
Noname manuscript No.
(will be inserted by the editor)

The Impact of Looking Further Ahead: A Comparison of
Two Data-driven Unsolicited Hint Types on Performance
in an Intelligent Data-driven Logic Tutor

Christa Cody1 · Mehak Maniktala1 ·
Nicholas Lytle1 · Min Chi1 · Tiffany
Barnes1

Received and accepted date will be inserted later

Abstract Research has shown assistance can provide many benefits to novices
lacking the mental models needed for problem solving in a new domain. How-
ever, varying approaches to assistance, such as subgoals and next-step hints,
have been implemented with mixed results. Next-Step hints are common in
data-driven tutors due to their straightforward generation from historical stu-
dent data, as well as research showing positive impacts on student learning.
However, there is a lack of research exploring the possibility of extending data-
driven methods to provide higher-level assistance. Therefore, we modified our
data-driven Next-Step hint generator to provide Waypoints, hints that are
a few steps ahead, representing problem-solving subgoals. We hypothesized
that Waypoints would benefit students with high prior knowledge, and that
Next-Step hints would most benefit students with lower prior knowledge. In
this study, we investigated the influence of data-driven hint type, Waypoints
versus Next-Step hints, on student learning in a logic proof tutoring system,
Deep Thought, in a discrete mathematics course. We found that Next-Step
hints were more beneficial for the majority of students in terms of time, ef-
ficiency, and accuracy on the posttest. However, higher totals of successfully
used Waypoints were correlated with improvements in efficiency and time in
the posttest. These results suggest that Waypoint hints could be beneficial,
but more scaffolding may be needed to help students follow them.

Keywords Tutoring system, Hints, Assistance, Data-Driven methods

Christa Cody
E-mail: cncody@ncsu.edu

1North Carolina State University, Computer Science Department, Raleigh, NC, USA

ar
X

iv
:2

10
2.

05
74

1v
1

 [c
s.H

C
]

10
 F

eb
 2

02
1

2 Christa Cody1 et al.

1 Introduction

Intelligent tutoring systems (ITS) provide adaptive assistance to students and
have significant positive effects on learning [42, 29]. Multiple approaches to as-
sistance have been explored, with some very specific assistance, like bottom-out
hints [59], designed to ensure that students “do not flounder during problem
solving” [36], while other more abstract assistance, like a suggested subgoal
[11], is designed to allow more freedom and exploration within the domain.

Providing assistance has been shown to reduce the cognitive load of learn-
ing by simplifying the task, leading to greater learning outcomes in less time
[23, 53]. However, determining what level or type of help students need is a
complex task that can affect learning outcomes [1, 59, 61]. A major goal of
providing assistance is to level the playing field of learning so that students at
any incoming proficiency can master the same material in a similar amount
of time. Research has shown that the level of hint and the learner’s incoming
experience can affect learning outcomes in ITSs [5, 23]. One example of this
is the expertise reversal effect where methods that benefit novices, such as
worked examples, become detrimental to students with higher expertise due
to increasing cognitive load through redundant information [54].

Furthermore, research has found evidence of aptitude-treatment interac-
tions (ATI) within instructional strategies[13, 50], where certain students, par-
ticularly lower performin students, are more likely to be affected by changes
in the learning environment. Similar to solving programming problems, solv-
ing logic proofs requires students to understand a system of domain principles
or rules and to creatively apply them in sequence to achieve a goal. Conse-
quently, support can be directed at any of these facets of problem solving,
such as helping a student learn a rule or identify when applying a such a rule
will move them towards a goal. Therefore, we hypothesized that different hint
types could have different effects based on students’ incoming proficiency.

Deep Thought’s default hints are Next-Step hints, where the next state-
ment to be derived is given to the student and can be derived within one step.
Providing the next step to derive allows students to focus their learning on
discovering how to reach their new short-term subgoal, rather than what next
subgoal to pursue. On the other hand, Next-Step hints may reduce student
autonomy or practice in creating appropriate problem solving strategies.

To evaluate the effect of a new hint type on student’s performance, we cre-
ated Waypoints, that can be thought of as intermediate subgoals, by modifying
our Next-Step hint generator to produce hints that mimic subgoals without
the need for expert labelling. Our new method produces Waypoint hints that
require students to perform 2-3 steps to derive them. Waypoints are intended
to serve as near-term subgoals, that allow students more room for exploration
and latitude in strategy construction.

Another important aspect to assistance in tutoring systems is the ease of
generation. Data-driven methods, where actions within the tutor are designed
and developed using historical data, have been used to great effect to automate
and individualize computer-aided instruction [38, 52, 18, 8]. Deep Thoughts’s

Title Suppressed Due to Excessive Length 3

data-driven assistance matches current student work with similar historical
successful, efficient examples to provide adaptive Next-Step hints using the
Hint Factory, which is a method of generating Next-Step hints. The original
Hint Factory opened a new field of data-driven hint generation that was first
applied in tutors for logic [51, 8], and then for linked lists [17]. More recently,
the Hint Factory approach inspired new research in generating Next-Step hints
for novice programming, based on generating assistance using pieces of previ-
ous student’s solutions [17, 49, 43, 8].

However, there is a lack of research extending this Next-Step hint gener-
ation to provide additional forms of assistance. Therefore, we modified our
Next-Step hint generator to produce Waypoint hints. Our modifications were
inspired by the Approach Maps technique of graph-based mining to discover
important subgoals in common student solutions [14]. This extension of Next-
Hint generation to provide a higher level of hint may be used in other systems
to easily generate a new hint type that could provide more adaptive assistance
to address individual student needs.

Our goals for this study were to 1) perform a study to compare the impacts
of Waypoints with Next-Step hints on performance, and 2) determine whether
prior proficiency interacted with hint type to impact tutor posttest perfor-
mance. We investigated the impact of the two types of hints, Next-Step and
Waypoints, on student learning via unsolicited, tutor-initiated steps inserted
into the student workspace, which we refer to as “Assertions”. Assertions are
designed to direct student attention to, and promote adoption of, unsolicited
Next-Step and Waypoint hints.

Based on the prior research mentioned above, we hypothesized that our
Next-Step hints would be most beneficial for students with lower incoming pro-
ficiency and lead to better performance on the posttest. We also hypothesized
that Waypoints would be more beneficial to students with higher incoming
proficiency and lead to better performance on the posttest. In other words, we
predicted an aptitude-treatment interaction (ATI) effect [13, 50] where prior
student proficiency would impact which students benefit most from a treat-
ment. We predicted an ATI effect for both Waypoint and Next-Step hints,
with higher proficiency students benefitting more from Waypoints and lower
proficiency students benefitting more from Next-Step hints.

In this paper, we first discuss the context of the logic tutor, Deep Thought,
and the method of generation for the different hint types. We then outline our
experimental setup, designed to compare these two hint types in terms of their
effects on student learning outcomes. Finally, we discuss the study results and
how they relate to prior literature, and provide recommendations for future
data-driven hint development and research.

2 Related Work

In this section, we discuss various approaches to assistance, such as subgoals,
Next-Step hints, and worked examples, within intelligent tutoring systems (re-

4 Christa Cody1 et al.

ferred to here as ITSs or tutors). We also discuss cognitive theories surrounding
assistance, including cognitive load and the “zone of proximal development”,
that have influenced our work.

Guided discovery, helping students discover new knowledge rather than
providing direct instruction, is generally more beneficial than allowing students
to learn unguided [25, 33]. This finding agrees with the theory of the “zone
of proximal development” (ZPD), the space between things a student can
do independently and those they can only do with support [60]. Vygotsky
hypothesized the most effective learning occurs when students are assigned
tasks within their ZPD, meaning that tasks should neither be so simple that
students can do them independently nor so difficult that they cannot make
progress even with assistance. This dilemma of choosing an appropriate level
of assistance shows that giving or withholding information is a delicate balance
with trade-offs [26].

The theory of cognitive load may explain the trade-offs of different ap-
proaches to assistance. Providing assistance can reduce the cognitive load
needed for students to learn through methods such as simplifying the task [23]
or breaking the task down into easier-to-digest components, such as subgoals
[37]. However, the cognitive load of a learner is affected by both the elements
of information in the task and their own ability [53]. Intuitively, providing as-
sistance that is too hard for a particular student to understand can negatively
impact learning. However, providing assistance when it is not needed may also
have a negative effect, such as the expertise reversal effect in which providing
students information they already know increases their cognitive load [54]. On
the other hand, it is a known problem that many students fail to request help
when it is needed, and this has been termed hint avoidance [1], discussed later
in this section.

2.1 Approaches to Assistance in Tutoring Systems

Intelligent tutoring systems (ITSs) have significant positive effects on learning
outcomes [42]. Many forms of contextualized assistance have been explored
in ITSs, such as hints, worked examples, and error feedback [21, 18, 58, 59].
The most minimal hint type is error-specific feedback, which provides a hint
regarding an error the student has made [59]. Our tutor, as described below,
includes basic error feedback when rules are not applied correctly.

Many tutors use goal-directed hint sequences to provide several hints in
a row, beginning with a more general hint then transition to more specific
and directive hints [21]. Our tutor has this capability, but it was disabled for
this study to determine the impact of hint type and not the amount of detail
each student might request. A standard goal-directed hint sequence within a
tutoring system is Point, Teach, and Bottom-out [21]. Pointing hints attempt
to remind the student of relevant material. Teaching hints describe how to
apply the relevant material. Bottom-out hints tell the student the next step
and specifically how to implement it. The hints in Deep Thought would be

Title Suppressed Due to Excessive Length 5

considered pointing hints, because they point students in the direction they
should be moving by giving them a hint statement to work towards.

2.1.1 Higher-level Assistance

One type of assistance higher-expertise learners benefit from is subgoals, a set
of steps in the solution process that allows users to “chunk” information for
ease of learning [11, 37]. Sweller et al. [57] found that using more abstract rep-
resentations of goals in five maze-tracing experiments resulted in “fewer errors
and more rapid learning of the structure of the problem.” The authors found
that the more information solvers knew about the goal, the less they learned
about problem structure. However, studies have found that these approaches
have trade-offs depending on learner ability and problem difficulty or context
[37].

In regard to learner’s abilities, research within ITSs has shown that high-
ability learners can benefit from lower amounts, or less guidance, while low
ability learners benefit from more concrete (specific and direct) guidance [5,
28]. These findings inspired us to explore how data-driven hint algorithms
could be used to derive less direct guidance to benefit high-ability learners.

2.1.2 Next-Step Hints

The Hint Factory is a data-driven approach developed to generate Next-Step
hints for students applying rules to solve open-ended problems in well-defined
domains where there are multiple valid solutions [51, 52]. New innovations
in generating assistance from individual pieces of previous student’s solutions
have helped researchers extend the ideas of the Hint Factory to generate Next-
Step hints for new domains including novice programming and linked list con-
struction [17, 49, 43, 8]. The Next-Step hints derived by the Hint Factory
and used in our tutor are pointing hints that suggest a statement a student
could derive using a single domain rule application. Sweller et al. makes the
case that providing more explicit instruction is better for novices who need
to establish those individual learning blocks before they can create their own
mental models [54, 35].

However, research has shown that allowing students to make successful,
unaided attempts at solving a problem can provide a higher learning benefit
compared to explicit instruction showing them what to focus on [26]. Hint
Factory Next-Step hints have been shown to be successful in supporting stu-
dent learning and problem-solving, with students having access to such hints
in logic being 3 times more likely to complete the tutor than those without
[52]. These results suggest that Next-Step hints are direct and explicit enough
to support learning, but since level 1 hints do not provide the full information
to achieve a next-step, students must do some unaided exploration to achieve
the suggested hint statement. On the other hand, Aleven et. al notes a “one
size fits all” strategy for guidance is not likely beneficial [1]. Hence, we are

6 Christa Cody1 et al.

inspired to determine whether some even less direct data-driven hints may
benefit high-ability learners.

2.1.3 Aptitude-Treatment Effect

Aptitude-treatment interactions have been widely studied in the educational
domain. Prior research in instructional strategies [13, 50] has shown the ex-
istence of aptitude-treatment interaction (ATI), where certain students are
more sensitive to variations in the learning environment and may be affected
differently by the treatment compared to less sensitive students who perform
regardless of the treatment. Educational researchers have discovered ATI ef-
fects based on prior experience level, prior working memory, and incoming
self-regulated learning ability [24, 27, 19, 62]. For example. Lehmann et al. ex-
plored the effect of working memory on learning outcomes in fluency/disfluency
groups, where instructional materials had different levels of text legibility [27].
Based on these findings, we believe that there could be an aptitude-treatment
effect associated with hint type. We believe that students with lower incoming
proficiency may be more sensitive to hint type.

2.1.4 Help Avoidance and Unsolicited Hints

Despite this considerable research on assistance, there is pervasive problem
within ITSs called help avoidance, where students do not leverage the intelli-
gence within the system for help [2]. There are many reasons for help avoid-
ance, one of which is that certain students may lack specific meta-cognitive
skills like knowing when to ask for help [1]. As a result, some ITSs employ un-
solicited hints (i.e. providing hints when needed without request) to prevent
help avoidance [41], and we adopt this unsolicited strategy here.

Zhou et al. found that students were more likely to make effective peda-
gogical decisions at the problem-level rather than the step-level, meaning that
students were less able to make effective decisions when deciding if they need
a hint on a particular problem-solving step [63]. In another study, researchers
found that a large number of students using Andes, the physics tutor, would
guess instead requesting hints [46]. Furthermore, higher learning gains have
been observed for low performing students when unsolicited hints were pro-
vided[4]. While one study found that students learned more reliably with hints
on-demand than unsolicited hints[47], other studies have shown that provid-
ing hints at the appropriate time can augment students’ learning experience
[10, 45], improve their performance [9], and avoid the negative effects of frus-
tration while saving students time by preventing unproductive struggle [40].

Within our tutor, even though students often have difficulty and hints are
readily available via the hint button, most students do not request assistance.
In Fall 2017, students using our tutor requested a median of zero hints per
problem. In this study, to enable us to compare the impact of hint type,
we periodically (frequency defined in Section 3.1) provided unsolicited hints
to students based on the condition they were assigned. In prior work, we

Title Suppressed Due to Excessive Length 7

compared our unsolicited hints to the normal conditions in Deep Thought,
on-demand hints only, and found that the unsolicited hints had no impact
on the performance metrics in the training and no negative impacts on any
performance metrics on the posttest [12]. Furthermore, this work found that
providing unsolicited hints reduced steps that students needed help, but didn’t
receive it as detected by our Help-Need model [31, 30]. Therefore, we do not
believe that our unsolicited hints are disruptive, but we note that providing
unsolicited hints has potential for disrupting students’ learning. In the next
section, Deep Thought and its interface are discussed in detail and the hints’
generation, usage, and frequency are expanded on.

3 The Deep Thought Logic Proof Tutor

The Deep Thought tutor (see Figure 1, described further below) is used in the
context of a discrete mathematics course where students first spend 2 weeks
learning about truth tables, and proving each logic rule is true in class and
in online multiple-choice homework assignments. Then, students learn about
formal proofs, where students iteratively apply logic rules to a set of given
statements to derive a specified conclusion.

A formal proof works much like any multi-step procedural problem where
domain principles are applied to given and previously-derived facts to derive
and justify new statements. For example, in physics, students may be given
values for mass and acceleration and be asked to determine force. They would
then apply the domain principle of F = m∗a along with the given values of m
and a to derive a new statement about the value of F . In logic, each derived
statement must have a justification which consists of the domain principle
and the relevant prior statements it was applied to. This corresponds to the
information used to derive F in the previous physics example. In a formal
proof, students are given a few statements (the number may vary) that are
known to be true - often referenced as ”givens” - and a conclusion that is to
be derived. Then, students must apply logical rules to the givens to derive
new statements. The student repeats this process of identifying rules to apply
on certain statements until they derive the conclusion. An example of this
process in Deep Thought is covered in this section along with a description of
the interface.

Within the discrete math course, students next complete partially-worked
examples in a fill-in-the-blank type interface where they are given formal logic
proofs with one missing part on each step - either the derived statement, or
part of the justification that consists of the rule used to derive it and the
statements the rule was applied to. Many example logic proofs are worked
in class, with students asked to actively solve logic proofs in small groups,
and students are provided with several full worked examples in handouts.
After this class work and homework, students are assumed to have reasonable
familiarity with logic rule application, but need practice in determining which
rules to apply in service to a problem-solving goal. Students are then assigned

8 Christa Cody1 et al.

to complete formal logic proofs using our propositional logic tutor called Deep
Thought [39].

The intention of the Deep Thought tutor is to provide students with prac-
tice on solving logic proofs with a focus on problem-solving efficiency in both
time and the number of steps in their solutions, i.e. shorter proofs in less time,
and ideally with few mistakes in justifying or deriving new statements. To
do so, the tutor must provide basic functionalities including (1) correctness
feedback on each step (on both justification and derived statements), and (2)
automated detection of proof completion. Like a compiler, Deep Thought pro-
vides these functions that identify errors and clearly shows when a problem is
complete but do little to help students with the overall goal of reaching a prob-
lem solution through deriving and justifying a series of well-chosen statements.
To bridge this gap, the Hint Factory was created to provide data-driven assis-
tance that could point students to appropriate subgoal statements to derive
[8, 51, 52].

Deep Thought allows students to solve logic proofs graphically as shown
in Figure 1. On the left of Figure 1, the workspace is labelled. The workspace
is where the students can select statements (purple, oval-shaped nodes) and
apply rules by selecting rules (blue, oval-shaped nodes) from the middle of the
screen under the “Rules” section to derive new statements. In Figure 1, there
are 4 givens (at the top of the workspace in purple, oval-shaped nodes) and
the conclusion (at the bottom of the workspace in a purple, square-shaped
node). Each statement is labelled to show the order in which students derived
them with the exception of the givens and conclusion which are labelled for
ease of reference. There is no particular ordering to the givens. Also, there is
an example of our hints on the screen in the blue, oval-shaped nodes labelled
“Goal.”

To derive a new statement, a student must select statement(s) by clicking
them followed by selecting a rule to apply. In response to the student selecting
a rule to apply, the tutor has one of 3 responses: 1) if the student is using an
applicable rule, i.e. a rule that logically can be applied to the statements, and
the new derived statement is the only potential derivation, then the statement
is automatically added to the screen, 2) if the student is using an applicable
rule and there are multiple potential derivations, e.g. using “Simplication” on
the statement “I ∧F” where either I or F could be the new derived statement,
then the student is prompted to enter in the statement they want to derive,
and 3) if the student has incorrectly selected a rule that doesn’t apply to the
selected statements, e.g. the rule requires only one statement to be selected,
such as “Simplification” or “Implication”, and the student has selected two
statements, then the tutor provides a pop-up and a description of the error.
Note that in response 2, if the student incorrectly types in the statement to
be derived in the prompt, the tutor will pop-up and error and the student will
have to select the rule again to derive the statement.

When a new statement is added by the student, the statement becomes
oval-shaped node, similar to the givens shape, but the color depends on the
frequency and necessity of the node based on historical data. To help students

Title Suppressed Due to Excessive Length 9

avoid deriving unnecessary statements/nodes in the training phase, the tutor
colors nodes based on their necessity and frequency in our historical dataset of
correct solutions by past students. Nodes that were never necessary to derive
the conclusion are colored gray, while frequently-necessary nodes are colored
green, and infrequently-necessary nodes are colored yellow.

As the student is deriving new statements, the nodes are added to the
proof with arrows pointing to them to show which statements were used and
the rule applied to derive the new statement. On the right of the screen, the
Info Box contains information communicated by the tutor about the current
problem the student is solving, i.e. what rules may be useful to solving the
proof, information about hints on the screen, and information about certain
buttons a student may try to use. The bottom left of the screen under the
workspace contains buttons that a student may use during the training portion
of the tutor (skipping a problem and requesting suggestions, i.e. hints, are not
available during the testing portions of the tutor). To the bottom right of the
screen, buttons are available that show the student general information about
the tutor as well as instructions that provide information about solving proofs
and the options available for the students.

Fig. 1 On the left of the screen is the Deep Thought workspace. Below the workspace are
are the hint button and hint message box, the rules are in the middle, and to the right is
the Dialogue Box where messages related to unsolicited hints as well as problem information
are given.

10 Christa Cody1 et al.

As stated above, Deep Thought is intended to teach students to solve proofs
more efficiently, in terms of time and steps taken to reach the conclusion. The
tutor presents proof problems as an initial set of given statements with a
conclusion to derive from them using logic rules. Each statement, given or
derived, is represented by a node, with the conclusion represented with a node
with a question mark ‘?’ above it, indicating that it has not yet been justified
(shown to be true using logic rules applied iteratively to the givens).

Each problem-solving step consists of two parts: the justification and the
derived statement. The justification is the set of 1-2 existing nodes and the rule
applied to them, and the derived statement is the result. Students complete
the justification by clicking to select 1-2 nodes, and clicking on a rule to apply.
Students then type in the derived statement that results from applying the rule
to the selected statement nodes. For example, Figure 2 shows a formal proof
beginning with 3 givens (at the top of the workspace in purple, oval-shaped
nodes) and the conclusion (at the bottom of the workspace in a purple, square-
shaped node). The student (1) selects the statement “I ∧ F” and (2) applies
the “Simp” rule, i.e. Simplication, to (3) derive a new statement “F ”. To solve
the proof, the student would continue identifying combinations of statements
and rules to apply until they derive the conclusion statement “J ∧K”.

Throughout the tutor, including the pre- and post-test problems, Deep
Thought provides immediate error feedback for mistakes - either in justifica-
tions or derived statements. If a student clicks on the wrong rule, or their
derived statement does not follow from the selected nodes and rule, Deep
Thought shows a popup message and records the error. For example, if a stu-
dent selects two nodes and then clicks on the Simp rule, the error prompt reads
“Rule requires one premise,” then fades away. If the student enters a derived
statement that is true, and the justification (consisting of the selected nodes
and rule to derive it) is correct, then a new node with the derived statement
appears in the workspace.

To complete a problem, the student must iteratively derive and justify
new statements, until the conclusion statement is derived and justified. When
students have completed a problem, the conclusion’s question mark is removed,
and it is visually connected to the givens through a series of derived nodes and
arrows indicating their justifications. Since the system automatically checks
each step and detects completion in all phases of the tutor, student solutions
cannot be incorrect, but some may be more expert than others. Students are
considered to have learned the topic when they perform well on the posttest
(described below), especially with regard to problem solutions with fewer steps
and fewer mistakes in less time.

Deep Thought includes four phases: introduction, pretest, training, and
posttest. The introduction consists of three problems including two worked
examples, where students click through the addition of successive nodes until
a conclusion is derived, and a third problem students solve alone to learn
the interface. Then, students take the pretest consisting of a solving single
problem with no hints available. The pretest is used to measure students’
incoming proficiency and assign them to conditions via stratified sampling.

Title Suppressed Due to Excessive Length 11

Fig. 2 Deriving a new justified node. (1) Selecting the node “I ∧ F” to use (2) Selecting
the rule “Simplification” to apply (3) The screen after the rule was clicked showing “F” as
a justified node

Next, students solve 18 problems in the training section. For each training
problem, the dialogue box provides information on what rules to focus on while

12 Christa Cody1 et al.

solving a problem, such as “Think about the following rules for this problem:
MP, Simp, Add.” Students also receive contextual, data-driven hints during
training, including both unsolicited hints generated by the system and on-
demand hints upon student request, all generated using the same Hint Factory-
type approach described below. After completing training, students take a
more difficult, non-isomorphic posttest, where they must solve four problems
without any help or assistance. Since the posttest is not isomorphic to the
pre-test, we do not expect the post-test performance to be directly comparable
to the pretest performance. Rather, we use the pretest to balance incoming
proficiency across groups via stratified sampling, and focus on comparing post-
test performance between groups.

Expert solutions for all tutor problems range from 5-8 steps, and student
solutions typically contain 5-20 steps. Longer student solutions may simply be
inefficient, taking more steps than needed, or they may contain unnecessary
nodes that do not lie on a direct path from the givens to the conclusion (see
footnote 1). As first mentioned in Section 3, to help students avoid deriving
unnecessary statements/nodes in the training phase, the tutor colors nodes
based on their necessity and frequency in our historical dataset of correct
solutions by past students. Nodes that were never necessary to derive the
conclusion are colored gray, while frequently-necessary nodes are colored green,
and infrequently-necessary nodes are colored yellow.

3.1 Assistance

In training problems, students may receive unsolicited hints, depending on
their assigned study condition, as well as request on-demand hints. On-demand
hints and unsolcited hint provide the same content. All hints provide a target
statement to derive, appearing as a node with a ‘?’ in the workspace. In pre-
vious work, we showed this method of providing unsolicited hints, Assertions,
resulted in better performance than text-based messages as a method of un-
solicited hint delivery [31]. For the remainder of the paper, we refer to both
solicited and unsolicited hints as hints.

Deep Thought includes several measures intended to prevent gaming the
system, where students attempt to use system features to avoid work, or help
abuse, where students request hints when they do not need them [6]. First,
whenever a hint is already in the workspace, students may not receive another
hint, whether it was solicited or provided automatically by the tutor. Second,
no further details are provided for any hint, meaning there is no such thing
as a bottom-out hint in this study. In past Hint Factory implementations, we
have provided students 4 levels of hints that (1) suggested the next step, (2)
the specific rule, (3) the prior statements needed, and finally (4) a bottom-out

1 Unnecessary nodes in a complete solution are easy to detect because removing them
does not disconnect the conclusion from the givens, but they are difficult to detect during
problem solving.

Title Suppressed Due to Excessive Length 13

hint with all this information. In this study, we use only level 1 pointing hints,
and disabled hint levels 2-4.

The tutor generates hints using historical student data from four semesters,
each semester with approximately 250-300 students using the tutor. Both hint
algorithms produce assistance based on the most frequent and efficient paths
available in the student’s current proof.

We use the Hint Factory [51] approach to generate hints. The Hint Factory
[51, 52, 7] is a data-driven method to generate hints by transforming histor-
ical student problem-solving attempts into a Markov Decision Process, using
observed frequencies as transition probabilities, and estimating the expected
value of each previously-observed problem state based on assigning rewards
to complete solutions, small negative rewards (i.e. costs) to steps to positively
reward more efficient solutions, and large negative rewards to errors to de-
emphasize solutions that cause many students to make mistakes. Individual
student problem-solving attempts are represented by a series of states, or snap-
shots of the work done so far, where transitions occur between states when
students add or delete problem nodes, or make an error. The Hint Factory is
described in detail in Barnes and Stamper’s chapter in the 2011 Handbook
on Educational Data Mining [7]. All student solutions are combined into an
interaction network [15] that reflects all previously-observed solutions to one
specific problem. When a hint is requested by the student or tutor, the Hint
Factory is used to select a target problem-solving state with the highest ex-
pected value. Note that this process can be done offline, and a simple table can
be used to store problem-solving states and their corresponding hint content
for real-time hint provision. Then, the latest statement derived in that state
is used as the pointing hint to help students know what to try to derive next.

In this study, we do not provide further information on how to derive or
justify the suggested statement, i.e. the statements that a student needs to
select and the rules the student may need to apply are not provided to the
student, meaning that all hints in this paper can be considered as partially-
worked example steps.

In this study, two hint types are used: Next-Step and Waypoint hints.
Figure 3 and Figure 4 shows the two forms of data-driven hints: Next-Step
(NS) and Waypoints (WP), respectively, and how the students would approach
deriving the suggested hint statement for each type. Descriptions of how each
hint type is generated as well as how to derive each hint are expanded in the
following paragraphs.

Next-Step hints are generated using the Hint Factory method as de-
scribed above, with the target state selected to be the one with the highest
expected value that occurs within one rule application from the stu-
dent’s current state. Simply, Next-Step hints suggest the best proposition
that can be derived in one step from the student’s current proof. This cor-
responds to the next-step hints derived in all of our prior work using Hint
Factory [8, 7, 52, 51, 14, 15, 43, 44].

Since Next-Step hints are partially-worked, they allow students to focus
on how to justify them, and reflect on why they were suggested. This removes

14 Christa Cody1 et al.

a considerable load; without a hint, students must also search among many
options for the best what to derive next. For example, Figure 3 demonstrates
the ideal derivation of a Next-Step hint. In Figure 3, Deep Thought has 3
givens at the top of the workspace and one hint statement labelled “Goal”, F ,
on the screen. To derive the hint, the student (1) selects the I ∧ F statement
by clicking it. After selecting the statement, which is now shown highlighted
in blue, the student clicks the rule labelled “Simp” to apply Simplification to
the statement. A pop-up will appear for the student to type in what they are
attempting to derive, in which case they enter F . After entering F into the
prompt, (3) the statement is shown incorporated into the student’s solution
in the same fashion regular derivations happen as in Figure 2 with arrows,
coloring, and labelling. In this case, the justified hint appears on the screen as
a green, oval-shaped node with an arrow pointing to it from the I∧F statement
with the labels “4:” to indicate this statement is the fourth statement justified
(givens are automatically numbered) and the label “Simp” to indicate the
statement was derived using the Simplification rule.

Waypoint hints are generated with the same method as Next-Step hints;
however, instead of selecting a hint 1 step away from the student’s current
state, hints that are 2-3 steps away from the student’s current state are se-
lected. A primary motivation for this study was to determine a simple way to
extend the Hint Factory to provide less direct data-driven hints, i.e. compared
to Next-Step hints, without the need for expert authoring. In our prior work,
we derived a new method called data-driven Approach Maps, that applies hi-
erarchical graph mining to interaction networks to discover problem-solving
states that represent critical junctures in problem-solving attempts, which we
call subgoals [14]. These subgoals occurred every 2-3 steps/states in our short
logic proofs (which are typically 5-12 steps long). These subgoals inspired our
Waypoints, but we wanted to be able to generate these hints with an easier
method that is more extensible to other researchers who may already be using
Hint Factory or methods based on Hint Factory.

To generate Waypoints without the need to apply data-driven Approach
Maps, we modified the Hint Factory to select a target statement that was 2-3
steps away from the current state. Among states that were 2 or 3 steps away, we
selected the state with a higher frequency within prior correct solutions. This
resulted primarily in states that need only two rule applications to derive, since
the diversity of student solutions means that frequency typically decreases in
interaction networks the further states are from the start. By expert review of
a random sample of Waypoints, we verified that this simple algorithm results
in similar hints to those generated using data-driven Approach Maps [14].

Waypoints are intended to serve as subgoals, giving students more room to
explore the solution space and develop their own problem-solving strategies.
Since Waypoints cannot be achieved with a single rule application, they require
students to make their own problem-solving plan to derive them, considering
the existing problem statements and how rules might be applied to them to
derive and justify the suggested Waypoint statement. For example, Figure 4
demonstrates the ideal derivation of a Waypoint hint. In Figure 4, (1) Deep

Title Suppressed Due to Excessive Length 15

Thought has 3 givens at the top of the workspace and one hint statement
labelled “Goal”, G ∧ ¬H, on the screen. To derive the hint, the student first
selects the I ∧ F statement by clicking it, then the student clicks the rule
labelled “Simp” to apply Simplification to the statement. A pop-up will appear
for the student to type in what they are attempting to derive, in which case
they enter F . Note, this step is not shown in the figure, although it is the
same process as described in Figure 3. After entering F into the prompt,
the F statement is shown incorporated into the student’s solution. Next, the
student must make a second derivation to derive the hint. The student (2)
selects the F → (G ∧ ¬H) statement and the F statement by clicking each
one individually – this highlights both nodes – then the student clicks the MP
rule to apply Modus Ponens to the statements. As a result, the statement is
automatically derived, due to the derived statement being the only option,
and the justified hint appears on the screen as a green, oval-shaped node with
arrows pointing to it from the F → (G∧¬H) statement and F statement with
the labels “5:” to indicate this statement is the fifth statement justified (givens
are automatically numbered) and the label “MP” to indicate the statement
was derived using the Modus Ponens rule.

For both Next-Step and Waypoint hints, the process of deriving the hint
is the same: students must select statement(s) and apply rules to derive new
statements, which we also refer to as “steps”. The only difference is how many
times a student must repeat this process to derive the hint statement (ideally
once for Next-Step and twice for Waypoint hints - with the exception of some
Waypoints that may take three steps to derive). With that in mind, students
may also derive new statements that do not contribute to deriving the hint
statement; however, when we refer to how many steps it takes for a student
to derive a hint, we are speaking in ideal terms.

We consider a continuum of goals for students, where Next-Step hints ide-
ally take one step to derive, Waypoints take 2-3, and the problem conclusion
takes about 5 expert steps. With longer problems or more complex problem
domains like programming, we would recommend using a more complex algo-
rithm to select Waypoints if they were shown to be effective. In logic proofs,
the shortest proof is considered to be the best, so simple metrics on interaction
networks can quickly discover optimal solutions and those that many students
can discover.

As stated above, Deep Thought only provides pointing hints to suggest
statements that can be derived; neither Next-Step nor Waypoint hints tell stu-
dents which rules to use to derive them; rather, they help students solve prob-
lems by suggesting a subgoal that helps them break down multi-step problems.
To use a hint in their proof, the suggested hint statement must be justified
by applying a rule to previously-justified or given statement(s). Statements
that are not justified appear in the tutor interface with a “?” above them to
indicate that they need to be derived.

We implemented unsolicited hints so they appear randomly and with enough
uniformity and frequency that even students with short proofs would receive
hints. One limitation of this method of providing hints is that hints were not

16 Christa Cody1 et al.

Fig. 3 Next-Step hint. (1) A Next-Step hint appears, F . (2) The student has selected I ∧F
and is applying the Simplification rule. (3) F has been justified.

Title Suppressed Due to Excessive Length 17

Fig. 4 Waypoint hint. (1) A Waypoint hint appears, G∧¬H. (2) The first derivation using
Simplification has already been completed. The student has selected F → (G ∧ ¬H) and F
and is applying MP (Modus Ponens). (3) G ∧ ¬H has been justified.

necessarily provided when they were most needed, which may affect learning

18 Christa Cody1 et al.

outcomes. However, since students in tutor rarely request hints, it was neces-
sary to provide the hints automatically and frequently to enable us to evaluate
our hypotheses. For the Next-Step group, we capped the number of unsolicited
hints at 1/3 of the problem length and checking every 2-3 steps to see if a hint
was still extant in the workspace (e.g. it was not yet justified). If a hint still
remained, the algorithm did not provide a new hint, but if there were no hints
on the screen, a new one was provided. Since Waypoints take more steps to
derive, they remained unjustified for longer, and thus resulted in fewer Way-
point hints by design. Note that students can delete problem nodes at any
time (excluding the givens and conclusion), and this includes hint nodes, even
if they are not yet justified.

4 Methods

The Deep Thought tutor was used as a homework assignment for an under-
graduate ‘discrete mathematics for computer scientists’ course in the Fall 2018
semester at a large research university. We analyzed 143 students’ data from
two test conditions to investigate the impact of hint type on student per-
formance and behavior. Both conditions were identical except for hint type,
Next-Step or Waypoint. We used stratified sampling based on pretest perfor-
mance, then randomly assigning to Next-Step hints (NS, n = 71) or Waypoints
(WP, n = 72), ensuring both conditions were balanced in incoming knowledge.
Before analysis, students who dropped the tutor before completion and stu-
dents with technical errors in their data were removed (NS n = 15, WP n
= 14) leaving 56 students in the NS condition and 58 students in the WP
condition for a total of 114 students.

4.1 Hypotheses

The goals of this study were to 1) evaluate the effectiveness of a new hint
type, Waypoint hints, 2) compare the impacts of Waypoints and Next-step
hints on performance, and 3) determine if proficiency had an effect on which
hint type was more beneficial. Based on prior literature, we developed the
following hypotheses:

– H1: Next-Step hints will improve performance for students with lower in-
coming proficiency.

– H2: Waypoint hints will improve performance for students with higher
incoming proficiency.

– H3 Waypoint hints will be more difficult to derive, resulting in a lower
justification rate and performance during training compared to Next-Steps.

These hypotheses were based on the basic assumption that Waypoint hints are
more difficult to justify and adopt, since Waypoints require students to derive
more steps to justify them. On the other hand, this challenge may be precisely

Title Suppressed Due to Excessive Length 19

what high-proficiency students need for improved learning. To evaluate these
hypotheses, we focused on the performance metrics discussed below.

4.2 Performance Evaluation Metrics

In this section we describe the metrics used to evaluate student performance.
Recall that the tutor begins with an introduction with two worked examples
and one practice problem followed by the pretest. We used each student’s
pretest score to measure incoming knowledge/proficiency. Equation 1 shows
how the score is calculated. Each metric is normalized, then the time and step
metrics are subtracted from 1 to be comparable to accuracy, i.e. so that for
time, steps, and accuracy a number closer to 1 indicates the student is per-
forming well. A student’s score is a combination of percentiles for the pretest
time, number of steps, and accuracy on a single problem, ranking students
based on how fast, efficient, and accurate they are compared to their peers.
We chose these features because they each represent a different aspect of a
student’s problem solving experience.

Recall that the tutor was designed to improve time and steps to solve
problems, and assumes a basic level of fluency or accuracy on rule applica-
tions. Therefore, we have no goals or expectations of improving accuracy with
this tutor. However, the score includes all three metrics to ensure that our
interventions do not decrease accuracy while attempting to improve time and
steps. For example, a student may take a short amount of time on a problem,
but make many mistakes resulting in a lower accuracy. We use a median split
on the combined pretest score to assign students into High and Low proficiency
groups for some analyses.

Score = (1− TotalT ime) ∗ .5 + (1− TotalSteps ∗ .3) + Accuracy ∗ .2 (1)

We investigated pre- to posttest changes as well as performance impacts on
time spent solving a problem, total attempted steps, and accuracy. Total time
is counted from the moment a problem begins until it is solved by deriving
and justifying the conclusion. Total steps in a problem include any attempt
at deriving a new node, which includes correct and incorrect steps. Accuracy
is the percentage of correct out of the total steps, which is expected to start
relatively high due to prior exposure in the class, and increase as students
practice. Note that the tutor is not designed or assumed to promote large
improvements in accuracy, since no penalties are assigned for incorrect rule
applications and the tutor simply alerts students upon wrong rule applications
and students may try again, even within the pre- and post-tests. Further,
problems require new rules and become more difficult as the students progress.
As we seek primarily to promote more efficient problem solving, we focus more
on steps and time per problem while maintaining reasonable accuracy. This is
because it is more difficult for students to learn to determine which steps to
derive to achieve shorter, more efficient proofs, compared to learning how to

20 Christa Cody1 et al.

apply the rules, which can be done by memorization and simple practice. Deep
Thought is built primarily to allow students to practice with the strategy of
problem solving, rather than fluency with rules, most of which are assumed to
be learned before the tutor.

One important thing to note is that Deep Thought does not include eye-
tracking, and the unsolicited hints are provided regardless of whether a student
needs them or not, so we cannot determine precisely whether students followed
a hint or incidentally derived the hint statement. Therefore, we have defined
metrics to quantify when students justified a hint by selecting the statements
and rule needed to derive it, as well as when the students adopted a hint
by first justifying it and then using it directly on their path to derive the
conclusion. These two hint-specific metrics are the hint Justification Rate
and Adoption Rate.

The hint Justification Rate is the percentage of unsolicited hints justified
(correctly identifying the rule and prior nodes needed to derive the suggested
node) divided by the total number of hints given across the training problems.
A hint is said to be justified when a student applies logic rules to existing logic
statements to derive the hinted logic statement, and when a hint is justified,
the tutor removes its ‘?’ and connects it to its predecessor nodes with arrows
labeled with the rule used to derive it. A hint justification provides evidence
that a student noticed the hint and knew how to apply rules to justify it, but
do not tell the full story. As in any problem-solving context, statements can be
derived that are not needed in a final solution. Therefore, we also measure hint
Adoption Rate, whether a hint contributes towards deriving the conclusion. A
justified hint can be reached on a path from the problem’s given statements.
When a hint is adopted, it must first be justified and then become necessary to
a student’s final solution – in other words, the problem would be incomplete
if the hinted statement were removed. This is shown visually when a directed
path can be found from the hinted statement node to the problem conclusion.
Figure 5 shows a completed problem with labels indicating which nodes are
considered justified and which nodes were also adopted for the solution.

We also investigated impacts on help-seeking through the number of on-
demand hint requests (when students click the“Get Suggestion” button). To-
tal Requests represents the number of hint requests during the training por-
tion. Data were analyzed to compare groups for the pretest, training, and
posttest portions of the tutor. Within each hint group, we also compared per-
formance of students with High or Low pretest scores, based on a median split
on the pretest score.

To determine significant differences between hint types, we applied one way
ANCOVA using the pretest as a covariate with Benjamini-Hochberg correc-
tions to account for multiple tests. To check that the data met assumptions
for ANCOVA, we used the the Shapiro-Wilk’s W test and Levene’s test, as
well as visually inspecting the data via Q-Q plots and histograms. Data that
did not meet the assumptions were transformed using log or square-root trans-
formations, then re-inspected. Data reported in tables For clarity, all data in
tables are reported before transformation.

Title Suppressed Due to Excessive Length 21

Fig. 5 A completed problem with nodes that were used to derive the conclusion (justified
and adopted) and one node that was not used to derive the conclusion (justified but not
adopted).

5 Results

Table 1 shows the overall hint metrics for each group during training. We
expected Total Added(F (2, 111) = 160.20, p < 0.01) and Steps Until Justi-
fied(F (2, 111) = 281.20, p < 0.01) metrics to be significantly different, since
each step of a problem can have a unique Next-Step (NS) but one Waypoint
(WP) requires multiple steps to be derived. Based on prior literature on help
avoidance and low help usage within tutors [43], we were pleasantly surprised
to find students in both groups had relatively high justification and adoption
rates. The Next-Step group justified a significantly (F (2, 111) = 12.96, p <
0.01) higher percentage of hints, as shown by the Justification Rate. Addition-
ally, of the justified hints, we also saw a significantly (F (2, 111) = 5.49, p =
0.01) lower Adoption Rate of the WP hints in students’ final proofs, no sig-
nificant interaction was observed with pretest proficiency. Although this is a
relatively high number for both groups, the WP group’s lower justification and
adoption rates are concerning.

This provides evidence in support of H3 that Waypoint hints would be
harder to derive; however, this evidence does not address whether this was
due to the difficulty of the WP hints or students’ lack of effort to derive them.
We explore the possible reasons for these differences later in this section.

22 Christa Cody1 et al.

Table 1 Hint metrics during training. For ANCOVA results controlling for the pretest
score, p-values that are at least marginally significant are bolded and significant values
also have an asterisk*.

NS WP
n = 56 n = 58

Metric Mean(SD) Mean(SD) p
Justification Rate 89%(7) 84%(12) <0.01*
Adoption Rate 83%(10) 74%(17) 0.01*
Steps Until Justified 1.1(0.1) 2.2(0.3) <0.01*
Total Added 49(9) 30(7) <0.01*

To understand the overall impact of Next-Step versus Waypoint hints,
we examined the performance for both groups for the tutor pretest, train-
ing, and posttest, for all students regardless of incoming proficiency as shown
in Table 2. There were no significant differences between the WP and NS
groups on the pretest, although the pretest was slightly worse for the NS
group. During training, the NS group significantly outperformed the WP group
with fewer steps, less time, better accuracy and overall score (Total Time
F (2, 111) = 17.33, p<0.01, Total Steps F (2, 111) = 3.73, p = 0.02, Accuracy
F (2, 111) = 3.93, p = 0.01). The WP group, on average, took 20 minutes
longer, took 36 more steps, and had 5% lower accuracy on the training prob-
lems. No interactions were found between pretest proficiency and performance
or hint metrics for the training.

These results suggest that Next-Step hints had a stronger impact than
hypothesized in H1 during training, with all Next-Step students outperforming
all WP students. We examined help-seeking behaviors during training and
found the NS group requested significantly more hints, although still a small
number overall (approximately 1 per problem for NS versus 0.5 per problem on
average for WP), so it is not likely that hint requests account for the difference
in training performance.

Table 2 Performance metrics for each group on the pretest, training, and posttest; p-values
that are at least marginally significant when applying ANCOVA controlled for pretest are
bold and those that are significant also have an asterisk.

NS (n = 56) WP (n = 58)
Metric Mean(SD) Mean(SD) p-value

Pretest Total Time 6.5(12) 5.5(9) 0.54
Total Steps 19(35) 15(16) 0.84
Accuracy 67%(22) 70%(23) 0.57

Training Total Time (min) 58(24) 77(42) <0.01*
Total Steps 186(65) 222(99) 0.02*
Accuracy 74%(10) 69%(10) 0.01*
Total Requests 15(29) 7(9) 0.04*

Posttest Total Time (min) 33(21) 42(34) 0.06
Total Steps 99(40) 127(87) 0.02*
Accuracy 71%(12) 66%(10) 0.05*

Title Suppressed Due to Excessive Length 23

More importantly, on the posttest, the NS group significantly outper-
formed the Waypoint group on Total Steps (F (2, 111) = 3.73, p = 0.02) and
Accuracy (F (2, 111) = 2.38, p = 0.05). The WP group had 28 more total
steps and had a 5% lower accuracy, on average, on the posttest. There was
a marginally significant difference between groups for the total time on the
posttest (F (2, 111) = 2.78, p = 0.06), with the WP group spending roughly
10 more minutes on the posttest. No interactions were found between pretest
proficiency and performance or hint metrics for the posttest.

These results suggest that Next-Step hints had a stronger impact than
hypothesized, showing that, overall, the NS group performed better during
training and the posttest. We believe that Next-Steps allow students to focus
on solving one step, which we hypothesized would reduce time spent (since
students did not have to determine what to derive next when receiving hints,
just the how), and total steps (since the suggested hints were efficient).

5.1 Effects on High- and Low- Pretest Groups

Our hypotheses focused on the differential impact of hints based on incoming
proficiency and the difficulty of applying Next-Step versus Waypoint hints.
To investigate these hypotheses, we checked for differences in performance be-
tween prior proficiency groups within each group. We performed a median-split
for incoming proficiency based on pretest scores and compared performance
metrics across groups and proficiency (NS-High n = 27, WP-High n = 30,
NS-Low n = 29, WP-Low n = 30).

First, we examined performance metrics for the High group, shown in Ta-
ble 3. There were no significant differences between the NS and WP High
groups on the pretest. For the training, the WP group took longer and made
more mistakes, as indicated by the Total Time (F (2, 54) = 17.22, p < 0.01),
Accuracy (F (2, 54) = 5.291, p < 0.01), and attempted more steps (F (2, 54) =
3.917, p = 0.03). The hint justification rate was also significantly lower for the
WP group (F (2, 54) = 4.49, p = 0.02). No interactions were found between
pretest proficiency and performance or hint metrics for the training.

These results indicate that the WP-High group struggled with following
hints, which may have led to them spending more time trying to figure out
how to solve the problem. For the posttest, there were no significant differences
between the NS-High and WP-High groups, although the WP-High group per-
formed worse on average. This result confirms an aptitude-treatment interac-
tion effect for high proficiency students where the treatment did not result
in different results; i.e. high proficiency students were not as sensitive to the
treatment choice (Next-Step or Waypoint). This means that H2 was rejected;
Waypoint hints did not improve performance for higher proficiency students.

Next, we examined performance metrics for the Low pretest group. There
were no significant differences between the NS and WP Low groups on the
pretest. For the training, the WP took longer and attempted more steps, as
indicated by the Total Time (F (2, 54) = 3.926, p = 0.02) and Total Steps

24 Christa Cody1 et al.

Table 3 Performance metrics between the NS and WP High proficiency groups for the
pretest, training, and posttest of the tutor. ANOVA results are reported for the pretest.
ANCOVA results, controlling for the pretest, are reported for the training and posttest,
with p-values that are at least marginally significant in bold and significant p-values also
have an asterisk *.

High Proficiency NS-High WP-High
n = 27 n = 30

Metric Mean(SD) Mean(SD) p-value
Pretest Total Time (min) 1.7(0.64) 1.6(0.86) 0.12

Total Steps 5.6(1.7) 5.5(1.9) 0.68
Accuracy 87%(12) 87%(14) 0.91

Training Total Time (min) 50(23) 64(41) <0.01*
Total Steps 164(57) 198(86) 0.03*
Accuracy 73%(10) 78%(8) <0.01*
Total Requests 8(8) 4(5) 0.22
Justification Rate 89%(7) 81%(15) 0.02*
Adoption Rate 83%(9) %74(17) <0.01*

Posttest Total Time (min) 33(21) 40(34) 0.29
Total Steps 81(48) 98(42) 0.18
Accuracy 71%(12) 67%(9) 0.14

(F (2, 54) = 12.96, p < 0.01). The hint justification rate was also significantly
lower for the WP group (F (2, 54) = 7.42, p < 0.01). These results follow a sim-
ilar pattern as the High group, in that the WP group performed worse overall
in the training and were less able to justify the hints. For the posttest, the WP
group continued the pattern of taking longer (F (2, 54) = 1.99, p = 0.09) and
attempting more steps (F (2, 54) = 3.93, p = 0.02) with marginally significant
and significant results, respectively, indicating that the (hypothesized) worse
performance in the training portion may have transferred to their overall proof
solving strategies on the posttest. No interactions were found between pretest
proficiency and performance or hint metrics on the training or posttest.

These results confirm hypothesis H3 that Waypoints are more difficult for
students and have a negative impact on training performance.

We hypothesized in H1 that Next-Step hints would improve (training and
posttest) performance compared to Waypoint hints, for low proficiency stu-
dents. The overall performance (Table 2) confirmed that the Next-Step hint
group produced better training and posttest performance. However, Table 4
confirms that the benefits in the posttest are more prominently seen with the
students with lower incoming proficiencies, confirming H1.

We hypothesized in H3 that the Waypoint hints would cause lower justifi-
cation rates and worse training performance due to their increased difficulty,
which is seen with both the WP-High and WP-Low groups, confirming our
H3 hypothesis. There was also a significant difference in the Adoption rates
between the NS and WP groups for both High and Low students, with the
WP adoption rates being lower. This suggests that students were not, in fact,
able to independently discover the strategies that underlie the WP hints.

Title Suppressed Due to Excessive Length 25

Table 4 Performance metrics between the NS and WP Low proficiency groups for the
pretest, training, and posttest. ANOVA results are reported for the pretest. ANCOVA re-
sults, controlling for the pretest are reported for the training and posttest; p-values that are
at least marginally significant are in bold and significant p-values also have an asterisk *.

Low Proficiency NS-Low WP-Low
n = 29 n = 28

Metric Mean(SD) Mean(SD) p-value
Pretest Total Time (min) 10(11) 11(15) 0.80

Total Steps 31(48) 25(19) 0.80
Accuracy 49%(13) 51%(16) 0.88

Training Total Time (min) 66(23) 89(39) 0.02*
Total Steps 206(67) 249(107) <0.01*
Accuracy 69%(10) 65%(9) 0.13
Total Requests 13(13) 10(10) 0.55
Justification Rate 90%(8) 81%(14) <0.01*
Adoption Rate 83(10) 74(17) 0.02*

Posttest Total Time (min) 33(20) 43(35) 0.09
Total Steps 99(39) 128(94) 0.02*
Accuracy 69%(12) 65%(10) 0.17

Although we expected a lower hint justification rate in the WP group, we
thought that the increase in difficulty would be beneficial to high proficiency
students by allowing them more exploration of the problem space. Therefore,
we hypothesized in H2 that higher incoming proficiency students would do
better on the posttest after experiencing the WP hints in training. However,
that is not the case. The WP-High group was only able to perform similarly
to the NS-High group and overall performed worse, although not significantly.
Therefore, H2 is rejected. However, the results do seem to indicate that the
high incoming-proficiency students were less affected by the treatment than
the low incoming-proficiency students based on there being more significant re-
sults between conditions in the low incoming-proficiency group. As mentioned
earlier, we expected that an aptitude-treatment interaction (ATI) might occur,
where certain students are more sensitive to variations in the learning envi-
ronment and may be affected differently by the treatment compared to less
sensitive (more proficient) students who are able to perform well regardless of
treatment.

5.2 Did Waypoints help with strategy for those who could utilize them?

Although the performance results caused us to reject H2, we wanted to inves-
tigate whether WP hints provided strategy-related benefits to those students
who were able to use them. Therefore, we performed correlation analyses using
the Pearson correlation coefficient between the hint Justification and Adop-
tion rates with posttest performance metrics. For the correlation analyses, we
used an R function, corr.test, which computes the Pearson correlation coeffi-
cient, significance tests using t-tests, and performs optional corrections which

26 Christa Cody1 et al.

we specified as Bonferroni corrections[48]. Table 5 shows the significant corre-
lations of hint Adoption and Justification Rates with performance metrics for
NS and WP groups on the posttest, as well as correlations with the incoming
proficiency groups.

For the NS group, the only significant correlation found was for the NS-
High group between hint Adoption Rate and Total Steps (p = 0.06), show-
ing a moderate, negative correlation. This could indicate that students in
the NS-High group attempted fewer steps in the posttest (a better result)
if they adopted more of the NS hints during training. For the WP group,
there are moderate, negative correlations of Justification rate with Total Time
(p = 0.03) and with Total Steps (p = 0.01), and also of Adoption Rate with
Total Time (p < 0.01) and Total Steps (p < 0.01). So justifying and adopt-
ing WPs were both associated with more efficient proofs that were
shorter and achieved in less time. There was also a significant moderate,
negative correlation for the WP-Low group between Total Steps (p = 0.04)
and the hint Adoption rate. For the WP-High group, there was a similar mod-
erate, negative correlation between Total Steps (p = 0.02) and hint Adoption
Rate, but the WP-High group also had moderate, negative correlation between
Total Time (p = 0.02) and hint Adoption Rate.

This result aligns with our reasoning behind H2, that Waypoint hints
should improve efficiency- and time-related metrics on the posttest, especially
for higher proficiency students. However, ultimately, the WP students per-
formed worse. Based on these results, we conclude that more support may be
needed for WPs so that students can utilize them as well as NS hints to better
achieve efficiency-related benefits.

Table 5 Significant correlations between hint Justification and Adoption rates with posttest
performance metrics for each hint type group and pretest group

Condition Split Metric-Pair Corr p
NS High Adoption-Total Steps -0.38 0.06
WP All Justification-Total Time (min) -0.30 0.03*

Justification-Total Steps -0.32 0.01*
Adoption-Total Time (min) -0.35 <0.01*
Adoption - Total Steps -0.40 <0.01*

High Adoption-Total Time (min) -0.40 0.02*
Adoption-Total Steps -0.41 0.02*

Low Adoption-Total Steps -0.39 0.04*

5.3 What are the circumstances when hints were not used?

To understand if the WP hints were actually harder to derive, as hypothesized
H3, we investigated how many unused (unjustified) hints were attempted to be
justified. The significantly lower difference in hint Justification Rate of the WP
group as shown in Table 1 and the significantly worse performance by the WP

Title Suppressed Due to Excessive Length 27

group in the training as shown in Table 2 led us to want to better understand
the circumstances surrounding why the WP hints were used proportionately
less.

The hint Justification and Adoption rates can only tell us that students
were, or were not, using the hints, but do not provide any insight into whether
the students were actively attempting to derive the hint. Therefore, we con-
ducted analyses to see if the WP hints were truly harder to derive (H3). This
would be indicated by the students attempting to work towards the hint, and
not succeeding, versus outright ignoring the hint. Because the WP hints are
more steps away than the NS hint, students see the hint as too complicated to
be helpful and just ignore the hint outright. However, if students are attempt-
ing to to derive the hint and not able to be successful, this is a larger concern.
To determine if students were attempting to derive the hint, we examined the
steps taken after a hint was added (3 steps ahead for NS and 5 steps ahead for
WP). If a majority of the steps examined contained variables that were also
seen in the hint (2 out of 3 steps for NS and 3 out of 5 steps for WP) , it was
considered attempted.

Table 6 shows the total unused hints. Total Unused represents the total
number of unused hints per person in each group. The % Unused/Total is
the total number of unused hints divided by the total number of hints that were
added, which provides a clearer picture of the relative percentage of hints that
were left unused by each student compared to how many they were being given.
The % Attempted/Unused is the total attempted hints divided by the
total unused hints representing the percentage of the unused hints that were
attempted. There was not a significant difference in the total amount of unused
hints between the groups (F (2, 111) = 0.47, p = 0.49). The WP group left a
significantly larger percentage of hints unused (% Unused/Total) compared
to the NS group (F (2, 111) = 12.96, p < 0.01). Interestingly, the WP group
were also attempting a larger amount of unused hints (% Attempted/Unused)
compared to the NS group (F (2, 111) = 3.013, p = 0.05).

Table 6 The total unused (unjustified) hints, percentage of hints unused out of all hints
added, and the percentage of the unused hints that were attempted to be derived between
the NS and WP group. For ANCOVA results controlling for the pretest score, p-values that
are at least marginally significant are in bold and significant values also have an asterisk *.

NS WP
n = 56 n = 58

Metric Mean(SD) Mean(SD p-value
Total Unused 5.4(4.4) 6.6 (6.4) 0.49
% Unused/Total 10.4%(7.2) 19.4%(14.8) <0.01*
% Attempted/Unused 57.0%(37.4) 72.6%(28.9) 0.05*

To understand when unsolicited hints were not justified, we determined
the circumstances when this occurred and illustrate several situations: when
students attempted to use the hint, and what the eventual outcome was: ei-
ther Gave Up or Solved Without using the hint. Gave Up represents any

28 Christa Cody1 et al.

actions that end the problem without solving it, such as restarting or skipping
the problem. In this situation, students had a hint on the screen, worked a
few steps, then clicked the restart or skip button without justifying the hint.
When a student clicks restart or skip, this erases all current progress on the
problem. We considered this to be “giving up” because the student is remov-
ing all progress made on the current problem by taking these actions, which is
concerning given that a hint was on the screen. Solved Without represents
when students completed a proof with an unjustified hint still on the screen.
In this case, students have a hint but eventually solve the problem without
using the hint. This indicates that the hint was ignored, or at the very least,
was not essential to solving the proof. We are less concerned with this case
because the students were able to progress. However, since the hint is the most
efficient step to work towards, any student who avoided it took a less efficient
route to solve the problem. Lastly, although students had the option to delete
a hint, no deletions were observed possibly due to students not knowing how
to delete the hint.

Table 7 details the two cases in which a hint was added, but the student
did not justify it. For significant differences, ANCOVA was used with the
pretest score as the covariate. The Total Unused, % Unused/Total and the %
Attempted/Unused are defined above. We also examined how many steps the
students took after a hint was given but before they gave up or solved the
proof to determine how much effort was put into trying to derive the hint.
Steps Before is the number of steps the student attempted after receiving
the hint before they gave up or solved the proof. This metric was added to
see how long students were trying to work on the problem after the hint was
given.

Table 7 Comparison of unused hints of each subtype by amount, percentage that were
attempted, and steps before the action occured.

Gave Up Solved Without
NS (n = 56) WP (n = 58) NS (n = 56) WP (n = 58)
Mean(SD) Mean(SD) Mean(SD) Mean(SD)

Total Unused 2.9(3.5) 4.0(5.20) 2.5(1.8) 2.4(2.0)
% Unused/Total 46%(34) 47%(34) 54%(34) 53%(34)
% Att./Unused 48%(43) 72%(29) 62%(39) 73%(31)
Steps Before 1.6(1.7) 2.4(2.0) 4.6(2.4) 4.4(3.4)

The WP group attempted to derive a significantly higher number of the un-
used hints before giving up (% Att./Unused: F (2, 111) = 2.75, p = 0.02). There
were no significant differences in the Total Unused for either cases (Gave Up:
F (2, 111) = 1.86, p = 0.14 and Solved Without: F (2, 111) = 0.67, p = 0.92),
the % Attempted/Total for the Solved Without case (F (2, 111) = 1.718, p =
0.13), or the Steps Before for either cases (Gave Up: F (2, 111) = 1.141, p =
0.13 and Solved Without: F (2, 111) = 0.172, p = 0.79). Therefore, both groups
of students had a similar distribution of unused hints in both cases; however,
the WP group attempted to derive a significantly higher percentage of the

Title Suppressed Due to Excessive Length 29

hints in the Gave Up case. This result indicates that the WP students had
attempted to make progress towards the hints, were unable to justify them,
and then gave up. This is more concerning than giving up on a problem in
which they had not attempted to derive the hint, and indicates the WP hints
may have been too hard to derive.

The purpose of this analysis was to investigate H3 and determine the cir-
cumstances surrounding why the WP group had a significantly lower hint
Justification Rate than the NS group. The results provide evidence in support
of H3 that the Waypoint hints were harder for students to derive.

6 Discussion

This work aims to explore the extension of a Next-Step hint generator to easily
create subgoal-inspired assistance. The Next-Step group saw overall the best
performance for both the training and posttest, including the students with
lower incoming proficiencies providing supporting evidence for H1. Our results
indicated that the Waypoint group performed overall worse in both training
and posttest causing us reject H2. Results also showed that the lower profi-
ciency students, specifically, were less able to utilize this form of assistance;
however, students who were able to utilize Waypoints did see benefits in terms
of time and efficiency on the posttest. Furthermore, we explored the circum-
stances surrounding when hints were not utilized and found that students in
the Waypoint group attempted a larger percentage of the hints before giving
up, providing evidence in support of H3 that Waypoints would be harder to
derive. In this section, we discuss the trade-offs of the two hint types.

6.1 Waypoint hints

WPs were intended for students to learn strategies for solving proofs by break-
ing the problem into smaller subgoals and providing students with more inde-
pendent problem solving experience than NS. However, the majority of WP
students appeared to have struggled with WP hints instead, a trade-off of
the assistance dilemma [26]. The WP group performed worse overall in both
training and posttest portions of the tutor (see Table 2). Another interest-
ing result, shown in Section 5.1, is that the WP Low-pretest group has a
significantly lower Justification Rate and marginally significant decrease in
posttest performance metrics. This aligns with literature showing that lower
proficiency learners are less able to use abstract guidance [25, 54]. Therefore,
the WP hints might not provide enough guidance for students. Research has
shown that complex assistance can hinder learning by taxing cognitive load
[53, 55], which can happen when learners try to process new information and
incorporate complex assistance at the same time and “thus forcing learners
to use random search procedures” [22]. This is a limitation of our study as
Waypoints may produce better results with more scaffolding.

30 Christa Cody1 et al.

The Justification Rate being significantly lower for the WP group indicates
that the lower performance may be due to an inability to properly use the
assistance (see Table 1). This is partially supported by Table 6 and Table
7, which shows that the WP group had a higher percentage of attempts to
justify a hint without succeeding, compared to the NS group. The Adoption
Rate being significantly lower for the WP group indicates that, even when
students in the WP group were able to justify the hints, they were less able
to adopt them to connect the WP hints to the conclusion. Due to the design
of the hint being a few steps away, students could end up on a solution path
different from the path initially given by the WP. Consequently, students who
were unable to justify the WP or adopt it into the solution were not following
the most efficient path, hindering their ability to learn from the strategies
behind the WP hints.

One potentially positive result with Waypoints is shown in Table 5, with
respect to the significant negative correlations of Justification and Adoption
rate with total time and total steps on the posttest. Students who were able
to justify and adopt the WPs were associated with taking a shorter time and
fewer steps on the posttest. This correlation aligns with our original intention
of using WP to support strategy development by helping students become
more efficient in their problem solving process. Therefore, it is possible that
students with more experience and domain knowledge may better utilize Way-
points and receive strategy-related benefits. However, it is important to take
into account that correlation analyses cannot determine causality and there
could be variables not included in these analyses that play an important role
in these relationships [16]. Therefore, this interpretation is only a possibility.
Based on these results, WPs can be improved by providing more information
(perhaps automatically provided once we detect that a student is unsuccess-
fully attempting to justify the hint) or incorporating ideas from recent research
with promising methods of scaffolding goal-based hints [32].

6.2 Next-Step hints

The total time, total steps, and accuracy were significantly different, or trend-
ing towards significance, between groups as shown in Table 2 for the training
and posttest. Since the groups had similar pretest scores, these results show
that both the NS and WP groups came into the tutor performing similarly,
but by the posttest the two groups had diverged; the NS group had higher ac-
curacy and fewer total steps. Furthermore, the NS group were able to increase
their accuracy between the non-isomorphic pre- and posttest compared to the
WP group who did not show such improvements. This was perhaps due to the
increased practice in applying rules to justify both unsolicited and on-demand
hints - since the NS group received and justified significantly more hints in
both of these categories.

The differences in time, steps, and accuracy between the groups show that
NSs were more beneficial for students. As shown in Table 1, there is a sig-

Title Suppressed Due to Excessive Length 31

nificant difference in the higher Justification Rate for NSs. We believe these
results may be due to the alignment of NSs with novice’s bottom-up problem
solving approaches that focus on what to do in the short term [3, 20, 54].
NSs may also have potentially resulted in an overall lower cognitive load [23],
though this supposition is only based on their design and not data from stu-
dents. As a justification, students considering NSs only needed to think about
which nodes and rules could be used to derive the NS. In contrast, WP stu-
dents needed to think about which nodes to use, which rules to apply, and
what intermediate steps they would have to achieve before deriving the WP.

Interestingly, the NS group requested more on-demand hints (see 2). This
suggests that the NS group may have found the assistance more helpful and
became more comfortable requesting help. Prior research has shown students
are more likely to request help when they received help that they perceive to
be more suitable for their needs [43].

Although WPs were designed to promote more independent, strategic prob-
lem solving, it is possible that NSs also helped students learn problem solving
strategies. Based on the hint generator design, NS students following the hints
were seeing the most efficient next step based on the current proof state. Prob-
lems with frequent Next-Step hints could be acting as partially-worked exam-
ples, which are known to increase efficient problem solving strategies [56, 34].
Previous research on hint usage during problem solving in programming sug-
gests that hints can, sometimes, save students time but reduce learning [37].
In our research, NS hints seem to save students time and increase performance
on the post-test. This suggests that NS hints may help students learn to solve
the problems more efficiently (more quickly and with fewer steps).

7 Conclusion

This paper contributes a study showing an extension of the Hint Factory to
create higher-level hints, and the effects of two types of hints on students’ ef-
ficiency and accuracy in solving logic proofs: Next-Step hints (NSs) and Way-
point (WPs) hints. It is important to note these hints were provided unsolicited
as well as through on-demand hint requests, which could affect the students’
usage and reception of the hints. Furthermore, our hints are provided period-
ically and not necessarily when a student may need them. However, our prior
has shown our unsolicited, periodically provided hints do not have any negative
impacts on training or post-test performance metrics compared to students in
the only on-demand hint group. In this paper, NSs helped students become
quicker, more accurate, and more efficient in their proofs. However, the more
distant goals of WPs seemed to be harder for the students, which not only
affected the training problems where the assistance occurred, but resulted in
lower accuracy and reduced efficiency in the posttest. Despite the WP group
spending more time on problem solving during training, their performance did
not benefit as much as the NS group. Furthermore, learners with lower incom-
ing proficiency were least able to utilize WPs, while NSs provided benefits

32 Christa Cody1 et al.

to both higher and lower proficiency groups. Although NS performed better
overall, students who were able to incorporate WP, especially those in the
WP-High group, saw benefits in terms of time and efficiency on the posttest.

Another interesting outcome was that the NS group had higher justification
rates and requested more help, which agrees with previous research showing
that hint quality affects help-seeking behaviors. In the future, WPs could be
augmented to reduce cognitive load without eliminating the multi-step aspect
by eliminating other elements of the task, such as highlighting needed nodes or
offering multiple hint levels. Other future work includes using machine learning
to determine when to provide a hint rather than providing them periodically.
Finally, we hope to transfer these findings to other open-ended problem do-
mains like programming in order to offer additional instructional supports and
hints to novice students.

References

1. Aleven, V., Koedinger, K.R.: Limitations of student control: Do students know when
they need help? In: International Conference on Intelligent Tutoring Systems, pp. 292–
303. Springer (2000)

2. Aleven, V., McLaren, B., Roll, I., Koedinger, K.: Toward tutoring help seeking. In:
International Conference on Intelligent Tutoring Systems, pp. 227–239. Springer (2004)

3. Anderson, J.R., Farrell, R., Sauers, R.: Learning to program in lisp. Cognitive Science
8(2), 87–129 (1984)

4. Arroyo, I., Beck, J.E., Beal, C.R., Wing, R., Woolf, B.P.: Analyzing students’ response
to help provision in an elementary mathematics intelligent tutoring system. In: Papers
of the AIED-2001 workshop on help provision and help seeking in interactive learning
environments, pp. 34–46. Citeseer (2001)

5. Arroyo, I., Beck, J.E., Woolf, B.P., Beal, C.R., Schultz, K.: Macroadapting animalwatch
to gender and cognitive differences with respect to hint interactivity and symbolism. In:
International Conference on Intelligent Tutoring Systems, pp. 574–583. Springer (2000)

6. Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting student misuse of intelligent
tutoring systems. In: International conference on intelligent tutoring systems, pp. 531–
540. Springer (2004)

7. Barnes, T., Stamper, J., Croy, M.: Using markov decision processes for automatic hint
generation. Handbook of Educational Data Mining 467 (2011)

8. Barnes, T., Stamper, J., Lehman, L., Croy, M.: A pilot study on logic proof tutoring
using hints generated from historical student data. In: Educational Data Mining 2008
(2008)

9. Bartholomé, T., Stahl, E., Pieschl, S., Bromme, R.: What matters in help-seeking? a
study of help effectiveness and learner-related factors. Computers in Human Behavior
22(1), 113–129 (2006)

10. Bunt, A., Conati, C., Muldner, K.: Scaffolding self-explanation to improve learning in
exploratory learning environments. In: International Conference on Intelligent Tutoring
Systems, pp. 656–667. Springer (2004)

11. Catrambone, R.: The subgoal learning model: Creating better examples so that students
can solve novel problems. Journal of Experimental Psychology: General 127(4), 355
(1998)

12. Cody, C., Maniktala, M., Warren, D., Chi, M., Barnes, T.: Does autonomy help help?
the impact of unsolicited hints on help avoidance and performance

13. Cronbach, L.J., Snow, R.E.: Aptitudes and instructional methods: A handbook for
research on interactions. Irvington (1977)

14. Eagle, M., Barnes, T.: Exploring differences in problem solving with data-driven ap-
proach maps. In: Educational Data Mining 2014 (2014)

Title Suppressed Due to Excessive Length 33

15. Eagle, M., Johnson, M., Barnes, T.: Interaction networks: Generating high level hints
based on network community clustering. International Educational Data Mining Society
(2012)

16. Fields, A., Miles, J., Fields, Z.: Discovering statistics using r (2012)
17. Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L.: Generating proactive

feedback to help students stay on track. In: International Conference on Intelligent
Tutoring Systems, pp. 315–317. Springer (2010)

18. Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L.: Data driven automatic
feedback generation in the ilist intelligent tutoring system. Technology, Instruction,
Cognition and Learning 10(1), 5–26 (2015)

19. Fuchs, D., Kearns, D.M., Fuchs, L.S., Elleman, A.M., Gilbert, J.K., Patton, S., Peng,
P., Compton, D.L.: Using moderator analysis to identify the first-grade children who
benefit more and less from a reading comprehension program: A step toward aptitude-
by-treatment interaction. Exceptional children 85(2), 229–247 (2019)

20. Guzdial, M.: Centralized mindset: A student problem with object-oriented program-
ming. In: ACM SIGCSE Bulletin, vol. 27, pp. 182–185. ACM (1995)

21. Hume, G., Michael, J., Rovick, A., Evens, M.: Hinting as a tactic in one-on-one tutoring.
The Journal of the Learning Sciences 5(1), 23–47 (1996)

22. Kalyuga, S.: Enhancing instructional efficiency of interactive e-learning environments:
A cognitive load perspective. Educational Psychology Review 19(3), 387–399 (2007)

23. Kalyuga, S.: Cognitive load theory: How many types of load does it really need? Edu-
cational Psychology Review 23(1), 1–19 (2011)

24. Kalyuga, S., Chandler, P., Tuovinen, J., Sweller, J.: When problem solving is superior
to studying worked examples. Journal of educational psychology 93(3), 579 (2001)

25. Kirschner, P.A., Sweller, J., Clark, R.E.: Why minimal guidance during instruction
does not work: An analysis of the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching. Educational psychologist 41(2), 75–86 (2006)

26. Koedinger, K.R., Aleven, V.: Exploring the assistance dilemma in experiments with
cognitive tutors. Educational Psychology Review 19(3), 239–264 (2007)

27. Lehmann, J., Goussios, C., Seufert, T.: Working memory capacity and disfluency effect:
An aptitude-treatment-interaction study. Metacognition and Learning 11(1), 89–105
(2016)

28. Luckin, R., Du Boulay, B., et al.: Ecolab: The development and evaluation of a vygot-
skian design framework. International Journal of Artificial Intelligence in Education
10(2), 198–220 (1999)

29. Ma, W., Adesope, O.O., Nesbit, J.C., Liu, Q.: Intelligent tutoring systems and learning
outcomes: A meta-analysis. Journal of educational psychology 106(4), 901 (2014)

30. Maniktala, M., Barnes, T., Chi, M.: Extending the hint factory: Towards modelling
productivity for open-ended problem-solving. In: Proceedings of the 13th International
Conference on Educational Data Mining (2020)

31. Maniktala, M., Cody, C., Barnes, T., Chi, M.: Avoiding help avoidance: Using interface
design changes to promote unsolicited hint usage in an intelligent tutor. International
Journal of Artificial Intelligence in Education (2020 (under review))

32. Marwan, S., Lytle, N., Williams, J.J., Price, T.: The impact of adding textual explana-
tions to next-step hints in a novice programming environment. In: Proceedings of the
2019 ACM Conference on Innovation and Technology in Computer Science Education,
pp. 520–526. ACM (2019)

33. Mayer, R.E.: Should there be a three-strikes rule against pure discovery learning? Amer-
ican psychologist 59(1), 14 (2004)

34. McLaren, B.M., van Gog, T., Ganoe, C., Yaron, D., Karabinos, M.: Exploring the
assistance dilemma: Comparing instructional support in examples and problems. In:
International Conference on Intelligent Tutoring Systems, pp. 354–361. Springer (2014)

35. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Habits of programming in scratch.
In: Proceedings of the 16th annual joint conference on Innovation and technology in
computer science education, pp. 168–172. ACM (2011)

36. Merrill, D.C., Reiser, B.J., Ranney, M., Trafton, J.G.: Effective tutoring techniques:
A comparison of human tutors and intelligent tutoring systems. The Journal of the
Learning Sciences 2(3), 277–305 (1992)

34 Christa Cody1 et al.

37. Morrison, B.B., Margulieux, L.E., Guzdial, M.: Subgoals, context, and worked examples
in learning computing problem solving. In: Proceedings of the eleventh annual inter-
national conference on international computing education research, pp. 21–29. ACM
(2015)

38. Mostafavi, B., Barnes, T.: Evolution of an intelligent deductive logic tutor using data-
driven elements. International Journal of Artificial Intelligence in Education pp. 1–32
(2016)

39. Mostafavi, B., Barnes, T.: Evolution of an intelligent deductive logic tutor using data-
driven elements. International Journal of Artificial Intelligence in Education 27(1), 5–36
(2017)

40. Murray, R.C., VanLehn, K.: A comparison of decision-theoretic, fixed-policy and random
tutorial action selection. In: International Conference on Intelligent Tutoring Systems,
pp. 114–123. Springer (2006)

41. Murray, R.C., VanLehn, K., Mostow, J.: Looking ahead to select tutorial actions: A
decision-theoretic approach. International Journal of Artificial Intelligence in Education
14(3, 4), 235–278 (2004)

42. Murray, T.: Authoring Intelligent Tutoring Systems: An Analysis of the State of the
Art. International Journal of Artificial Intelligence in Education 10, 98–129 (1999)

43. Price, T.W., Liu, Z., Cateté, V., Barnes, T.: Factors influencing students’ help-seeking
behavior while programming with human and computer tutors. In: Proceedings of the
2017 ACM Conference on International Computing Education Research, pp. 127–135.
ACM (2017)

44. Price, T.W., Zhi, R., Barnes, T.: Hint generation under uncertainty: The effect of hint
quality on help-seeking behavior. In: International Conference on Artificial Intelligence
in Education, pp. 311–322. Springer (2017)

45. Puustinen, M.: Help-seeking behavior in a problem-solving situation: Development of
self-regulation. European Journal of Psychology of education 13(2), 271 (1998)

46. RANGANATHAN, R., VANLEHN, K., VAN DE SANDE, B.: What do students do
when using a step-based tutoring system? Research & Practice in Technology Enhanced
Learning 9(2) (2014)

47. Razzaq, L., Heffernan, N.T.: Hints: is it better to give or wait to be asked? In: Interna-
tional Conference on Intelligent Tutoring Systems, pp. 349–358. Springer (2010)

48. Revelle, W.: psych: Procedures for Psychological, Psychometric, and Personality Re-
search. Northwestern University, Evanston, Illinois (2019). URL https://CRAN.

R-project.org/package=psych. R package version 1.9.12
49. Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces: a self-

improving python programming tutor. International Journal of Artificial Intelligence in
Education 27(1), 37–64 (2017)

50. Snow, R.E.: Aptitude-treatment interaction as a framework for research on individual
differences in psychotherapy. Journal of consulting and clinical psychology 59(2), 205
(1991)

51. Stamper, J., Barnes, T., Lehmann, L., Croy, M.: The hint factory: Automatic generation
of contextualized help for existing computer aided instruction. In: Proceedings of the
9th International Conference on Intelligent Tutoring Systems Young Researchers Track,
pp. 71–78 (2008)

52. Stamper, J., Eagle, M., Barnes, T., Croy, M.: Experimental evaluation of automatic hint
generation for a logic tutor. International Journal of Artificial Intelligence in Education
22(1-2), 3–17 (2013)

53. Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognitive science
12(2), 257–285 (1988)

54. Sweller, J.: Evolutionary bases of human cognitive architecture: implications for com-
puting education. In: Proceedings of the fourth international workshop on computing
education research, pp. 1–2. ACM (2008)

55. Sweller, J.: Cognitive load theory. In: Psychology of learning and motivation, vol. 55,
pp. 37–76. Elsevier (2011)

56. Sweller, J., Cooper, G.A.: The use of worked examples as a substitute for problem
solving in learning algebra. Cognition and instruction 2(1), 59–89 (1985)

57. Sweller, J., Levine, M.: Effects of goal specificity on means–ends analysis and learning.
Journal of experimental psychology: Learning, memory, and cognition 8(5), 463 (1982)

https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych

Title Suppressed Due to Excessive Length 35

58. Ueno, M., Miyazawa, Y.: Irt-based adaptive hints to scaffold learning in programming.
IEEE Transactions on Learning Technologies (2017)

59. Vanlehn, K.: The behavior of tutoring systems. International journal of artificial intel-
ligence in education 16(3), 227–265 (2006)

60. Vygotsky, L.: Interaction between learning and development. Readings on the develop-
ment of children 23(3), 34–41 (1978)

61. Wood, H., Wood, D.: Help seeking, learning and contingent tutoring. Computers &
Education 33(2), 153–169 (1999)

62. Yeh, Y.c., Lin, C.F.: Aptitude-treatment interactions during creativity training in e-
learning: How meaning-making, self-regulation, and knowledge management influence
creativity. Journal of Educational Technology & Society 18(1) (2015)

63. Zhou, G., Lynch, C., Price, T.W., Barnes, T., Chi, M.: The impact of granularity on
the effectiveness of students’ pedagogical decisions. In: CogSci (2016)

	1 Introduction
	2 Related Work
	3 The Deep Thought Logic Proof Tutor
	4 Methods
	5 Results
	6 Discussion
	7 Conclusion

