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A B S T R A C T   

Given there is no unifying theory or design guidance for workload transitions, this work investigated how visual 
attention allocation patterns could inform both topics, by understanding if scan-based eye tracking metrics could 
predict workload transition performance trends in a context-relevant domain. The eye movements of sixty Naval 
flight students were tracked as workload transitioned at a slow, medium, and fast pace in an unmanned aerial 
vehicle testbed. Four scan-based metrics were significant predictors across the different growth curve models of 
response time and accuracy. Stationary gaze entropy (a measure of how dispersed visual attention transitions are 
across tasks) was predictive across all three transition rates. The other three predictive scan-based metrics 
captured different aspects of visual attention, including its spread, directness, and duration. The findings specify 
several missing details in both theory and design guidance, which is unprecedented, and serves as a basis of 
future workload transition research.   

1. Introduction 

Dynamic and data-rich domains rely on operators to complete 
various tasks simultaneously. For example, in the multitasking envi
ronment of unmanned aerial vehicle (UAV) command and control, the 
operator is responsible for keeping the mission stable, even when tasks 
change in frequency, complexity, or priority (Hooey et al., 2017; Sibley 
et al., 2015; Williams, 2006). When a shift in task demands occurs over a 
continuous period, it is a workload transition (Huey & Wickens,1993; 
Prytz and Scerbo, 2015). Complex environments may inundate the 
operator with visual information, making it important to understand 
how the operator is allocating her visual attention as she manages 
workload transitions (Abich et al., 2017). However, there is limited 
research using eye tracking to examine workload transitions (exception: 
Devlin et al., 2021; Moacdieh et al., 2020) and neither explore whether 
it can predict performance over time—the focus of this work. The goal 
here is to determine whether scan patterns are predictive of the per
formance trends observed over time with workload transitions. Specif
ically, we examine several eye tracking metrics as predictors in growth 
curve models of performance, i.e., models that predict change over time 

based on how each individual changes over time (Curran et al., 2010; 
Hoffman, 2015). 

1.1. Review of previous investigations studying workload transitions over 
time 

Performance trends are not consistent when workload transitions. 
For example, performance after a workload transition has been found to 
improve (Krulewitz et al., 1975; Matthews, 1986; Matthews and Des
mond, 2002; Ungar et al., 2005), deteriorate (Cox-Fuenzalida, 2007; 
Matthews and Desmond, 2002; Ungar et al., 2005), neither improve nor 
deteriorate (Helton et al., 2008; Jansen et al., 2016; Kim et al., 2019; 
Morgan and Hancock, 2011), and/or alternate between improving and 
deteriorating over time (Devlin et al., 2021; Gluckman et al., 1993; 
Moroney et al., 1995). For multitasking environments, two explanations 
are primarily cited:  

1. Resource depletion. Workload transitions deplete mental resources 
so performance initially suffers. However, once workload returns to 
low, the compensatory regeneration component is able to recuperate 
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resources, allowing performance to then recover (Gluckman et al., 
1993).  

2. Effort regulation. Workload transition performance is dependent on 
the individual actively evaluating, recruiting, and deploying the 
requisite amount of mental resources. Performance is stable as long 
as the appraisal is correct and workload does not reach levels of 
overload (Hockey, 1997). 

One potential way to further examine the two theoretical explana
tions is to identify and detail the operators’ attentional processes during 
workload transitions. Previous investigations find participants produce 
a psychophysiological response to workload transitions (Bowers et al., 
2014; Boyer et al., 2015; Cerruti et al., 2010; Kim et al., 2019; McKen
drick and Harwood, 2019) meaning there is a specific biological 
response that corresponds to the response in mental activity (Fairclough, 
2009; Matthews et al., 2015). For example, electroencephalograms 
(EEG) show that the electrical activity in specific, cognitive-related areas 
of the brain increase as workload increases, suggesting participants 
actively rely on certain mental resources when managing workload 
transitions (Bowers et al., 2014; Kim et al., 2019). However, the specific 
interpretation of EEG measures during workload transitions can have 
inconsistent and/or convoluted interpretations. Eye tracking is a 
non-invasive, flexible, and cost-effective technology (Krafka et al., 2016; 
Sibley et al., 2017) able to capture the “objective and quantitative evi
dence of the user’s visual, overt attentional processes, based on the 
user’s scan patterns’’ (Duchowski, 2017, p. 247). Quantifying visual 
attention allocation patterns relies on scan-based eye tracking metrics, i. 
e., measures capturing the features of visual attention allocation (Poole 
and Ball, 2006). Examples of these types of metrics include the amount 
of time visual attention lasts, i.e., fixation duration, or how often the 
focus of visual attention switches, i.e., gaze transition rate (Goldberg and 
Kotval, 1999). Scan-based metrics rely on predetermined locations on 
the display, which are termed areas of interest (AOIs). Eye tracking has 
been mostly used to inform visual display design (Goldberg and Kotval, 
1999; Poole and Ball, 2006), but also it has been used to further the 
understanding of information processing (Shiferaw et al., 2019a,b), 
cognitive load (Coral, 2016; Wilson and Russell, 2007), 
human-automation trust (e.g., Hergeth et al., 2016; Sarter et al., 2007; 
Victor et al., 2018), situation awareness (Ebeid and Gwizdka, 2018; 
Ratwani et al., 2010), and individual differences (Jarodzka et al., 2010; 
Raptis et al., 2017; Shic et al., 2008). However, to date, eye tracking data 
has seldom been used in the workload transition literature. Of particular 
interest is understanding if eye tracking can predict performance trends 
of the operator as workload transitions over time, which seems prom
ising given its past predictive success (Barz et al., 2021; Steichen et al., 
2013). 

Two publications to date have examined scan-based metrics during 
workload transitions: Devlin et al. (2021) found studying the trends of a 
scan-based metric over time helped explain the trends of workload 
transition performance over time, which has been a topic with 
diverging, puzzling outcomes (take Jansen et al., 2016 and Morgan and 
Hancock, 2011 as an example). Moacdieh et al. (2020) compared a set of 
scan-based metrics between constant and transitioning workload. The 
scan-based metrics captured one of three aspects of visual attention 
allocation (Moacdieh and Sarter, 2015): spread (where are users look
ing?), directness (how efficiently are users scanning?), and duration (how 
long are users looking at a certain area?). Moacdieh et al. (2020) found 
spread and directness metrics were different between constant and 
transitioning workload, with newer-developed metrics being the most 
enlightening. For example, stationary gaze entropy, which measures 
how distributed transitions are across the set of AOIs, was lower during 
workload transitions than during constant workload. Given this was 
coupled with better multitasking performance, these findings suggested 
visual attention transitions to task-specific areas of the display should 
not be equal in multitasking environments. It emphasized the need to 
include scan-based metrics when studying workload transitions over 

time. We presently address this need by directly incorporating 
scan-based metrics into time-based analysis methods, specifically, 
growth curve modeling. Compared to a repeated measures ANOVA, this 
more direct and quantitative approach lends to understanding the 
attentional resources underlying performance outcomes of workload 
transitions. 

1.2. Motivation and research questions 

The goal of this study is to understand the extent to which scan-based 
eye tracking metrics can predict performance trends of three different 
transition rates (slow, medium, and fast). Specifically we explore a set of 
scan-based metrics as predictors in growth curve models of performance, 
i.e., models that estimate the change in performance over time based on 
how performance changes for each individual (Hoffman, 2015). Given 
workload transition performance can be dependent on the individual 
(Cox-Fuenzalida et al., 2004, 2006; Devlin and Riggs, 2018; McKendrick 
and Harwood, 2019; Mracek et al., 2014), it is critical for prediction 
models to account for the variability amongst individuals. Additionally, 
this modeling approach also allows for a more specific investigation on 
the predictive capability of scan-based metrics, as they can be specified 
to predict average performance and/or its change over time, allowing for 
a more informative prediction outcome. 

The scan-based metrics used in the current work are from Moacdieh 
et al. (2020). We selected metrics that discriminated between constant 
and transitioning workload, while also assuring there was one metric 
from the three different aspects of visual attention allocation, i.e., 
spread, directness, and duration (Moacdieh and Sarter, 2015). Table 1 
details the scan-based metrics used in the present work. 

Previous work has applied growth curve modeling to eye tracking 
data (e.g., Ayasse and Wingfield, 2020; Barr, 2008; Mirman et al., 2008; 
Godfroid et al., 2018), but never as a direct predictor in growth curve 
models of workload transition performance. Given this investigation is 
the first of its kind, our research questions are as follows:  

1. Are visual attention allocation patterns predictive of performance 
trends over time? and  

2. Is this a function of workload transition rate? 

We expect multiple scan-based metrics, especially spread and 
directness metrics, to be predictive of performance trends over time – in 
other words, multiple metrics will be significant predictors in each 
growth curve model. If successful, the findings may add the much- 
needed detail to the theoretical explanations surrounding workload 
transitions, e.g., how mental resources are deployed, and inform display 
design in complex, multitasking environments. Here, the application is 
UAV command and control as the Department of Defense is committed 
to designing displays that reliably assist operators in real-time (United 
States Department of Defense, 2017, p. 20). 

2. Method 

2.1. Participants 

Sixty student Naval Aviators participated in this study (age: M = 24.5 
years, SD = 2.3 years, 51 males). No participants reported having 
experience with UAV operations. Each participant completed three tri
als, i.e., the testbed scenarios detailed in Workload transition rates. 
Participants with more than 20% of their raw gaze samples missing were 
excluded from the analysis as recommended by Komogortsev et al. 
(2010). To assure the analysis was based on asymptotic performance, 
participants who were below the 25th percentile during training, i.e., 
64% average accuracy across all tasks, only had their second and third 
trials, i.e., scenarios, included in the analysis. The final subset of data 
included 95 trials from 40 participants. Each workload transition rate 
was represented relatively equally (32, 34, and 29 trials from slow, 
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medium, and fast transitions, respectively). 

2.2. Experimental setup 

This study used the same experimental testbed from Moacdieh et al. 
(2020) and Devlin et al. (2020, 2021), so further details can be found in 
these works. The testbed was developed using the Unity game devel
opment platform (see Fig. 1) and was based on the “Vigilant Spirit 
Control Station” (VSCS) used by the Air Force to develop interfaces to 
control multiple UAVs and included tasks typical of an UAV command 
and control environment, such as target detection and route planning 
(Feitshans et al., 2008). The testbed was presented on a ViewSonic 24” 
monitor (2560 × 1440 resolution, 60 Hz refresh rate) and participants 
sat approximately 65 cm from the monitor-mounted Gazepoint HD eye 
tracker (fs = 150 Hz, reported accuracy of 0.5–1◦), so their point of gaze 
could be collected. 

2.3. UAV command and control testbed and tasks 

Participants were responsible for controlling and managing UAV 
tasks under three different workload transition rates. There were four 
tasks (one primary task and three secondary tasks) and each occurred 
across the five panels on the testbed’s interface (Fig. 1). 

2.3.1. Target detection task (primary task) 
Participants were tasked to monitor up to 16 UAV video feeds on the 

Video Feed panel for a target, i.e., a semi-transparent cube (Fig. 2). A 
target was only present when a UAV video feed was active, i.e., when 
that specific UAV feed illuminated. UAV video feeds were active for 10 s, 
and targets could appear during this time. Participants were instructed 
to press the “target” button when they spotted a target, else they were 
instructed to leave the default “no target” button selected. The “no 
target” button was the default, as pilot testing suggested this better 
assessed the participant’s ability to detect targets versus clicking 
quickly. Video feeds cycled between active and inactive and if a target 
was present in an active UAV, but the participant did not select the 
target button within 10 s, the participant missed the opportunity to 
detect that specific target. On average, 20% of active UAVs had a target. 
The number of simultaneously active UAVs determined the workload 
level (see section Workload transition rates for more details). Partic
ipants were instructed to prioritize the target detection task. 

2.4. Secondary tasks 

As the primary task occurred, participants also had to attend to three 
secondary tasks as quickly and accurately as possible: (1) reroute task, 
(2) fuel leak task, and (3) chat message task. One secondary task 
occurred every 20 s, on average, in a pseudorandom order. All emulated 
the diversified task load of future UAV operators and details of these 
tasks can be reviewed in (Devlin et al., 2020). 

2.5. Workload transition rates 

Workload was manipulated by varying the number of active UAVs, i. 
e., illuminated video feeds in the target detection task. This approach is 
consistent with previous studies, where workload transitions are 
manipulated by the number of tasks (e.g., Cox-Fuenzalida, 2007; Han
cock et al., 1995; Matthews, 1986; Prytz and Scerbo, 2015). This 
approach is also consistent with the long-term goal of increasing the load 
per UAV operator (Arrabito et al., 2010; United States Department of 
Defense, 2017). Workload level thresholds, i.e., low and high, were 
based on pilot testing from Devlin et al. (2020) (p. 78–82). To simulate 
the situations likely to occur in UAV command and control, the work
load transition rate was specific to transitions from low to high work
load. The workload transition rates were tested via 15-min scenarios, i. 
e., missions in the testbed:  

1. Slow transitions. The number of active UAVs increased steadily 
from low to high workload. The scenario started at low workload for 
100 s, and one active UAV was added every 10 s until high workload 
was reached (13–16 active UAVs). The scenario would remain at 
high workload for 100 s, before immediately returning to low 
workload. The dotted black line in Fig. 3 shows this cycle repeated 
three times for this scenario. 

2. Medium transitions. The number of active UAVs increased incre
mentally from low to high workload. The scenario started at low 
workload for 20 s, and then one to three active UAVs were added 
every 10 s until high workload was reached (13–16 active UAVs). 
The scenario would remain at high workload for 2 min, before 
immediately returning to low workload. The dashed dark gray line in 
Fig. 3 shows this cycle repeated five times for this scenario.  

3. Fast transitions. The number of active UAVs in this scenario 
increased instantaneously from low to high workload. One minute of 
low workload (3–5 UAVs) was followed by 2 min of high workload 
(13–16 UAVs). After the 2 min of high workload, there was an im
mediate return to low workload. The light gray line in Fig. 3 shows 
this cycle repeated five times for this scenario. 

Table 1 
The scan-based metrics explored as predictors of growth curves of performance 
(note: these measures were calculated for the entirety of each transition rate).  

Metric Definition and calculation 

Spread metrics (where are users generally looking?) 
Spatial gaze density The number of grid cells containing gaze points divided by 

the total number of cells. A 20 × 20 evenly-divided grid 
(128 × 72 pixels per cell) was created to cover the entire 
interface. A higher spatial gaze density would indicate a 
larger dispersion of attention (Goldberg and Kotval, 1999) 

Stationary gaze 
entropy (SGE) 

Stationary gaze entropy indicates how equally distributed 
a person’s attention is, with larger values indicating more 
evenly spread attention across areas of interest (AOI) and 
lower values indicating more narrowed attention (Krejtz 
et al., 2015). It is calculated using the following equation 
Hs = −

∑

i∈AOIs
pi log2(pi)

Where pi represents the proportion of transitions to the ith 
state, i.e. the ith AOI (the AOIs are as defined in Fig. 1), 
and are based on the Markov property, i.e., transitions to a 
given state only depend on the current state (Shiferaw 
et al., 2019a,b). In order to accurately compare it across 
models, this value was normalized by dividing it by 
log2(number of AOIs). 

Directness metrics (how purposeful is attention transitions?) 
Gaze transition rate 

[grid cells/s] 
The rate visual attention shifts between equal grid cells ( 
Goldberg and Kotval, 1999). A higher rate indicates lower 
efficiency. The same grid cells used for spatial gaze density 
were used here. 

Gaze transition 
entropy (GTE) 

Gaze transition entropy represents the randomness and 
complexity of a person’s eye movements, with higher 
values indicating more randomness and lower efficiency ( 
Krejtz et al., 2015). It is calculated based on the following 
formula: 

Ht = −
∑

i∈AOIs
pi

∑

j∈AOIs
pij log2

(
pij

)

Where pi is as described in stationary gaze entropy, and pij 

is the probability of transitioning form state i to state j in 
one fixation. Assuming the Markov property holds, this 
was calculated by counting the number of transitions from 
i to j and then dividing by the total number of transitions 
from i (Shiferaw et al., 2019a,b). This was done for each 
pairing of AOIs (which are defined in Fig. 1). In order to 
accurately compare it across models, this value was 
normalized by dividing it by log2(number of AOIs). 

Duration metrics (how long, in general, does attention last?) 
Average fixation 

duration [msec] 
The amount of time a fixation lasts. A longer duration 
suggests that the user is extracting more information from 
the environment (Jacob and Karn, 2003)  

S.P. Devlin et al.                                                                                                                                                                                                                                



Applied Ergonomics 105 (2022) 103829

4

2.6. Procedures 

This research complied with the APA Code of Ethics and was 
approved by the Institutional Review Board at the U.S. Naval Research 
Laboratory. Informed consent was obtained from each participant. 
Participants then completed a self-paced informational training session 
where they completed the eye tracker’s 9-point calibration procedure 
and learned about the overall experimental goals. They then completed 
a 5-min training session where 6–10 UAVs were always active. Partici
pants then completed testbed scenarios in a counterbalanced order and 
calibrated their point of gaze to the eye tracker before each session. 

3. Results 

3.1. Preprocessing eye tracking data 

Raw gaze data, which consist of the positional (xi, yi) and temporal 
information (ti), were screened for completeness and accuracy via the 
data quality metric provided by Gazepoint and trials were removed if 
they did not reach the quality threshold (as previously mentioned). 
Velocity profiles were then calculated from the raw gaze points (xi, yi, ti) 
by differentiating with a six-tap Savitzky-Golay filter of degree 2 (Krejtz 
et al., 2016). An I-VDT event detection algorithm was then used to 
determine fixations (Komogortsev and Karpov, 2013). The velocity 
threshold for fixations was determined by the adaptive algorithm out
lined in Nyström and Holmqvist (2010), with it ranging 25.6–60.8◦/s 
across all trials. Then, individual fixations were determined as clusters of 
raw gaze points that were below the trial’s velocity threshold, a 
maximum distance of 110 pixels from each other, i.e., ~1◦ visual angle, 
and occurred within a minimum of 80 ms of each other. 

3.2. Model fitting process for conditional growth curve models 

The ultimate goal of this work was to identify the scan-based eye 
tracking metric(s) that predict performance trends over time during 
different workload transition rates. The five scan-based metrics from 
Table 1 were explored as time-invariant predictors of the best fitting 
unconditional growth curve model, which is a model that only includes the 
effect of time and no other predictors. There was an unconditional 
growth curve model for each performance metric, i.e., primary task 
response time and accuracy, in each transition rate (slow, medium, and 
fast transitions). The model fitting process followed the methodology of 
Barr et al. (2013) and Matuschek et al. (2017), which consisted of fitting 
models with a backwards selection approach. Parameters were orthog
onal polynomial effects of time (in 10 s increments), with the maximal 
model being a random quintic time model given the results of the local 
polynomial regression. Parameters were removed if it did not lead to a 
significant decrease in model fit, which was determined by a likelihood 
ratio test (LRT) where α = 0.20. R was used for all analyses (version 
4.0.5; R Core Team, 2021); Response time was modeled as a general 
linear model and was fit with the lme4 package (Bates et al., 2015) and 
accuracy was modeled as a generalized linear model and fit with the 
GLMMadaptive package (Rizopoulos, 2021). Maximum likelihood esti
mation was used to fit all models. 

Fig. 1. Interface of the UAV testbed with panels labeled.  

Fig. 2. Video Feed panel showing how any of the 16 video feeds could be 
active, i.e., video feed is illuminated. Currently, two UAVs are active; all other 
UAVs are inactive; The UAV in the last row has a target (semi-trans
parent cube). 
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After the unconditional growth curve model was established, the 
scan-based metrics were included in the model as time-invariant pre
dictors. A time-invariant predictor is a measure of the individual that is 
not expected to change over time or is only reliably measured once 
throughout an experiment (Hoffman, 2015). The scan-based metrics 
were modeled as time-invariant predictors because they were only 
calculated once per participant per each transition rate. The exploration 
of the predictive ability of scan-based metrics focused on assessing if 
each scan-based metric was an additive or cross-level time invariant 
predictor. In this work, an additive time-invariant predictor predicts 
average performance, i.e., the model’s intercept parameter β0i, (see 
Equation (1)), where a cross-level time-invariant predictor predicts how 
performance generally trends over time, i.e., the model’s linear time 
slope, β1 (see Equation (2)). 

yti = β0i + β1(Timeti) + β2(Timeti)
2

+ β4(Timeti)
4

+ β5(Timeti)
5 where , (1)  

β0i = γ00 + γ01(Scan − based metrici) + U0i ,

β1 = γ10  

β2 = γ20,

β3 = γ30 ,

β4 = γ40 ,

β5 = γ50  

yti = β0i + β1(Timeti) + β2(Timeti)
2

+ β4(Timeti)
4

+ β5(Timeti)
5 where (2)  

β0i = γ00 + γ01(Scan − based metrici) + U0i ,

β1 = γ10 + γ11(Scan − based metrici)

β2 = γ20,

β3 = γ30 ,

β4 = γ40 ,

β5 = γ50 

Again, R was used for all analyses and a backwards stepwise selection 
process was used to assess the predictive utility of each scan-based 
metric in each unconditional growth curve model. This consisted of 
including all the eye tracking metrics, as both additive and cross-level 

time invariant predictors, in the established unconditional growth 
curve model and assessing the change in model fit when each scan-based 
metric was systematically excluded. The backwards stepwise selection 
process was then conducted with the buildmer package and predictor 
selection was based on the Akaike’s Information Criterion (Matuschek 
et al., 2017; Voeten, 2019). When appropriate, the significance of each 
scan-based metric was assessed with a Wald test where degrees of 
freedom were corrected with the Satterthwaite’s method (additive: α =
0.05 and cross-level: α = 0.10; Mathieu et al., 2012; Voeten, 2019). 
Scan-based metrics that were not significant were excluded, and the 
model was refitted and compared to the unconditional growth curve 
model via an LRT (α = 0.10; Gries, 2021). The results from the final 
conditional growth curve model, i.e., all the parameter estimates and fit 
statistics, are presented in detail and interpreted. 

3.2.1. For slow transitions, fixation duration predicted average response 
time and stationary gaze entropy predicted its trend over time 

The unconditional growth curve model for response time during slow 
transitions had a positive fixed quintic time slope and a random inter
cept (χ2(1) = 46.188, p < 0.001). The backward stepwise selection 
process selected fixation duration as an additive time-invariant predic
tor and stationary gaze entropy as a cross-level time-invariant predictor. 
These predictors were significant (See Table 2 for details) and lead to a 
significantly better model fit compared to the unconditional growth 
curve model (χ2(3) = 15.959, p = 0.001). Therefore, the final condi
tional growth curve model of response time during slow transitions 
included average fixation duration as an additive effect and stationary 

Fig. 3. Number of active UAVs during each 15-min testbed scenario, i.e., transition rate.  

Table 2 
The parameter estimates of the final conditional growth curve models of primary 
task response time during slow transitions (Satterthwaite’s degrees of freedom 
correction was used when assessing the significance of all parameter estimates).  

Model parameter Parameter estimate (standard error) 

Intercept (β0i)

Intercept (γ00) 
Stationary gaze entropy (γ01) 
Average fixation duration (γ02) 

3.287*** (0.488) 
0.972† (0.487) 
−0.005* (0.002) 

Linear time slope (β1)

Linear time (γ10) 
Linear time × Stationary gaze entropy (γ11) 

−3.938* (1.932) 
6.778* (3.049) 

Quadratic time slope (β2) −0.852*** (0.257) 
Cubic time slope (β3) 2.184*** (0.256) 
Quartic time slope (β4) 0.237 (0.258) 
Quintic time slope (β5) 1.775*** (0.261) 

Significance codes: ‘***’ indicates p < 0.001, ‘**’ indicates p < 0.01, ‘*’ indicates 
p < 0.05, ‘†’ indicates p < 0.10. 
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gaze entropy as a cross-level effect. 
Specifically, for every one standard deviation increase in fixation 

duration (M = 125.2 ms, SD = 17.3 ms), and assuming all other pre
dictors remained equal, response time improved by 0.09 s. For sta
tionary gaze entropy (M = 0.63, SD = 0.08), every one standard 
deviation increase estimated the total decrement in response time to be 
0.20 s longer. Table 2 shows the results of the final conditional growth 
curve model and Fig. 4 depicts the final conditional growth curve model 
of primary task response time, specifically estimating a quintic trend 
over time with the scan-based metrics predicting average speed and its 
change over time. 

3.2.2. For medium transitions, stationary gaze entropy predicted average 
response time 

The unconditional growth curve model for response time during 
medium transitions had a positive fixed quintic time slope and a random 
intercept (χ2(1) = 2.023, p = 0.155). The backwards stepwise selection 
process selected gaze transition entropy and stationary gaze entropy as 
additive time-invariant predictors. However, gaze transition entropy 
was not a significant additive effect (γ01 = −0.938, SE = 0.613, t =

−1.531, p = 0.135) so it was removed. This reduced conditional model 
was still a significant improvement in model fit compared to the un
conditional growth curve model (χ2(1) = 7.934, p = 0.005), meaning 
stationary gaze entropy was a significant additive effect. Specifically, for 
every one standard deviation increase in stationary gaze entropy (M =
0.60, SD = 0.09), average response time would be 0.11 s longer. Table 3 
shows the parameter estimates of the final conditional model and Fig. 5 
depicts how changes in stationary gaze entropy impacted the final 
conditional growth curve model of primary task response time during 
medium transitions. 

3.2.3. For fast transitions, none of the scan-based metrics predicted 
response time trends 

The unconditional growth curve model for response time during fast 
transitions had a positive fixed quintic time slope and a random inter
cept (χ2(1) = 16.01, p < 0.001). The backwards stepwise selection 
process selected spatial gaze density as an additive and cross-level time- 
invariant predictor. However, neither was a significant effect in the 
model (γ01 = −0.340, SE = 0.483, z = −0.705, p = 0.487 and γ11 =

5.761, SE = 3.574, z = 1.612, p = 0.107), so both were removed. 
Therefore, there was no final conditional growth curve model for 
response time during fast transitions. 

3.2.4. For slow transitions, stationary gaze entropy, average fixation 
duration, and spatial gaze density predicted average accuracy 

The unconditional growth curve model for accuracy during slow 
transitions was a fixed quintic, random cubic time slope model, 
excluding all random correlation (χ2(1) = 1.670, p = 0.196). The 
backwards stepwise selection process selected stationary gaze entropy as 
an additive time-invariant predictor and average fixation duration, 
spatial gaze density, and gaze transition rate as cross-level time- 
invariant predictors. However, the additive time-invariant predictor of 
gaze transition rate and none of the cross-level time-invariant predictors 
were significant, so they were removed (γ04 = 0.147, SE = 0.085, z =
1.732, p = 0.083; γ11 = 0.616, SE = 0.408, z = 1.510, p = 0.131; γ12 =

9.950, SE = 6.092, z = 1.633, p = 0.102; γ13 = −1.149, SE = 0.752, z =
−1.528, p = 0.126). This reduced conditional model significantly 
improved model fit compared to the unconditional model (χ2(3) =

14.060, p = 0.003). Therefore, the final conditional growth curve model 
of accuracy during slow transitions included stationary gaze entropy, 
average fixation duration, and spatial gaze density as additive 
predictors. 

Specifically, for every one standard deviation increase in stationary 
gaze entropy (M = 0.63, SD = 0.08), and assuming all other predictors 
remained equal, average accuracy was predicted to worsen by an 
average of 4.9%. However, for average fixation duration (M = 125.0 ms, 
SD = 17.1 ms), every standard deviation increase predicted average 
accuracy to improve by an average of 3.7%, assuming all other pre
dictors remained equal. For spatial gaze density, every standard 

Fig. 4. The final conditional growth curve model of primary task response time 
during slow transitions, specifically showing the isolated impact of each pre
dictive scan-based metric when it is at its mean and one standard deviation (SD) 
above and below it: (a) stationary gaze entropy (SGE) and (b) average fixation 
duration (AFD). 

Table 3 
The parameter estimates of the final conditional growth curve models of primary 
task response time during medium transitions (Satterthwaite’s degrees of 
freedom correction was used when assessing the significance of all parameter 
estimates).  

Model parameter Parameter estimate (standard error) 

Intercept (β0i)

Intercept (γ00) 
Stationary gaze entropy (γ01) 

3.083*** (0.259) 
1.267** (0.425) 

Linear time slope (β1) 0.217 (0.245) 
Quadratic time slope (β2) 0.688** (0.247) 
Cubic time slope (β3) 0.291 (0.246) 
Quartic time slope (β4) −0.760** (0.246) 
Quintic time slope (β5) 0.350 (0.243) 

Significance codes: ‘***’ indicates p < 0.001, ‘**’ indicates p < 0.01, ‘*’ indicates 
p < 0.05, ‘†’ indicates p < 0.10. 

S.P. Devlin et al.                                                                                                                                                                                                                                



Applied Ergonomics 105 (2022) 103829

7

deviation increase predicted average accuracy to decline by an average 
of 3.8%, assuming all other predictors remained equal. Table 4 shows 
the parameter estimates of the final conditional model and Fig. 6 depicts 
how each scan-based metric impacted the final conditional growth curve 
model of primary task accuracy during slow transitions. 

3.2.5. For medium transitions, stationary gaze entropy predicted average 
accuracy 

The unconditional growth curve model for accuracy during medium 
transitions was a model with a fixed quintic and random intercept (χ2(1) 
= 45.98, p < 0.0001). The backwards stepwise selection process selected 
stationary gaze entropy as an additive time-invariant predictor and 
spatial gaze density and gaze transition rate as cross-level time-invariant 
predictors. However, none of the predictors other than stationary gaze 
entropy were significant, so they were removed (γ02 = −0.499, SE =

0.446, z = −1.120, p = 0.262; γ03 = 0.083, SE = 0.059, z = 1.411, p =
0.158; γ11 = −5.822, SE = 4.194, z = −1.388, p = 0.165; γ12 = 0.774, SE 
= 0.490, z = 1.581, p = 0.114). Including only stationary gaze entropy 
still lead to a significantly better model fit compared to the uncondi
tional model (χ2(1) = 11.57, p < 0.001). Therefore, the final conditional 
growth curve model of accuracy during medium transitions included 
stationary gaze entropy as an additive effect. Specifically, for every one 
standard deviation increase in stationary gaze entropy (M = 0.60, SD =
0.09), average accuracy was predicted to decline by an average of 5.5% 
during the medium transitions scenario. Table 5 shows the parameter 
estimates of the final conditional growth curve model and Fig. 7 depicts 
how stationary gaze entropy impacted the final conditional growth 
curve model of primary task accuracy during medium transitions. 

Fig. 5. The final conditional growth curve model of primary task response time 
during medium transitions, specifically showing the impact of stationary gaze 
entropy (SGE) when it is at its mean and one standard deviation (SD) above and 
below it. 

Table 4 
The parameter estimates of the final conditional growth curve models of primary 
task accuracy during slow transitions.  

Model parameter Parameter estimate (standard error) 

Intercept (β0i)

Intercept (γ00) 
Stationary gaze entropy (γ01) 
Average fixation duration (γ02) 
Spatial gaze density (γ03) 

4.324*** (0.411) 
−2.753*** (0.376) 
0.187*** (0.037) 
−2.618*** (0.491) 

Linear time slope (β1) −1.533*** (0.361) 
Quadratic time slope (β2) 1.483*** (0.378) 
Cubic time slope (β3) −2.903*** (0.364) 
Quartic time slope (β4) 0.906** (0.352) 
Quintic time slope (β5) −1.858*** (0.320) 

Significance codes: ‘***’ indicates p < 0.001, ‘**’ indicates p < 0.01, ‘*’ indicates 
p < 0.05, ‘†’ indicates p < 0.10. 

Fig. 6. The final conditional growth curve model of primary task accuracy 
during slow transitions, specifically showing the isolated impact of each pre
dictive scan-based metric when it is at its mean and one standard deviation (SD) 
above and below it: (a) stationary gaze entropy (SGE), (b) average fixation 
duration (AFD), and (c) spatial gaze density (SGD). 
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3.2.6. For fast transitions, stationary gaze entropy and average fixation 
duration predicted average accuracy and gaze transition rate predicted its 
trend over time 

The unconditional growth curve model for accuracy during fast 
transitions was a random quintic time model (χ2(1) = 2.35, p = 0.1251). 
The backwards stepwise selection process selected gaze transition en
tropy and average fixation duration as additive time-invariant pre
dictors and stationary gaze entropy, spatial gaze density, and gaze 
transition rate as cross-level time-invariant predictors. However, gaze 
transition entropy, spatial gaze density, and the cross-level effect of 
stationary gaze entropy were not significant so they were removed (γ01 
= 1.151, SE = 0.655, z = 1.756, p = 0.079; γ04 = 0.118, SE = 0.063, z =
1.872, p = 0.061; γ11 = −1.497, SE = 3.563, z = −0.420, p = 0.674; γ12 
= −0.491, SE = 0.512, z = −0.959, p = 0.338). The reduced conditional 
model was still a significantly better fit than the unconditional model 
(χ2(4) = 7.91, p = 0.095). Therefore, the final conditional growth curve 
model for accuracy during fast transitions included average fixation 
duration and stationary gaze entropy as an additive predictor and gaze 
transition rate as cross-level predictor. 

Specifically, for every one standard deviation increase in stationary 
gaze entropy (M = 0.61, SD = 0.08) average accuracy was predicted to 
decline by 4.1% during fast transitions, assuming all other predictors 
remained equal. For average fixation duration (M = 124.3 ms, SD =

16.5 ms), one standard deviation increase predicted average accuracy to 
improve by 3.6%, assuming all other predictors remained equal. 
Finally, a one standard deviation increase in gaze transition rate (M =
2.7 grid cells/s, SD = 0.71 grid cells/s) predicted the decline in accuracy 
to be 0.64% less on average, assuming all other predictors remained 
equal. Table 6 shows the parameter estimates of the final conditional 
model and Fig. 8 depicts how the scan-based metrics impacted the final 

conditional growth curve model of primary task accuracy during fast 
transitions. 

Table 7 summarizes the findings on the ability scan-based metrics 
have on predicting workload transition performance trends over time. 

4. Discussion 

The goal of this research was to assess whether scan-based metrics 
are predictive of performance trends. Here we found the predictive 
capability was a function of the performance metric, i.e., response time 
and accuracy, and workload transition rate. For slow transitions, the 
duration of visual attention (average fixation duration) and how 
dispersed its transitions are across the AOIs (stationary gaze entropy) 
and in general (spatial gaze density) are predictive of both average 
performance and/or its trends over time. For medium transitions, the 
dispersion of visual attention transitions across the AOIs (stationary gaze 
entropy) was predictive of average performance. For fast transitions, the 
dispersion of visual attention transitions across the AOIs (stationary gaze 
entropy) and its duration (average fixation duration) is predictive of 
average accuracy whereas the pace of general visual attention changes 
(gaze transition rate) is predictive of accuracy’s trends over time. Our 
expectations were mostly met, but with caveats. For instance, across all 
transition rates, stationary gaze entropy was predictive of average per
formance and/or its trend over time, which is consistent with other work 
that studies scan-based metrics in realistic environments (Moacdieh 
et al., 2020; Shiferaw et al., 2019a,b). 

4.1. Implications of stationary gaze entropy being a significant predictor 
across all transition rates 

The ability of stationary gaze entropy to predict performance may lie 
in the inclusion of context-driven AOIs and the Markov property—i.e., 
memoryless transitions. The Markov property is true if, “the probability 
distribution of future states of the process conditioned on both the past 
and present states depends only on the present state” (Gudivada et al., 
2015). For example, transitions to AOIs on the display is only dependent 
on the current AOI the participant is looking at. Here the long-term 
probabilities are the proportion of transitions that go to each AOI (Shi
feraw et al., 2019a,b). Stationary gaze entropy may have high predictive 
capability because it is a measuring spread based on active transitions 
between AOIs (Shic et al., 2008) and the certainty of those transitions. 
Thus, providing a single quantitative value on the dynamics of visual 
attention transitions across AOIs, given both micro, i.e., where current 
visual attention is transitioning to, and macro, i.e., how the proportion 
of visual attention to each AOI compare to each other over time. Addi
tionally, the current success of assuming transitions between AOIs are a 
memoryless process—i.e., the Markov property—shows practical po
tential in deploying effective adaptive assistance based on scan patterns. 

Table 5 
The parameter estimates of the final conditional growth curve models of primary 
task accuracy during medium transitions.  

Model parameter Parameter estimate (standard error) 

Intercept (β0i)

Intercept (γ00) 
Stationary gaze entropy (γ01) 

2.512*** (0.084) 
−2.780*** (0.132) 

Linear time slope (β1) 1.106*** (0.296) 
Quadratic time slope (β2) 0.385* (0.186) 
Cubic time slope (β3) −0.818** (0.273) 
Quartic time slope (β4) −0.025 (0.207) 
Quintic time slope (β5) −1.722*** (0.191) 

Significance codes: ‘***’ indicates p < 0.001, ‘**’ indicates p < 0.01, ‘*’ indicates 
p < 0.05, ‘†’ indicates p < 0.10. 

Fig. 7. The final conditional growth curve model of primary task accuracy 
during medium transitions, specifically showing the impact of stationary gaze 
entropy (SGE) when it is at its mean and one standard deviation (SD) above and 
below it. 

Table 6 
The parameter estimates of the final conditional growth curve models of primary 
task accuracy during fast transitions.  

Model parameter Parameter estimate (standard error) 

Intercept (β0i)

Intercept (γ00) 
Stationary gaze entropy (γ01) 
Average fixation duration (γ02) 
Gaze transition rate (γ03) 

2.704*** (0.286) 
−2.315*** (0.384) 
0.169*** (0.040) 
−0.215*** (0.053) 

Linear time slope (β1)

Linear time (γ10) 
Linear time × Gaze transition rate (γ11) 

−2.978** (1.025) 
0.750* (0.367) 

Quadratic time slope (β2) 0.683** (0.312) 
Cubic time slope (β3) −1.907*** (0.319) 
Quartic time slope (β4) 2.001*** (0.315) 
Quintic time slope (β5) −1.161*** (0.290) 

Significance codes: ‘***’ indicates p < 0.001, ‘**’ indicates p < 0.01, ‘*’ indicates 
p < 0.05, ‘†’ indicates p < 0.10. 
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The eye tracker can intermittently lose contact with the operator’s point 
of gaze, so it is imperative adaptive assistance can provide accurate 
predictions without requiring the entire scanpath. Vetting this approach 
is essential as its applicability may change depending on AOI definition 
or task paradigm. 

The overwhelming predictive capability of stationary gaze entropy 
may not only be due to the Markov property because gaze transition 
entropy, which also relies on the Markov property, was not effective in 
predicting performance (similar to Shiferaw et al., 2018). Rather, it may 
also be due to it being a spread metric, i.e., measuring where someone 
looks, as gaze transition entropy is a directness metric, i.e., measuring 
the efficiency of a scanpath. However, between the two spread metri
cs—i.e., spatial gaze density and stationary gaze entropy—stationary 
gaze entropy predicted more aspects of performance trends, meaning 
the way spread metrics are defined matters. Spatial gaze density may 
have been a somewhat less effective predictor because it reduces the 
display into a uniform grid, providing no context on how each grid cell 
relates to the task or how often it is viewed. Conversely, the AOIs of 
stationary gaze entropy had a direct mapping with a testbed task, which 
inherently provides more semantic information than a grid cell. Spe
cifically, it informs how participants relied on their visual attention to 
manage tasks as workload transitioned. Simply knowing how much of 
the display was viewed, i.e., what spatial gaze density essentially 
quantifies, could be more dependent on display design than the partic
ipant’s visual attention allocation patterns (Moacdieh and Sarter, 2015), 
making it less informative of the individual’s workload transition 
management strategy. In summary, where and how frequent visual 
attention transitioned is a better indicator of performance than where it 
landed in general. 

Finally, stationary gaze entropy is not only useful as a predictor of 
performance, but also informs display design. Stationary gaze entropy 
suggests having a balanced number of transitions between the AOIs 
results in worse performance across all transition rates. Given this study 
had a primary task, we conjecture that performance improved when 
most of the transitions were to the primary task’s AOI, i.e., Video Feed 
panel. From a design perspective, attention should be directed to a 
primary task and minimized elsewhere either via design features and/or 
adaptive assistance. When reviewing suggested layouts of current UAV 
command and control tasks, we found that AOIs associated with each 
task are typically dispersed across the display and organized into several 
subgroups (Feitshans et al., 2008; Foroughi et al., 2019). It may be 
strategic to reorganize these displays based on the operator’s priorities, 
especially if multitasking between tasks is not equal. 

4.2. Implications on theory: effort regulation may manifest differently 
depending on sensory modality and depend on the features of the transition 
and environment 

The interpretations from the final conditional models add to the 
existing theory on workload transitions. To date, there has been limited 
work to expand upon the two explanations—i.e., resource depletion and 
effort regulation, even when psychophysiological measures are included 
(e.g., Bowers et al., 2014; Boyer et al., 2015). Here, the current findings, 
allow us a unique opportunity to build upon the effort regulation 
explanation, given it stipulates that workload transition performance is 
a function of how mental resources are relied upon. Specifically it states: 

Workload transition performance is dependent on the individual 
actively appraising, recruiting, and deploying the requisite amount of 
mental resources. Performance is stable as long as the appraisal is 
correct and workload does not reach levels of overload (Hockey, 1997). 

We expand upon the bolded terms in the definition above by adding 
specifications to: (a) what in the environment is appraised, and (b) how 
mental resources are deployed, and (c) the type of mental resource. The 
only aspect of this explanation we do not address is resource recruit
ment, but future work ideally can (see alternatives presented in 
Conclusion). 

Fig. 8. The final conditional growth curve model of primary task accuracy 
during fast transitions, specifically showing the isolated impact of each pre
dictive scan-based metric when it is at its mean and one standard deviation (SD) 
above and below it: (a) stationary gaze entropy (SGE), (b) average fixation 
duration (AFD), and (c) gaze transition rate (GTR). 
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First, we propose workload transition performance is not only 
dependent on appraising the amount of workload, but it is also depen
dent on appraising the rate in which workload transitions. The different 
significant predictors across the final conditional models support this 
notion. Although all final models predicted performance to worsen 
when visual attention transitions were more evenly distributed across 
tasks, i.e., when stationary gaze entropy was larger, there is some evi
dence that different scan patterns are necessary across the three tran
sition rates. For example, for slow transitions, longer periods of visual 
attention predicted improved average response time, meaning per
forming quickly during slow transitions required more thoughtful 
cognitive processing (Holmqvist et al., 2011; Poole and Ball, 2006). For 
fast transitions, frequent general attention shifts predicted improved 
average accuracy and a smaller decrement over time, suggesting per
forming well during fast transitions requires more frequent changes in 
attention (Yang et al., 2018). Our results show performance improves 
when scan patterns account for transition rate. 

Second, we propose the deployment of resources should consider the 
way in which visual attention is allocated. Namely, its location, effi
ciency, and time span. This is evident by one scan-based eye tracking 
metric from each category—i.e., spread, directness, and duration—being a 
significant predictor for at least one performance trend over time. We 
propose the deployment of mental resources needs to consider the 
questions regarding the visual attention allocation types: where people 
are looking (spread), how efficiently people are looking (directness), and 
how long people are looking (duration). 

Third, we propose amending the effort regulation explanation to 
specify that workload transition performance is dependent on the type of 
mental resource. Our work suggests it is specifically dependent on visual 
attentional resources. This is supported by the fact that at least one scan- 
based metric was a significant predictor of performance. Considering the 
entire experiment was largely visual in nature, this finding is not sur
prising; however, it highlights that the applicability of this theory may 
hinge on what sensory modality is considered. This supports the premise 
of the Multiple Resource Model, which posits different sensory modal
ities draw from separate attentional resources (Wickens, 1980). Future 
work should examine whether the effort regulation explanation is 

applicable to other modalities, i.e., auditory, tactile, etc. We believe 
detailing the effort regulation explanation in this way leads to a better 
understanding and expectation of how people perform and allocate their 
visual attention during workload transitions. 

4.3. Implication for design: technology design for each transition rate 
based on scan-based metrics 

Workload transitions continue to be a feature of the environment 
that needs consideration, but currently there is limited design guidance 
that accounts for them. Beyond prediction, the current results also 
provide new information on the success of task strategy. Empirically- 
based design guidance for each workload transition rate is outlined in 
Table 8. Although it is by no means exhaustive, as different populations, 
transition rates, and environments need to be sampled, this design 
guidance is the first of its kind in the workload transition 
knowledgebase. 

5. Conclusion 

The present results suggest scan-based metrics are capable of pre
dicting workload transition performance trends. They are also very 
informative on differences in performance trends across transitions 
rates, theory development, and design guidance. Future work should 
continue to explore how novel measures and methods can test and revise 
theory surrounding workload transitions in order to innovate the current 
state of the knowledgebase. This work also finds another application of 
scan patterns potentially being informative of performance in real-time. 
Eye tracking methods need to be included in future workload transition 
research, especially if it pertains to workload transition performance 
over time. 

5.1. Future work and limitations 

Although the present work substantially adds to the workload tran
sition knowledgebase, it is not without limitations. First, although the 
selection of eye tracking metrics included in this study was motivated by 

Table 7 
Summary of the conditional growth curve modeling results. Significant eye tracking metrics are denoted by a ✓  

Transition 
rate 

Performance 
metric 

Spread metric Directness metric Duration 
metric 

Takeaway 

Spatial 
gaze 
density 

Stationary 
gaze entropy 

Gaze 
transition 
rate 

Gaze 
transition 
entropy 

Fixation 
duration 

SLOW Response time  ✓   ✓ Longer fixation duration predicts 
faster response times overall. Larger stationary 
gaze entropy 
predicts larger decrements in 
response time 
over time 

Accuracy ✓ ✓   ✓ Larger stationary gaze entropy and spatial gaze density 
predicts lower 
accuracy 
rates overall. Longer fixation duration predicts higher 
accuracy rates overall 

MEDIUM Response time  ✓    Larger stationary gaze entropy 
predicts slower 
overall response times 

Accuracy  ✓    Larger stationary gaze entropy 
predicts lower 
overall accuracy rates 

FAST Response time      None of the scan-based metrics predict response time 
trends 

Accuracy  ✓ ✓  ✓ Larger stationary gaze entropy 
predicts lower 
accuracy overall. Longer fixation durations predicts higher 
accuracy overall. Larger gaze transition rate predicts 
smaller decrements in accuracy over time  
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existing work (Moacdieh et al., 2020), there are other metrics worth 
exploring (e.g., Devlin et al., 2021). Several scan-based metrics were 
selected in the backwards stepwise selection process, so their usefulness 
may change based on research goals or modeling methods [e.g., the 
applicability of spatial gaze density in the present work versus Moacdieh 
et al. (2020)]. In addition, eye tracking metrics used to study cognitive 
load (e.g., pupillometry, blink rate) may be better equipped to address 
any applicability of the resource depletion explanation and/or the 
recruitment of mental resources due to these metrics’ ability to specif
ically address amounts of mental resources. Similarly, psychophysio
logical measures of task engagement and/or fatigue could help further 
detail the effort regulation explanation (e.g., Bernhardt et al., 2019; 
Naeeri et al., 2019). More generally, different types of workload tran
sitions should be explored with this current analysis approach, espe
cially when considering the prevalence and impact of unexpected and 
dramatic changes in workload (Endsley, 2017). 

Relatedly, multivariate growth curve modeling could explore if the 
trend of scan-based metrics relates to workload transition performance. 
It would require a rather large sample size (>100 participants; Astivia 
et al., 2019), but it may be particularly informative when building upon 
the resource depletion explanation and/or the recruitment of resources, 
as both depend on time and workload. The current eye tracking metrics 
were included as time-invariant predictors because of (1) how these 
metrics are calculated and (2) the ultimate goal to understand the pre
dictive capability of eye tracking on performance trends over time. 

Future work should see if Markov models could reliably predict vi
sual attention transitions across AOIs during workload transitions. Pre
vious work has shown some success in using Markov models to predict 
where visual attention will be allocated (Ebeid et al., 2019; Liechty 
et al., 2003), but it is unclear how transition rate, individual differences, 
and task features would influence these findings. It is also worth 
expanding this kind of investigation to account for the impact of the 
secondary task and the impact it has on performance for different 
workload transitions rates. Examining this has been particularly helpful 
in understanding multitasking strategies in complex environments 
(Jeong et al., 2019), which is essential to future UAV command and 
control missions (Cummings, 2014). 
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Table 8 
Findings, design guidance, and design example for each transition rate.  

Transition 
rate 

Finding Design Guidance Example 

ALL  • Stationary gaze 
entropy 
predicted 
performance to 
be worse when 
attention 
transitions 
across tasks 
were relatively 
equal  

• Conduct a task 
analysis for the 
content and 
placement of AOIs  
o Minimize 

transitions 
between AOIs 
and/or 
centralize the 
most used AOIs  

o Offload less 
prioritized tasks 
to other sensory 
channels (e.g., 
chat messages to 
auditory, fuel 
leaks to tactile; 
Riggs et al., 
2017)  

• Alerting 
participants of 
potential threats 
via the tactile 
channel improved 
primary task 
performance 
without hindering 
secondary task 
performance in a 
simulated combat 
environment 
(Oskarsson et al., 
2012) 

SLOW  • Longer fixation 
duration and 
smaller spatial 
gaze density 
predicted better 
average 
performance  

• Design elements 
on the display so 
that they prompt 
the operator to 
take the time to 
further examine 
and encode 
information and 
make sure the 
elements are 
collocated  

• Make items 
essential to good 
performance, (e.g., 
the target), 
engaging and 
informative so the 
operator spends 
time fixating 
(Jacob and Karn, 
2003; Poole and 
Ball, 2006)  

• Increasing the 
detail and salience 
of information 
without increasing 
clutter helped 
refocus attention 
without a cost of 
cognitive load in 
nuclear power 
plant control 
environments 
(Kovesdi et al., 
2018) 

MEDIUM  • Stationary gaze 
entropy is the 
only metric able 
to predict 
response time 
and accuracy 
trends, so it 
should be 
further explored 
to be used in 
real-time  

• Build and test 
stochastic models 
of transitions 
between AOIs, i.e., 
Markov decision 
processes, to 
identify the most 
to least frequent 
transitions 
between AOIs to 
determine the 
distance between 
AOIs  

• Gaze location in 
static image 
viewing was 
predicted with 
56% accuracy 
(chance was 33%) 
with hidden 
Markov modeling 
(Coutrot et al., 
2018) 

FAST  • Larger gaze 
transition rate 
and larger 
fixation 
duration 
predicted better 
average 
performance 
and its trend 
over time  

• Prompt efficient 
scanning by 
decluttering the 
display and 
making key tasks 
salient and 
informative, as 
this will also 
increase the focus 
of attention 
(Moacdieh and 
Sarter, 2015)  

• Provide 
redundancy for the 
most important 
tasks by including 
multiple, 
informative visual 
representations in 
the environment 
(Yang et al., 2018)  

• Comprehension 
rates and visual 
attention transition 
rates increased 
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was presented 
across multiple 
visualizations 
(O’Keefe et al., 
2014)  
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