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Abstract. Metacognitive skills have been commonly associated with
preparation for future learning in deductive domains. Many researchers
have regarded strategy- and time-awareness as two metacognitive skills
that address how and when to use a problem-solving strategy, respec-
tively. It was shown that students who are both strategy- and time-aware
(StrT ime) outperformed their nonStrT ime peers across deductive do-
mains. In this work, students were trained on a logic tutor that supports
a default forward-chaining (FC) and a backward-chaining (BC) strategy.
We investigated the impact of mixing BC with FC on teaching strategy-
and time-awareness for nonStrT ime students. During the logic instruc-
tion, the experimental students (Exp) were provided with two BC worked
examples and some problems in BC to practice how and when to use BC.
Meanwhile, their control (Ctrl) and StrT ime peers received no such in-
tervention. Six weeks later, all students went through a probability tutor
that only supports BC to evaluate whether the acquired metacognitive
skills are transferred from logic. Our results show that on both tutors,
Exp outperformed Ctrl and caught up with StrT ime.

Keywords: Strategy Awareness · Time Awareness · Metacognitive Skill
Instruction · Preparation for Future Learning · Backward Chaining.

1 Introduction

One fundamental goal of education is being prepared for future learning [6]
by transferring acquired skills and problem-solving strategies across different
domains. Despite the difficulty of achieving such transfer [6], prior research
has shown it can be facilitated by obtaining metacognitive skills [1–3, 8]. It
has been believed that metacognitive skills are essential for academic achieve-
ments [5], and teaching such skills impacts learning outcomes [8] and strategy
use [13]. Much prior research has categorized knowing how and when to use a
problem-solving strategy as two metacognitive skills [15], referred to as strategy-
and time-awareness, respectively. Our prior work found that students who were
both strategy- and time-aware —referred to as StrT ime— outperformed their
nonStrT ime peers across deductive domains [1, 2]. In the current work, we pro-
vide interventions for the latter students to catch up with their StrT ime peers.
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Deductive domains such as logic, physics and probability usually require multiple
problem-solving strategies. Two common strategies in these domains are forward-
chaining (FC) and backward-chaining (BC). Early studies showed that experts
often use a mixture of FC and BC to execute their strategies [12]. This work
investigates the impact of mixing FC and BC on teaching strategy- and time-
awareness for nonStrT ime students.

Our study involved two intelligent tutoring systems (ITSs): logic and prob-
ability. Students were first assigned to a logic tutor that supports FC and BC,
with FC being the default, then to a probability tutor six weeks later that only
supports BC. During the logic instruction, nonStrT ime students were split into
experimental (Exp) and control (Ctrl) conditions. For Exp, the tutor provided
two worked examples solved in BC and presented some problems in BC to prac-
tice how and when to use BC. Ctrl received no such intervention as each problem
was presented in FC by default with the ability to switch to BC. Our goal is
to inspect whether our intervention would make Exp catch up with the golden
standard —StrT ime students— who already have the two metacognitive skills
and thus need no intervention. All students went through the same probabil-
ity tutor to evaluate whether the acquired metacognitive skills are transferred
from logic. Our results show that Exp outperformed Ctrl and caught up with
StrT ime on both tutors.

1.1 Metacognitive Skill Instruction

Metacognitive skills regulate one’s awareness and control of their cognition [7].
Many studies have demonstrated the significance of metacognitive skills instruc-
tion on academic performance [5], learning outcomes [2, 3, 8] and regulating strat-
egy use [13]. Schraw and Gutierrez [13] argued that metacognitive skill instruc-
tion involves feeling what is known and not known about a task. They stated
that such instruction should further compare strategies according to their feasi-
bility and familiarity from the learner’s perspective. Chi and VanLehn [8] found
that teaching students principle-emphasis skills closed the gap between high and
low learners, not only in the domain where they were taught (probability) but
also in a second domain where they were not taught (physics).

Strategy- and time-awareness have been considered metacognitive skills as
they respectively address how and when to use a problem-solving strategy [5,
15]. Researchers have emphasized the role of strategy awareness in preparation
for future learning [2, 4] and the impact of time awareness on planning skills
and academic performance [5, 9]. Belenky and Nokes [4] showed that students
who had a higher aim to master presented materials and strategies outperformed
their peers on a transfer task. Fazio et al. [9] revealed that students who knew
when to use each strategy to pick the largest fraction magnitude had higher
mathematical proficiency than their peers. de Boer et al. [5] showed that students
who knew when and why to use a given strategy exhibit long-term metacognitive
knowledge that improves their academic performance. de Boer et al. emphasized
that knowing when and why has the same importance as knowing how when it
comes to strategy choice in multi-strategy domains.
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1.2 Forward- and Backward-Chaining

FC and BC are two standard problem-solving strategies in deductive domains. In
FC, the reasoning proceeds from the given propositions toward the target goal,
whereas BC is goal-driven in that it works backward from a goal state to a given
state. Substantial work has investigated the impact of FC and BC strategies in
two research categories: empirical studies and post-hoc observations.

Prior empirical studies have shown the significance of FC over BC in learning
physics [10] and weightlifting movements [11]. Moore and Quintero [11] compared
FC and BC in teaching the clean and snatch movements to novice weight lifters.
The participants showed mastery performance with the FC training but showed
substantially fewer improvements in performance accuracy via the BC training.
All participants mastered the movements when some BC lifts were changed to
FC. Conversely, some studies reported no significant difference between the two
strategies [14]. Slocum and Tiger [14] assessed the children’s FC and BC strategy
preferences on various learning tasks. They found that children were equally
efficient on both strategies and had similar mixed strategy preferences.

Early research has observed the impact of mixing FC and BC strategies [12].
Priest and Lindsay [12] compared how experts and novices solve physics prob-
lems. Although both groups used a mixture of FC and BC, only the experts knew
how and when to use each strategy and significantly produced more complete
plans and stages than their novice peers. In brief, while no consensus has been
reached on whether FC or BC is most effective in problem-solving, prior work
has observed that the mixture of FC and BC yields the highest performance
accuracy as learners know how and when to use each strategy.

2 Methods

Participants They are Computer Science undergraduates at North Carolina
State University. Students were assigned each tutor as a class assignment and
told that completion is required for full credit. Similar to our prior work, we
utilize the random forest classifier (RFC) that, based on pre-test performance,
predicts the metacognitive label (StrT ime or otherwise) before training on logic
and was previously shown to be 96% accurate [2]. Specifically, StrT ime students
frequently follow the desired behavior of switching early (within the first 30
actions) to BC, while their peers either frequently switch late (after the first 30
actions) or stick to the default FC [1–3]. A total of 121 students finished both
tutors and were classified by the RFC into 26 StrT ime and 95 otherwise. The
latter students were randomly assigned to Experimental (Exp : N = 49) and
Control (Ctrl : N = 46) conditions. The RFC was 97% accurate in classifying
students who received no intervention —Ctrl and StrT ime.

Logic Tutor and Our Intervention The logic tutor teaches propositional logic
proofs by applying inference rules such as Modus Ponens. A student can solve
any problem by either a FC or BC strategy. Students derive a conclusion at the
bottom from givens at the top in FC (Fig. 1a), while they derive a contradiction
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(a) FC Strategy (b) BC Strategy (c) Modified Training

Fig. 1. Logic Tutor

from givens and the negation of the conclusion in BC (Fig. 1b). A problem is
presented by default in FC with the ability to switch to BC by clicking a button.
The tutor consists of two pre-test, 20 training and six post-test problems. The
post-test is much harder than the pre-test, and the first two post-test problems
are isomorphic to the two pre-test problems. The pre- and post-test scores are
calculated by averaging the pre- and post-test problem scores, where a problem
score is a function of time, accuracy, and solution length. The training consists
of five ordered levels in an incremental degree of difficulty, and each level consists
of four problems. We modified the training section to mix BC with FC (Fig. 1c).
Specifically, two worked examples (WE) on BC were implemented, where the
tutor provided a step-by-step solution, and six problems were presented in BC
by default. The two WEs and the six problems are expected to teach students
how and when to use BC. Note that the colored problems in Figure 1c were
selected based on the historical strategy switches in our data [1].

Probability Tutor It teaches how to solve probability problems using ten prin-
ciples, such as the Complement Theorem. The tutor consists of a textbook, pre-
test, training, and post-test. The textbook introduces the domain principles,
while training consists of 12 problems, each of which can only be solved by BC
as it requires deriving an answer by writing and solving equations until the tar-
get is ultimately reduced to the givens. In pre- and post-test, students solve 14
and 20 open-ended problems graded by experienced graders in a double-blind
manner using a partial-credit rubric. The pre- and post-test scores are the aver-
age grades in their respective sections, where grades are based only on accuracy.
Like the logic tutor, the post-test is much harder than the pre-test, and each
pre-test problem has a corresponding isomorphic post-test problem.

Procedure Students were assigned to the logic tutor and went through the
pre-test, training and post-test. Before training on logic, the RFC predicted the
metacognitive label for each student, as described in the Participants section.
During training, Exp received the modified tutor shown in Figure 1c, while Ctrl
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and StrT ime received the original tutor, where all problems are presented in
FC by default. Six weeks later, students were trained on the probability tutor.

3 Results

Table 1. Comparing Groups across Tutors

Experimental (Exp)
(N = 49)

Control (Ctrl)
(N = 46)

StrT ime
(N = 26)

Logic Tutor
Pre 61.7 (18) 58.7 (20) 62.1 (20)

Iso-Post 81 (11) 70.4 (14) 81.3 (10)
Iso-NLG 0.27 (.12) 0.09 (.31) 0.29 (.16)

Post 77.4 (11) 66.7 (14) 79 (9)
NLG 0.24 (.15) 0.06 (.37) 0.25 (.18)

Probability Tutor
Pre 74.8 (14) 74.2 (16) 75.8 (15)

Iso-Post 90.4 (10) 65.3 (16) 90.6 (8)
Iso-NLG 0.29 (.19) -0.02 (.27) 0.26 (.17)

Post 89.5 (15) 62.5 (18) 88.8 (7)
NLG 0.26 (.21) -0.08 (.3) 0.24 (.15)

Table 1 compares the groups’ performance across the two tutors showing the
mean and standard deviation of pre- and post-test scores, isomorphic scores, and
the learning outcome in terms of the normalized learning gain (NLG) defined as
(NLG = Post−Pre√

100−Pre
), where 100 is the maximum test score. We refer to pre-test,

post-test and NLG scores as Pre, Post and NLG, respectively. On both tutors,
a one-way ANOVA found no significant difference on Pre between the groups.

To measure the improvement on isomorphic problems, repeated measures
ANOVA tests were conducted using {Pre, Iso-Post} as factor. Results showed
that Exp and StrT ime learned significantly with p < 0.0001 on both tutors,
while Ctrl did not perform significantly higher on Iso-Post than Pre on both tu-
tors. These findings verify the RFC’s accuracy, as StrT ime learned significantly
on both tutors, while Ctrl did not, despite both receiving no intervention.

A comprehensive comparison between the three groups was essential to eval-
uate our intervention. On the logic tutor, A one-way ANCOVA using Pre as
covariate and group as factor found a significant effect on Post: F (2, 117) =
14.5, p < .0001, η2 = .18. Subsequent post-hoc analyses with Bonferroni cor-
rection (α = .05/3) revealed that Exp and StrT ime significantly outperformed
Ctrl: t(93) = 3.8, p < .001 and t(70) = 3.9, p < .001, respectively. Similar
patterns were observed on NLG using ANOVA and the post-hoc comparisons.

On the probability tutor, a one-way ANCOVA using Pre as covariate and
group as factor showed a significant effect on Post: F (2, 117) = 48.1, p <
.0001, η2 = .35. Follow-up pairwise comparisons with Bonferroni adjustment
showed that Exp and StrT ime significantly surpassed Ctrl: t(93) = 6.1, p <
.0001 and t(70) = 5.9, p < .0001, respectively. Similar results were found on
NLG using ANOVA and the post-hoc comparisons.
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4 Conclusion
We showed that mixing BC with FC on the logic tutor improved the experimental
students’ learning outcomes, as Exp significantly outperformed Ctrl on logic and
on a probability tutor that only supports BC. Additionally, Exp caught up with
StrT ime on both tutors suggesting that Exp students are prepared for future
learning [6] as they acquired BC mastery skills on logic and transferred them to
probability, where they received no intervention. There is at least one caveat in
our study. The probability tutor supported only one strategy. A more convincing
testbed would be having the tutors support both strategies. The future work
involves implementing FC on the probability tutor.
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1651909, 1726550 and 2013502.
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