SLO-Aware Space-Time GPU Sharing for DL Workloads

Ubaid Ullah Hafeez, Anshul Gandhi

{uhafeez,anshul}@cs.stonybrook.edu
Stony Brook University, Stony Brook, NY, USA

Abstract

GPU-equipped servers are extensively used for Deep Learn-
ing (DL) jobs to train and serve Deep Neural Nets (DNNSs)
for inference [2, 4]. However, for a given DL job, it is often
infeasible to fully utilize allocated GPUs even when employ-
ing state-of-the-art DL frameworks [6-8, 11, 14]. It has been
observed that DNN execution can result in under-utilization
of both memory and compute resources offered by present
day GPUs [5, 20, 21]. This is primarily due to the disparity
in the capability of available GPUs and the requirements
of DL jobs—commaodity GPUs are available in a few fixed
configurations [6] whereas modern DL jobs exhibit immense
variety in their compute and memory requirements. This
mismatch between the resource requirements of DL jobs and
the capabilities of available GPUs presents an opportunity
to increase eficiency by sharing GPUs among multiple jobs.

Prior works [3, 10, 13, 15, 16, 19, 20] explore various tech-
niques to maximize GPU utilization via sharing among mul-
tiple DL jobs. While effective, most of the prior works ignore
SLOs of the underlying jobs. In addition, prior works [5, 21]
typically explore scenarios in which GPU resources are either
exclusively shared by multiple training jobs or exclusively
shared by multiple inference jobs, overlooking the mixed-use
case where training jobs may be colocated with inference
jobs on the same set of GPU resources. This mixed-use case
is particularly appealing for resource eficiency given the
contrasting characteristics of training and inference jobs. In-
ference jobs typically are end-user-facing and are therefore
latency sensitive, unlike training jobs.

Our work, Herald addresses the main challenges involved
in sharing GPUs among training and inference jobs. Her-
ald does this by implementing algorithms to enable careful
spatial- and time-sharing of GPUs between training and in-
ference jobs. Our algorithms adhere to the SLO requirements
of DL jobs while increasing the eficiency of GPU resources.

To design spatial- and time-sharing techniques, Herald
makes use of two key observations. First, a DL job typically
does not use GPU compute resources continuously. There
are periods during which the GPUs are either idle or partially
utilized. Second, there are times when a DL job fully utilizes
GPUs’ compute resources, leaving no room for sharing of
resources without sacrificing job performance.

Herald estimates requirements for all the compute opera-
tions using the underlying data flow graph of the DL jobs.
This enables Herald to identify “light” operations for which
GPU can be shared without any significant performance

N

IN

imTraining imTraining
'mInference 'mInference

w
N
o

Per-batch time (seconds)
N
o
15

Per-batch time (seconds)

o
o

Exclusive ~ MPS Herald Exclusive ~ MPS Herald

(a) Transformer [18] inference with (b) Transformer [18] inference with
RNNLM [22] training job VGG16 [17] training job

Figure 1. Experimental evaluation results for Herald.

degradation. For the more compute-intensive “heavy” oper-
ations where spatial sharing is ineffective and can degrade
performance, Herald implements fine-grained time sharing
of GPUs to prioritize SLO-sensitive (inference) workloads.

We implement Herald by integrating directly into the Ten-
sorFlow source code to avoid modifications in user-level code.
For scheduling and spatial sharing decisions, Herald employs
information about the data-flow graph of each DL job, which
can be obtained ofline without much overhead [7, 9, 11].
We also design a new logging tool which only logs
infor-mation pertinent to our algorithms, reducing the
logging overhead by an order of magnitude compared to the
existing tf.Profiler [1] in TensorFlow. We use shared
memory to keep track of the state of the GPUs and job
priorities.

We experimentally evaluate Herald on a server equipped
with an NVIDIA Tesla V100 16GB GPU. We share the GPU
between two DL jobs: (1) a high priority inference job for a
Transformer [18] model, and (2) a low priority training job
that is RNNLM [12, 23] in Figure 1(a) and VGG-16 [17] in
Figure 1(b), respectively. The inference job has a request rate
of 10 samples/second with an SLO of 1.6 seconds to process
one batch of data (red dotted line in Figure 1).

In Figure 1, “Exclusive” shows the performance achieved
by the jobs when run in isolation (without sharing of GPU
resources). We use MPS [3], the default GPU sharing tool by
NVIDIA, as the baseline for our performance evaluation. We
tried various configurations of MPS to prioritize execution
of inference jobs and report numbers for the setting which
maintains SLOs for the inference job. However, the colocated
training job experiences on average 2.5x increase in per-
batch time as compared to “Exclusive”. On the other hand,
the scheduling and sharing algorithms of Herald ensure that
the SLO for the inference job is achieved and that the training
job can maximize utilization of GPU resources during times
when inference is unable to saturate GPU resources. As a
result, per-batch time of training job increases by only 22%,
on average, which is 10x lower than that under MPS.



Acknowledgment

This work was supported in part by NSF grants 1730128,
1750109, 2106434, and 2214980.

References

(1]
(2]

[3

[4

[5

6

[7

[8

[9

[10]

(1]

[12]

[13]

[14]

[15]

2020. TensorFlow Profiler. Retrieved Oct 2, 2022 from https://github.
com/tensorflow/profiler

2022. Al Composability and Virtualization: Mellanox Network Attached
GPUs. Retrieved Oct 2, 2022 from https://network.nvidia.com/related-
docs/solutions/SB_ai_composability_virtualization.pdf

2022. NVIDIA. CUDA Multi-Process Service. Retrieved Oct 2, 2022 from
https://docs.nvidia.com/deploy/mps/index.html

Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodik, Krishna Chin-
talapudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha.
2017. Real-time video analytics: The killer app for edge computing.
computer 50, 10 (2017), 58—67.

Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2020.
Gslice: controlled spatial sharing of gpus for a scalable inference plat-
form. In Proceedings of the 11th ACM Symposium on Cloud Computing.
492-506.

Ubaid Ullah Hafeez and Anshul Gandhi. 2020. Empirical Analysis
and Modeling of Compute Times of CNN Operations on AWS Cloud.
In 2020 IEEE International Symposium on Workload Characterization
(ISWC). IEEE, 181-192.

Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, and Zhenhua Liu. 2021.
Towards optimal placement and scheduling of DNN operations with
Pesto. In Proceedings of the 22nd International Middleware Conference.
39-51.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Eficient training of giant neural networks
using pipeline parallelism. Advances in neural information processing
systems 32 (2019).

Beomyeol Jeon, Linda Cai, Pallavi Srivastava, Jintao Jiang, Xiaolan Ke,
Yitao Meng, Cong Xie, and Indranil Gupta. 2020. Baechi: fast device
placement of machine learning graphs. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 416—430.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Jun-
jie Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of {Large-
Scale}{Multi-Tenant}{GPU} Clusters for {DNN} Training Work-
loads. In 2019 USENIX Annual Technical Conference (USENIX ATC 19).
947-960.

Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond data and
model parallelism for deep neural networks. SysML 2019 (2019).
Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and
Yonghui Wu. 2016. Exploring the limits of language modeling. arXiv
preprint arXiv:1602.02410 (2016).

Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and
Myeongjae Jeon. 2021. Zico: Eficient {GPU} Memory Sharing for Con-
current {DNN} Training. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). 161-175.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN
training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 1-15.

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. {INFaaS}: Automated Model-less Inference Serv-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
397-411.

[16] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,

Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.

[17]

(18]

(19]

[20]

(21]

[22]

(23]

Nexus: A GPU cluster engine for accelerating DNN-based video anal-
ysis. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 322-337.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arxXiv:1409.1556 (2014).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, tukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in neural information processing
systems. 5998—6008.

Xiaofeng Wu, Jia Rao, Wei Chen, Hang Huang, Chris Ding, and Heng
Huang. 2021. SwitchFlow: preemptive multitasking for deep learning.
In Proceedings of the 22nd International Middleware Conference. 146—
158.

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqging Jia. 2020. {AntMan}: Dynamic
Scaling on {GPU} Clusters for Deep Learning. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20).
533-548.

Peifeng Yu and Mosharaf Chowdhury. 2019. Salus: Fine-grained gpu
sharing primitives for deep learning applications. arXiv preprint
arxiv:1902.04610 (2019).

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent
neural network regularization. arXiv preprint arXiv:1409.2329 (2014).
Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent
neural network regularization. arXiv preprint arXiv:1409.2329 (2014).


https://github.com/tensorflow/profiler
https://github.com/tensorflow/profiler
https://network.nvidia.com/related-docs/solutions/SB_ai_composability_virtualization.pdf
https://network.nvidia.com/related-docs/solutions/SB_ai_composability_virtualization.pdf
https://docs.nvidia.com/deploy/mps/index.html

