydrodynamic inter-particle interactions are insignificant, and thus the effect of neighboring 
particles on the undisturbed flow field is negligible. In this regime, uug

i ∼ uun
i and pug ∼ pun . In the present work, emphasis 

is placed on recovering the global, undisturbed flow field (uug
i , pug ). The formulation is thus directly applicable to dilute 

loadings, and can be applied to moderate-to-dense loadings by explicitly incorporating the neighboring particle effects in 
the future [26,33].

In the present work, the local fluid volume occupied by the particle is not explicitly considered in the fluid continuity and 
momentum equations. For the low-to-moderate volume loadings, the effect of fluid displaced through local volume fraction 
variations due to particle motion and particle clustering are generally small. Previous works on quantifying such volumetric 
(volume-filtered) coupling effects [4,27] as compared to when these effects are neglected as in a standard two-way coupling 
approach, indicate that these volume fraction effects become important with volume loadings of 5% and higher. However, 
the basic framework of developing disturbance equation can be extended to include the volume fraction effects by starting 
from the governing equations for the volumetric coupling, wherein there is interphase momentum exchange as well as 
non-divergence free continuity equation. Recently, Balachandar et al. [7] have shown that by reformulating the equations in 
the frame of reference of an individual particle, the temporal variations in volume fraction in the continuity equation for 
the disturbance field drops out. This mathematical simplification can still be applied for the present approach without loss 
of generality and will be investigated in future to extend this approach to moderate-to-dense loadings.

To recover the global undisturbed flow field, a general framework is proposed wherein governing equations for the 
disturbance created by all particles in the flow are first formulated. In the absence of any particles, the fluid flow equations 
can be written as,
4



P. Pakseresht and S.V. Apte Journal of Computational Physics 439 (2021) 110381
∂uug
i

∂t
+ uug

j

∂uug
i

∂x j
= − 1

ρ f

∂pug

∂xi
+ ν

∂2uug
i

∂x2j
, (7)

∂uug
j

∂x j
= 0. (8)

The velocity (ud
i ) and pressure (pd) disturbance fields created by all the particles can be obtained by subtracting the dis-

turbed two-way coupled flow field, expressed by Eqs. (3)-(4), from the undisturbed flow field, given by Eqs. (7)-(8),

∂ud
i

∂t
+ ud

j

∂uug
i

∂x j
+ u j

∂ud
i

∂x j
= − 1

ρ f

∂pd

∂xi
+ ν

∂2ud
i

∂x2j
+ 1

ρ f

Np∑
p=1

f ti,pξ
�(xcv − xp) (9)

∂ud
j

∂x j
= 0, (10)

where,

uug
i = ui + ud

i , (11)

pug = p + pd. (12)

Here, ui and p represent the standard two-way coupled velocity and pressure fields, ud
i and pd are the disturbance fields 

created by all particles. The above equation has the boundary condition of ud
i =0 far away from the particles. If the particle 

is near a no-slip wall, the disturbance field also experiences the same no-slip condition of ud
i =0, making it a general 

formulation for any flow configuration, computational approach, and grid type. Solution to the above equations can be 
obtained by using two different approaches as described below.

2.2. Direct method

In order to solve the equations (9) and (10), the second, nonlinear term on the left hand side of the momentum equation, 
ud
j∂u

ug
i /∂x j , requires additional closure between the undisturbed and disturbance fields. However, this term can be safely 

neglected in comparison to the third term by hypothesizing the following,

∂uug
i

∂x j
� ∂ud

i

∂x j
, (13)

which is approximately valid as the velocity gradient caused by the particle force in the disturbance field is conjectured to 
be greater than that of the undisturbed field. Although this assumption is verified by the small errors for the studied cases 
reported in section 3, further investigations for cases with inherently large velocity gradient in the undisturbed field is left 
for future investigations. For turbulent wall bounded flows, for example, there exists strong shear in the undisturbed flow 
in the near wall region and the above assumption may lead to errors in the calculation of the disturbance field. A potential 
remedy for such cases is to approximate gradient in the undisturbed velocity by the predetermnined mean shear in the 
flow. For example, for a turbulent channel flow in x direction with gradients in y direction,

∂uug
1

∂x2
∼ ∂U

ug

∂ y
, (14)

where Uug
is the time-averaged, undisturbed mean velocity in the x-direction. Similar assumptions can be employed for 

other flows and tested for their effectiveness. In addition, for cases where finite size particles are in the presence of strong 
shear, Faxén corrections and surface/volume average of the undisturbed flow [2] are typically used to compute the closure 
forces on the particle. Such corrections may help reduce the errors introduced by the assumption in equation (13).

Knowing the forces on the particles, the disturbance field can then be obtained by directly solving the following equa-
tions,

∂ud
i

∂t
+ u j

∂ud
i

∂x j
= − 1

ρ f

∂pd

∂xi
+ ν

∂2ud
i

∂x2j
+ 1

ρ f

Np∑
p=1

f ti,pξ
�(xcv − xp), (15)

∂ud
j

∂x
= 0. (16)
j
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Note that the nonlinear, advective term contains the disturbance velocity (ud
i ) and the two-way, coupled velocity (u j). The 

latter is readily available in a two-way coupled simulation. The initial condition assumed for the disturbance field is ud
i = 0

and the boundary conditions, far away from the particle or at physical walls are ud
i = 0.

The same computational algorithm employed for the solution of the main two-way coupled flow field (Eqs. (3)-(4)) can 
be utilized to compute the disturbance field (equations above), which involves solution of the disturbance momentum equa-
tions, and projection of the divergence-free disturbance condition using a solution of a Poisson equation for the disturbance 
pressure. Direct solution of the disturbance field is then used to recover the undisturbed flow field from Eqs (11)-(12) and to 
accurately compute the fluid forces acting on the particles. Compared to the existing correction schemes, the direct method 
benefits from many advantages as explained below:

• Direct solution is easily feasible using the same framework employed for solving the Navier-Stokes equations of the 
two-way coupled field.

• Wall-bounded flows, complex geometries, and arbitrary boundary conditions can be automatically accounted for in the 
solution of the disturbance field.

• Unlike the majority of the existing models, the direct method is capable of handling a wide range of Rep .
• The disturbance velocity and pressure fields (and thus their gradients) are available, thus the common force closures for 

drag, lift, history effect, as well as pressure gradient forces can be accurately computed.
• The formulation is free of any tuning or empirical expressions, typically used for specific grid configurations, and can 

be applied to both structured and arbitrary shaped, hybrid unstructured grids with any grid aspect ratio.
• The formulation is free of any dependency on the interpolation and projection functions employed in the two-way 

coupled simulations. Different interpolation functions and kernels will give different disturbance fields; however, the 
reconstructed undisturbed flow is the same. This is demonstrated in a simple test case presented in Appendix B.

• The disturbance field is computed regardless of size of particles, hence it is adaptable for flows with any arbitrary size 
particles, particularly those with particles larger than grid.

The main drawback of this approach is the additional computational cost for solving the disturbance field that requires 
full solution of the momentum as well as continuity equations, which makes the computations as nearly twice as expensive. 
The additional cost can still be tolerable for direct numerical or large eddy simulations, as the approach is much more 
affordable than particle-resolved methods. However, for a faster computation, an approximate method is introduced in the 
following part, which is shown to be reasonably accurate as compared to the direct method while being significantly more 
cost efficient.

2.3. Approximate method

In this part, an approximate solution of the disturbance field is proposed that is derived based on low particle Reynolds 
number assumption. In the limit of creeping flow (Rep<0.1), the inertial terms on the left hand side of Eq. (15) are dropped 
and the simplified momentum and continuity equations then become,

∂ud
i

∂t
= − 1

ρ f

∂pd

∂xi
+ ν

∂2ud
i

∂x2j
+ 1

ρ f

Np∑
p=1

f ti,pξ
�(xcv − xp), (17)

∂ud
j

∂x j
= 0. (18)

In order to further simplify the equations above, we conjecture that the fluid response to the particle force, is approximately 
analogous to the flow that would be generated by the particle in the real physics of the problem. This is in fact the main 
assumption employed in the two-way coupled point-particle approach wherein it is assumed that the particle force can 
approximately produce the same flow as the particle would do in the reality. Motivated by this analogy and in the limit of 
steady state and Rep<0.1, we recall the Stokes solution that is the flow created around the actual particle. In the Stokes 
regime, the drag on the particle that experiences slip velocity of urel

p , consists of two terms (i) pressure and (ii) viscous 
forces as,

F Stokes
drag = πμdpu

rel
p︸ ︷︷ ︸

Pressure force

+2πμdpu
rel
p︸ ︷︷ ︸

Viscous force

. (19)

For low particle Reynolds numbers, the expressions for these two forces are identical, with viscous force being twice greater 
than the pressure force. Motivated by this, one can model the contribution of the pressure drag through an effective viscosity 
and rewrite the Stokes drag force as,

F Stokes = 2πμef f dpu
rel
p ; μef f = Kνμ; Kν = 1.5. (20)
i,drag
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Rewriting the Stokes drag in this form facilitates the approximation that the effect of the pressure gradient term in 
Eq. (17) can be modeled through an equivalent viscous term with an effective viscosity of Kν=1.5 to match the net fluid 
force in the Stokes limit. It should be noted that the continuity constraint is already embedded in the Stokes solution from 
which the Stokes drag is obtained. Therefore, it is conjectured that the introduced correction factor will implicitly provide a 
velocity field that approximately satisfies the continuity equation. Since, the pressure term is no longer needed, the continu-
ity constraint in Eq. (18) is unnecessary and is only satisfied approximately. Using this approximate method, the disturbance 
field due to the particles forces, can be computed by solving only the momentum equation in each direction with vis-
cous stresses and a modified viscosity through the introduced correction factor of Kν=1.5. The approximate equation then 
becomes,

∂ud
i

∂t
= Kνν

∂2ud
i

∂x2j
+ 1

ρ f

Np∑
p=1

f ti,pξ
�(xcv − xp). (21)

It is worth mentioning that the correction factor Kν can be Reynolds number dependent. With increase in Rep , the con-
tribution of the pressure drag to the net drag is bound to increase [40], and the value of Kν can potentially be changed. 
In addition, for large Reynolds numbers, the non-linear advective term can be included in the above equation and the 
approximate equation can be written as,

∂ud
i

∂t
+ u j

∂ud
i

∂x j
= Kνν

∂2ud
i

∂x2j
+ 1

ρ f

Np∑
p=1

f ti,pξ
�(xcv − xp). (22)

Note that u j in the advective term is known from the two-way coupled solution. Changing Kν and adding the non-linear 
term may help improve the accuracy of this approximate method. For the present work; however, the Kν is kept fixed and 
equal to 1.5, even for higher Rep , and the non-linear term in the approximate method is not included. Even for high Rep
cases studied in the present work, the approximate Eq. (21) is shown to give reasonable results. The approximate method 
derived here is unique, but has some similarities to the analytical solution of the disturbance field used by Balachandar 
et al. [7] in the Stokes flow limit and if a Gaussian interpolation kernel is used.

Similar to the direct method, the equation above is solved in the same Eulerian frame that is used for solving the 
two-way coupled flow field equations. This captures the resultant disturbance field that is caused by all particles in the 
flow field. For dilute loadings, wherein the disturbance of each particle is isolated from that of the neighboring particles, 
this model perfectly captures the self-induced disturbance of each particle required in force closures. However, for dense 
loadings, the neighboring effect can be incorporated by solving the above equation for each particle. This can be done, 
in a computationally efficient way, by solving the disturbance equation in a small region of influence, surrounding the 
particle, similar to, for example, overset grid methods. Alternatively, recently developed models by Moore et al. [26], Seyed-
Ahmadi and Wachs [33] to capture neighboring effects can also be used. Depending on the application of interest, both 
unbounded and wall-bounded regimes can be handled by this method since the boundary conditions are directly enforced 
for solving the equation above. Finally, owing to the linear, unsteady diffusion like equation with a source term, its solution 
is considerably faster than the direct method. Note that Eq. (21) is general and directly applicable to any arbitrary grid. 
Concerning the applicability of this method for Rep>0.1, it is shown later (section 3) that despite the fact that this method 
is constructed upon the assumption of small Rep , it can reduce the errors for a wider range of particle Reynolds numbers 
of Rep≤100.

2.4. Numerical algorithm

The procedure in the present disturbance-corrected point-particle (DCPP) framework is similar to the standard uncor-
rected point-particle approach with an additional step for recovering the undisturbed flow field. For the computations of 
the present methods, two sets of parameters and equations, corresponding to the disturbance as well as two-way coupled 
disturbed flow fields, are solved separately yet on similar computational domains and identical boundary conditions. Note 
that any interpolation and projection functions that are used for computations of the two-way coupled flow field should be 
used for the computation of the disturbance field, to ensure that the predicted disturbance is consistent with the one that 
particles actually sample in the disturbed two-way coupled flow field. Knowing the computed disturbance field, ud

i , and 
particles velocity, ui,p , from the previous time step, the following procedure is employed.

1. Solve Eqs. (3) and (4) for the two-way coupled field to update the fluid velocity, ui , and pressure, p, due to presence 
of particles. Note that this is the standard step in the uncorrected PP approaches.

2. Knowing the disturbance field available from previous time step, and the updated disturbed flow field from step 1, 
recover the undisturbed fluid velocity, uug

i , and pressure, pug , fields at the location of particles using Eqs. (11) and (12).
3. Use the undisturbed field to compute the net fluid forces acting on each particle, F t

i,p .
4. Update the velocity and location of each individual particle using Eqs. (1) and (2).
7
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5. Knowing the particles reaction forces from step 3, compute the disturbance field by solving either the direct method 
(Eqs. (7) and (8)) or the approximate method (Eq. (21)).

Present work is based on an energy-conserving scheme for unstructured, arbitrarily shaped grid elements based on 
fractional time-stepping on a colocated mesh [23]. The velocity and pressure are stored at the centroids of the volumes. 
The cell-centered velocities are advanced in a predictor step, the predicted velocities are interpolated to the faces and then 
projected. Projection yields the pressure potential at the cell-centers, and its gradient is used to correct the cell and face-
normal velocities, using an area weighted least-squares minimization technique [23]. Details of the algorithm on arbitrary 
shaped unstructured grids for particle-laden flows are given in [34] and a brief description is presented in Appendix A for 
completeness. The same algorithm is used for the disturbance field in the direct and approximate methods.

3. Results

In this section, the performance of the direct as well as approximate methods on recovering the undisturbed flow field 
and correcting the PP approach is verified in various scenarios. A single particle settling under gravity in an unbounded 
regime is investigated first. Settling velocity of the particle moving parallel and normal to a no-slip wall is performed next. 
As the final test case, the unsteady motion of a single particle in an oscillatory field is examined, as well. For simplicity, 
drag force as the only fluid force acting on the particle is employed while other fluid forces such as lift, added mass, pres-
sure gradient, and history effect are neglected. For each set, various grid configurations including isotropic and anisotropic 
rectilinear grids as well as tetrahedral unstructured grid are used to assess the accuracy of the present models on arbitrary 
shaped grids. A range of 0.1≤Rep≤100 is performed to evaluate the models for a wide range of scenarios that may happen 
in particle-laden flows. The grid resolution of 1283 was chosen for all cases (with close proximity to this resolution for the 
unstructured grid) as it was found to be sufficient to produce the grid-independent results.

Three non-dimensional parameters are used to setup the cases: (i) particle-to-grid size ratio, 
, (ii) particle Stokes 
number, St , and (iii) particle Reynolds number, Rep . The first dimensionless parameter, 
, is defined as


 = dp

dc
, (23)

where dp and dc are the particle diameter and the characteristic length of the grid, respectively. For rectilinear grids, dc can 
become a vector with three components each of which corresponding to the size of the grid in that direction, ai , hence 
three components for 
, as well. However, for unstructured grids, finding an equivalent grid size for each direction is not 
trivial, therefore, a unified dc based on the diameter of a sphere that has the equivalent volume of the grid, dc= 3

√
6Vcv/π , 

is defined. Particle Stokes number is defined as,

St = τp

τ f
, (24)

where,

τp = ρpd2p
18μ

, (25)

and,

τ f = min (dc)
2

ν
, (26)

are the respective particle relaxation time and fluid time scale in the Stokesian regime. The particle Reynolds number in 
this regime is also defined as,

ReStkp = |uStk
s |dp

ν
, (27)

where,

uStk
s =

(
1− ρ f

ρp

)
τpg, (28)

is the particle settling velocity under gravity vector of g. Different definitions of flow time-scales are possible and typically 
used in non-quiescent flows. It is imperative to mention that for the studied cases with ReStkp >0.1 or those in wall-bounded 
regime, the particle’s drag coefficient varies from that of the Stokes flow, so does the particle settling velocity, thus the actual 
particle Reynolds number, denoted by Rep , differs from Eq. (27). For each of those cases, the proper expression is provided, 
separately.

The fluid velocity at the particle’s location, required for the drag force computation, is interpolated using a three-point 
delta function with compact support that uses the nearest neighbors of a control volume [30]. For control volumes with 
8
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resolution of �= 3
√
Vcv , the interpolation stencil utilizes only three points in one dimension and thus is easiest to imple-

ment:

ξ�(xcv − xp) =

⎧⎪⎨⎪⎩
1
6 (5− 3|r| − √−3(1− |r|)2 + 1), 0.5 ≤ |r| ≤ 1.5, r = |xcv − xp|/�
1
3 (1+ √−3r2 + 1), |r| ≤ 0.5

0, otherwise

(29)

Given the force balance acting over the particle, it is advanced using a first order Euler approximation to solve Eqs. (1)
and (2). Concerning the two-way coupled simulations, the particle reaction force is exerted to the nearby fluid control vol-
umes using identical function as expressed above. Although a simple three-point delta function is used for Euler-Lagrange 
interpolation and projection purposes, the present methods can be easily adopted for any other functions. For the compu-
tations, we correct the PP approach using both direct and approximate methods and compare their results to those of the 
uncorrected PP as well as the corresponding reference for each part. The reference is obtained based on the one-way cou-
pled simulations wherein the fluid phase remains undisturbed, and drag force and particle motion are accurately computed.

3.1. Settling in an unbounded quiescent fluid

In this part, settling velocity of a single particle in an unbounded quiescent fluid is performed. A particle that is initially 
at rest settles under a gravity vector and experiences drag force, only. The particle equation of motion then becomes,

dui,p

dt
=

(
1− ρ f

ρp

)
gi − f

τp
(ui,p − uug

i,@p), (30)

where uug
i,@p is the interpolated fluid velocity at the location of the particle that is erroneously nonzero in the uncorrected 

two-way coupled simulations, owing to the disturbance created by the particle in the nearby computational cells. The direct 
as well as approximate methods, however, predict and remove this velocity as in the real physics of the problem (and one-
way coupled simulations) this velocity is zero. In general, the factor of f can correspond to any adjustment to the Stokes 
drag to account for different effects. In this part, it follows the Schiller-Naumman adjustment factor [11], as expressed 
below, to account for the finite Reynolds number effect of the particle on the Stokes drag in unbounded regime,

f = 1+ 0.15Re0.687p ; Rep = |up − uug
@p|dp

ν
. (31)

Such an adjustment results in an effective particle relaxation time, τ e
p , as,

τ e
p = τp

f
. (32)

Following [18], gravity vector of g=[1, (1 + √
5)/2, exp(1)]/|g| is chosen so that particle sweeps through different po-

sitions among its adjacent computational cells, ensuring that the present models are capable of handling any arbitrary 
positioning of the particle. The time step, �t , for the computations is also chosen as,

�t = min
(
0.03τ f ,0.03τ

e
p ,0.3τc f l

)
, (33)

with τcf l being the time scale associated with the fluid advection in high particle Reynolds number cases based on Courant-
Friedrichs-Lewy (CFL) condition less than one for time-accurate solutions. Here, a maximum CFL of 0.3 is assumed.

Accuracy of each model is evaluated in terms of predicting the particle velocity in comparison with the reference. The 
particle velocity as a function of time, up(t), is decomposed into two components (i) parallel, u||

p , and (ii) normal, u⊥
p to the 

reference settling velocity (terminal velocity) of us , and are obtained respectively as,

u||
p(t) = us · up(t)

|us|2 us, (34)

and

u⊥
p (t) = up(t) − u||

p(t). (35)

The errors in these two velocity components as well as the total particle velocity in a time average manner, denoted by (), 
are then calculated using the respective following metrics,

e‖ = u‖
p(t).us

2
− 1; (36)
|us|

9
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Table 1
Listed are the percentage error in particle settling velocity e|| , drifting velocity e⊥ , and total velocity e, of a particle in an unbounded, quiescent 
flow. Results compare the uncorrected scheme to the direct and approximate correction methods for Rep=0.1. Computational grids with different 
shapes and particle-to-grid size ratios are shown.

cell shape case St � uncorrected corrected using 
direct method

corrected using 
approximate method

e‖ e⊥ e e‖ e⊥ e e‖ e⊥ e

U1 10.0 [1.0,1.0,1.0] 54.2 0.077 54.2 -0.056 0.0006 0.056 0.95 0.0689 0.95
U2 10.0 [5.0,5.0,5.0] 276.5 0.21 276.5 -0.28 0.007 0.28 5.0 0.54 5.04
U3 3.0 [1.0,1.0,1.0] 52.13 0.06 52.13 -0.008 0.0003 0.008 0.08 0.1 0.17

U4 10.0 [5.0,0.5,0.5] 35.42 2.86 35.54 0.0003 0.0003 0.0004 0.76 2.64 2.75
U5 10.0 [4.0,2.0,0.2] 30.26 4.56 30.61 0.0003 0.0005 0.0007 1.83 4.31 4.7
U6 10.0 [0.3,6.0,0.6] 21.22 3.53 21.51 0.0004 0.0002 0.0004 -2.31 3.42 4.13
U7 3.0 [0.3,6.0,0.6] 14.52 3.82 15.02 0.0006 0.0001 0.0006 -2.28 3.85 4.48

U8 10.0 1.0 25.55 0.44 25.56 -0.06 0.06 0.11 -3.01 0.48 3.06
U9 10.0 5.0 129.66 2.17 129.68 0.65 0.39 0.81 -17.75 2.77 18.03
U10 3.0 1.0 25.39 0.60 25.40 0.10 0.11 0.16 -3.63 0.62 3.70

e⊥ = |u⊥
p (t)|
|us| ; (37)

e = |up(t) − us|
|us| . (38)

Table 1 lists these errors for a particle with Rep=0.1 settling over various grid configurations such as isotropic rectilinear 
grid, anisotropic rectilinear grid, and tetrahedral unstructured grid. For each case, the errors obtained by the corrected PP 
approach using the direct as well as approximate methods are compared against those of the uncorrected PP scheme. As 
explained before, the 
 parameter for rectilinear grids is a vector that has three components for the particle-to-grid size 
ratio in each direction. However, for the unstructured grids, this parameter becomes only a scalar that is obtained based 
on the size of the particle and the average dc over the entire grid. It is observed that the errors associated with the 
uncorrected PP approach depend on 
 with bigger particles producing stronger disturbances in the background flow. As an 
example, particle in case U2 produces five times larger errors compared to that of case U1 that has a particle five times 
smaller. Similar comparison is observed between cases U8 and U9. Concerning the effect of particle Stokes number, results 
based on two different St=3.0 and St=10 (e.g., case U1 and U3, respectively) show small dependency of the errors on this 
parameter, consistent with the preceding works. When the standard PP approach is corrected using the present methods, 
however, significant error reduction is observed with nearly zero errors for the direct method across the board. Although the 
approximate model yields slightly larger errors compared to the direct model, such as those in U2 and U9, the overall errors 
are still an order of magnitude lower than the uncorrected scheme. The affordability of the approximate method makes 
it an attractive scheme for recovering the undisturbed flow field, given the fact that the difference in the error reduction 
between these two methods is still insignificant. The errors for approximate method in this case are also comparable to 
those reported by Pakseresht et al. [28]. Fig. 2 qualitatively illustrates the performance of these models in predicting the 
time-dependent particle velocity for different grid resolutions. The particle relaxation time and settling velocity expressed 
by Eqs. (25) and (28), respectively, are used for normalizing the results.

The performance of each method in capturing the effect of the particle on the fluid phase is illustrated in Fig. 3 that 
pertains to cases U2 and U9 from Table 1 with 
=5.0. Contours of fluid velocity magnitude normalized by the particle 
settling velocity of each case are shown at the time instance of 2τp , from the initial release of the particle. The uncorrected 
scheme is compared against the corrected results using both direct as well as approximate methods. For the uncorrected 
scheme, the fluid phase experiences smaller velocity compared to the corrected results, owing to the smaller slip velocity 
that the particle samples in this scheme, resulting in a smaller drag force exerted to the flow. Concerning the predictions of 
the corrected schemes, both direct and approximate methods show nearly identical results in capturing the particle’s effect 
on the background flow. The observations here imply stronger inter-phase coupling when the PP approach is corrected, 
which could potentially yield more accurate predictions for two-way coupled particle-laden flows.

The predictive capability of the present models for a wide range of particle Reynolds number, typically encountered in 
various applications, is investigated next. Table 2 provides settling in the range of 1<Rep<100 and using the same three 
grid configurations employed earlier. The first observation from the results here is that the errors in the uncorrected scheme 
decrease as particle Reynolds number increases, in line with the preceding works [7], suggesting that the need for correction 
schemes becomes less important for Rep>100. For instance, error of 44.67% reduces to 11.16% when Rep increases from 
1 to 100 on the isotropic rectilinear grid. This is justified due to the fact that higher Rep particles move faster, and the 
residence time in their own disturbance field, created in the previous time step, becomes smaller than that of the slower 
particles, hence the lower disturbance. Moreover, [7] showed that as Rep increases, the region of maximum disturbance 
10
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Fig. 2. Temporal evolution of particle velocity settling in an unbounded, quiescent flow at Rep=0.1 and St=10, is shown. Plotted are four different cases 
from Table 1: (a) isotropic rectilinear grid (case U1), (b) anisotropic rectilinear grid with �=[4.0, 2.0, 2.0] (case U5), (c) anisotropic rectilinear grid with 
�=[0.3, 6.0, 0.6] (case U6) and (d) tetrahedral unstructured grid with 
=1.0 (case U8). Predictions of the approximate method (solid blue), direct method 
(dashed red), and uncorrected scheme (dash-dotted green) are compared against the reference (dotted black). The particle relaxation time, τp , and settling 
velocity expressed by Eqs. (25) and (28), respectively, are used for normalizing the results. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

travels farther downstream so that the disturbed fluid velocity sampled at the particle location will be smaller for larger 
Rep . Nevertheless, when the PP approach gets corrected by either methods, more accurate predictions are achieved for 
the studied range of Rep . It should be noted that even though the correction may not be necessary for large Rep cases 
(e.g., see error of 1.35 for uncorrected case of UR6), depending upon the particle-to-grid size ratio and grid anisotropy, the 
errors in uncorrected settling velocity could still be on the order of 10% (see case UR3). For such cases, both methods are 
still effective in reducing the errors of the uncorrected scheme by an order of magnitude. Such a capability of the present 
models for reducing errors even for large Rep cases makes them more general to be employed without any restriction for 
a specific range of application. Fig. 4 illustrates the time dependent velocity of a single particle settling at different Rep
predicted by the present correction schemes compared to the uncorrected PP approach and the reference. Settling velocity 
of us=(1 − ρ f /ρp)τp |g|/ f and particle time scale of τp are used for normalizing the results.

3.2. Settling parallel to a wall

In this part, the capability of the present models for wall-bounded regimes is evaluated. For test cases here, an additional 
non-dimensional parameter that is the normalized wall distance from the bottom of the particle is defined as,

δp = x2,p
dp

− 0.5, (39)

wherein x2,p is the wall-normal distance from the center of the particle (wall is assumed in x1–x3 plane). Concerning com-
plex geometries, computing this distance to the nearest wall might not be straightforward and would have to be investigated 
in the future.

Settling velocity of a particle at various wall distances is carried out using the present methods and on the three afore-
mentioned computational grids. For the studied cases, a particle that is initially stationary and located at a given δp , released 
to reach its settling velocity under a gravity vector of g=[exp(1), 0, (1 + √

5)/2]/|g| that guarantees the particle’s motion 
11
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Fig. 3. Contours of fluid velocity magnitude normalized by the particle settling speed at time instance of 2τp : particle and grid resolution (first column), 
uncorrected (second column), direct method correction (third column), and approximate method correction (fourth column). Results are based on case U2 
(top row) and U9 (bottom row) from Table 1 with 
 = 5.0.

Table 2
Listed are the effect of Rep on the errors in settling, drifting and total velocity of a particle in an unbounded domain and predicted 
by direct, approximate and uncorrected schemes compared to the reference. Results are based on isotropic rectilinear grid, anisotropic 
rectilinear grid as well as a tetrahedral unstructured grid. St = 10.0 is shared among the cases.
cell shape case Rep � uncorrected Corrected using 

Direct method
corrected using 
approximate method

e‖ e⊥ e e‖ e⊥ e e‖ e⊥ e

UR1 1.0 [1.0,1.0,1.0] 44.67 0.12 44.67 0.16 0.007 0.16 2.18 0.03 2.18
UR2 10.0 [1.0,1.0,1.0] 19.9 0.58 19.9 2.08 0.03 2.08 4.26 0.66 4.31
UR3 100.0 [1.0,1.0,1.0] 11.15 0.21 11.16 2.82 0.03 2.82 3.44 0.24 3.45

UR4 1.0 [0.3,6.0,0.6] 20.32 3.79 20.67 -0.003 0.001 0.003 -1.77 3.92 4.31
UR5 10.0 [0.3,6.0,0.6] 7.53 1.47 7.67 -0.02 0.01 0.03 -0.27 1.62 1.65
UR6 100.0 [0.3,6.0,0.6] 1.34 0.22 1.35 -0.56 0.02 0.56 -0.64 0.22 0.68

UR7 1.0 1.0 15.32 0.47 15.33 -0.07 0.03 0.1 -3.07 0.42 3.10
UR8 10.0 1.0 7.17 0.15 7.17 0.48 0.03 0.48 0.52 0.17 0.56
UR9 100.0 1.0 2.33 0.03 2.33 0.49 0.01 0.49 0.59 0.03 0.59

on a plane parallel to the wall. In reality, the particle experiences a lateral force [38,35] that is neglected in this study to 
isolate the parallel motion. The particle’s equation of motion in the presence of wall still follows Eq. (30) with the adjust-
ment factor of f that accounts for the wall effects on the particle’s drag coefficient. Concerning this factor, the empirical 
expression derived by [41] is employed that covers a wide range of δp and Rep as,

f ||(δp, Rep) = f ||
1 (δp) f

||
2 (δp, Rep), (40)

where,

f ||
1 (δp) =

[
1.028− 0.07

1+ 4δ2p
− 8

15
log

(
270δp

135+ 256δp

)]
; (41)

f ||
2 (δp, Rep) =

[
1+ 0.15

(
1− exp

(
−√

δp

))
Re

(
0.687+0.313exp

(−2
√

δp
))

p

]
. (42)
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Fig. 4. Temporal evolution of particle settling velocity in an unbounded, quiescent flow at (a): Rep=0.1, (b): Rep=1.0, (c): Rep=10.0 and (d): Rep=100.0. 
Results of the approximate method (solid blue), direct method (dashed red), uncorrected scheme (dash-dotted green) are compared against the reference 
velocity (dotted black). Results are based on cases U1 and UR1-UR3 from Table 1 and 2, respectively. The settling velocity of us=(1 − ρ f /ρp)τp |g|/ f and 
partilce relaxation time of τp are used for normalizing the results.

f ||
1 (δp) captures wall effects on the Stokes drag for zero Rep , that approaches unity when δp→∞. The second term, 
f ||
2 (δp, Rep), however, handles the wall-modified finite Reynolds number effect on the Stokes drag coefficient that converts 

to the Schiller-Naumman adjustment factor (Eq. (31)) when particle travels sufficiently away from the wall.
Using the correction factor expressed above, the particle’s equation of motion (Eq. (30)) is solved using the corrected and 

uncorrected PP approaches. Following the metrics presented in the preceding subsection, the errors in settling, drifting and 
total velocity of the particle are measured in comparison to those of the one-way coupled simulations that serves as the 
reference. Table 3 shows these errors for settling velocity of a particle with Rep=0.1 and St=10 on (i) isotropic rectilinear 
grid (set A), (ii) anisotropic rectilinear grid (set B), and (iii) tetrahedral unstructured grid (set C). Each grid has six cases 
corresponding to settling at different δp , that covers a wide range of distances from the wall.

The first observation from Table 3 is that the uncorrected scheme produces significantly large errors in predicting particle 
velocity at all wall distances, with slightly larger values near the wall, consistent with the observations of [28]. It is impera-
tive to mention that the reported errors here in this work are slightly smaller than those of [28], potentially due to different 
Euler-Lagrange interpolation schemes employed in this study as compared to their tri-linear interpolation. When the direct 
and approximate correction methods used to obtain undisturbed fluid velocity, the errors reduce by one or two orders of 
magnitude compared to the uncorrected scheme. Of specific interest is the results obtained from the approximate method 
that shows same order of accuracy as those reported by [28] for rectilinear grids. Different grid configurations used in the 
present work, including unstructured grids, show the applicability of the present methods for more complex geometries 
that are encountered in the real world applications.

In order to test the present methods for higher Rep in wall-bounded regimes, settling velocity of a particle near a no-
slip wall is computed for 1.0<Rep<100. Table 4 gives the results for particle settling at δp=0.05, for which the errors in 
the settling velocity were observed to be more remarkable in the preceding part. Consistent with the unbounded cases 
(see Table 2), as Rep increases the error in the particle velocity decreases and the need for correcting the PP approach 
diminishes. As an example, for the particle settling on the unstructured grid, the total error of 25.95 for Rep=1.0 (case 
WR7) decreases to 3.72 when Rep increases to 100 (case WR9). Nevertheless, both direct and approximate models are able 
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Table 3
Percentage errors in the settling velocity, e|| , drifting velocity, e⊥ , and total velocity, e, of a single particle in parallel motion to a 
no-slip wall on different grids for St=10 and Rep=0.1 and for a range of δp .
cell shape case δp � uncorrected corrected using 

direct method
corrected using 
approximate method

e‖ e⊥ e e‖ e⊥ e e‖ e⊥ e

A1 0.05 [1.0,1.0,1.0] 71.32 0.03 71.32 -1.38 0.005 1.38 3.99 0.09 3.99
A2 0.5 [1.0,1.0,1.0] 42.53 0.02 42.53 -0.21 0.0008 0.21 0.89 0.04 0.9
A3 1.0 [1.0,1.0,1.0] 45.81 0.02 45.81 -0.05 0.0005 0.05 0.27 0.04 0.27
A4 2.0 [1.0,1.0,1.0] 49.73 0.02 49.73 -0.13 0.0006 0.13 -0.02 0.04 0.05
A5 ∞ [1.0,1.0,1.0] 54.44 0.04 54.44 0.03 0.0008 0.06 1.14 0.05 1.15

B1 0.05 [0.3,6.0,0.6] 29.28 1.62 29.33 0.08 0.00 0.08 7.6 1.62 7.77
B2 0.5 [0.3,6.0,0.6] 24.18 1.71 24.24 0.14 0.00 0.14 5.64 1.72 5.9
B3 1.0 [0.3,6.0,0.6] 26.73 2.26 26.82 0.27 0.00 0.27 5.32 2.28 5.79
B4 2.0 [0.3,6.0,0.6] 28.8 2.61 28.91 0.53 0.001 0.53 4.44 2.64 5.17
B5 ∞ [0.3,6.0,0.6] 28.53 2.37 28.63 1.25 0.02 1.25 3.59 2.46 4.36

C1 0.05 1.0 30.28 0.50 30.28 0.53 0.29 0.64 -1.47 0.59 1.68
C2 0.5 1.0 19.13 0.34 19.14 0.18 0.14 0.25 -1.21 0.33 1.28
C3 1.0 1.0 18.60 0.29 18.60 -0.06 0.08 0.13 -2.17 0.29 2.21
C4 2.0 1.0 21.63 0.38 21.63 -0.32 0.06 0.33 -2.75 0.45 2.8
C5 ∞ 1.0 25.99 0.16 25.99 -0.19 0.04 0.19 -3.16 0.2 3.17

Table 4
Effect of Rep on the particle settling velocity at δp=0.05 predicted by the present models in comparison with uncorrected scheme 
showing errors in settling, e|| , drifting, e⊥ and total, e, velocities.
cell shape case Rep � uncorrected corrected using 

direct method
corrected using 
approximate method

e‖ e⊥ e e‖ e⊥ e e‖ e⊥ e

WR1 1.0 [1.0,1.0,1.0] 65.21 0.11 65.21 -0.92 0.005 0.92 3.86 0.01 3.86
WR2 10.0 [1.0,1.0,1.0] 31.92 0.86 31.93 4.29 0.09 4.29 8.06 0.91 8.11
WR3 100.0 [1.0,1.0,1.0] 10.44 0.44 10.45 1.34 0.008 1.34 2.47 0.49 2.51

WR4 1.0 [0.3,6.0,0.6] 28.21 1.58 28.25 0.04 0.001 0.04 7.01 1.60 7.19
WR5 10.0 [0.3,6.0,0.6] 19.28 0.84 19.30 0.11 0.004 0.11 3.86 0.95 3.98
WR6 100.0 [0.3,6.0,0.6] 9.98 0.1 9.98 0.03 0.007 0.03 1.23 0.13 1.23

WR7 1.0 1.0 25.94 0.6 25.95 0.43 0.38 0.59 -2.68 0.7 2.8
WR8 10.0 1.0 12.09 0.18 12.09 0.21 0.05 0.22 -0.4 0.22 0.51
WR9 100.0 1.0 3.72 0.04 3.72 -0.1 0.003 0.1 -0.04 0.03 0.06

to reduce the errors even for large Rep by an order of magnitude. Not shown here, similar results were obtained for settling 
at other wall distances with large Rep .

3.3. Free falling normal to a wall

This section tests the ability of the present methods for recovering the undisturbed fluid velocity for particles in wall-
normal motion. Freely falling particle toward a no-slip wall is studied. In this configuration, the drag coefficient of the 
particle increases as it approaches the wall, owing to the wall lubrication effect. Accordingly, for the wall adjustment factor 
to the particle’s drag coefficient of this part, the asymptotic expressions derived by [9,12] as,

f ⊥(δp) =
⎧⎨⎩1+

(
0.562
1+2δp

)
for δp > 1.38 [9]

1
2δp

(
1+ 0.4δp log

(
1

2δp

)
+ 1.94δp

)
for δp < 1.38 [12],

(43)

are employed that include two parts depending on the wall normal distance of the particle. This adjustment factor is used 
in Eq. (30) to compute the particle’s equation of motion.

Following the work of [28], a particle that is initially stationary and located at an arbitrary δp=7, falls under gravity 
vector of g=[0, −1, 0], and its velocity and wall-normal distance are measured as a function of time. Table 5 lists cases per-
formed on various grid configurations, different particle Reynolds numbers in the range of 0.1<ReStkp <100 and two particle 
Stokes number of St = 3.0 and St = 10.0. For the computations of this part, the particle Reynolds number is defined based 
on the unbounded Stokes regime, ReStkp , expressed by Eq. (27). It should be noted that the drag expression provided by 
14
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Table 5
Percentage errors in the time that a particle initially located at δp=7.0 require to reach δp=0.5 for various grid configura-
tions and different ReStkp and St with and without correction schemes.

cell shape case ReStkp St � uncorrected corrected using 
direct method

corrected using 
approximate method

en en en

N1 0.1 3.0 [1.0,1.0,1.0] -28.12 0.40 9.28
N2 0.1 10 [1.0,1.0,1.0] -22.71 0.12 6.52
N3 1.0 10 [1.0,1.0,1.0] -6.56 -0.28 0.56
N4 10.0 10 [1.0,1.0,1.0] -1.29 -0.07 0.10
N5 100.0 10 [1.0,1.0,1.0] -0.2 0.00 0.04

N6 0.1 3.0 [0.3,6.0,0.6] -8.66 -0.96 20.08
N7 0.1 10 [0.3,6.0,0.6] -8.65 -0.96 20.05
N8 1.0 10 [0.3,6.0,0.6] -5.92 -0.26 14.28
N9 10.0 10 [0.3,6.0,0.6] -0.74 0.00 1.36
N10 100.0 10 [0.3,6.0,0.6] -0.04 0.00 0.09

N11 0.1 3.0 1.0 -13.99 0.53 9.82
N12 0.1 10 1.0 -12.04 0.37 7.90
N13 1.0 10 1.0 -3.09 0.07 1.33
N14 10.0 10 1.0 -0.54 -0.02 0.15
N15 100.0 10 1.0 -0.07 0.00 0.02

Eq. (43) is only valid for Rep<0.1, however, it is still employed for larger Rep cases just for numerical demonstration with-
out advocating its use for Rep>0.1. The error for each method is measured based on the total time that the particle requires 
to reach δp=0.5 in comparison to the reference value, tref , that is obtained based on the one-way coupled simulation. The 
deviation of each scheme from the reference is quantified based on the relative error as,

en = t − tref
tref

. (44)

Table 5 shows that for the studied cases, the uncorrected scheme yields negative errors revealing the fact that the 
particle in this scheme experiences smaller drag force, accelerates faster and reaches the wall distance of interest much 
quicker than it would in reality. When the PP approach is corrected using the direct method, however, small errors of 
O(0.1) are achieved that shows the successful predictions of this method for the studied range of flow parameters and 
the grid configurations. For the approximate method, the errors are reduced to smaller values as well, however, for the 
highly skewed anisotropic rectilinear grid, this method results in errors on the same order of magnitude of the uncorrected 
scheme. This is attributed to (i) the response of a fluid to a source in a control volume, may differ based on the shape 
of the control volume owing to the numerical approach used in solving the governing equation, (ii) even with anisotropic 
grids, the distribution of the particle reaction force is done to the nearest neighbors of the control volume which could be 
asymmetric with high aspect ratio grids, and (iii) for particle motion normal to a no-slip wall, the pressure distribution on 
the particle surface is asymmetric, and thus a simple approach to model the pressure gradient in the approximate method 
potentially needs to be modified. Concerning the effect of Rep , it is observed that for the studied computational grids, as 
Rep increases the error in the uncorrected scheme decreases, consistent with the previous observations.

Fig. 5 shows qualitatively the prediction of the different methods on particle velocity and trajectory of case N2 from 
Table 5. The settling velocity, us , based on Eq. (28) and the time scale of dp/us are employed for normalizing the results. 
As illustrated, the direct method captures the trajectory and velocity of the particle quite well in addition to the promising 
prediction of the approximate method compared to the uncorrected approach.

3.4. Particle in oscillatory field

As a final test case, the models are validated for unsteady motion of a single particle in an oscillatory flow field. A 
sinusoidal function is prescribed as a body force acting on the particle in an arbitrary direction of i, to resemble its unsteady 
motion in an oscillatory field. The following equation of motion is used for the studied cases of this part,

dui,p

dt
= sin(ωt) − f

τp
(ui,p − uug

i,@p), (45)

with f being calculated based on Eq. (31) and ω being the frequency of the oscillation. The amplitude of oscillation is set 
to be unity for the sake of brevity. Similar to the previous sections, uug

i,@p is the interpolated fluid velocity at the particle’s 
location, that is incorrectly nonzero in the uncorrected two-way coupled simulations. For the reference, and consistent with 
other subsections, one-way coupled results are used wherein uug

i,@p=0. An additional non-dimensional parameter, Strouhal 
number, is also defined as,
15
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Fig. 5. Normalized wall distances (left) and velocity (right) of a particle in moving normal to a no-slip wall. Results pertain to case N2 from Table 5
comparing direct as well as approximate methods to the uncorrected and the reference solutions. The settling velocity, us , based on Eq. (28) and the time 
scale of dp/us are employed for normalizing the results.

Table 6
Listed are the cases performed for the unsteady motion of a particle in an oscillatory field. Two Str and various grid configura-
tions are performed for Remax

p =0.097. For isotropic rectilinear grid, two additional cases with Remax
p =99.87 are investigated, as well. 

ρ f =1.0(kg/m3) and St=10.0, are shared among all cases.
cell shape case Remax

p Str 
 ω(s−1) μ(N.s/m2) ρp(kg/m3) dp(m) �tosc(s) (ω�tosc)−1

O1 0.097 0.1 [1.0,1.0,1.0] 0.1028 9.9700 180.0 1.0 0.0030 3225.8
O2 0.097 1.0 [1.0,1.0,1.0] 0.8968 8.7000 180.0 1.0 0.0034 327.86
O3 99.87 0.1 [1.0,1.0,1.0] 0.0067 0.1480 180.0 1.0 0.0400 3703.7
O4 99.82 1.0 [1.0,1.0,1.0] 0.0588 0.1292 180.0 1.0 0.0400 416.67

O5 0.097 0.1 [0.3,6.0,0.6] 1.1257 0.2730 5.0 0.3 0.0002 4347.83
O6 0.097 1.0 [0.3,6.0,0.6] 9.8136 0.2380 5.0 0.3 0.0003 344.83

O7 0.097 0.1 1.0 0.0844 17.99 180.0 1.482 0.0037 3225.8
O8 0.097 1.0 1.0 0.7363 15.69 180.0 1.482 0.0042 322.58

Str = τ e
p

τw
, (46)

which expresses the ratio of the particle time scale (Eq. (32)) and the time period of the oscillation, τw=1/ω. Table 6 lists 
the studied cases with the grid configurations employed in the previous subsections as well as various flow parameters. 
Defining a constant particle Reynolds number for this part might not be trivial due to the variation in the particle’s velocity. 
Therefore, in order to set up the cases of this part, one can choose the maximum particle Reynolds number, Remax

p , defined 
based on the maximum particle’s velocity that occurs at the first crest point of its velocity profile. For the studied cases 
here, we perform two Strouhal number of Str=0.1 and 10 and two maximum particle Reynolds number of Remax

p =0.097
and 99.87. Since finding an analytical expression for Remax

p might not be straightforward and setting up cases depends on 
this parameter as well, we provide the dimensional parameters that are needed for reproducing the reported cases here. 
The time step for the computations of this part, �tosc , follows the expression below which requires an additional constraint 
to the �t provided by Eq. (33), to accurately resolve the oscillation time scale, as well.

�tosc = min (�t,0.03τw) (47)

Fig. 6 shows excellent predictions of the present methods in capturing the time-dependent velocity of the particle in the 
unsteady field with Remax

p =0.097 and different Strouhal numbers and using various grid configurations. As illustrated, the 
uncorrected scheme overshoots the crest and troughs of the particle velocity with significant deviation for small Strouhal 
number cases (left column of the figure), consistent with the observations of [18]. The performance of the present models 
for higher particle Reynolds numbers of Remax

p =99.87, is shown in Fig. 7, signifying the capability of the present correction 
methods even for unsteady motions, as well.

The test cases used in this study, underscore the applicability of the present models for a wide range of applications. 
Depending upon the accuracy necessary for simulation of particle-laden flows, either method can be chosen with the caveat 
that the direct method is more computationally expensive, but yields most accurate results. Concerning more sophisticated 
scenarios such as particles close to two different walls, curved walls, corners or rough walls, both methods are still applica-
ble to recover the undisturbed fluid velocity as they solve momentum equations for the disturbance field using complex wall 
16
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Fig. 6. Time-dependent velocity [m/s] of a particle in an oscillatory motion is shown for the direct and approximate methods in comparison to the standard 
uncorrected scheme and the reference solution. Cases (a) to (f) pertain to O1, O2, O5, O6, O7 and O8, respectively, from Table 6, that are all based on 
Remax

p =0.097. Rows from top to bottom correspond to the cases pertaining to the isotropic rectilinear grid, anisotropic rectilinear grid and unstructured 
grid, respectively. Left and right columns pertain to cases with Str=0.1 and Str=1.0, respectively.

boundary conditions. However, solid conclusions on the capability of these methods in realistic and complex configurations 
are left for future works. Although the present work deals with incompressible flows, the concept of direct and approximate 
methods has been extended to temperature equation to account for thermal heating of droplets [3]. The general idea of de-
riving and solving the disturbance equation can also be extended to other complex formulations involving variable density 
flows in the low-Mach number limit.

4. Conclusions

A general, disturbance-corrected, point-particle (DCPP) formulation for two-way coupled computations of particle-laden 
flows is developed that recovers the undisturbed flow field necessary for accurate computation of the fluid forces acting 
on the dispersed particles The formulation is applicable to arbitrary shaped grids, both structured or unstructured, and 
in complex configurations involving no slip walls. To this end, governing equations for the disturbance created by the 
17
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Fig. 7. Time-dependent particle velocity [m/s] with Remax
p =99.87 in the oscillatory field predicted by the present methods and uncorrected scheme in 

comparison to the reference. Results in (a) and (b) pertain to cases O3 and O4 from Table 6 with Str=0.1 and Str=1.0, respectively.

particle forces on the fluid flow are derived using the two-way coupled equations. The two-way coupled formulation and 
the disturbance flow equations are applicable to any flow with or without no-slip walls in complex configurations. The 
formulation can be implemented in any fluid flow solver and is not limited to specific types of grids.

Two models are developed to compute the disturbance field: (i) a direct method, and (ii) an approximate method. In 
the direct method, the non-linear disturbance momentum equations together with the continuity equation are solved using 
the same numerical formulation as the fluid flow solver for the two-way coupled field. This direct method provides the 
disturbance velocity and pressure fields, is free of any empirical or calibrated expressions, and makes it attractive for a 
wide range of computations including complex geometries, arbitrary shaped unstructured grids, as well as particle-laden 
flows with any arbitrary particle size and particle Reynolds number. However, the cost associated with this approach is 
nearly doubled, as the disturbance momentum together with the continuity constraint requires additional Poisson solution 
for the disturbance pressure. Nevertheless, the accuracy gained by such computation warrants its use, and the cost is still 
considerably lower than particle-resolved, direct numerical solutions wherein the grid resolutions used are much finer than 
the particle size.

In order to alleviate the computational cost associated with the direct method, a reduced order, approximate method 
was introduced, wherein a simplified momentum equation for the disturbance field is solved. This approximate model is 
based on low Reynolds number assumption and neglects the non-linear, advective terms. In addition, in the steady, Stokes 
flow limit, the Stokes solution over a spherical particle motivates an approximation for the pressure gradient term. The 
pressure and viscous terms are modeled by a modified viscous term with an effective increased viscosity determined to 
match pressure and viscous forces in the Stokes flow limit. Since, the pressure field is not directly computed, the continuity 
constraint is only indirectly imposed, and the expensive step of solving a Poisson equation for the disturbance field is not 
needed. Although the approximate model was constructed based on the assumption of small Rep , where inertial effects are 
negligible, the test cases for high particle Reynolds numbers, up to Rep=100, remarkably show good predictive capability 
of this approach. In addition, the accuracy of this approximate method can be further improved by making the effective 
viscosity a function of the particle Reynolds number, however, for majority of the cases studied, this was not necessary. The 
approximate method is shown to be as accurate as the direct method and has considerable reduced computational cost that 
is on the same order of the existing correction schemes.

Both models were tested for various scenarios using isotropic and anisotropic rectilinear grids, tetrahedral unstructured 
grid, different particle sizes, a wide range of particle Reynolds numbers (0≤Rep≤100), different particle-to-grid size ratios, 

, and in the presence and absence of no-slip walls. Both methods showed excellent predictions of particle settling velocity 
in an unbounded regime with small errors in settling and drift velocities. Errors in the uncorrected scheme were significant 
for large 
 and small Rep with the fact that the need for correction diminishes when particle settling Reynolds number 
increases [7,28].

Prediction of particle settling near a no-slip wall was also evaluated for a single particle in parallel and normal motion to 
the wall. It was shown that both the direct and approximate methods were capable of recovering the undisturbed field and 
reduced the errors to small values for particle settling parallel to a no-slip wall. For particle motion normal to a wall, the 
direct method showed excellent prediction in recovering the undisturbed field and produced correct trajectory and velocity 
of the particle. The approximate method also produced small errors for nearly isotropic grids; even for particles larger 
than the grid resolution. However, for highly skewed anisotropic grids, its overprediction in the undisturbed field yielded 
errors on the same order of magnitude as the uncorrected scheme. An interpolation stencil that scales with the particle 
size, may alleviate this issue. In addition, for particle motion normal to a no-slip wall, the pressure distribution on the 
particle surface is asymmetric, and thus a simple approach to model the pressure gradient used in the approximate method 
potentially needs to be modified. Nevertheless, the approximate method is capable of capturing motion of a particle near a 
wall accurately, especially for nearly isotropic and arbitrary shaped grids.
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Finally, to test the models for unsteady motion of particles, important in understanding complex particle-turbulence 
interactions, particle in oscillatory motion was investigated varying the Strouhal number (0.1 and 1.0), the ratio of the os-
cillation time scale and particle relaxation time, and two particle Reynolds numbers approximately 0.1 and 100.0. Excellent 
predictions were achieved using both methods revealing their predictive capability even in unsteady motion.

The present DCPP approach can be easily implemented in Euler-Lagrange packages as it leverages identical algorithm, 
boundary conditions, and type of the computational grid that are employed for solving the standard two-way coupled PP 
approaches. In its current form, the DCPP approach is directly applicable to systems with dilute volume loading, wherein 
the particle-particle hydrodynamic interactions are negligible. Applicability and accuracy of this approach can be further 
increased in several key ways: (i) the gradient in the undisturbed flow velocity neglected in the direct method (Eq. (15)) 
can be approximated by a pre-determined value based on known mean shear for cases where strong gradients in the 
mean undisturbed fluid velocity exist, (ii) For high Rep , the non-linear term in the approximate method (Eq. (22)) can be 
retained and the model constant Kν can be changed as a function of Rep , (iii) To extend the applicability of the methods 
presented here to moderate-to-dense particle loadings, wherein neighboring particle effects may become important, (a) the 
direct and approximate method equations can be solved for each particle separately in a small region of influence around each 
particle, to lower the computational cost, and to obtain the self-induced disturbances and yet retain the effect of neighboring 
particles on the corrected field, (b) the diffusion-reaction (21) or advection-diffusion-reaction (22) can potentially be solved 
analytically [39] for every particle separately, or (c) the hydrodynamic interaction and neighboring particle effects can be 
explicitly modeled [26,33]. Finally, comparisons of the methods using drag laws based on undisturbed fluid velocity, like the 
one presented here, with approaches developed for moderate-to-dense loadings and using drag laws that are based on the 
disturbed, superficial velocity [36,21] may provide insights into further advancement of the point-particle models.
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Appendix A. Numerical formulation

The numerical approach used is based on fractional time-stepping on colocated, arbitrary shaped, unstructured, grid 
elements for constant density, incompressible flows. A semi-implicit scheme is used for the momentum equation solution, 
however, the inter-phase momentum exchange terms are treated explicitly. The collocated grid arrangement is used for its 
easy application to structured as well as arbitrary unstructured grids.

Fig. 8 shows the schematic of variable storage for fluid and particle phases. All variables are stored at the control volume 
(cv) center with the exception of the face-normal velocity uN (and ud

N), located at the face centers. The face-normal velocity 
is used to enforce continuity equation. Subscript ‘p’ is used to denote the disperse phase. Using these variable locations, 
integrating the governing equations over the control volume and applying Gauss’ divergence theorem to convert volume 
integrals to surface integrals wherever possible, the discrete governing equations are derived. Accordingly, the continuity 
equation is

1

Vcv

∑
faces of cv

un+1
N Aface = 0, (48)

where �t is the flow solver time-step, Vcv is the volume of the cv, Aface is the area of the face of a cv and uN is the 
face-normal velocity. For the present colocated grid finite volume scheme the face-normal velocity uN is obtained through 
a projection scheme rather than interpolation of the control volume based velocity to the faces. The discrete momentum 
equation for the i component of velocity can be written as
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Fig. 8. Stencil used for the colocated grid, fractional time-stepping based algorithm for the two-way coupled flow field (ui , p) and the disturbance field (ud
i , 

pd).

gn+1
i,cv − gni,cv

�t
+ 1

Vcv

∑
faces of cv

gn+1/2
i,face un+1/2

N Aface = − ∂

∂xi
pn+1
cv +

1

Vcv

∑
faces of cv

(
τi j

)n+1/2
face N j,faceAface + f n+1

i,cv , (49)

where gi = ρ f ui represents the momentum per unit volume in the i direction, ρ f is the constant fluid density, (τi j)face
is the viscous stress at the faces of control volume, and N j,face represents the components of the outward face-normal. 
Similarly, the velocity field (ui,face), and the momentum gi,face = ρ f ui,face at the faces are obtained using arithmetic averages 
of the corresponding fields at the two control volumes associated with the face. The values at time level tn+1/2 are obtained 
by simple time-averaging. The interface coupling force is represented by f i,cv. The pressure field pn+1

cv is unknown and 
is obtained using the best available guess at the current iteration. This gets updated during the solution of the pressure 
Poisson equation. The above discretization is implicit and thus the time-steps are not limited by viscous stability limits. The 
use of symmetric centered differences makes the algorithm second order on uniform Cartesian grids. The main steps of the 
solver are described below.

• Step 1: Set the flow velocity at tn+1 using a second-order Adams-Bashforth predictor. Advance the particle positions and 
velocities using the undisturbed fluid velocity obtained from the solution of the two-way coupled fluid flow equations 
(ui and p) and the disturbance velocity and pressure fields (ud

i and pd) from the previous time step.
• Step 2: Advance the two-way coupled fluid momentum equations using the fractional step algorithm, with the inter-

phase force, f i , treated explicitly.

ρ f
u∗
i − un

i

�t
+ ρ f

2Vcv

∑
faces of cv

[
u∗
i,face + un

i,face

]
un+1/2
N Aface =

− δp

δxi

n

+ μ

2Vcv

∑
faces of cv

(
∂u∗

i,face

∂x j
+ ∂un

j,face

∂xi

)
Aface + f n+1

i , (50)

where N is the face-normal component, and Aface is the face area, μ is the fluid viscosity, and ρ f the density. The 
pressure gradient at the CV centers in the above equation is at the old time-level and is obtained as described below in 
Step 6. The reaction force f n+1

i is obtained through Eulerian-Lagrangian interpolation (Eq. (29)). In the above step, the 
viscous terms are treated implicitly, the three equations for the velocity components at the CV centers are solved using 
iterative scheme such as Gauss-Seidel or algebraic multigrid solvers.

• Step 3: Remove the old pressure gradient to obtain the velocity field, ̂ui :

ûi − u∗
i

�t
= + 1

ρ f

δp

δxi

n

(51)

• Step 4: Interpolate the velocity fields to the faces of the control volumes and consider the corrector step:

ρ f
un+1
N − ûN

�t
= − δp

δxN

n+1

, (52)

where ûN = ûi,faceNi,face is the approximation for face-normal velocity and Ni,face are the components of the face-
normal. The face-based velocity is simply obtained as the average of the two control volumes that share the common 
face, ̂ui,face = (̂ui,cv1 + ûi,cv2)/2 as shown in Fig. 8b. To face-based pressure gradient also makes use of the two adjacent 
cvs:
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δpn+1

δxN
= pn+1

nbr − pn+1
cv

|Scv→nbr| , (53)

where the subscripts ‘cv’ and ‘nbr’ stand for the control volume for which the velocity field is being solved and the 
neighboring control volumes sharing a common face, respectively and |Scv→nbr| represents the magnitude of the position 
vector connecting the two control volumes.

• Step 5: The pressure field and the pressure gradients at tn+1 are unknown in the above step. A pressure Poisson equation 
is derived by taking a discrete divergence of the above equations and solving for the pressure field at each control 
volume:

∑
face of cv

δpn+1

δxN
= ρ f

�t

∑
faces of cv

ûi,faceAface (54)

• Step 6: Reconstruct the pressure gradient at the cv-centers. The face-normal pressure gradient δp/δxN and the gradient 
in pressure at the cv-centers are related by the area-weighted least-squares interpolation [23]:

εcv =
∑

faces of cv

(
P ′
i,cvNi,face − P ′

face

)2
Aface, (55)

where P ′
i,cv = δp

δxi
and P ′

face = δp
δxN

.
• Step 7: Compute new face-based velocities, and update the cv-velocities:

un+1
N = ûN − �t

ρ f

δpn+1

δxN
(56)

un+1
i,cv = ûi,cv − �t

ρ f

δpn+1

δxi,cv
(57)

• Step 8: Repeat steps 2–7 for the disturbance field, ud
i and pd , solving the momentum and continuity equations expressed 

by Eqs. (15) and (16) for the direct method. For the approximate method, repeat step 2 solving the approximate distur-
bance equation provided by Eq. (17).

• Step 9: Using the disturbance field, compute the undisturbed flow velocity (direct and approximate method) and pres-
sure (direct method) and proceed to Step 1.

Appendix B. Effect of interpolation kernel

The present approach of finding the disturbance field can be easily applied to any Euler-Lagrange interpolation function 
and kernel. The disturbance field generated by different interpolation kernels will in general be different; however, the goal 
is to obtain the correct undisturbed flow field at the particle location. This is illustrated in the following test case.

A single particle is held fixed (ui,p = 0) in a domain of size [6.4, 51.2, 6.4] with uniform inlet flow of velocity Uinlet = 1.0
in the vertical (y) direction. A convective outflow boundary condition is used at the exit and slip conditions are used on 
x and z planes. Uniform cubic grid of 64 × 512 × 64 is used in the x, y, z coordinates, respectively. A spherical particle of 
size, Dp = 0.1 m, is placed at a vertical distance of y = 10 units from the inlet, and at the center of the domain in x and z
directions. The particle size is selected to be same as the grid resolution. The fluid viscosity and density are set such that the 
particle Reynolds number is, Rep = ρUinlet Dp/μ = 1 (μ = 0.1 kg/m.s and ρ = 1.0 kg/m3). The undisturbed fluid velocity 
seen by the particle in this case should be the inlet velocity. However, with two-way coupling and without any correction 
for the self-induced disturbance, the fluid velocity interpolated to the particle location will be different. Evolution of the 
fluid velocity (in y direction) interpolated to the particle location is obtained using three different interpolation functions: 
(i) the three point delta function used in the present work (Eq. (29)), (ii) a Gaussian interpolation function commonly used 
in particle-laden flows with the filter width on the order of the particle size [5], and (iii) a simple, zeroth-order box filter. 
Fig. 9 shows that the three interpolation functions develop different values for the uncorrected, disturbed fluid velocity seen 
by the particle. With the disturbance correction scheme (both the direct and approximate methods), all three interpolation 
schemes are able to reproduce the true undisturbed fluid velocity as shown in the figure. It is also interesting to note 
that the box filter adds a very strong reaction force to a single cell, and thus, the disturbed fluid velocity at the particle 
location first rapidly decreases, and then slowly increases to a steady state value. This behavior is not observed for the delta 
and Gaussian kernels as they spread the interaction force over a larger region compared to the particle size. The steady 
state values for disturbed fluid flow obtained from different kernels are different, but the undisturbed fluid flow predicted 
by the correction scheme in each case is similar. This illustrates that the correction scheme is able to provide the correct 
undisturbed fluid velocity irrespective of the interpolation function used.
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Fig. 9. Time evolution of the disturbed and undisturbed fluid velocity at the particle location for a fixed spherical particle in a uniform flow using three 
different interpolation kernels.
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