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Given there is no unifying theory or design guidance for workload transitions, this work investigated how visual
attention allocation patterns could inform both topics, by understanding if scan-based eye tracking metrics could
predict workload transition performance trends in a context-relevant domain. The eye movements of sixty Naval
flight students were tracked as workload transitioned at a slow, medium, and fast pace in an unmanned aerial
vehicle testbed. Four scan-based metrics were significant predictors across the different growth curve models of

response time and accuracy. Stationary gaze entropy (a measure of how dispersed visual attention transitions are
across tasks) was predictive across all three transition rates. The other three predictive scan-based metrics
captured different aspects of visual attention, including its spread, directness, and duration. The findings specify
several missing details in both theory and design guidance, which is unprecedented, and serves as a basis of
future workload transition research.

1. Introduction

Dynamic and data-rich domains rely on operators to complete
various tasks simultaneously. For example, in the multitasking envi-
ronment of unmanned aerial vehicle (UAV) command and control, the
operator is responsible for keeping the mission stable, even when tasks
change in frequency, complexity, or priority (Hooey et al., 2017; Sibley
et al., 2015; Williams, 2006). When a shift in task demands occurs over a
continuous period, it is a workload transition (Huey & Wickens,1993;
Prytz and Scerbo, 2015). Complex environments may inundate the
operator with visual information, making it important to understand
how the operator is allocating her visual attention as she manages
workload transitions (Abich et al., 2017). However, there is limited
research using eye tracking to examine workload transitions (exception:
Devlin et al., 2021; Moacdieh et al., 2020) and neither explore whether
it can predict performance over time—the focus of this work. The goal
here is to determine whether scan patterns are predictive of the per-
formance trends observed over time with workload transitions. Specif-
ically, we examine several eye tracking metrics as predictors in growth
curve models of performance, i.e., models that predict change over time
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based on how each individual changes over time (Curran et al., 2010;
Hoffman, 2015).

1.1. Review of previous investigations studying workload transitions over
time

Performance trends are not consistent when workload transitions.
For example, performance after a workload transition has been found to
improve (Krulewitz et al., 1975; Matthews, 1986; Matthews and Des-
mond, 2002; Ungar et al., 2005), deteriorate (Cox-Fuenzalida, 2007;
Matthews and Desmond, 2002; Ungar et al., 2005), neither improve nor
deteriorate (Helton et al., 2008; Jansen et al., 2016; Kim et al., 2019;
Morgan and Hancock, 2011), and/or alternate between improving and
deteriorating over time (Devlin et al., 2021; Gluckman et al., 1993;
Moroney et al., 1995). For multitasking environments, two explanations
are primarily cited:

1. Resource depletion. Workload transitions deplete mental resources
so performance initially suffers. However, once workload returns to
low, the compensatory regeneration component is able to recuperate
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resources, allowing performance to then recover (Gluckman et al.,
1993).

2. Effort regulation. Workload transition performance is dependent on
the individual actively evaluating, recruiting, and deploying the
requisite amount of mental resources. Performance is stable as long
as the appraisal is correct and workload does not reach levels of
overload (Hockey, 1997).

One potential way to further examine the two theoretical explana-
tions is to identify and detail the operators’ attentional processes during
workload transitions. Previous investigations find participants produce
a psychophysiological response to workload transitions (Bowers et al.,
2014; Boyer et al., 2015; Cerruti et al., 2010; Kim et al., 2019; McKen-
drick and Harwood, 2019) meaning there is a specific biological
response that corresponds to the response in mental activity (Fairclough,
2009; Matthews et al., 2015). For example, electroencephalograms
(EEG) show that the electrical activity in specific, cognitive-related areas
of the brain increase as workload increases, suggesting participants
actively rely on certain mental resources when managing workload
transitions (Bowers et al., 2014; Kim et al., 2019). However, the specific
interpretation of EEG measures during workload transitions can have
inconsistent and/or convoluted interpretations. Eye tracking is a
non-invasive, flexible, and cost-effective technology (Krafka et al., 2016;
Sibley et al., 2017) able to capture the “objective and quantitative evi-
dence of the user’s visual, overt attentional processes, based on the
user’s scan patterns’” (Duchowski, 2017, p. 247). Quantifying visual
attention allocation patterns relies on scan-based eye tracking metrics, i.
e., measures capturing the features of visual attention allocation (Poole
and Ball, 2006). Examples of these types of metrics include the amount
of time visual attention lasts, i.e., fixation duration, or how often the
focus of visual attention switches, i.e., gaze transition rate (Goldberg and
Kotval, 1999). Scan-based metrics rely on predetermined locations on
the display, which are termed areas of interest (AOIs). Eye tracking has
been mostly used to inform visual display design (Goldberg and Kotval,
1999; Poole and Ball, 2006), but also it has been used to further the
understanding of information processing (Shiferaw et al., 2019a,b),
cognitive load (Coral, 2016; Wilson and Russell, 2007),
human-automation trust (e.g., Hergeth et al., 2016; Sarter et al., 2007;
Victor et al., 2018), situation awareness (Ebeid and Gwizdka, 2018;
Ratwani et al., 2010), and individual differences (Jarodzka et al., 2010;
Raptis et al., 2017; Shic et al., 2008). However, to date, eye tracking data
has seldom been used in the workload transition literature. Of particular
interest is understanding if eye tracking can predict performance trends
of the operator as workload transitions over time, which seems prom-
ising given its past predictive success (Barz et al., 2021; Steichen et al.,
2013).

Two publications to date have examined scan-based metrics during
workload transitions: Devlin et al. (2021) found studying the trends of a
scan-based metric over time helped explain the trends of workload
transition performance over time, which has been a topic with
diverging, puzzling outcomes (take Jansen et al., 2016 and Morgan and
Hancock, 2011 as an example). Moacdieh et al. (2020) compared a set of
scan-based metrics between constant and transitioning workload. The
scan-based metrics captured one of three aspects of visual attention
allocation (Moacdieh and Sarter, 2015): spread (where are users look-
ing?), directness (how efficiently are users scanning?), and duration (how
long are users looking at a certain area?). Moacdieh et al. (2020) found
spread and directness metrics were different between constant and
transitioning workload, with newer-developed metrics being the most
enlightening. For example, stationary gaze entropy, which measures
how distributed transitions are across the set of AOIs, was lower during
workload transitions than during constant workload. Given this was
coupled with better multitasking performance, these findings suggested
visual attention transitions to task-specific areas of the display should
not be equal in multitasking environments. It emphasized the need to
include scan-based metrics when studying workload transitions over

Applied Ergonomics 105 (2022) 103829

time. We presently address this need by directly incorporating
scan-based metrics into time-based analysis methods, specifically,
growth curve modeling. Compared to a repeated measures ANOVA, this
more direct and quantitative approach lends to understanding the
attentional resources underlying performance outcomes of workload
transitions.

1.2. Motivation and research questions

The goal of this study is to understand the extent to which scan-based
eye tracking metrics can predict performance trends of three different
transition rates (slow, medium, and fast). Specifically we explore a set of
scan-based metrics as predictors in growth curve models of performance,
i.e., models that estimate the change in performance over time based on
how performance changes for each individual (Hoffman, 2015). Given
workload transition performance can be dependent on the individual
(Cox-Fuenzalida et al., 2004, 2006; Devlin and Riggs, 2018; McKendrick
and Harwood, 2019; Mracek et al., 2014), it is critical for prediction
models to account for the variability amongst individuals. Additionally,
this modeling approach also allows for a more specific investigation on
the predictive capability of scan-based metrics, as they can be specified
to predict average performance and/or its change over time, allowing for
a more informative prediction outcome.

The scan-based metrics used in the current work are from Moacdieh
et al. (2020). We selected metrics that discriminated between constant
and transitioning workload, while also assuring there was one metric
from the three different aspects of visual attention allocation, i.e.,
spread, directness, and duration (Moacdieh and Sarter, 2015). Table 1
details the scan-based metrics used in the present work.

Previous work has applied growth curve modeling to eye tracking
data (e.g., Ayasse and Wingfield, 2020; Barr, 2008; Mirman et al., 2008;
Godfroid et al., 2018), but never as a direct predictor in growth curve
models of workload transition performance. Given this investigation is
the first of its kind, our research questions are as follows:

1. Are visual attention allocation patterns predictive of performance
trends over time? and
2. Is this a function of workload transition rate?

We expect multiple scan-based metrics, especially spread and
directness metrics, to be predictive of performance trends over time — in
other words, multiple metrics will be significant predictors in each
growth curve model. If successful, the findings may add the much-
needed detail to the theoretical explanations surrounding workload
transitions, e.g., how mental resources are deployed, and inform display
design in complex, multitasking environments. Here, the application is
UAV command and control as the Department of Defense is committed
to designing displays that reliably assist operators in real-time (United
States Department of Defense, 2017, p. 20).

2. Method
2.1. Participants

Sixty student Naval Aviators participated in this study (age: M = 24.5
years, SD = 2.3 years, 51 males). No participants reported having
experience with UAV operations. Each participant completed three tri-
als, i.e., the testbed scenarios detailed in Workload transition rates.
Participants with more than 20% of their raw gaze samples missing were
excluded from the analysis as recommended by Komogortsev et al.
(2010). To assure the analysis was based on asymptotic performance,
participants who were below the 25th percentile during training, i.e.,
64% average accuracy across all tasks, only had their second and third
trials, i.e., scenarios, included in the analysis. The final subset of data
included 95 trials from 40 participants. Each workload transition rate
was represented relatively equally (32, 34, and 29 trials from slow,
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Table 1
The scan-based metrics explored as predictors of growth curves of performance
(note: these measures were calculated for the entirety of each transition rate).

Metric Definition and calculation

Spread metrics (where are users generally looking?)
Spatial gaze density The number of grid cells containing gaze points divided by
the total number of cells. A 20 x 20 evenly-divided grid
(128 x 72 pixels per cell) was created to cover the entire
interface. A higher spatial gaze density would indicate a
larger dispersion of attention (Goldberg and Kotval, 1999)
Stationary gaze entropy indicates how equally distributed
a person’s attention is, with larger values indicating more
evenly spread attention across areas of interest (AOI) and
lower values indicating more narrowed attention (Krejtz
et al., 2015). It is calculated using the following equation
H; = = % pilog,(pi)

icAOls

Where p; represents the proportion of transitions to the ith
state, i.e. the ith AOI (the AOIs are as defined in Fig. 1),
and are based on the Markov property, i.e., transitions to a
given state only depend on the current state (Shiferaw
et al., 2019a,b). In order to accurately compare it across
models, this value was normalized by dividing it by
log, (number of AOIs).
Directness metrics (how purposeful is attention transitions?)
Gaze transition rate The rate visual attention shifts between equal grid cells (
[grid cells/s] Goldberg and Kotval, 1999). A higher rate indicates lower
efficiency. The same grid cells used for spatial gaze density
were used here.
Gaze transition entropy represents the randomness and
complexity of a person’s eye movements, with higher
values indicating more randomness and lower efficiency (
Krejtz et al., 2015). It is calculated based on the following
formula:
He=— > pi 3 pjlog, (Pu)
icAOIs jeAOIs
Where p; is as described in stationary gaze entropy, and p;;
is the probability of transitioning form state i to state j in
one fixation. Assuming the Markov property holds, this
was calculated by counting the number of transitions from
i to j and then dividing by the total number of transitions
from i (Shiferaw et al., 2019a,b). This was done for each
pairing of AOIs (which are defined in Fig. 1). In order to
accurately compare it across models, this value was
normalized by dividing it by log, (number of AOIs).
Duration metrics (how long, in general, does attention last?)
Average fixation The amount of time a fixation lasts. A longer duration
duration [msec] suggests that the user is extracting more information from
the environment (Jacob and Karn, 2003)

Stationary gaze
entropy (SGE)

Gaze transition
entropy (GTE)

medium, and fast transitions, respectively).

2.2. Experimental setup

This study used the same experimental testbed from Moacdieh et al.
(2020) and Devlin et al. (2020, 2021), so further details can be found in
these works. The testbed was developed using the Unity game devel-
opment platform (see Fig. 1) and was based on the “Vigilant Spirit
Control Station” (VSCS) used by the Air Force to develop interfaces to
control multiple UAVs and included tasks typical of an UAV command
and control environment, such as target detection and route planning
(Feitshans et al., 2008). The testbed was presented on a ViewSonic 24”
monitor (2560 x 1440 resolution, 60 Hz refresh rate) and participants
sat approximately 65 cm from the monitor-mounted Gazepoint HD eye
tracker (fs = 150 Hz, reported accuracy of 0.5-1°), so their point of gaze
could be collected.

2.3. UAV command and control testbed and tasks

Participants were responsible for controlling and managing UAV
tasks under three different workload transition rates. There were four
tasks (one primary task and three secondary tasks) and each occurred
across the five panels on the testbed’s interface (Fig. 1).
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2.3.1. Target detection task (primary task)

Participants were tasked to monitor up to 16 UAV video feeds on the
Video Feed panel for a target, i.e., a semi-transparent cube (Fig. 2). A
target was only present when a UAV video feed was active, i.e., when
that specific UAV feed illuminated. UAV video feeds were active for 10's,
and targets could appear during this time. Participants were instructed
to press the “target” button when they spotted a target, else they were
instructed to leave the default “no target” button selected. The “no
target” button was the default, as pilot testing suggested this better
assessed the participant’s ability to detect targets versus clicking
quickly. Video feeds cycled between active and inactive and if a target
was present in an active UAV, but the participant did not select the
target button within 10 s, the participant missed the opportunity to
detect that specific target. On average, 20% of active UAVs had a target.
The number of simultaneously active UAVs determined the workload
level (see section Workload transition rates for more details). Partic-
ipants were instructed to prioritize the target detection task.

2.4. Secondary tasks

As the primary task occurred, participants also had to attend to three
secondary tasks as quickly and accurately as possible: (1) reroute task,
(2) fuel leak task, and (3) chat message task. One secondary task
occurred every 20 s, on average, in a pseudorandom order. All emulated
the diversified task load of future UAV operators and details of these
tasks can be reviewed in (Devlin et al., 2020).

2.5. Workload transition rates

Workload was manipulated by varying the number of active UAVs, i.
e., illuminated video feeds in the target detection task. This approach is
consistent with previous studies, where workload transitions are
manipulated by the number of tasks (e.g., Cox-Fuenzalida, 2007; Han-
cock et al., 1995; Matthews, 1986; Prytz and Scerbo, 2015). This
approach is also consistent with the long-term goal of increasing the load
per UAV operator (Arrabito et al., 2010; United States Department of
Defense, 2017). Workload level thresholds, i.e., low and high, were
based on pilot testing from Devlin et al. (2020) (p. 78-82). To simulate
the situations likely to occur in UAV command and control, the work-
load transition rate was specific to transitions from low to high work-
load. The workload transition rates were tested via 15-min scenarios, i.
e., missions in the testbed:

1. Slow transitions. The number of active UAVs increased steadily
from low to high workload. The scenario started at low workload for
100 s, and one active UAV was added every 10 s until high workload
was reached (13-16 active UAVs). The scenario would remain at
high workload for 100 s, before immediately returning to low
workload. The dotted black line in Fig. 3 shows this cycle repeated
three times for this scenario.

2. Medium transitions. The number of active UAVs increased incre-
mentally from low to high workload. The scenario started at low
workload for 20 s, and then one to three active UAVs were added
every 10 s until high workload was reached (13-16 active UAVs).
The scenario would remain at high workload for 2 min, before
immediately returning to low workload. The dashed dark gray line in
Fig. 3 shows this cycle repeated five times for this scenario.

3. Fast transitions. The number of active UAVs in this scenario
increased instantaneously from low to high workload. One minute of
low workload (3-5 UAVs) was followed by 2 min of high workload
(13-16 UAVs). After the 2 min of high workload, there was an im-
mediate return to low workload. The light gray line in Fig. 3 shows
this cycle repeated five times for this scenario.
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Video feed panel

General
health
panel

Reroute menu panel

- Chat message panel

Fig. 1. Interface of the UAV testbed with panels labeled.

Active video feeds

Video feed buttons
(no target always
preselected)

Fig. 2. Video Feed panel showing how any of the 16 video feeds could be
active, i.e., video feed is illuminated. Currently, two UAVs are active; all other
UAVs are inactive; The UAV in the last row has a target (semi-trans-
parent cube).

2.6. Procedures

This research complied with the APA Code of Ethics and was
approved by the Institutional Review Board at the U.S. Naval Research
Laboratory. Informed consent was obtained from each participant.
Participants then completed a self-paced informational training session
where they completed the eye tracker’s 9-point calibration procedure
and learned about the overall experimental goals. They then completed
a 5-min training session where 6-10 UAVs were always active. Partici-
pants then completed testbed scenarios in a counterbalanced order and
calibrated their point of gaze to the eye tracker before each session.

3. Results
3.1. Preprocessing eye tracking data

Raw gaze data, which consist of the positional (x; y;) and temporal
information (t;), were screened for completeness and accuracy via the
data quality metric provided by Gazepoint and trials were removed if
they did not reach the quality threshold (as previously mentioned).
Velocity profiles were then calculated from the raw gaze points (x;, y;, t;)
by differentiating with a six-tap Savitzky-Golay filter of degree 2 (Krejtz
et al.,, 2016). An I-VDT event detection algorithm was then used to
determine fixations (Komogortsev and Karpov, 2013). The velocity
threshold for fixations was determined by the adaptive algorithm out-
lined in Nystrom and Holmqvist (2010), with it ranging 25.6-60.8°/s
across all trials. Then, individual fixations were determined as clusters of
raw gaze points that were below the trial’s velocity threshold, a
maximum distance of 110 pixels from each other, i.e., ~1° visual angle,
and occurred within a minimum of 80 ms of each other.

3.2. Model fitting process for conditional growth curve models

The ultimate goal of this work was to identify the scan-based eye
tracking metric(s) that predict performance trends over time during
different workload transition rates. The five scan-based metrics from
Table 1 were explored as time-invariant predictors of the best fitting
unconditional growth curve model, which is a model that only includes the
effect of time and no other predictors. There was an unconditional
growth curve model for each performance metric, i.e., primary task
response time and accuracy, in each transition rate (slow, medium, and
fast transitions). The model fitting process followed the methodology of
Barr et al. (2013) and Matuschek et al. (2017), which consisted of fitting
models with a backwards selection approach. Parameters were orthog-
onal polynomial effects of time (in 10 s increments), with the maximal
model being a random quintic time model given the results of the local
polynomial regression. Parameters were removed if it did not lead to a
significant decrease in model fit, which was determined by a likelihood
ratio test (LRT) where o = 0.20. R was used for all analyses (version
4.0.5; R Core Team, 2021); Response time was modeled as a general
linear model and was fit with the Ime4 package (Bates et al., 2015) and
accuracy was modeled as a generalized linear model and fit with the
GLMMadaptive package (Rizopoulos, 2021). Maximum likelihood esti-
mation was used to fit all models.
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After the unconditional growth curve model was established, the
scan-based metrics were included in the model as time-invariant pre-
dictors. A time-invariant predictor is a measure of the individual that is
not expected to change over time or is only reliably measured once
throughout an experiment (Hoffman, 2015). The scan-based metrics
were modeled as time-invariant predictors because they were only
calculated once per participant per each transition rate. The exploration
of the predictive ability of scan-based metrics focused on assessing if
each scan-based metric was an additive or cross-level time invariant
predictor. In this work, an additive time-invariant predictor predicts
average performance, i.e., the model’s intercept parameter f;, (see
Equation (1)), where a cross-level time-invariant predictor predicts how
performance generally trends over time, i.e., the model’s linear time
slope, f3; (see Equation (2)).

Vi = Boi + By (Timey:) + B, (Time,)* + By (Timey)* + ps(Timey;)* where , (1)
Boi =Yoo + Yo1 (Scan — based metric;) + Uy, ,

Bi=ro

Br="r0,

Pi=730,

Ba="a0

Bs=7s0

Vi = Bo; + B, (Timeg) + B, (Time,)* + B, (Timey)* + Bs(Time,;)* where ()]

Boi =Yoo + Vo1 (Scan — based metric;) + Uy; ,

By =710 + 711 (Scan — based metric;)

Br=1x,
Bs=7s0,
Ba=Ta0 >
Bs=7s0

Again, R was used for all analyses and a backwards stepwise selection
process was used to assess the predictive utility of each scan-based
metric in each unconditional growth curve model. This consisted of
including all the eye tracking metrics, as both additive and cross-level

time invariant predictors, in the established unconditional growth
curve model and assessing the change in model fit when each scan-based
metric was systematically excluded. The backwards stepwise selection
process was then conducted with the buildmer package and predictor
selection was based on the Akaike’s Information Criterion (Matuschek
et al., 2017; Voeten, 2019). When appropriate, the significance of each
scan-based metric was assessed with a Wald test where degrees of
freedom were corrected with the Satterthwaite’s method (additive: o« =
0.05 and cross-level: o = 0.10; Mathieu et al., 2012; Voeten, 2019).
Scan-based metrics that were not significant were excluded, and the
model was refitted and compared to the unconditional growth curve
model via an LRT (¢ = 0.10; Gries, 2021). The results from the final
conditional growth curve model, i.e., all the parameter estimates and fit
statistics, are presented in detail and interpreted.

3.2.1. For slow transitions, fixation duration predicted average response
time and stationary gaze entropy predicted its trend over time

The unconditional growth curve model for response time during slow
transitions had a positive fixed quintic time slope and a random inter-
cept (xz(l) = 46.188, p < 0.001). The backward stepwise selection
process selected fixation duration as an additive time-invariant predic-
tor and stationary gaze entropy as a cross-level time-invariant predictor.
These predictors were significant (See Table 2 for details) and lead to a
significantly better model fit compared to the unconditional growth
curve model (XZ(S) = 15.959, p = 0.001). Therefore, the final condi-
tional growth curve model of response time during slow transitions
included average fixation duration as an additive effect and stationary

Table 2

The parameter estimates of the final conditional growth curve models of primary
task response time during slow transitions (Satterthwaite’s degrees of freedom
correction was used when assessing the significance of all parameter estimates).

Model parameter Parameter estimate (standard error)

Intercept (By;)
Intercept (yoo)
Stationary gaze entropy (yo1)
Average fixation duration (yo2)
Linear time slope ()
Linear time (y;10)
Linear time x Stationary gaze entropy (y11)
Quadratic time slope (f,)
Cubic time slope (f3)
Quartic time slope (5,)
Quintic time slope (f5)

3.287*** (0.488)
0.972" (0.487)
—0.005% (0.002)

—3.938* (1.932)
6.778* (3.049)

—0.852*** (0.257)
2.184*** (0.256)
0.237 (0.258)
1.775%** (0.261)

kxR

Significance codes: indicates p < 0.001, “*** indicates p < 0.01, “*” indicates
p < 0.05, ‘1" indicates p < 0.10.
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gaze entropy as a cross-level effect.

Specifically, for every one standard deviation increase in fixation
duration (M = 125.2 ms, SD = 17.3 ms), and assuming all other pre-
dictors remained equal, response time improved by 0.09 s. For sta-
tionary gaze entropy (M = 0.63, SD = 0.08), every one standard
deviation increase estimated the total decrement in response time to be
0.20 s longer. Table 2 shows the results of the final conditional growth
curve model and Fig. 4 depicts the final conditional growth curve model
of primary task response time, specifically estimating a quintic trend
over time with the scan-based metrics predicting average speed and its
change over time.

3.2.2. For medium transitions, stationary gaze entropy predicted average
response time

The unconditional growth curve model for response time during
medium transitions had a positive fixed quintic time slope and a random
intercept (Xz(l) = 2.023, p = 0.155). The backwards stepwise selection
process selected gaze transition entropy and stationary gaze entropy as
additive time-invariant predictors. However, gaze transition entropy
was not a significant additive effect (yo; = —0.938, SE = 0.613, t =

o
5

by
=}

w
o

- - 1 SD below SGE mean
— Mean SGE
- 1 SD above SGE mean

W
[S)

Estimated primary task response time [s]

0 250 500 750
Time in slow transitions scenario [s]

(@

b
=}

w
3]

= 1 SD below AFD mean
— Mean AFD
- 1 8D above AFD mean

g
=}

N
o

N
=)

Estimated primary task response time [s]

0 250 500 750
Time in slow transitions scenario [s]

(b)

Fig. 4. The final conditional growth curve model of primary task response time
during slow transitions, specifically showing the isolated impact of each pre-
dictive scan-based metric when it is at its mean and one standard deviation (SD)
above and below it: (a) stationary gaze entropy (SGE) and (b) average fixation
duration (AFD).
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—1.531, p = 0.135) so it was removed. This reduced conditional model
was still a significant improvement in model fit compared to the un-
conditional growth curve model (X2(1) = 7.934, p = 0.005), meaning
stationary gaze entropy was a significant additive effect. Specifically, for
every one standard deviation increase in stationary gaze entropy (M =
0.60, SD = 0.09), average response time would be 0.11 s longer. Table 3
shows the parameter estimates of the final conditional model and Fig. 5
depicts how changes in stationary gaze entropy impacted the final
conditional growth curve model of primary task response time during
medium transitions.

3.2.3. For fast transitions, none of the scan-based metrics predicted
response time trends

The unconditional growth curve model for response time during fast
transitions had a positive fixed quintic time slope and a random inter-
cept (¢%(1) = 16.01, p < 0.001). The backwards stepwise selection
process selected spatial gaze density as an additive and cross-level time-
invariant predictor. However, neither was a significant effect in the
model (yp; = —0.340, SE = 0.483, z = —0.705, p = 0.487 and y1; =
5.761, SE = 3.574, z = 1.612, p = 0.107), so both were removed.
Therefore, there was no final conditional growth curve model for
response time during fast transitions.

3.2.4. For slow transitions, stationary gaze entropy, average fixation
duration, and spatial gaze density predicted average accuracy

The unconditional growth curve model for accuracy during slow
transitions was a fixed quintic, random cubic time slope model,
excluding all random correlation (Xz(l) = 1.670, p = 0.196). The
backwards stepwise selection process selected stationary gaze entropy as
an additive time-invariant predictor and average fixation duration,
spatial gaze density, and gaze transition rate as cross-level time-
invariant predictors. However, the additive time-invariant predictor of
gaze transition rate and none of the cross-level time-invariant predictors
were significant, so they were removed (yp4 = 0.147, SE = 0.085, 2 =
1.732, p = 0.083; y11 = 0.616, SE = 0.408, z = 1.510, p = 0.131; y12 =
9.950, SE = 6.092, z = 1.633, p = 0.102; y;3 = —1.149, SE = 0.752, 2z =
—1.528, p = 0.126). This reduced conditional model significantly
improved model fit compared to the unconditional model (¥%(3) =
14.060, p = 0.003). Therefore, the final conditional growth curve model
of accuracy during slow transitions included stationary gaze entropy,
average fixation duration, and spatial gaze density as additive
predictors.

Specifically, for every one standard deviation increase in stationary
gaze entropy (M = 0.63, SD = 0.08), and assuming all other predictors
remained equal, average accuracy was predicted to worsen by an
average of 4.9%. However, for average fixation duration (M = 125.0 ms,
SD = 17.1 ms), every standard deviation increase predicted average
accuracy to improve by an average of 3.7%, assuming all other pre-
dictors remained equal. For spatial gaze density, every standard

Table 3

The parameter estimates of the final conditional growth curve models of primary
task response time during medium transitions (Satterthwaite’s degrees of
freedom correction was used when assessing the significance of all parameter
estimates).

Model parameter Parameter estimate (standard error)

Intercept (By;)

Intercept (yoo)

Stationary gaze entropy (yo1)
Linear time slope ()
Quadratic time slope (f,)
Cubic time slope (f3)

Quartic time slope (5,)
Quintic time slope (f5)

3.083*** (0.259)
1.267** (0.425)

0.217 (0.245)
0.688** (0.247)
0.291 (0.246)
—0.760** (0.246)
0.350 (0.243)

Significance codes: ‘ indicates p < 0.001, “*** indicates p < 0.01, “*” indicates
p < 0.05, ‘1" indicates p < 0.10.
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Fig. 5. The final conditional growth curve model of primary task response time
during medium transitions, specifically showing the impact of stationary gaze
entropy (SGE) when it is at its mean and one standard deviation (SD) above and
below it.

deviation increase predicted average accuracy to decline by an average
of 3.8%, assuming all other predictors remained equal. Table 4 shows
the parameter estimates of the final conditional model and Fig. 6 depicts
how each scan-based metric impacted the final conditional growth curve
model of primary task accuracy during slow transitions.

3.2.5. For medium transitions, stationary gaze entropy predicted average
accuracy

The unconditional growth curve model for accuracy during medium
transitions was a model with a fixed quintic and random intercept (Xz(l)
=45.98, p < 0.0001). The backwards stepwise selection process selected
stationary gaze entropy as an additive time-invariant predictor and
spatial gaze density and gaze transition rate as cross-level time-invariant
predictors. However, none of the predictors other than stationary gaze
entropy were significant, so they were removed (yp2 = —0.499, SE =
0.446, z = —1.120, p = 0.262; yo3 = 0.083, SE = 0.059, z = 1.411,p =
0.158; y11 = —5.822, SE = 4.194, 2 = —1.388, p = 0.165; y12 = 0.774, SE
= 0.490, z = 1.581, p = 0.114). Including only stationary gaze entropy
still lead to a significantly better model fit compared to the uncondi-
tional model (Xz(l) =11.57,p < 0.001). Therefore, the final conditional
growth curve model of accuracy during medium transitions included
stationary gaze entropy as an additive effect. Specifically, for every one
standard deviation increase in stationary gaze entropy (M = 0.60, SD =
0.09), average accuracy was predicted to decline by an average of 5.5%
during the medium transitions scenario. Table 5 shows the parameter
estimates of the final conditional growth curve model and Fig. 7 depicts
how stationary gaze entropy impacted the final conditional growth
curve model of primary task accuracy during medium transitions.

Table 4
The parameter estimates of the final conditional growth curve models of primary
task accuracy during slow transitions.

Model parameter Parameter estimate (standard error)

Intercept (fy;)
Intercept (yoo)
Stationary gaze entropy (yo1)
Average fixation duration (yo2)
Spatial gaze density (yo3)

Linear time slope ()

Quadratic time slope (f,)

Cubic time slope (f3)

Quartic time slope (f,)

Quintic time slope (f5)

—1.533*** (0.361)
1.483*** (0.378)
—2.903*** (0.364)
0.906** (0.352)
—1.858*** (0.320)

Significance codes: “***” indicates p < 0.001, “** indicates p < 0.01, *’ indicates
p < 0.05, 4" indicates p < 0.10.
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Fig. 6. The final conditional growth curve model of primary task accuracy
during slow transitions, specifically showing the isolated impact of each pre-
dictive scan-based metric when it is at its mean and one standard deviation (SD)
above and below it: (a) stationary gaze entropy (SGE), (b) average fixation
duration (AFD), and (c) spatial gaze density (SGD).
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Table 5
The parameter estimates of the final conditional growth curve models of primary
task accuracy during medium transitions.
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Table 6
The parameter estimates of the final conditional growth curve models of primary
task accuracy during fast transitions.

Model parameter Parameter estimate (standard error)

Model parameter Parameter estimate (standard error)

Intercept (fy;)

Intercept (yoo)

Stationary gaze entropy (Y1)
Linear time slope ()
Quadratic time slope (5,)
Cubic time slope (f3)

Quartic time slope (f,)
Quintic time slope (fs)

**%(0.084)

1.106*** (0.296)
0.385* (0.186)
—0.818%** (0.273)
—0.025 (0.207)
—1.722%** (0.191)

Significance codes: ‘“***” indicates p < 0.001, “** indicates p < 0.01, ‘*’ indicates
p < 0.05, ‘4" indicates p < 0.10.
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Fig. 7. The final conditional growth curve model of primary task accuracy
during medium transitions, specifically showing the impact of stationary gaze
entropy (SGE) when it is at its mean and one standard deviation (SD) above and
below it.

3.2.6. For fast transitions, stationary gaze entropy and average fixation
duration predicted average accuracy and gaze transition rate predicted its
trend over time

The unconditional growth curve model for accuracy during fast
transitions was a random quintic time model (Xz(l) =2.35,p=0.1251).
The backwards stepwise selection process selected gaze transition en-
tropy and average fixation duration as additive time-invariant pre-
dictors and stationary gaze entropy, spatial gaze density, and gaze
transition rate as cross-level time-invariant predictors. However, gaze
transition entropy, spatial gaze density, and the cross-level effect of
stationary gaze entropy were not significant so they were removed (yo1
=1.151, SE = 0.655, 2 =1.756, p = 0.079; ypo4 = 0.118, SE = 0.063, z =
1.872,p = 0.061; y11 = —1.497, SE = 3.563, 2 = —0.420, p = 0.674; y12
=—0.491, SE = 0.512, 2 = —0.959, p = 0.338). The reduced conditional
model was still a significantly better fit than the unconditional model
(X2(4) =7.91, p = 0.095). Therefore, the final conditional growth curve
model for accuracy during fast transitions included average fixation
duration and stationary gaze entropy as an additive predictor and gaze
transition rate as cross-level predictor.

Specifically, for every one standard deviation increase in stationary
gaze entropy (M = 0.61, SD = 0.08) average accuracy was predicted to
decline by 4.1% during fast transitions, assuming all other predictors
remained equal. For average fixation duration (M = 124.3 ms, SD =
16.5 ms), one standard deviation increase predicted average accuracy to
improve by 3.6%, assuming all other predictors remained equal.
Finally, a one standard deviation increase in gaze transition rate (M =
2.7 grid cells/s, SD = 0.71 grid cells/s) predicted the decline in accuracy
to be 0.64% less on average, assuming all other predictors remained
equal. Table 6 shows the parameter estimates of the final conditional
model and Fig. 8 depicts how the scan-based metrics impacted the final

Intercept (f;)
Intercept (yoo)
Stationary gaze entropy (Y1)
Average fixation duration (yo2)
Gaze transition rate (yo3)
Linear time slope ()
Linear time (y;10)
Linear time x Gaze transition rate (y;1)
Quadratic time slope ()
Cubic time slope (f3)
Quartic time slope (f4)
Quintic time slope (f5)

(0.384)
0.169*** (0.040)
—0.215%** (0.053)

—2.978** (1.025)
0.750* (0.367)

0.683** (0.312)
—1.907*** (0.319)
2.001*** (0.315)
—1.161*** (0.290)

Significance codes: ****” indicates p < 0.001, “**’ indicates p < 0.01, ‘** indicates
p < 0.05, ‘4" indicates p < 0.10.

conditional growth curve model of primary task accuracy during fast
transitions.

Table 7 summarizes the findings on the ability scan-based metrics
have on predicting workload transition performance trends over time.

4. Discussion

The goal of this research was to assess whether scan-based metrics
are predictive of performance trends. Here we found the predictive
capability was a function of the performance metric, i.e., response time
and accuracy, and workload transition rate. For slow transitions, the
duration of visual attention (average fixation duration) and how
dispersed its transitions are across the AOIs (stationary gaze entropy)
and in general (spatial gaze density) are predictive of both average
performance and/or its trends over time. For medium transitions, the
dispersion of visual attention transitions across the AOIs (stationary gaze
entropy) was predictive of average performance. For fast transitions, the
dispersion of visual attention transitions across the AOIs (stationary gaze
entropy) and its duration (average fixation duration) is predictive of
average accuracy whereas the pace of general visual attention changes
(gaze transition rate) is predictive of accuracy’s trends over time. Our
expectations were mostly met, but with caveats. For instance, across all
transition rates, stationary gaze entropy was predictive of average per-
formance and/or its trend over time, which is consistent with other work
that studies scan-based metrics in realistic environments (Moacdieh
et al., 2020; Shiferaw et al., 2019a,b).

4.1. Implications of stationary gaze entropy being a significant predictor
across all transition rates

The ability of stationary gaze entropy to predict performance may lie
in the inclusion of context-driven AOIs and the Markov property—i.e.,
memoryless transitions. The Markov property is true if, “the probability
distribution of future states of the process conditioned on both the past
and present states depends only on the present state” (Gudivada et al.,
2015). For example, transitions to AOIs on the display is only dependent
on the current AOI the participant is looking at. Here the long-term
probabilities are the proportion of transitions that go to each AOI (Shi-
feraw et al., 2019a,b). Stationary gaze entropy may have high predictive
capability because it is a measuring spread based on active transitions
between AOIs (Shic et al., 2008) and the certainty of those transitions.
Thus, providing a single quantitative value on the dynamics of visual
attention transitions across AOIs, given both micro, i.e., where current
visual attention is transitioning to, and macro, i.e., how the proportion
of visual attention to each AOI compare to each other over time. Addi-
tionally, the current success of assuming transitions between AOIs are a
memoryless process—i.e., the Markov property—shows practical po-
tential in deploying effective adaptive assistance based on scan patterns.
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Fig. 8. The final conditional growth curve model of primary task accuracy
during fast transitions, specifically showing the isolated impact of each pre-
dictive scan-based metric when it is at its mean and one standard deviation (SD)
above and below it: (a) stationary gaze entropy (SGE), (b) average fixation
duration (AFD), and (c) gaze transition rate (GTR).
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The eye tracker can intermittently lose contact with the operator’s point
of gaze, so it is imperative adaptive assistance can provide accurate
predictions without requiring the entire scanpath. Vetting this approach
is essential as its applicability may change depending on AOI definition
or task paradigm.

The overwhelming predictive capability of stationary gaze entropy
may not only be due to the Markov property because gaze transition
entropy, which also relies on the Markov property, was not effective in
predicting performance (similar to Shiferaw et al., 2018). Rather, it may
also be due to it being a spread metric, i.e., measuring where someone
looks, as gaze transition entropy is a directness metric, i.e., measuring
the efficiency of a scanpath. However, between the two spread metri-
cs—i.e., spatial gaze density and stationary gaze entropy—stationary
gaze entropy predicted more aspects of performance trends, meaning
the way spread metrics are defined matters. Spatial gaze density may
have been a somewhat less effective predictor because it reduces the
display into a uniform grid, providing no context on how each grid cell
relates to the task or how often it is viewed. Conversely, the AOIs of
stationary gaze entropy had a direct mapping with a testbed task, which
inherently provides more semantic information than a grid cell. Spe-
cifically, it informs how participants relied on their visual attention to
manage tasks as workload transitioned. Simply knowing how much of
the display was viewed, i.e., what spatial gaze density essentially
quantifies, could be more dependent on display design than the partic-
ipant’s visual attention allocation patterns (Moacdieh and Sarter, 2015),
making it less informative of the individual’s workload transition
management strategy. In summary, where and how frequent visual
attention transitioned is a better indicator of performance than where it
landed in general.

Finally, stationary gaze entropy is not only useful as a predictor of
performance, but also informs display design. Stationary gaze entropy
suggests having a balanced number of transitions between the AOIs
results in worse performance across all transition rates. Given this study
had a primary task, we conjecture that performance improved when
most of the transitions were to the primary task’s AO], i.e., Video Feed
panel. From a design perspective, attention should be directed to a
primary task and minimized elsewhere either via design features and/or
adaptive assistance. When reviewing suggested layouts of current UAV
command and control tasks, we found that AOIs associated with each
task are typically dispersed across the display and organized into several
subgroups (Feitshans et al., 2008; Foroughi et al., 2019). It may be
strategic to reorganize these displays based on the operator’s priorities,
especially if multitasking between tasks is not equal.

4.2. Implications on theory: effort regulation may manifest differently
depending on sensory modality and depend on the features of the transition
and environment

The interpretations from the final conditional models add to the
existing theory on workload transitions. To date, there has been limited
work to expand upon the two explanations—i.e., resource depletion and
effort regulation, even when psychophysiological measures are included
(e.g., Bowers et al., 2014; Boyer et al., 2015). Here, the current findings,
allow us a unique opportunity to build upon the effort regulation
explanation, given it stipulates that workload transition performance is
a function of how mental resources are relied upon. Specifically it states:

Workload transition performance is dependent on the individual
actively appraising, recruiting, and deploying the requisite amount of
mental resources. Performance is stable as long as the appraisal is
correct and workload does not reach levels of overload (Hockey, 1997).

We expand upon the bolded terms in the definition above by adding
specifications to: (a) what in the environment is appraised, and (b) how
mental resources are deployed, and (c) the type of mental resource. The
only aspect of this explanation we do not address is resource recruit-
ment, but future work ideally can (see alternatives presented in
Conclusion).
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Table 7
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Summary of the conditional growth curve modeling results. Significant eye tracking metrics are denoted by a v/

Performance Directness metric

metric

Transition
rate

Spread metric

Duration
metric

Takeaway

Gaze
transition
rate

Spatial
gaze
density

Stationary
gaze entropy

Gaze

transition

Fixation
duration

entropy

SLOW Response time v

Accuracy

MEDIUM Response time

Accuracy

FAST Response time

Accuracy

v Longer fixation duration predicts

faster response times overall. Larger stationary

gaze entropy

predicts larger decrements in

response time

over time

Larger stationary gaze entropy and spatial gaze density
predicts lower

accuracy

rates overall. Longer fixation duration predicts higher
accuracy rates overall

Larger stationary gaze entropy

predicts slower

overall response times

Larger stationary gaze entropy

predicts lower

overall accuracy rates

None of the scan-based metrics predict response time
trends

Larger stationary gaze entropy

predicts lower

accuracy overall. Longer fixation durations predicts higher
accuracy overall. Larger gaze transition rate predicts
smaller decrements in accuracy over time

First, we propose workload transition performance is not only
dependent on appraising the amount of workload, but it is also depen-
dent on appraising the rate in which workload transitions. The different
significant predictors across the final conditional models support this
notion. Although all final models predicted performance to worsen
when visual attention transitions were more evenly distributed across
tasks, i.e., when stationary gaze entropy was larger, there is some evi-
dence that different scan patterns are necessary across the three tran-
sition rates. For example, for slow transitions, longer periods of visual
attention predicted improved average response time, meaning per-
forming quickly during slow transitions required more thoughtful
cognitive processing (Holmqvist et al., 2011; Poole and Ball, 2006). For
fast transitions, frequent general attention shifts predicted improved
average accuracy and a smaller decrement over time, suggesting per-
forming well during fast transitions requires more frequent changes in
attention (Yang et al., 2018). Our results show performance improves
when scan patterns account for transition rate.

Second, we propose the deployment of resources should consider the
way in which visual attention is allocated. Namely, its location, effi-
ciency, and time span. This is evident by one scan-based eye tracking
metric from each category—i.e., spread, directness, and duration—being a
significant predictor for at least one performance trend over time. We
propose the deployment of mental resources needs to consider the
questions regarding the visual attention allocation types: where people
are looking (spread), how efficiently people are looking (directness), and
how long people are looking (duration).

Third, we propose amending the effort regulation explanation to
specify that workload transition performance is dependent on the type of
mental resource. Our work suggests it is specifically dependent on visual
attentional resources. This is supported by the fact that at least one scan-
based metric was a significant predictor of performance. Considering the
entire experiment was largely visual in nature, this finding is not sur-
prising; however, it highlights that the applicability of this theory may
hinge on what sensory modality is considered. This supports the premise
of the Multiple Resource Model, which posits different sensory modal-
ities draw from separate attentional resources (Wickens, 1980). Future
work should examine whether the effort regulation explanation is
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applicable to other modalities, i.e., auditory, tactile, etc. We believe
detailing the effort regulation explanation in this way leads to a better
understanding and expectation of how people perform and allocate their
visual attention during workload transitions.

4.3. Implication for design: technology design for each transition rate
based on scan-based metrics

Workload transitions continue to be a feature of the environment
that needs consideration, but currently there is limited design guidance
that accounts for them. Beyond prediction, the current results also
provide new information on the success of task strategy. Empirically-
based design guidance for each workload transition rate is outlined in
Table 8. Although it is by no means exhaustive, as different populations,
transition rates, and environments need to be sampled, this design
guidance is the first of its kind in the workload transition
knowledgebase.

5. Conclusion

The present results suggest scan-based metrics are capable of pre-
dicting workload transition performance trends. They are also very
informative on differences in performance trends across transitions
rates, theory development, and design guidance. Future work should
continue to explore how novel measures and methods can test and revise
theory surrounding workload transitions in order to innovate the current
state of the knowledgebase. This work also finds another application of
scan patterns potentially being informative of performance in real-time.
Eye tracking methods need to be included in future workload transition
research, especially if it pertains to workload transition performance
over time.

5.1. Future work and limitations

Although the present work substantially adds to the workload tran-
sition knowledgebase, it is not without limitations. First, although the
selection of eye tracking metrics included in this study was motivated by
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Table 8
Findings, design guidance, and design example for each transition rate.

Transition Finding Design Guidance Example

rate

ALL e Stationary gaze e Conduct a task e Alerting
entropy analysis for the participants of
predicted content and potential threats
performance to placement of AOIs via the tactile
be worse when o Minimize channel improved
attention transitions primary task
transitions between AOIs performance
across tasks and/or without hindering
were relatively centralize the secondary task
equal most used AOIs performance in a

o Offload less simulated combat
prioritized tasks environment
to other sensory (Oskarsson et al.,
channels (e.g., 2012)
chat messages to
auditory, fuel
leaks to tactile;
Riggs et al.,
2017)

SLOW e Longer fixation e Design elements e Increasing the
duration and on the display so detail and salience
smaller spatial that they prompt of information
gaze density the operator to without increasing
predicted better take the time to clutter helped
average further examine refocus attention
performance and encode without a cost of

information and cognitive load in

make sure the nuclear power

elements are plant control

collocated environments
e Make items (Kovesdi et al.,

essential to good 2018)

performance, (e.g.,

the target),

engaging and

informative so the

operator spends

time fixating

(Jacob and Karn,

2003; Poole and

Ball, 2006)

MEDIUM e Stationary gaze o Build and test e Gaze location in
entropy is the stochastic models static image
only metric able of transitions viewing was
to predict between AOIs, i.e., predicted with
response time Markov decision 56% accuracy
and accuracy processes, to (chance was 33%)
trends, so it identify the most with hidden
should be to least frequent Markov modeling
further explored transitions (Coutrot et al.,
to be used in between AOIs to 2018)
real-time determine the

distance between
AOIs
FAST e Larger gaze e Prompt efficient e Comprehension

transition rate
and larger
fixation
duration
predicted better
average
performance
and its trend
over time

scanning by
decluttering the
display and
making key tasks
salient and
informative, as
this will also
increase the focus
of attention
(Moacdieh and
Sarter, 2015)
Provide
redundancy for the
most important
tasks by including
multiple,
informative visual
representations in
the environment
(Yang et al., 2018)

rates and visual
attention transition
rates increased
when information
was presented
across multiple
visualizations
(O’Keefe et al.,
2014)

11

Applied Ergonomics 105 (2022) 103829

existing work (Moacdieh et al., 2020), there are other metrics worth
exploring (e.g., Devlin et al., 2021). Several scan-based metrics were
selected in the backwards stepwise selection process, so their usefulness
may change based on research goals or modeling methods [e.g., the
applicability of spatial gaze density in the present work versus Moacdieh
et al. (2020)]. In addition, eye tracking metrics used to study cognitive
load (e.g., pupillometry, blink rate) may be better equipped to address
any applicability of the resource depletion explanation and/or the
recruitment of mental resources due to these metrics’ ability to specif-
ically address amounts of mental resources. Similarly, psychophysio-
logical measures of task engagement and/or fatigue could help further
detail the effort regulation explanation (e.g., Bernhardt et al., 2019;
Naeeri et al., 2019). More generally, different types of workload tran-
sitions should be explored with this current analysis approach, espe-
cially when considering the prevalence and impact of unexpected and
dramatic changes in workload (Endsley, 2017).

Relatedly, multivariate growth curve modeling could explore if the
trend of scan-based metrics relates to workload transition performance.
It would require a rather large sample size (>100 participants; Astivia
et al., 2019), but it may be particularly informative when building upon
the resource depletion explanation and/or the recruitment of resources,
as both depend on time and workload. The current eye tracking metrics
were included as time-invariant predictors because of (1) how these
metrics are calculated and (2) the ultimate goal to understand the pre-
dictive capability of eye tracking on performance trends over time.

Future work should see if Markov models could reliably predict vi-
sual attention transitions across AOIs during workload transitions. Pre-
vious work has shown some success in using Markov models to predict
where visual attention will be allocated (Ebeid et al., 2019; Liechty
et al., 2003), but it is unclear how transition rate, individual differences,
and task features would influence these findings. It is also worth
expanding this kind of investigation to account for the impact of the
secondary task and the impact it has on performance for different
workload transitions rates. Examining this has been particularly helpful
in understanding multitasking strategies in complex environments
(Jeong et al., 2019), which is essential to future UAV command and
control missions (Cummings, 2014).
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