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Abstract

GPU-equipped servers are extensively used for Deep Learn-
ing (DL) jobs to train and serve Deep Neural Nets (DNNSs)
for inference [2, 4]. However, for a given DL job, it is often
infeasible to fully utilize allocated GPUs even when employ-
ing state-of-the-art DL frameworks [6-8, 11, 14]. It has been
observed that DNN execution can result in under-utilization
of both memory and compute resources offered by present
day GPUs [5, 20, 21]. This is primarily due to the disparity
in the capability of available GPUs and the requirements
of DL jobs—commaodity GPUs are available in a few fixed
configurations [6] whereas modern DL jobs exhibit immense
variety in their compute and memory requirements. This
mismatch between the resource requirements of DL jobs and
the capabilities of available GPUs presents an opportunity
to increase eficiency by sharing GPUs among multiple jobs.

Prior works [3, 10, 13, 15, 16, 19, 20] explore various tech-
niques to maximize GPU utilization via sharing among mul-
tiple DL jobs. While effective, most of the prior works ignore
SLOs of the underlying jobs. In addition, prior works [5, 21]
typically explore scenarios in which GPU resources are either
exclusively shared by multiple training jobs or exclusively
shared by multiple inference jobs, overlooking the mixed-use
case where training jobs may be colocated with inference
jobs on the same set of GPU resources. This mixed-use case
is particularly appealing for resource eficiency given the
contrasting characteristics of training and inference jobs. In-
ference jobs typically are end-user-facing and are therefore
latency sensitive, unlike training jobs.

Our work, Herald addresses the main challenges involved
in sharing GPUs among training and inference jobs. Her-
ald does this by implementing algorithms to enable careful
spatial- and time-sharing of GPUs between training and in-
ference jobs. Our algorithms adhere to the SLO requirements
of DL jobs while increasing the eficiency of GPU resources.

To design spatial- and time-sharing techniques, Herald
makes use of two key observations. First, a DL job typically
does not use GPU compute resources continuously. There
are periods during which the GPUs are either idle or partially
utilized. Second, there are times when a DL job fully utilizes
GPUs’ compute resources, leaving no room for sharing of
resources without sacrificing job performance.

Herald estimates requirements for all the compute opera-
tions using the underlying data flow graph of the DL jobs.
This enables Herald to identify “light” operations for which
GPU can be shared without any significant performance
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Figure 1. Experimental evaluation results for Herald.

degradation. For the more compute-intensive “heavy” oper-
ations where spatial sharing is ineffective and can degrade
performance, Herald implements fine-grained time sharing
of GPUs to prioritize SLO-sensitive (inference) workloads.

We implement Herald by integrating directly into the Ten-
sorFlow source code to avoid modifications in user-level code.
For scheduling and spatial sharing decisions, Herald employs
information about the data-flow graph of each DL job, which
can be obtained ofline without much overhead [7, 9, 11].
We also design a new logging tool which only logs
infor-mation pertinent to our algorithms, reducing the
logging overhead by an order of magnitude compared to the
existing tf.Profiler [1] in TensorFlow. We use shared
memory to keep track of the state of the GPUs and job
priorities.

We experimentally evaluate Herald on a server equipped
with an NVIDIA Tesla V100 16GB GPU. We share the GPU
between two DL jobs: (1) a high priority inference job for a
Transformer [18] model, and (2) a low priority training job
that is RNNLM [12, 23] in Figure 1(a) and VGG-16 [17] in
Figure 1(b), respectively. The inference job has a request rate
of 10 samples/second with an SLO of 1.6 seconds to process
one batch of data (red dotted line in Figure 1).

In Figure 1, “Exclusive” shows the performance achieved
by the jobs when run in isolation (without sharing of GPU
resources). We use MPS [3], the default GPU sharing tool by
NVIDIA, as the baseline for our performance evaluation. We
tried various configurations of MPS to prioritize execution
of inference jobs and report numbers for the setting which
maintains SLOs for the inference job. However, the colocated
training job experiences on average 2.5x increase in per-
batch time as compared to “Exclusive”. On the other hand,
the scheduling and sharing algorithms of Herald ensure that
the SLO for the inference job is achieved and that the training
job can maximize utilization of GPU resources during times
when inference is unable to saturate GPU resources. As a
result, per-batch time of training job increases by only 22%,
on average, which is 10x lower than that under MPS.
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