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ABSTRACT

Learning to Optimize (L20) has drawn increasing attention as it often remark-
ably accelerates the optimization procedure of complex tasks by “overfitting"
specific task types, leading to enhanced performance compared to analytical op-
timizers. Generally, L20 develops a parameterized optimization method (i.e.,
“optimizer") by learning from solving sample problems. This data-driven procedure
yields L20O that can efficiently solve problems similar to those seen in training,
that is, drawn from the same “task distribution". However, such learned opti-
mizers often struggle when new test problems come with a substantial deviation
from the training task distribution. This paper investigates a potential solution
to this open challenge, by meta-training an L20 optimizer that can perform fast
test-time self-adaptation to an out-of-distribution task, in only a few steps. We
theoretically characterize the generalization of L20, and further show that our
proposed framework (termed as M-L2Q) provably facilitates rapid task adapta-
tion by locating well-adapted initial points for the optimizer weight. Empirical
observations on several classic tasks like LASSO, Quadratic and Rosenbrock
demonstrate that M-L20O converges significantly faster than vanilla L20 with
only 5 steps of adaptation, echoing our theoretical results. Codes are available in
https://github.com/VITA-Group/M-L20.

1 INTRODUCTION

Deep neural networks are showing overwhelming performance on various tasks, and their tremen-
dous success partly lies in the development of analytical gradient-based optimizers. Such optimiz-
ers achieve satisfactory convergence on general tasks, with manually-crafted rules. For example,
SGD ( , ) keeps updating towards the direction of gradients and Momentum ( , )
follows the smoothed gradient directions. However, the reliance on such fixed rules can limit the
ability of analytical optimizers to leverage task-specific information and hinder their effectiveness.

Learning to Optimize (L20), an alternative paradigm emerges recently, aims at learning optimization
algorithms (usually parameterized by deep neural networks) in a data-driven way, to achieve faster
convergence on specific optimization task or optimizee. Various fields have Wltnessed the superlor
performance of these learned optlmlzers over analytlcal optimizers (

s ). Classic LZOS follow a two stage
pipeline: at the meta tmmmg stage, an L20 optlmlzer is trained to predict updates for the parameters
of optimizees, by learning from their performance on sample tasks; and at the meta-testing stage, the
L20 optimizer freezes its parameters and is used to solve new optimizees. In general, L20 optimizers
can efficiently solve optimizees that are similar to those seen during the meta-training stage, or are
drawn from the same “task distribution”.

However, new unseen optimizees may substantially deviate from the training task distribution. As
L20 optimizers predict updates to variables based on the dynamics of the optimization tasks, such as
gradients, different task distributions can lead to significant dissimilarity in task dynamics. Therefore,
L20 optimizers often incur inferior performance when faced with these distinct unseen optimizees.

Such challenges have been widely observed and studied in related fields. For example, in the domain
of meta-learning ( s ; s ), we aim to enable neural networks to
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be fast adapted to new tasks with limited samples. Among these techniques, Model-Agnostic Meta
Learning (MAML) ( , ) is one of the most widely-adopted algorithms. Specifically, in
the meta-training stage, MAML makes inner updates for individual tasks and subsequently conducts
back-propagation to aggregate the gradients of individual task gradients, which are used to update the
meta parameters. This design enables the learned initialization (meta parameters) to be sensitive to
each task, and well-adapted after few fine-tuning steps.

Motivated by this, we propose a novel algorithm, named M-L20, that incorporates the meta-adaption
design in the meta-training stage of L20. In detail, rather than updating the L20 optimizer directly
based on optimizee gradients, M-L20 introduces a nested structure to calculate optimizer updates by
aggregating the gradients of meta-updated optimizees. By adopting such an approach, M-L20 is able
to identify a well-adapted region, where only a few adaptation steps are sufficient for the optimizer to
generalize well on unseen tasks. In summary, the contributions of this paper are outlined below:

* To address the unsatisfactory generalization of L20 on out-of-distribution tasks, we propose to
incorporate a meta adaptation design into L20 training. It enables the learned optimizer to locate in
well-adapted initial points, which can be fast adapted in only a few steps to new unseen optimizees.

* We theoretically demonstrate that our meta adaption design grants M-L20 optimizer faster adaption
ability in out-of-distribution tasks, shown by better generalization errors. Our analysis further
suggests that training-like adaptation tasks can yield better generalization performance, in contrast
to the common practice of using testing-like tasks. Such theoretical findings are further substantiated
by the experimental results.

» Extensive experiments consistently demonstrate that the proposed M-L20 outperforms various
baselines, including vanilla L20 and transfer learning, in terms of the testing performance within a
small number of steps, showing the ability of M-L20O to promptly adapt in practical applications.

2 RELATED WORKS

2.1 LEARNING TO OPTIMIZE

Learning to Optimize (L20) captures optimization rules in a data-driven way, and the learned
optimizers have demonstrated success on various tasks, including but not limited to black-box (

R ), Bayesian ( s ), minimax optimization problems ( R ),
domain adaptation ( , ; s ), and adversarial training ( s ;

s ). The success of L20 is based on the parameterized optimization rules,

which are usually modeled through a long short-term memory network ( , )
and occasionally as multi-layer perceptrons ( , ). Although the parameterization
is practically successful, it comes with the “curse” of generalization issues. Researchers have
established two major directions for improving L20 generalization ability: the first focuses on the
generalization to similar optimization tasks but longer training iterations. For example,
( ) customized training procedures with curriculum learning and imitation learning, and
( ); ( ) designed rich input features for better generalization. Another direction focuses
on the generalization to different optimization tasks: ( ) studied the generalization
for LISTA network on unseen problems, and ( ) provided theoretical understandings
to hybrid deep networks with learned reasoning layers. In comparison, our work theoretically studies
general .20 and our proposals generalization performance under task distribution shifts.

2.2 FAST ADAPTATION

Fast adaptation is one of the major goals in the meta-learning area ( );

( ); ( ) which often focuses on generalizing to new tasks with limited
samples. MAML ( ), a famous and effective meta-learning algorithm, utilizes the nested
loop for meta-adaption. Following this trend, numerous meta-learning algorithms chose to compute
meta updates more efficiently. For example, FOMAML ( , ) only updated networks
by first-order information; Reptile ( , ) introduced an extra intermediate
variable to avoid Hessian computation; HF-MAML ( , ) approximated the one-step
meta update by Hessian-vector production; and ( ) adopted a multi-step approximation in
updates. Meanwhile, many researchers designed algorithms to compute meta updates more wisely.
For example, ANIL ( , ) only updated the head of networks in the inner loop;
HSML ( , ) tailored the transferable knowledge to different tasks; and MT-net (

s ) enabled meta-learner to learn on each layer’s activation space. In terms of theories,
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( , ) measured the generalization error of MAML; ( ) captured the
single inner step MAML convergence rate by Hessian vector approximation. Furthermore,
( ) characterized the multiple-step MAML convergence rate. Recently, LFT ( )

combines the meta-learning design in Learning to Optimize and demonstrates its better performance
for adversarial attack applications.

3  PROBLEM FORMULATION AND ALGORITHM

In this section, we firstly introduce the formulation of L20, and subsequently propose M-L20O for
generalizable self-adaptation.

3.1 L20O PROBLEM DEFINITION

Most machine learning algorithms adopt analyt- b1 ¢ P

. P Optimizer Opumlzer —’
ical optimizer, e.g. SGD, to compute parameter -

updates for general loss functions (we call it op-
timizee or task). Instead, L20 aims to estimate
such updates by a model (usually a neural net-
work), which we call optimizer. Specifically,
the L20 optimizer takes the optimizee informa-
tion (such as loss values and gradients) as input
and generates updates to the optimizee. In this

Inputs to

Updates to

work, our objective is to learn the initialization Optimizer Optimizees
of the L20 optimizer on training optimizees ) o
and subsequently finetune it on adaptation op- Figure 1: The pipeline of L.20 problems.

timizees. Finally, we apply such an adapted
optimizer to optimize the testing optimizees and evaluate their performance.

We define [(6;€) as the loss function where 6 is the optimizee’s parameter, { = {&;(j =
1,2,...,N)} denotes the data sample, then the optimizee empirical and population risks are defined
as below:

1(0) = £ SN 10:6). 1(0) = Eel(6;€).

In L20, the optimizee’s parameter 6 is updated by the optimizer, an update rule parameterized by
¢ and we formulate it as m(z.(0;; (), ¢). Specifically, z; = z(6;; (;) denotes the optimizer model
input. It captures the ¢-th iteration’s optimizee information and parameterized by 6; with the data
batch (;. Then, the update rule of 6 in ¢-th iteration is shown as below:

Orr1(0) = 0:(0) +m(2:(01;Ce), @) = 0:(P) + m(2e, &). (D

The above pipeline is also summarized in Figure 1 where k denotes the update epoch of the optimizer.
Note that (; refers to the data batch of size NV used at ¢-th iteration while {; refers to the j-th single
sample in data batch £. For theoretical analysis, we only consider taking the optimizee’s gradients as

input to the optimizer for update, i.e., z,(6;; ¢,) = Vgl (0,(¢)). Therefore, the optimizee’s gradient at
T-th iteration over the optimizer V467 (¢) takes a form of

Vobr(6) = g (Tl —i1 (I + Vam(Vel(Or1i—5), ) V3i(0r i) Var(Vai(0:), 6)),  (2)

where we assume that ¢ is independent from the optimizee’s initial parameter 6, and all samples are
independent. The detailed derivation is shown in Lemma 1 in the Appendix.

Next, we consider a common initial parameter 6 for all optimizees and define the optimizer empirical
and population risks w.r.t. ¢ as below:

91(9) =1(0:(8)),  ge() = Eel(0:(9):€) = 1(0:(9)), 3)

where 0;(¢) updates in such a fashion: 0;11(¢) = 6:(¢) + m(2¢(6s; (), ¢). Typically, the L20
optimizer is evaluated and updated after updating the optimizees for 7'-th iterations. Therefore, the
optimal points of the optimizer risks in Equation (3) are defined as below:

6. = argmin, gr(@), 6. = argmin, gr(4). )
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3.2 M-L20O ALGORITHM

To improve the generalization ability of L20, we aim at learning a well-adapted optimizer initialization
by introducing a nested meta-update architecture. Instead of directly updating ¢, we adapt it for one
step (namely an inner update) and define a new empirical risk for the optimizer as follows:

Gr(d) = gr(d — aVeir(s)), (5)

where « is the step size for inner updates. Consequently, the optimal point of the corresponding
updated optimizer is:

drre = arg min,, Gr(9). (6)
Based on such an optimizer loss, we introduce M-L20 in Algorithm 1. Such a nested update design
has been proved effective in the field of meta-learning, particularly MAML ( , ). Note

that Algorithm 1 only returns the well-adapted optimizer initial point, which would require further
adaptation in practice. We first denote the optimizees for training, adaptation, and testing by g'(¢),
g%(#), and g3(¢), respectively, to distinguish tasks seen in different stages. Next, we obtain the

results of meta training, denoted by 5}\4 > via Algorithm 1, and we further adapt it based on §Z(¢).
The testing loss of M-L20 can be expressed as follows:

G (D4 k — AV g (D), (7

where g3.(¢) denotes the meta testing loss. Note that g refers to empirical risk and g refers to
population risk.

Algorithm 1 Our Proposed M-L20.

1: Input: Inner step size «, Outer learning stepsize S, Total epochs K, Epoch number per task S,
Optimizer initial point &Z}WO’ Training task ¢!, Adaptation task §2, Testing task g3
fork=0,1,..., K —1do
if mod(k, ) = 0: 0y(¢l,,.) = 0o (random initial) else Oy (4},,) = HT(QNS}W(MD)
fort=0,1,....,7—1do X B . B _
01 (D) = Ou(dhg) +m(Vol1(0:(yyy)))  Note: 11 (0e(diy,)) = §¢ ()
end for
CompUteng(¢}vfk) = G (Dhiy — av¢gT(¢Mk)>
update: (b}\/[(k+1) = Phrp — BV Gh(Shsy)
end for _ _
Output: ¢}, ;- Testing Loss: g3.(¢},;c — aVyd3 (b3 5)

A AR A i

—

4 GENERALIZATION THEOREM OF M-L.20

In this section, we introduce several assumptions and characterize M-L20’s generalization ability.

4.1 TECHNICAL ASSUMPTIONS AND DEFINITIONS

To characterize the generalization of meta adaptation, it is necessary to make strong convexity
assumptions which have been widely observed ( s s ) under over-
parameterization condition and adopted in the geometry of functions ( , ; ,

; ; )-

Assumption 1. We assume that the function gi-(¢) is ji—strongly convex. This assumption also holds
for stochastic g:().

To capture the relationship between the L20 function j7(¢) and the M-L20 function G (¢), we
make the following optimal point assumptions.

Assumption 2. We assume there exists a non-trivial optzmzzer optzmal point ng s Which is defined in
Equation (6). Non-trivial means that ¥V 4§~ ((;5 1) #0and (b M QS* Then, based on the definition
of ¢}, and the existence of trivial solutions, for any ¢ W We have the following equation:
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where a is the step size for inner update of the optimizer. Note that we have defined the strongly-convex
of landscape in Assumption 1 which validates the uniqueness of ..

The aforementioned assumption claims that there exist meta optimal points which are different
from original task optimal points. Such an assumption is natural in experimental view. In MAML
experiments where a single training task is considered, it is reasonable to expect that the solution
would converge towards a well-adapted point instead of the task optimal point. Otherwise, MAML
would be equivalent to simple transfer learning, where the learned point may not generalize well to
new tasks.

Assumption 3. We assume that 1;(0) is M-Lipschitz, V1;(0) is L-Lipschitz and V?1;(0) is p-Lipschitz
for each loss function 1;(0)(i = 1,2,3). This assumption also holds for stochastic 1;(6), Vi;(0)
and V2l (0)(2 =1,2,3). We further assume that m(z, ¢) is Mp-Lipschitz w.r.t. z, M,2-Lipschitz
W.rL. qb and V¢9T(¢) is pg-Lipschitz.

The above Lipschitz assumptions are widely adopted in previous optimization works ( ,
; ; , ; , ). To characterize the difference between tasks for meta

training and meta adaptation, we define A1, and A12 as follows:

Assumption 4. We assume there exist union bounds A15 and A3 to capture the gradient and
Hessian differences respectively between meta training task and adaptation task:

Aqy = maxg Vel (0) — Vola(0)|, Ay = maxg |V2I1(0) — V2ia(6)]|.
Such an assumption has been made similarly in MAML generalization works ( , ).

4.2 MAIN THEOREM

In this section, we theoretically analyze the generalization error of M-L20 and compare it with
the vanilla L20O approach ( , ). Firstly, we characterize the difference of optimizee
gradients between any two tasks (V 401.(¢) and V ,62.(¢)) in the following form:

Proposition 1. Based on Equation (2), Assumptions 3 and 4, we obtain

||V¢0%«(¢) - v¢0%(¢)” < Zz (QT - 1AC1 + MmZQT 2 Z] —i+1 AD])

where Ac; = O(Q'A12), Apj = O(Q7 A2 + 312) and Q° = (1 + M,,1L)". Furthermore, we
characterize the task difference of optimizer gradient V 3G (¢) as follows:

IV637(6) = Vi (9)l = O(TQT ' Ary + QT Ayy),
where Q = 1+ My,1 L, A5 and 812 are defined in Assumption 4.

Proposition 1 shows that the difference in optimizer gradient landscape scales exponentially with the
optimizee iteration number T'. Specifically, it involves the Q27! term with gradient difference A1,

and the TQ7 ! term with Hessian difference A;5. Clearly, Q?7 ! A, dominates when T increases,
which implies that the gradient gap between optimizees is the key component of the difference in
optimizer gradient.

Theorem 1. Suppose that Assumptions 1, 2, 3 and 4 hold. Considering Algorithm | and Equation (7),
ifwe define b3 = |61 — 2], set @ < min{ g, o, B = min(B. &) for B < 5. Then,
with a probability at least 1 — 6, we obtain

E[Q%((E}VU( aVMT ¢MK QT ¢3

Ly, + PgT Ty My,
BVK

+ My, aO(TQT Ay, +Q2T A1),

where Q = 1+ My L, My, = O(QT™1), L,, = O(TQT=2+ Q*T72), py, = O(TQ?*T3 +
Q37T=3), K is total epoch number for meta training, N is the batch size for optimizer training.

ZﬁMgT
wVON

S(MQT(l + LgTa

Mg,613
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To provide further understanding of generalization errors, we first make the following remark:
: _ 1
Remark 1 (The choice of «). In Theorem 1, we set ov < SpgTMMgT = O(TQ3T—4+Q4T—4 ), thus the

error term MgTaO(TQT’lzlg + QQT*lAlg) vanishes with larger T'. If we fix the iteration number
T, then such an error term is determined by the gradient bound 15 and the Hessian bound Aq5.

The key components that lead to ) dependency are the Lipschitz properties to characterize the L20
loss landscape, e.g. the Lipschitz term L,7 = O(TQT~2 + Q?T~2) defined for Vg7 (¢). The
reason is due to our nested update procedure 0y 1(¢) = 0;(¢) + m(Vel(0;(¢)), ¢). If we take the

gradient of the last update term gr(¢) = [(67(¢)) over ¢, then it requires us to compute gradients
iteratively for all¢ = 0,1,...,T — 1, which leads to the exponential term.

Consequently, it can be observed that the generalization error of M- L20 can be decomposed into

. . L M
three components: (i) The first term determined by \/ T ﬂ;;f(a T 4

3 f is dominated by the

training epoch K. Such an error term characterizes how meta training influences the generalization;

(ii) The second term || ZI%T || reflects the empirical error introduced by limited samples; hence it is
controlled by the sample size N. (iii) The last two error terms capture task differences. Specifically,

013 measures the gap between training and testing optimal points, while A1 and ﬁlg, which dominate
the last error term and represent the gradient and Hessian union bounds, respectively, reflect the
geometry difference between training and adaptation tasks.

For better comparison with L20, we make the following remark about generalization of M-L20 and
Transfer Learninig.

Remark 2 (Comparison with Transfer Learning). We can rewrite the generalization error of M-L20
in Theorem 1 in the following form:

94 (Ohik — aVedt (Dhik)) — G (%)
<My, |hrk — Phrall + My |62 — SLI| + Myl V693 (Dhs 1) — Vot (D) || + Mgyp1s.

For L20 Transfer Learning, the generalization error is shown as below:

9o (D — aVyi2(0)) — g3 (¢%)
<M |0k — Dhrall + My, |6k — 6Ll + My, | Vi3 (0k) — Vi (dhra) || + My, 013,

where 813 = ||¢} — ¢2|| and 5}( represents transfer learning L20 learned point after K epochs.

The generalization error gap between M-L20 and Trasnfer Learnlng can be categorized into two parts:
(1) leference between ||¢MK QSM* H and ||¢K ¢M* (¢MK)

L@l and [ V632 (0k) — Voih (Bl 1 we assume Vg2 ()| ~ [Vygh(o)], then
both differences can be characterized by the gap between ||}, — ¢3,. | and ||¢k — ¢, ||. Since

¢}« is trained to converge to ¢, as K increases, it is natural to see that M-L20 (||¢}, .« — &, )
enjoys smaller generalization error compared to Transfer Learning ( ||¢3, — &1, |-

We further distinguish our theory from previous theoretical works. In the L20O area,

( ) analyzed the convergence of proposed safe-L20 but not generalization while

( ) analyzed the generalization of quadratic-based L20. Instead, we develop the generalization
on a general class of L20 problems. In the meta-learning area, the previous works have demonstrated
the convergence and generalization of MAML ( s s ). Instead, we
leverage the MAML results in L20 domain to measure the learned point and training optimal point
distance. Then, our L20 theory further characterizes transferability of learned point on meta testing
tasks. Overall, our developed theorem is based on both L20 and meta learning results. In conclusion,
our theoretical novelty lies in three aspects: @ Rigorously characterizing a generic class of L20
generalization. @ Incorporating the MAML results in our meta-learning analysis. @ Theoretically
proving that both training-like and testing-like adaptation contribute to better generalization in L20.
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5 EXPERIMENTS

In this section, we provide a comprehensive description of the experimental settings and present the
results we obtained. Our findings demonstrate a high degree of consistency between the empirical
observations and the theoretical outcomes.

5.1 EXPERIMENTAL CONFIGURATIONS

Backbones and observations. For all our experiments, we use a single-layer LSTM network with
20 hidden units as the backbone. We adopt the methodology proposed by ( ) and

( ) to utilize the parameters’ gradients and their corresponding normalized momentum to
construct the observation vectors.

Optimizees. We conduct experiments on three distinct optimizees, namely LASSO, Quadratic, and
Rosenbrock ( , ). The formulation of the Quadratic problem is min ||Az — b||»
and the formulation of the LASSO problem is ming 1||Ax — b||s + Al|x|[1, where A € R¥*9,
b € R% We set A = 0.005. The precise formulation of the Rosenbrock problem is available in
Section A.6. During the meta-training and testing stage, the optimizees &g, and &g are drawn
from the pre-specified distributions Dip,in and Dyeg;, respectively. Similarly, the optimizees Eadape used
during adaptation are sampled from the distribution Dygqp.

Baselines and Training Settings. We compare M-L20 against three baselines: (1) Vanilla L20,
where we train a randomly initialized L20 optimizer on &ugap: for only 5 steps; (2) Transfer Learning
(TL), where we first meta-train a randomly initialized L20 optimizer on iy, and then fine-tune on
&adapt for 5 steps; (3) Direct Transfer (DT), where we meta-train a randomly initialized L20 optimizer
on Ei,in only. M-L20 adopts a fair experimental setting, whereby we meta-train on ., and adapt on
the same §,qap. We evaluate these methods using the same set of optimizees for testing (i.e., §est),
and report the minimum logarithmic value of the objective functions achieved for these optimizees.

For all experiments, we set the number of optimizee iterations, denoted by 7', to 20 when meta-training
the L20 optimizers and adapting to optimizees. Notably, in large scale experiments involving neural
networks as tasks, the common choice for 7" is 5 ( , s ). However, in
our experiments, we set 7' to 20 to achieve better experimental performance The value of the total
epochs, denoted by K, is set to 5000, and we adopt the curriculum learning technique (

) to dynamically adjust the number of epochs per task, denoted by .S. To update the We1ghts of
the optimizers (¢), we use Adam ( , ) with a fixed learning rate of 1 x 10~%.

5.2 FAST ADAPTATION RESULTS OF M-L20

Experiments on LASSO optimizees. We begin with experiments on LASSO optimizees. Specifically,
for &rain, the coefficient matrix A is generated by sampling from a mixture of uniform distributions
comprising {U(0,0.1), U(0,0.5),U(0,1)}. In contrast, for &g and Eugapi, the coefficient matrices
A are obtained by sampling from a normal distribution with a standard deviation of o. We conduct
experiments with o = 50 and o0 = 100, and report the results in Figures 2a and 2b. Our findings
demonstrate that:

@ The Vanilla L20 approach, which relies on only five steps of adaptation from initialization on
&adapt» €xhibits the weakest performance, as evidenced by the largest values of the objective function.

@ Although Direct Transfer (DT) is capable of learning optimization rules from the training opti-
mizees, the larger variance in coefficients among the testing optimizees renders the learned rules
inadequate for generalization.

@ The superiority of Transfer Learning (TL) over DT highlights the values of adaptation when the
testing optimizees deviates significantly from those seen in training, as the optimizer is presumably
able to acquire new knowledge during the adaptation process.

@ Finally, M-L20 exhibits consistent and notably faster convergence speed compared to other
baseline methods. Moreover, it demonstrates the best performance overall, reducing the logarithm
of the objective values by approximately 0.2 and 1 when ¢ = 50 and o = 100, respectively. M-
L20’s superior performance can be attributed to its ability to learn well-adapted initial weights for
optimizers, which enables rapid self-adaptation, thus leading to better performance in comparison to
the baseline methods.



Published as a conference paper at ICLR 2023

Table 1: Minimum logarithm loss of different methods on LASSO at different levels of o. We report the 95%
confidence interval from 10 repeated runs.

. | Methods

| VanillaL20 | M-L20 | DT | TL
10 | 0.033+0.661 | -3.712+0.004 | -4.233+0.016 | -4.077+0.015
25 | 1.55940.789 | -3.43340.011 | -4.12510.011 | -4.01940.017
100 | 2.43541.500 | -2.408_0.037 | -1.77540.034 | -1.9614+0.050
200 | 4.10441.300 | =1.3960035 | -0.45310.075 | -0.9821¢.086

Experiments on Quadratic optimizees. We continue to assess the performance of our approach on
a different optimizee, i.e., the Quadratic problem. The coefficient matrices A of the optimizees are
also randomly sampled from a normal distribution. We conduct two evaluations, with o values of 50
and 100, respectively, and present the outcomes in Figure 3. Notably, the results show a similar trend
to those we obtained in the previous experiments.

4.
2 2 2 25
3] i3]
2 2
Pl ©
O 01 o
=4 35 0.0 M-L20
k § g

28 =

| vanilla L20 5 5= VanillaL20
0 50 100 150 0 50 100 150

Steps Steps
(a) Performance on (0, 507) (b) Performance on A(0, 100%)

Figure 2: Comparison of convergence speeds on target distribution of LASSO optimizees. We repeat
the experiments for 10 times and show the 95% confidence intervals in the figures.

More LASSO experiments. We proceed to investigate the impact of varying the standard deviation
o of the distributions we used to sample the coefficient matrices A for £ugape and ies. The minimum
logarithm of the objective value for each method is reported in Table 1. Our findings reveal that:

@ At lower levels of o, it is not always necessary, and may even be unintentionally harmful, to
use adaptation for normally trained L20. Although M-L20 produces satisfactory results, it exhibits
slightly lower performance than TL, which could be due to the high similarity between the training
and testing tasks. Since M-L2O’s objective is to identify optimal general initial points, L20O optimizers
trained directly on related and similar tasks may effectively generalize. However, after undergoing
adaptation on a single task, L20 optimizers may discard certain knowledge acquired during meta-
training that could be useful for novel but similar tasks.

@ Nevertheless, as the degree of similarity between training and testing tasks is declines, as character-
ized by an increasing value of o, M-L20 begins to demonstrate considerable advantage. For values
of o greater than 50, M-L20 exhibits consistent performance advantages that exceed 0.1 in terms of
logarithmic loss. This observation empirically supports that the learned initial weights facilitate rapid
adaptation to new tasks that are “out-of-distribution”, and that manifest large deviations.

5.3 ADAPTATION WITH SAMPLES FROM DIFFERENT TASK DISTRIBUTION

In Section 5.2, we impose a constraint on the standard deviation of the distribution used to sample
A, ensuring that is identical for both the optimizees for adaptation and testing. However, it is
noteworthy that this constraint is not mandatory, given that our theory can accommodate adaptation
and testing optimizees with different distributions. Consequently, we conduct an experiment on
LASSO optimizees with varying standard deviations of the distribution, from which the matrices A
for optimizee E,dapt is drawn. Specifically, we sample o with smaller values that more resemble the
training tasks, as well as larger values that are more similar to the testing task (o = 100).

In Theorem 1, we have characterized the generalization of M-L20 with flexible distribution
adaptation tasks. The theoretical analysis suggests that a similar geometry landscape (smaller
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Figure 3: Comparison of convergence speeds on target distribution of Quadratic optimizees. We repeat the
experiments for 10 times and show the 95% confidence intervals are shown in the figures.

A1s,Aj9) between the training and adaptation tasks, can lead to a reduction in generalization loss
as defined in Equation (7). This claim has been corroborated by the results of our experiments,
as presented in Figure 4. When the o is similar to the
training tasks (e.g., 10), implying a smaller A12 and Ao,
M-L20 demonstrates superior testing performance. In con-

v -22

£ clusion, incorporating training-like adaptation tasks can
2 M-L20 . .

g B lead to better generalization performance.

gﬂ -2.4

—

Meanwhile, it is reasonable to suggest that the task
differences between adaptation and testing, denoted by
%5 o 75 00 (Agsz, Ags), may also have an impact on M-L20’s gener-

alization ability. Intuitively, if the optimizer is required to
adapt to testing optimizees, the adapted optimize should
of the distribution used for sampling the demonstrate stropg.generalization ability on other opti-
weight matrix A for adaptation optimizees. TiZ€€S that are s1m_1lar. .In order to have a deF:pe.r unde_r-
We visualize both the mean and the confi- standing of the relationship between the generalization abil-
dence interval in the figure. ity and the difference between adaptation and testing tasks,
we rewrite M-L20 generalization error in Theorem 1 in the

following form with 63 = ¢3,, — aV33(43,.) and 614 = |G}y, — d3r:
g%(g}WK - avqﬁ%(%\ﬂ()) - g%wi’)
<My, (| Dhrx = Shrell + 162 — D21 + 2l Vi3 (D) — Vit (Shr)ll +613).  ®)

In Equation (8), M-L20 generalization error is partly captured by ||V 492 (03,5 ) — Vg (03,
which is controlled by difference in optimizers (i.e., ||V G%(¢) — V 443(¢) ). From Proposition 1, we
know that this term is determined by difference in optimizees, denoted by Aoz and Aogz. Similar to the
results established in Theorem 1, we can deduce that superior testing performance is connected with
a smaller difference between testing and adaptation optimizees. This result has been demonstrated in
Figure 4 where TL generalizes well with larger o (more testing-like). Moreover, M-L20 also benefits
from larger o values (e.g., 0 = 100) in certain scenarios.

|
o
=N

Figure 4: Performance on LASSO opti-
mizees. We vary the standard deviation

To summarize, both training-like and testing-like adaptation task can lead to improved testing
performance. As shown in Figure 4, training-like adaptation results in better generalization in L20.
One possible explanation is that when the testing task significantly deviates from the training tasks, it
becomes highly challenging for the optimizer to generalize well within limited adaptation steps. In
such scenarios, the training-like adaptation provides a more practical solution.

6 CONCLUSION AND DISCUSSION

In this paper, we propose a self-adapted L20 algorithm (M-L20), which is incorporated with meta
adaptation. Such a design enables the optimizer to reach a well-adapted initial point, facilitating
its adaptation ability with only a few updates. Our superior generalization performances in out-
of-distribution tasks have been theoretically characterized and empirically validated across various
scenarios. Furthermore, the comprehensive empirical results demonstrate that training-like adaptation
tasks can contribute to better testing generalization, which is consistent with our theoretical analysis.
One potential future direction is to develop a convergence analysis for L20. It will be more interesting
to consider meta adaptation in analyzing L20 convergence from a theoretical view.
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A APPENDIX

A.1 RESTATEMENT OF ASSUMPTION 3

Assumption 5 (Restatement of Assumption 3). We assume Lipschitz properties for all functions
1;(0)(i = 1,2, 3) as follows:

a) 1;(0) is M-Lipschitz, i.e., for any 01 and 0, ||;(61) — 1;(62)] < M||61 — 02]|(i = 1,2, 3).
b) V1;(0) is L-Lipschitz, i.e., for any 01 and 0, |V1;(61) — V1;(02)|| < L||61 — 62]/(i = 1,2, 3).
V211(91) — V211(02)|| S pHHl 792”(2 = 1, 2, 3)

c) V21;(0) is p-Lipschitz, i.e., for any 6 and 65,

d) m(z, ) is My,1-Lipschitz wrt. z and M,,s-Lipschitz w.rt. ¢, i.e.,

lm(z1,¢) —m(z2, )|l < My ||21 — 20| for any z1 and z,

Im(z, 1) —m(z, da2)|| < Mimall¢1 — ol for any é1 and ¢».
e) V%HT(@ is pg-Lipschitz, i.e., for any ¢1 and ¢o, V?ﬂT((bl) — ViﬁT(@)” < polld1 — P2ll-
The above Assumptions (a)(b)(c) also hold for stochastic 1;(0), Vi;(0) and Vgl}(@)(i =1,2,3).

A.2 PROOF OF SUPPORTING LEMMAS (LEMMA 12 CORRESPONDS TO PROPOSITION 1)

Lemma 1. Based on update procedure of 0,(0), we obtain

T-1 T-1
Volr(d) =Y ( 11 (I+V1m(V9lA(9T+z‘j)7¢)vgi(9T+ij))Vzm(VelA(Qi),(ﬁ)) .

i=0 \j=it+1

Proof. The 0;(¢) update process is shown below:
Or41(0) = 01(¢) + m(zt, §).

If we only consider z(6y; C;) = Val(0:(4); ) = Vl(6;), then we obtain
Vbi1(0) = Vobi() + Vym(Vol(6:), 6)
= V40:(6) + Vim(Vol(6,), 0) V3l (6:)V 56:(6) + Vam(Vol(6,), ¢)

= (I + Vam(Vol(6r), 6)V31(0:))Vs0i(6) + Vam(Vol(6:), ).

If we iterate the above equation from ¢ = 0 to 7', then we obtain

T—1 T—1
Vbr(d) =) ( 1T (I+vlm<vei<eq~ﬂ-j>,¢)vzi<0mn)vgm(veiwi),@)

j=it+1
+ T (7 + Vam(Voi0r-:), ) V3i(0r-4)) Vb0,
=1

We assume 6 is randomly sampled and independent from ¢, then we obtain

T—1 T—1
Volr(e) = ( 11 <I+v1m(wi(9mj),qs)vgi(amj))vzm(wi(ei),qs)) .

i=0 \ j=i+1

Lemma 2. If we assume that 0y(¢1) = 0o(¢p2), based on Assumption 3, then we obtain

M2
My L

107 (p1) — Or(p2)]| < <((Mm1L + )T 1) ) |1 — d2|| = Mor||dp1 — d2|.  (9)
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Proof. Based on the iterate procedure of 67 (¢), we obtain

167 (¢1) — Oz (2|

T-1

> (m(Vol(61(61)), d1) — m(Vol(6:(62)), $2)) ’
T—-1

> (m(Vel(0:(61)), d1) — m(Vol(0:(41)), d2) + m(Vol(8:(¢1)), b2)

t=

—m(Vol(0:(¢2)), ¢2))
(Mm(Vol(0:(61)), p1) — m(Vol(0:($1)), b2))

—1
T

@

=

~

(]

o~
I
-

1

m(Vol(04(¢1)), ¢2) — m(Vol(0:(¢2)), $2))

t=1

T-1
> Mys|é1 — 2|
t=1

+

T-—1
5~ M [9i61(61)) = it )|
t=1
T—1
(T = 1)Mpa||¢1 — G2 + My Z IVol(0:(61)) — Vol (6:(¢2)) |
T—1

(444)
< (T = )Mz ér = dall + Mima LY 1[0:(61) — 0u(2),
t=1

(44)
< +

where (i) follows from Equation (1), (i¢) and (7i7) from Assumption 3. If we further iterate it from
t = 0to T, we obtain

Mm2
My L

107 (f1) — Or(@2)] < <((Mm1L + )T 1) > |1 — d2l| = Mor||d1 — @2l

O

Lemma 3. Ifwe define A;(¢) = Vom(Vol(0:(61)), d1), based on Assumption 3 and Lemma 2, we
obtain

[ Ai(¢1) — Ai(d2) [l < Maillpr — @2,
where M s; = L,yo + Ly,1 LMy;.

Proof. Based on the definition of A;(¢), we have
[Ai(¢1) — Ai(d2)l

=([Vam(Vol(6:(61)), 61) — Vam(Vol(6:(62)), 62|
=[|Vam(Vol(0:(61)), 1) — Vam(Val(0:(41)), ¢2)
+ Vam(Vel(8i(1)), ¢2) — Vam(Vel(0i(¢2)), 62)]|

©) - R
<Lpa|lp1 — b2l + Lin1|| Vol (6i (1)) — Val(0i(d2))|
<Lmall¢1 — 2|l + Lina L||0:(p1) — 0i(2) |l

(i1)
< (L2 + Lyn LMo;) |91 — b2l = Masl[¢1 — o2,
where (i) follows from Assumption 3, (i¢) follows from Lemma 2. O

Lemma 4. We first define B;(¢) = V1m(Vl(0;(9)), gb)VgZ(Hi(gb)). Based on the Lemma 2 and
Assumption 3, we obtain

[Bi(¢1) — Bi(¢2)|| < Mil¢1 — @2,
where Mp; = M,1pMg; + LLyo + L*Lyy1 My;.

Al3
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Proof. Based on the definition of B;(¢), we have
|Bi(41) — Bi(2)|l
=[IV1m(Vol(6i(¢1)), 1) V5l(6:(61)) — Vam(Vol(0i(¢2)), 62) V5l (6:(¢2))
=[IV1m(Vol(6:(61)), 1) V5l (0:(61)) — Vim(Vol(0:(61)), 61)Vi(6i(¢2))
+ Vim(Vol(0:(61)), $1)V5l(0i(62)) — Vam(Vol(0:(¢2)), 62) V3i(6:(62)) |

S IV20(8:(¢1)) — V2I(0:(d2))|| + LIIV1m(Vol(Bi(¢1)), 61) — Vim(Voel(6i(¢2)), bo) |

D My pMoi| 61 — bll + LIVam(Voi(0:(61)), 61) — Vam(Vol (6:(61)), 62)
(Vo (8:(61)). d2) — Vim(Vol(8:(62)). 62)]

(2i1)

< My pMoillor = dall + LLia |61 — b2l + LLun [Vol(0:(61)) — Vol(6:(¢2))
<(Mpm1pMo; + LLy2 + L* Lyt My;) |61 — ¢2|| = Mi|lor — ¢2],
where (i) and (4i¢) follows from Assumption 3, (iz) follows from Lemma 2. O
Lemma 5. Based on Assumption 3 and Lemmas 1, 3 and 4, then we obtain
IVbr(¢1) — Vebr(¢2)ll < Lor|ldr — ¢2|, (10)
where Lop = Yo" (14 Myt L)T = Mgy + 370" Moo (14 Myt )T =172 57700 Mpraizy),-

Proof. Based on the definition of V4607 (¢) in Lemma 1, we obtain
IVe0r(¢1) = Vbr (o)

T 1 T-1

< Z H <I —+ Vlm(VQ[(9T+i_j(¢1)),¢1)V3[(0T+i—j(¢l))>VQm(VOi(ai(¢l))a(z)l)
i=0 j i1
— H <I+V1m Vol (04— i(#2)), ¢2)V§Z(9T+i—j(¢2)))VQW(VGZ(&(@))’¢2)
Jj=i+1
(i) - T-1 Tl
= Z H <I+BT+ij(¢1)>Ai(¢l) - H (I+BT+ij(¢2))Ai<¢2)
i=0 ! j=i+1 g=itl
T—1, T-1 T-1
= Z H <I—|— BT+ZJ(¢1)>A1(¢1) - H <I+BT+1](¢1)>A1(¢2)
i=0 j i+1 J=itl
T-1
+ H (IJrBT-H —j ¢1)>A¢(¢2) H (I+BT+i—j(¢2)>Ai(¢2)
j=it1 i=it1
“é”z( (14 Mo 174 44(00) = i)+ M| T] (14 Braas(6n)
j=it1
T-1
— I I+ Bryizj(¢2)) D
j=it1
T-1

< ((1 + M1 )T A (1) — Ai( o) || + Mz (1 + My L)T =072

N

1

1Bryis(61) - ij(@n)

i+1

Hﬁ*
-3

(iv) . .
< ((1 + My LT M| 61 — dal| + Mypa(1 4 My L)T 772

0

.
I
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T-1

Z Mprti-jllor — ¢2||>
j=it+1
T-1 T-1 T-1
=< S (4 My L)' Mg + > Mipp (14 My L)T772 > MB(T+ij)) [¢1 — 2]
i=0 i=0 =it
=Lor||¢1 — o2,

where (i) is based on Lemma 1, (ii) is based on the fact that A;(¢1) = Vam(Vel(0i(41)), ¢1),

Brii—j(¢1) = Vlm(Vgl(HTﬂ,] (gf)l)),d)l)VglA(HTH,j (¢1)), (7it) follows from Assumption 3
and (iv) follows from Lemma 3 and 4. O

Lemma 6. Based on Lemmas 2, 5 and Assumption 3, we obtain
[Vogr(d1) = Vegr(¢)ll < Lgr[|é1 — @2,
where Ly, = M Lot + LM92T, Lot is defined in Lemma 5, My is defined in Lemma 2.

Proof. We assume all functions share the same starting point 6y, then we have

IVeir(91) — Veir(o2)|l

=[IV4l(6r(¢1)) = Vi(07(¢2))
=[|Vol(0r(¢1))Vebr(d1)] — Vol (01 (¢2))Vebr(d2)ll
<IVel(O0r(G))IIV b1 (d1) — Vebr(¢2)||

+ IVel(07(61)) — Vol(07(62)) |||V 607 (P2) |l

(@)
<MV pbr(01) = Vobr(2)ll + Ll|07(d1) — 0r(¢2)[l[| Vo1 (42)]l

CMLopllé1 — o)l + LMrl61 — ]l = (M Lo + LMZ) 61 — dall = Ly 61 — o,
where (i) from Assumption 3, (¢¢) from Lemma 2 and 5. O
Lemma 7. Based on the Lemma 2, 5 and Assumption 3, we obtain

IV33r(¢1) = V3gr(d2)]| < pgrllér — 2ll, (1n
where pg, = 3LMeorLor + Mpy + MGTp.

Proof. We first compute the Lipschitz condition of V¢Vei (01(9)) as follows

IV V6l(61(61)) — Vo Voi(67(¢2)) |
=[[Veb0r(61)]"V3i(0r (1)) — [V sbr(62)] V5l (07 (42))]]
<[Vobr(60)] " V307 (1)) — V307 (¢2))

+ Vb7 (61)]" = [Vobr(02)] IV 307 (62))]]
SMErpll61 - 6all + LorLlidn — ol
=(Mgrp + LorL)|¢1 — o2,

where (i) follows from Lemma 2, 5 and Assumption 3. Then, based on the definition of Vi ar (),
we have

IV2ar(61) — Viar(s2)||
=[V3i(0r(¢1)) — VEI(0r(¢2))|
= V307 (1) Val(0r(¢1)) + [V207(61)] Vs Vol (07 (61)) — V301 (02) Vel (67 (62))
— [V30r(62)]" Vo Voli (07 (¢2)) |
<|IV207 (1) Vol (01 (¢1)) — V301 (d2) Vol (07 (2))]l
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+1[V407(61)]" Vo Val(01(61)) — [Vobr(62)]" Vs Vol (07 (2))|
<[IVZ0r (60l Vol(Br(¢1)) — Vol (61 (62)) |

+ V207 (1) — V?ﬁT(d)z)”||V91A(9T(¢2))H

+ [V 607 (6] IV Vol (07(61)) — Ve Val(0(¢2))|

+[Ve0r(01)]" = [Vobr(02)] [[[IV6 Vol (61 (¢2))]]

CLLorl0r(61) = 0r(02)]| + MIVE02(61) — V20r(60)]

+ Myr ||V Vol (07 (1)) — Ve Vol(0r(62))l| + Lozl ér — ¢l MorL
<LMprLor||¢1 — g2l + Mpy||¢1 — ¢2|

+ (Mgrp + Lor L) Moz || ¢1 — ¢l + Mor LLor||d1 — 62|
=(3LMyrLor + Mpg + Mirp)|lon — dall = pgrlld1 — ¢2ll,

where (i) follows from Lemma 2 and 5.

Lemma 8. [fwe assume 0}(¢) = 03(¢), based on Assumption 3 and 4, we obtain

167:(¢) — 07.()I| < oo,

where T is the iteration number and cgr = (1 + My L)T% — %.

Proof. Based on the iterative process of 6;(¢), we obtain
167(9) — 07.(¢)ll
©) . .
<[167-1(¢) +m(Vohi(911), 8) = 07_1(#) = m(Volo(07_1), O)|
(1) . .
<071 (0) = 071 (D) + My [ Vola (07 1) — Vala (67 1) ||
<[107-1(6) = 07 _1 (D)l + My |[Vol1 (07_1) — Vola(67_1)|
+ M1 [Vol2 (67 1) = Vola(67_,)|
(iii)
< (L4 My L)[07_1(9) — 07_1(9) | + M1 Asa,

where (i) follows from Equation (1), (i¢) follows from Assumption 3, (4i7) follows from Assump-
tion 4. If we iterate above inequalities from ¢ = 0 to T’ — 1, then we obtain:

A A
167:(¢) — 67(o) ]| < (1 + MmlL)T% - % = oor.
O
Lemma 9. Based on Assumptions 3 and 4, Lemma 8, we have following inequality:
where C9 = Vom(Vgl;(0;),¢) (i =0:T,j € {1,2}) and Ay = L1 (1 + My L) Ao
Proof. Based on the definition of C?, we obtain
ICF = C2[| =I1Vam(Vel1(6}), 8) — Vam(Vala(67),6) |
<L [[Vol1 (6}) = Vola(6}) + Vola(6}) — Vola(67)]|
(@) Lo
<Lym1Arz + Ly L||6; — 07|
(i) .
S Lml(l + MmlL)lA12 - ACi7
where () follows from Assumption 3 and 4, (7¢) follows from Lemma 8. O
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Lemma 10. Then based on Assumptions 3 and 4, Lemma 8, we have following inequality:
D} — Df|| < Aps,

where DI = V;m(Vol;(07),)V31;(07) (i = 0 : T,j € 1,2), Ap; = Mui(pog, + Ara) +
L1 L(1 + M1 L)' A1o and o0y, is defined in Lemma 8.

Proof. Based on the definition of D/, we obtain
1D} = DF|| =[IV1m(Vel1(0}), ) V5l (0}) = Vaim(Vala (6
=[Vim(Vol1(6}), 8)V3ia (6]) — Vam(Vgl (6
+ Vim(Veli (0}), 6)V3ia(6?) — Vim(V
<[IVim(Voli(67), 9)IIV51(0F) — V3ia(67)]
+ IVim(Voli(6}), ¢) — Vim(Vol2(67), )| Vil2(6) |
<M |[V3la(0F) = V5 (67) + V5l (67) — Vila(67)]
+ Lt LI Vol1(807) = Volo(07) + Volr(67) — Vol (67))]
<My (pl|0F — 02 + Av2) + Liya L(Log; + Aro)

(i) ~ )
<Mpa1(pog, + A12) + L1 L(1 + M1 L) Aqo = Ap,,

where (4) follow from Lemma 8.

(67),9)V3la(07)|
(61),9)V3i2(67)
Vola(07), 6)Vila(67)|

Lemma 11. Based on Assumptions 3, 4 and Lemma I, we obtain

IV607() — Vb7 (o)l

T—1
<Z 1'i_]\4rnlL T - 1AC1+Mm2(1+Mm1L)T 2 Z AD_] )
Jj=i+1
where Ac; and Apj have been defined in Lemmas 9 and 10.
Proof. Based on the Lemma 1, we obtain
IVe07(9) — Vob7(9)|
()T 1, T—1 T-1 T-1
< Z H I+Dtll“+i—j)cil - H (I+D71F+i—j)ci2+ H (I+D%“+i—j)ci2
=0 "' j=i+41 J=i+1 Jj=i+1
T-1
- H (I +D7yi—j)CF
j=i+1
T-1 T-1 T-1
Z( I ¢+ b pict =2+ | T ¢+ phy
Jj=i+1 j=i+1
T-1
- I ¢+ Db i)
=i+l
(@) =1

<y ((1 + My L)Y CF = C2|| + Mypa (1 + My L) 7072

=0

T-1

> IDhsisi = Dheisyl)

j=it1
iy T=1 T-1
<Z 1+Mm1LT11ACz+Mm2( +Mm1LT122AD] ;

Jj=i+1
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where (i) follows from the definitions that D} = V,;m(Vel,;(6)),0)V2i;(67), C/
Vam(Val;(0:), ), (i) follows from Assumption 3 and (7i7) follows from Lemma 9 and 10.

O

Lemma 12. (Correspond to Proposition 1) Based on Assumptions 3 and 4, Lemmas 8 and 11, we

obtain

||V¢§%(¢) — Vit ()|l = O(TQT_IKH +Q*T T A),
where Q = 1 4+ M,,1 L.

Proof. We first consider A¢; and A p;, we obtain
Aci =Lm1(1+ My L) Ars) = O(Q'Aqy),
=O(Mpm1(pog, + A12) 4+ L1 L(1 + My L) Aq)
O(QzAu + A+ Q'Az) = O(Q"Ara + A12),

where (i) follows because og; = (1 + M1 L)' 812 — 812 = O(QA15).

Furthermore, we consider the uniform bound for ||V 401.(¢) — V40%(¢)|, then we obtain

||V¢9T ¢) — V¢9T
T-1 T-1
é(’) Z (QT i— 2 QAc; + Z AD Ti— j)) )
=0 J=i+1
T-1 T-1
Z:O (QT i— 1Q1A12+QT i—2 Z QT-H JA12+A12))

Jj=i+1

|
Q

B
o
°

(
(ii)o ( (ij71£12 + QT+j71A12)
7=0

N
Il
=)

S
-

(T i 1)QT7i72512 + Q2Ti2A12)>
0

<.
Il

=

( TQT A, + QQT_lAlz) )

QT 1A12 + (T —i— 1)QT—i—2£12 + (QZT—i—Q _ QT_1>A12)>

12)

13)

where (7) follows from Lemma 11, (i7) follows from Equation (12) and Equation (13), (i) follows

because j = T — i — 1. Based on the formulation of V4§ (¢) in Lemma 6, we have

IV691(6) = Vi (0)l <MIVe07.(6) — Vb7 ()| + MorQT Arz
(—)O(TQT_lﬁm +Q Ay,

where (i) follows because My defined in Lemma 2 satisfies that Mgy = O(QT~1).

Lemma 13. Based on the Assumption 3 and Lemma 2, we obtain

lgr (1) — gr(d2)|| < Myrlld1 — @2l
where M, = M Mor and Mg is defined in Lemma 2.

Proof. Based on the definition of gr(¢), we have
lgr (1) — gr(d2)l| =[11(07 (1)) — 1(6r(2))]l

(%)
<M ||07(p1) — O7(d2)|

Al8



Published as a conference paper at ICLR 2023

(i1)
< M Myrl||p1 — ¢2||

=My, |[¢1 — ¢2l],
where (4) is based on Assumption 3, (i¢) is based on Lemma 2. O
Lemma 14. Based on the proposition 1 in ( ), Assumptions [ and 3, if we set
a < min{ﬁ7 m}, B = min(f, ﬁ)for B < % in Algorithm 1, then we have

~ ~ M3 (L+ 52) [ Lyr + pgraMy, M,
E|6Y, 0 — ot )12 < O(1) =2~ By ( gr T Pyr gr | 9T>’
N s N

where Mg, is defined in Lemma 13, Ly, is defined in Lemma 6, py,. is defiend in Lemma 7.

Proof. Based on the Proposition 1 in ( ), we obtain

2 1

My, (1 + @) (LgT + pgr Mg, 4 MgT)
p? K VK )’

where GT(¢) is defined in Equation (5). Based on the Assumption 1 and the fact that 5}\4* =

arg min,, G (), we have

E[Gh(04) — Gh(dhs.)] < O(1)

~ ~ 9 ay o~ o~
Ellhx — Sheall® <=E (Gh(Bhix) — GH(Phra))

7
2 1
<O(l)MgT(l + 37) (LgT + Por @My MgT) .
- p K VK
O
Lemma 15. Based on Assumption I and Lemma 13, we have
131 g1 < 2Y2MMor
* * — M\/ﬁ 7
where N is the sample size.
Proof. Based on Assumption 1 and Lemma 13, from Theorem 2 in ( ),
with probability at least 1 — §, we have
~ 4M?
Loty ool < g1
Furthermore, based on Assumption | and the fact that ¢} = arg min g}(¢), we obtain
~ 2 ~ 24M2 ~ 8M?
1112 < 2 (o1 (a1) — ol 1)<7 gr _ g1
191 = ol < (h(8h) — gh(oh)) < T 5% = oo
We take the square root from both side and obtain:
132 — ) < 220
* x| = M\/W 9
with probability at least 1 — §. O

A.3 PROOF OF THEOREM |
Based on our definition of generalization error for the algorithm,
9%(;5}\41( - av¢§%(($}\/ﬁ<)) - 97(¢2)
S @i — Fhro + 0 + ATk (@) - aVoih(Bhire)) - g (69)
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< My, || @8k — Ghre + 0L — 0L + 0L — 8% + aV4dh(dhs,) — V42 (S| (14)
§M9T||¢}VIK - (b}\/[*” + MgT”(bi - ¢>¢1<|| + M9T||¢1 - ¢3||
o2V g (831,) — Vedh (@)l + Myral| Vg (dhs ) — Vsdd Skl

<(Mg, + MgTLgTa)Ilng - ¢M*H + My, |\¢i — ¢l + Mgy |6 — &3l
+ My || Voir(dr) — Voir(dnr)ll,
where (7) follows from Assumption 2, (i7) follows from Lemma 13.
. 1 I o . 8
Furthermore, considering Algorithm 1, if we set o < min{ 55, o=—57— Y . Bx = min(S, meEsy) +1)) for
B8 < < , based on Lemma 12, 14, 15, with probability at least 1 — &, we obtain

E[QT(¢MK C“V¢9T(¢MK QT ¢53

S(MgT + My, Ly, @) Ly, +pgT Ty My, . %
BVE uVIN

+ My, 613 + My, aO(T QT A+ QT 1A ),

where 613 = ||¢L — ¢3||, Q = (1 + M,,1 L), K is the step number for update, N is the sample size
for training.

Then for Lipschitz term Mg, defined in Lemma 13,
My, = MMyr = 0(QT 1),
where My defined in Lemma 2 satisfies Mpp = O(QT~1).

For Lipschitz term Lg,. defined in Lemma 6, we first compute the order for Ly which is defined in
Lemma 5, then we obtain

T-1 T-1

Lor =0 [ Y Q"' My, +ZQT 2N Mpryig
=0 1=0 J=i+1
T-1

-0 QT11Q71+ZQT122QT+ZJ1

=0 =0 Jj=i+1
T-1

P <Z QT- 2+ZQT i—20)T— 1> = O(TQT~2 + Q*T~2),
=0 =0

where (i) follows from Lemmas 3 and 4. Then, we obtain
Ly, =ML + LM}
_O(TQT_2 + QQT—Q 4 Q2T_2) _ O(TQT_2 4 Q2T_2)~
For Lipschitz term p,,. defined in Lemma 7, we have
+ =3LMyrLor + Mpg + Mipp = O(TQ* 3 + Q*"—3).
Then, the proof is complete.
A.4 PROOF OF REMARK 2
In terms of M-L20 generalization error, based on the Equation (14) in Appendix A.3, we have
g%(%vn{ - O‘V¢§%($zl\/u()) - g+(¢3)
<My || 0hri — Phas + Gx — b1 + by — 61 + aViir(dar.) — aVedt (Dnx) |
Mop | Ohsxe = Ohrall + Mor |01 = 611 + Myral| Vo3 (9hric) = Vi (dhr.) | + Myrdia,
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where 013 = || — ¢2|.
In terms of Transfer Learning .20 generalization error with learned initial point 5 K, we have
919k — aVeit (9k)) — 97 (6)
<My, |0k — aVsi(9k) — o1l
Oy 1B — aVodh (k) — (Ghr. — aVadh(Bhr) + 8L = 62
<My |0k = Girall + Myzll6k — SL1| + Myral| Vo7 (S) — Vigr(@hr)ll + Mz 613,

where (i) follows from ¢! = &5}%* - aV¢g}($}w*), 813 = ||¢L — #2||. Then, the proof is complete.

A.5 PROOF OF EQ. 8 IN SUBSECTION 5.3

We assume that % = ¢3,, — aV433.(¢3,, ), then we have
g%(gjl\/[K - @VM%(%}MK)) — g7(¢?)
<M, H(E}\/IK - aV¢g%(<EV[K) |
<My, || Ghrk — OV i7(Phr) — G + AVt (D3r) + 62 — 0
<My, D3 = Ohrell + Myr |62 — 81| + Myr Vi3 (Dhric) — Vit (@31l
+ My, | Ghrs — Bl

Then, the proof is complete.

A.6 ADDITIONAL EXPERIMENTS

New Optimizees: Rosenbrock We conduct additional experiments with substantially different

optimizees, i.e. Rosenbrock ( s ). In this case, the optimizes are required to minimize
a two-dimensional non-convex function taking the following formulation:

flz,y) = (z = 1)* +100(y — 27)%, (15)
which is challenging for algorithms to converge to the global minimum ( , ).

We specify Diygapt and Dieg to be the family of Rosenbrock optimizees with randomly sampled initial
points from standard normal distribution. In contrast, the training optimizees are still LASSO with a
mixture of uniform distribution from which the coefficient matrices are sampled. The experiments
are repeated for 10 times, with all the algorithms receiving identical adaptation and testing samples
in each run. Figure AS5a shows the curves of the logarithm of the objective values generated by
different methods, where our proposed M-L20 outperforms other baselines significantly. At 500-th
step, the (mean, standard deviation) of the logarithmic objective values for { Vanilla L20, TL, DT,
M-L20}are {(0.977,0.225), (—2.170,1.312), (—4.864, 0.395), (—6.832,0.445) } , which provides
numerical supports of the advantage of our methods.

New Evaluation: Interpolation

To obtain new optimize weights, we employ a linear interpolation strategy between two adapted
optimizers. The first one is optimized on the optimizees that are similar to those used in training, and
the second is optimized on the optimizees that are similar to those used in testing. We introduce a
factor « to control the interpolation between the two weights, denoted by w; and w», respectively,
and caluclate the new weights as follows:

w = aw; + (1 — a)wa,.

In Figure A5b, we present the mean values of the logarithmic loss, as well as the 95% confidence
interval. The results of TL and M-L20 validate our claim that adapting to training-like optimizees tend
to yield better performance than adapting to optimizees that more resemble the testing optimizees.

A21



Published as a conference paper at ICLR 2023

44 ~1.8
_ -l
51 k3t
2, 01 =21
S M1 =)
a0 an
S -4 BT S 24
TL 10—
Vanilla L20 Im—— |
0 100 200 300 400 500 0.00 025 0.50 0.75 1.00
o

Steps

(b) Convergence speeds on LASSO optimizees, with
different interpolation weights .. Both the mean and
the 95% confidence intervals are shown in the figure.

(a) Convergence speeds on Rosenbrock optimizees. We
repeat the experiments for 10 times, and present the
95% confidence intervals are shown in the figure.

Figure AS5: Visualization of additional experiment results.
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