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Abstract

Deductive domains are typical of many cognitive skills in that
no single problem-solving strategy is always optimal for solv-
ing all problems. It was shown that students who know how
and when to use each strategy (StrTime) outperformed those
who know neither and stick to the default strategy (De fault).
In this work, students were trained on a logic tutor that sup-
ports a default forward-chaining and a backward-chaining
(BC) strategy, then a probability tutor that only supports BC.
We investigated three types of interventions on teaching the
Default students how and when to use which strategy on the
logic tutor: Example, Nudge and Presented. Meanwhile,
StrTime students received no interventions. Overall, our re-
sults show that Nudge outperformed their De fault peers and
caught up with StrTime on both tutors.

Keywords: metacognitive skills instruction; worked exam-
ples; tutoring nudges; strategy instruction

Introduction

Deductive task domains are those in which a solution requires
an argument, proof, or derivation; each step is the outcome of
applying a domain principle, operator, or rule. Deductive do-
mains such as geometry, logic and probability are standard
components of STEM fields. Two common problem-solving
strategies in such domains are forward-chaining (FC) and
backward-chaining (BC) (Russell & Norvig, 2020). In FC,
the reasoning proceeds from the given propositions toward
the target goal, whereas BC is goal-driven in that it works
backward from a goal state to a given state. Early studies
show that experts often use a mixture of FC and BC strategies,
and more importantly, they often use past experience, heuris-
tics, and many other kinds of knowledge to determine their
strategies (Priest & Lindsay, 1992). Our prior work showed
that students who know which problem-solving strategies to
use when, referred to as StrTime, consistently learn across
different deductive domains, as they possess the necessary
metacognitive skills, unlike their peers who follow the default
strategy, known as De fault (Abdelshiheed et al., 2020).

It has been believed that metacognitive skills are essential
for academic achievements (de Boer et al., 2018; Erskine,
2010; Zimmerman, 1990), and teaching such skills impacts
learning outcomes (Zepeda et al., 2015; M. Chi & VanLehn,
2010) as well as strategy use (Lee & Oxford, 2008; Cham-
bres et al., 2002; Roberts & Erdos, 1993). STEM domains
often demand the use of various problem-solving strategies,
and some prior research has categorized knowing how and
when to use each strategy as two metacognitive skills (Winne

& Azevedo, 2014; Cardelle-Elawar, 1992), referred to as
strategy- and time-awareness, respectively.

Prior work has shown the positive impact of strategy
awareness on preparing students for future learning (Belenky
& Nokes-Malach, 2012; Abdelshiheed et al., 2021) and time
awareness on planning skills (Winne & Azevedo, 2014; Fazio
et al., 2016). Thus various attempts were made to teach stu-
dents the two metacognitive skills, such as teaching the strat-
egy by example (Likourezos & Kalyuga, 2017; Glogger-Frey
et al., 2015), prompting nudges to use the strategy (Richey et
al., 2015; Belenky & Nokes, 2009) and explicitly presenting
it (Fellman et al., 2020; Sporer et al., 2009).

Our work directly compares three types of interventions on
teaching De fault students how and when to use which strat-
egy on the logic tutor in this ascending order of instructional
support: Example, Nudge and Presented. All interventions
provided BC worked examples. The main difference is that
Nudge prompted students to switch to BC in problems proper
to do so, while for Presented, those problems were presented
in BC by default. Our primary research question is: Which of
the three types of interventions would make De fault students
catch up with their StrTime peers?

Our study involved two intelligent tutoring systems (ITSs)
(Vanlehn, 2006): logic and probability. Students were first
assigned to a logic tutor that supports FC and BC strate-
gies, with FC being the default, then to a probability tutor six
weeks later that supports BC only. During the logic instruc-
tion, Default students were split into four conditions: three
intervention groups —Example, Nudge and Presented— and
a Control group without any intervention. On the other
hand, we believe that StrTime students already have the two
metacognitive skills and thus are considered the gold stan-
dard and received no intervention. All students went through
the same probability tutor and were asked to decide whether
they wanted to solve the following problem on their own
(problem-solving (PS)), the tutor to present it as a worked ex-
ample (WE), or to solve it collaboratively with the tutor in the
form of a faded worked example (FWE). Overall, our results
show that Nudge students outperformed their other De fault
peers and caught up with StrTime on both tutors. Addition-
ally, Nudge’s strategy behavior on the logic tutor was similar
to StrTime as both knew how and when to use BC. Surpris-
ingly, Nudge chose significantly more PS on the probability
tutor, and StrTime chose significantly less FWE.



Related Work
Teaching by Example, Nudging and Presenting

Substantial work has explored many approaches for teach-
ing strategies and highlighted their tradeoffs. We focus on
the possible combinations of three approaches: teaching a
strategy by example (Likourezos & Kalyuga, 2017; Glogger-
Frey et al., 2015), prompting nudges to use a strategy (Richey
et al., 2015; Zepeda et al., 2015; Belenky & Nokes, 2009)
and directly presenting it (Fellman et al., 2020; Spdrer et al.,
2009; M. Chi & VanLehn, 2007; Schwartz & Martin, 2004).

Glogger-Frey et al. (2015) found that students receiving
worked examples of journal extracts reviews outperformed
their peers, who had to come up with the reviews, on post-
test performance. However, Likourezos and Kalyuga (2017)
reported no significant difference between students who re-
ceived fully-guided worked examples, partially-guided ones
and unguided assistance on post-test geometry tasks.

Zepeda et al. (2015) showed that students who received tu-
toring nudges and worked examples performed better on a
physics test and a novel self-guided activity than their peers
who received no such instruction. Conversely, Richey et al.
(2015) found no significant difference between students who
were instructed to study the worked examples and their peers,
who received the same examples with tutoring nudges, on
near, intermediate and far transfer electric circuit tasks.

Sporer et al. (2009) found that students who were explic-
itly instructed on comprehensive reading strategies surpassed
their peers, who were taught by the instructors’ text interac-
tions, on a transfer task and follow-up test. On the other hand,
Fellman et al. (2020) found no significant difference between
students who were presented explicit strategy instruction to
practice the single-digit n-back task and their peers who prac-
ticed without such instruction, as both groups showed emerg-
ing transfer to untrained variants of the same task.

Metacognitive Skills Instruction

Metacognitive skills regulate one’s awareness and control of
their cognition (Chambres et al., 2002; Roberts & Erdos,
1993). Many studies have demonstrated the significance of
metacognitive skills instruction on academic performance (de
Boer et al., 2018; Erskine, 2010), learning outcomes (Zepeda
et al., 2015; M. Chi & VanLehn, 2010, 2008) and regulating
strategy use (Schraw & Gutierrez, 2015).

Schraw and Gutierrez (2015) argue that metacognitive skill
instruction involves feeling what is known and not known
about a task, as this allows learners to gather information ef-
ficiently, adapt to changes in task requirements, and develop
strategies to overcome the task. They state that such instruc-
tion should further compare strategies according to their fea-
sibility and familiarity from the learner’s perspective.

Belenky and Nokes (2009) showed that students who were
prompted with metacognitive nudges, which reflect on the
current problem-solving processes, outperformed their peers
who received problem-focused nudges, which focus on the
current goal, on a permutation transfer task. M. Chi and Van-

Lehn (2010) found that teaching students principle-emphasis
skills closed the gap between high and low learners, not only
in the domain where they were taught (probability) but also
in a second domain where they were not taught (physics).

Strategy- and Time-Awareness

Strategy- and time-awareness have been regarded as
metacognitive skills as they respectively address how and
when to use a problem-solving strategy (de Boer et al., 2018;
Winne & Azevedo, 2014; Lee & Oxford, 2008; Cardelle-
Elawar, 1992). Researchers have emphasized the role of strat-
egy awareness in learning a foreign language (Teng, 2020;
Lee & Oxford, 2008) and preparation for future learning
(Abdelshiheed et al., 2021; Belenky & Nokes-Malach, 2012;
Chamot, 1998), and the impact of time awareness on plan-
ning skills and academic performance (de Boer et al., 2018;
Fazio et al., 2016; Winne & Azevedo, 2014).

Lee and Oxford (2008) studied the role of strategy aware-
ness in teaching English to Korean students; specifically, stu-
dents aware of various learning strategies employed these
strategies more frequently than their peers. In Abdelshiheed
et al. (2021), we found that students who knew two problem-
solving strategies were the best learners in two independent
domains. Belenky and Nokes-Malach (2012) showed that
students who had a higher aim to master presented materials
and strategies outperformed their peers on a transfer task.

In Fazio et al. (2016), students who knew when to use each
strategy to pick the largest fraction magnitude had high math-
ematical proficiency. Their peers who did not know when
to apply each strategy failed to choose the correct alternative
when offered choices. de Boer et al. (2018) showed that stu-
dents who knew when and why to use a given strategy exhibit
long-term metacognitive knowledge that improves their aca-
demic performance. de Boer et al. emphasized that knowing
when and why has the same importance as knowing ~ow when
it comes to strategy choice in multi-strategy domains.

To sum up, much of the prior work has highlighted the
importance of metacognitive skill instruction and teaching
strategy- and time-awareness. Many approaches for teaching
strategies have been investigated, such as teaching by exam-
ple, prompting nudges, and direct presentation. However, as
far as we know, no agreement has been found on the most
effective combination of these approaches, and no work has
compared these approaches in intelligent tutoring systems.
This work compares three ways to teach a backward-chaining
(BC) strategy on two intelligent tutoring systems: logic and
probability. First, by examples alone (Example), then by ex-
amples and nudges to switch to BC (Nudge), and finally, by
examples and directly presenting BC (Presented).

Methods

Participants

They are Computer Science undergraduates at North Carolina
State University. Each tutor is a class assignment whose com-
pletion is required for full credit, and students are told that



Table 1: Tutors’ Assignment and Completion Counts

Logic Probability
Assigned ~ Completed Assigned ~ Completed
Control 23 21 19 17
Example 23 20 20 19
Nudge 22 21 21 20
Presented 20 17 16 15
StrTime 49 45 41 40
x*(4,N =261) = 0.09, x*(4,N =228) = 0.05,
p=.99 p=.99

Only students who completed Logic were assigned to Probability.

grades are based on effort, not performance. The main chal-
lenge in this work is that the student’s metacognitive label
—Default or StrTime— can be calculated only at the end
of logic training, but the label is needed at its beginning to
determine the intervention possibility. Specifically, StrTime
students frequently follow the desired behavior of switching
early (within the first 30 actions) to BC, while De fault stu-
dents make no switches and stick to FC (Abdelshiheed et al.,
2022, 2020). Such switch behaviors are recorded at the end
of the logic training, and hence, can not be calculated before
training. Therefore, as per Abdelshiheed et al. (2021), we uti-
lize the random forest classifier (RFC) that, based on pre-test
performance, predicts the metacognitive label before training
on logic and was previously shown to be 96% accurate.
Among 230 students assigned to the logic tutor, 137 were
classified by the RFC into 88 Default and 49 StrTime'.
De fault students were randomly split into four conditions:
a control —Control— and three experimental —Example,
Nudge and Presented. Table 1 shows the assigned and com-
pleted counts on both tutors for De fault (top four rows) and
StrTime (fifth row). The last column is for students who
finished both tutors since we excluded dropout logic stu-
dents from the probability assignment. Hence, only the last
column students were included in our analyses resulting in
17 Control, 19 Example, 20 Nudge, 15 Presented and 40
StrTime. As shown in Table 1, a chi-square test found no sig-
nificant difference between the groups’ completion rates on
both tutors. The RFC was 97% accurate in classifying stu-
dents who received no interventions —Control and StrTime.

Two Tutors and Our Interventions

Logic Tutor and Our Interventions The logic tutor
teaches propositional logic proofs by applying valid inference
rules such as Modus Ponens and Constructive Dilemma. It
consists of five ordered levels with an incremental degree of
difficulty, and each level consists of four problems. A student
can solve any problem by either a FC or BC strategy. Figure
la shows that in F'C, one must derive the conclusion at the
bottom from givens at the top, while Figure 1b shows that in
BC, students derive a contradiction from givens and the nega-

IThe remaining students were excluded from further analyses,
as their label is irrelevant to this work
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Figure 1: Logic Tutor Problem-Solving Strategies
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Figure 2: Prompted Strategy Switch Nudge

tion of the conclusion. Problems are presented by default in
FC with the ability to switch to BC by clicking the yellow
button in Figure 2. The logic tutor was adjusted, as shown
in Figure 3, to accommodate the following interventions for
De fault students:

* No Intervention: students are assigned to the original tutor.

e Example: two WEs on BC are provided.

* Nudge: same as Example, and nudges (shown in Figure 2)
are prompted to switch to BC in some problems.

* Presented: same as Example, and students are presented
some problems in BC by default.

Level 1 BC-WE C ? p
L J— —
Level 2 BC-WE C ? P
- —_J -
Level 3 r ? 1 C ? D
= d = d
Level 4 r ? 2 | |
- )
Level 5 r ? 2 | |
- -—Jd
: Backward-Chaining Worked Example
o For ‘Example’, behave as original tutor
? : For ‘Nudge’, prompt nudge to switch to BC
- - For ‘Presented’, present in BC by default

Figure 3: Training on the Adjusted Logic Tutor



In Figure 3, it is crucial to note that: 1) white problems behave
the same as the original tutor, 2) red problems are selected
based on the historical strategy switches in our data, and 3)
nudges are prompted after a number of seconds sampled from
a probability distribution of prior students’ switch behavior.

Problem Shorteuts

Given event Aand B with p(A)=0.4, p(B)=0.5, and p(~A N ~B)=0.2. Determine p(A N B).

Variables

Tutor  History

p(A)=0.4
p(B)=0.5
p(~AN~B) = 0.2 Please enter the equation for "The De Morgans Law on AUB then press the Submit
P(ANB) = None button
P(AUB) = None****TARGET VARIABLE****
p(~(~AN~B)) = None
Equations Response
For p(AUB): The De Morgans Law on AUB
1) p(AUB) = p(A) + p(B) - (ANB) For p(ANB): Addition Theorem for two
events:Aand B

A CALCULATOR

Figure 4: Probability Tutor Interface

Probability tutor: It teaches how to solve probability prob-
lems using ten principles, such as the Complement Theorem
and De Morgan’s Law, as shown in Figure 4. It consists of
12 problems, each of which can only be solved by BC as it
requires deriving an answer by writing and solving equations
until the target is ultimately reduced to the givens. A problem
can be PS, WE or FWE. PS requires students to solve alone,
WE involves a step-by-step solution from the tutor, and FWE
demands student and tutor collaboration.

Table 2: Overview of the Study Procedure

Pre-test (2 problems)

Training (20 problems):
Control : No Intervention
Logic | Example, Nudge, Presented : Intervention (Fig. 3)

StrTime : No Intervention

Post-test (6 problems, including 2 isomorphic)

Six weeks later

Textbook

Prob. Pre-test (14 problems)

Training (12 problems):
On ten problems, students choose PS/WE /FWE

Post-test (20 problems, including 14 isomorphic)

Procedure

Table 2 summarizes our procedure. During the logic instruc-
tion, students went through the standard sequence of pre-test,
training and post-test. The first two post-test problems are
isomorphic to the two pre-test problems. The only difference
occurred during training on logic, as shown in Table 2.

Six weeks later, students were trained on the probability

tutor following the standard procedure: textbook, pre-test,
training, and post-test. In the textbook, they studied the do-
main principles; In pre- and post-test, students solved 14 and
20 open-ended problems that required them to derive an an-
swer by writing and solving one or more equations. Each pre-
test problem has a corresponding isomorphic post-test prob-
lem. For the training section, shown in Figure 4, students
went through 12 problems and selected the type on ten of
them; two problems were fixed as PS. For FWE problems,
each step was randomly decided to determine whether the stu-
dent or tutor should solve it. Note that on both tutors, the
post-test is much more challenging than the pre-test, and the
problem order is the same for all students.

Grading criteria

On logic, a problem score is a function of time, accuracy,
and solution length. The pre- and post-test scores are cal-
culated by averaging the pre- and post-test problem scores.
On probability, students’ answers are graded by experienced
graders in a double-blind manner using a partial-credit rubric,
and grades are based only on accuracy. The pre- and post-test
scores are the average grades in their respective sections. On
both tutors, test scores are in the range of [0, 100].

Results
Learning Performance

Table 3: Comparing Groups across Tutors

Condition
Control Example Nudge Presented StrTime
(N=17) (N=19) (N =20) (N =15) (N =40)
Logic Tutor
Pre 59.1(19) 56.9(25) 60.5(13) 60.4(15) 60(18)
Iso-Post 65.4(8) 69.7(7) 89.8(5)* 83.4(4)* 85.3(6)*
Iso-NLG 0.04(.24) 0.09(.3) 0.4(.13)* 0.34(.14)* 0.35(.19)*
Post 59.9(9) 65.5(8) 86.1(5)" 80(5)* 81.7(6)*
NLG -0.05(.3) 0.05(.37) 0.39(.15)*  0.29(.16)* 0.3(.23)*
Time 5.5(7) 4.8(4) 5.3(4) 6.2(6) 4.6(7)
Probability Tutor
Pre 79.4(12) 74.5(17) 77(14) 74.1(14) 76(15)
Iso-Post 73.1(22) 77(14) 94.2(6)* 85.8(17) 92.6(13)*
Iso-NLG ~ -0.06(.39) 0.03(.28) 0.32(.19)* 0.16(.22) 0.28(.2)*
Post 70.3(20) 73.6(16) 91.9(5)* 83.5(20) 89.3(11)*
NLG -0.09(.36)  -0.04(.35)  0.27(.24)* 0.13(.23) 0.26(.17)*
Time 4.3(6) 3.9(4) 4.2(5) 3.5(4) 4.4(5)

In a row, bold is for the highest value, and asterisk means significance over no asterisks.

Table 3 compares the groups’ performance across the two
tutors showing the mean and standard deviation of pre- and
post-test scores, isomorphic scores, training time in hours,
and the learning outcome in terms of the normalized learn-
ing gain (NLG) defined as (NLG = 5%), where 100 is
the maximum test score. We refer to pre-test, post-test and
NLG scores as Pre, Post and NLG, respectively. A one-

way ANOVA using condition as factor found no significant



difference on Pre: F(3,67) = 0.14,p = .93 for logic, and
F(3,67) = 0.49, p = .69 for probability. Similarly, no sig-
nificant difference was found in the training time on both
tutors. In order to measure the students’ improvement on
isomorphic problems, several repeated measures ANOVA
were conducted (one for each group on each tutor) using
{Pre, Iso-Post} as factor. Results showed that Nudge and
StrTime learned significantly with p < 0.0001 on both tutors,
Presented learned significantly with p = 0.0001 on logic and
p = 0.02 on probability. Example and Control did not per-
form significantly higher on Iso-Post than Pre on both tutors.
These findings verify the RFC’s accuracy, as StrTime learned
significantly on both tutors, while Control did not, despite
both groups receiving no interventions.

Comparing Conditions A comparison between the four
conditions in Table 3 was essential to assess the perfor-
mance of Default students. On the logic tutor, a one-way
ANCOVA? using condition as factor and Pre as covariate
found a significant difference on Post: F(3,66) =59.7,p <
.0001,n? = 0.69. Follow-up post-hoc analyses with Bonfer-
roni’® adjustment* revealed that Nudge and Presented sig-
nificantly outperformed Example (¢(37) = 5.9,p < .0001
and #(32) = 5.2,p < .0001) as well as Control (¢(35) =
7.8, p < .0001 and #(30) = 6.3, p < .0001). No significant
difference was found between Nudge and Presented, or be-
tween Example and Control. Similar patterns were observed
on NLG using ANOVA. These findings show that Nudge,
Presented > Example, Control.

On the probability tutor, a one-way ANCOVA using con-
dition as factor and Pre as covariate reported a signifi-
cant difference on Post: F(3,66) = 14.5,p < .0001,1% =
0.31. Subsequent Bonferroni-corrected analyses showed
that Nudge significantly outperformed Presented (1(33) =
3.6,p = .001), Example (t(37) = 5.6,p < .0001) and
Control (1(35) = 6.2, p < .0001); meanwhile, Presented sig-
nificantly surpassed Example and Control (¢(32) =3.1,p =
.004 and #(30) = 3.4,p = .002). No significant difference
was found between between Example and Control. Similar
patterns were found using ANOVA on NLG. In short, these
results show that Nudge > Presented > Example, Control.

In essence, Nudge students were the best on both tutors,
followed by Presented, who learned less on probability. Sur-
prisingly, Example learned no different from Control on both
tutors, which signifies the additional instructional support that
Nudge and Presented were given on logic.

Comparing with StrTime To determine whether any con-
dition caught up with StrTime students, post-hoc pairwise
analyses were conducted on logic and probability Post using
Bonferroni correction. On logic, results revealed that Nudge
and Presented caught up with StrTime as no significant dif-
ference was found between their Post and that of StrTime

2General effect size 12 was reported for conservative results
3Bonferroni was chosen for more conservative results
4(ae = .05/10) throughout the results section

(#(58) = 0.9, p = .37 and #(53) = 0.3, p = .77). On the other
hand, StrTime significantly outperformed Example (¢(57) =
5.4, p <.0001) and Control (t(55) = 6.7, p < .0001). Similar
results were found on NLG.

On the probability tutor, only Nudge caught up with
StrTime as no significant difference was found on Post
(¢(58) = 0.2, p = .84). Meanwhile, StrTime significantly sur-
passed Presented (1(53) = 3.1, p = .003), Example (¢(57) =
5.1, p <.0001) and Control (+(55) =5.7, p < .0001). Similar
patterns were observed on NLG.

In brief, Nudge and Presented caught up with StrTime
in the presence of our interventions on logic. Only Nudge
caught up with StrTime on probability without such interven-
tions. Lastly, Example and Control performed significantly
worse than StrTime on both tutors.
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Figure 5: Strategy Switch Behavior on Logic

Strategy Switch on Logic

The strategy switch behavior on the logic tutor (from FC
into BC) is displayed in Figure 5 to investigate the impact
of our intervention on students’ strategy choices. Decisions
are combined across the training and post-test sections, as no
significant difference was found in their distribution between
the two sections. Additionally, StrTime is highlighted in bold
as the gold standard.

A one-way ANOVA using condition as factor showed a
significant difference in the frequency of early switches:
F(3,67) = 6.7, p < .001,n? = 0.23. Moreover, a chi-square
test showed a significant relationship between the switch
type and student group®: x*(8,N = 2664) = 934.3,p <
.0001.  Post-hoc pairwise chi-square tests with Bonfer-
roni adjustment showed that for early switches: Nudge,
StrTime > Presented > Example, Control. For instance,
Nudge and StrTime made early switches significantly more
than Presented: y*(2,N = 840) = 100.2,p < .0001 and
x%(2, N = 1320) = 84.2, p < .0001, respectively. No signif-
icant difference was found between Nudge and StrTime, or
between Example and Control.

5[111 students] * [20 training - 2 WE + 6 post] = 2664 decisions
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Figure 6: Problem-level Decisions on Probability

Student Decision on Probability

Table 3 showed that our interventions’ impact on logic might
also extend to probability. Therefore, in Figure 6, we inves-
tigate the problem-level decisions in the probability training
section as students chose them. Step-level decisions were not
considered since the tutor randomly chose them. It is im-
portant to note that for each student group, there was no sig-
nificant correlation between any problem-level decision type
shown in Figure 6 and any performance metric in Table 3.

A chi-square test found a significant relationship be-
tween the problem-level decision type and student group®:
x%(8, N=1110) = 162.1, p < .0001. Follow-up pairwise chi-
square tests with Bonferroni correction showed that for PS:
Nudge > Presented, Example, Control; for FWE: StrTime <
Nudge, Presented, Example, Control. For instance, Nudge
chose PS significantly more than Presented: x*(2,N =
350) = 32.9, p < .0001, while StrTime chose FWE signifi-
cantly less than Nudge: x*(2, N = 600) = 67.5, p < .0001.
No significant difference was found between any pair of
Presented, Example and Control on any decision type. In
short, Nudge and StrTime made decisions different from each
other and their peers, while Presented, Example and Control
made similar decisions.

Discussions & Conclusions

We showed that to teach students how and when to use a
strategy, using worked examples alone may not be very ef-
fective, as Example did not significantly outperform Control.
Howeyver, students learned better when we reinforced exam-
ples by prompting BC nudges or presenting problems in BC
by default, as Nudge and Presented significantly surpassed
Example and Control. Additionally, providing nudges was
even more beneficial as Nudge continued to outperform
Presented on probability significantly.

Catching up with StrTime While Nudge and Presented
caught up with StrTime on logic, only Nudge caught up
with StrTime on their logic early-switch behavior and prob-
ability learning performance. This finding suggests that the

6[111 students] * [10 choices on training] = 1110 decisions

Nudge students are prepared for future learning (Bransford &
Schwartz, 1999) as they performed well on probability based
on interventions they received on logic.

Relation to ICAP Framework We believe that our re-
sults show that the effectiveness of the Interactive, Construc-
tive, Active and Passive (ICAP) framework (M. T. Chi &
Wylie, 2014; M. T. Chi, 2009) can be extended to teach-
ing students metacognitive skills. Precisely, Control encoun-
tered passive learning as they received no interventions, while
Example received an active treatment as students were re-
quired to go through the examples and proceed to the next
steps. Presented can be seen as a constructive intervention
since students were asked to generate solutions in a strategy
presented to them beyond the default one. Finally, Nudge
received an interactive intervention where the tutor offered
nudges to switch strategies, but the actual switch had to come
from students. Our findings are consistent with ICAP in that
interactive learning activities achieve the highest learning out-
comes, as is the case with Nudge students on the two tutors.

Relation to Nudge Theory The nudge theory (Thaler &
Sunstein, 2008) states that nudges have an essential role in
behavioral sciences (Simon & Tagliabue, 2018) and influence
individuals’ social and cognitive behavior (Smith et al., 2013;
Goldstein et al., 2008). Our results suggest that the impact of
this theory is evident in teaching Default students the BC
strategy on a logic tutor. Precisely, the strategy behavior of
Nudge students changed after receiving prompted nudges to
use BC, resulting in the best performance on both tutors.

Students’ Choices and Personalities The evaluation of
students’ choices on probability revealed that StrTime stu-
dents preferred minimal collaboration with the tutor; they
chose WE or PS likely to save time or show effort, respec-
tively. On the other hand, Nudge students chose PS signifi-
cantly more than their intervention and Control peers, likely
to demonstrate their acquired BC knowledge. At the end of
probability training, students were provided the ten-item per-
sonality inventory7 (TIPI) (Gosling, Rentfrow, & Swann Jr,
2003), which showed that Nudge and StrTime identified
themselves as critical and quarrelsome significantly more
than their peers.

Limitations and Future Work There are at least two
caveats in our study. First, our study focused on different in-
terventions for Default students, and hence, the conditions
ended up with relatively small sample sizes. Second, the
logic tutor offered a strategy by default, and the probability
tutor supported only one strategy. A more convincing testbed
would be having the tutors support both strategies, where stu-
dents will be asked to choose the default strategy on each
problem. The future work includes combining nudges and
presentation into one intervention, implementing FC on the
probability tutor, and providing explanations in the nudges
on why BC is helpful.

TThis was not stated earlier for not being our main scope
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