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—— Abstract

Many deployments of differential privacy in industry are in the local model, where each party releases
its private information via a differentially private randomizer. We study triangle counting in the
noninteractive and interactive local model with edge differential privacy (that, intuitively, requires
that the outputs of the algorithm on graphs that differ in one edge be indistinguishable). In this
model, each party’s local view consists of the adjacency list of one vertex.

In the noninteractive model, we prove that additive Q(nZ) error is necessary, where n is the
number of nodes. This lower bound is our main technical contribution. It uses a reconstruction
attack with a new class of linear queries and a novel mix-and-match strategy of running the local
randomizers with different completions of their adjacency lists. It matches the additive error of
the algorithm based on Randomized Response, proposed by Imola, Murakami and Chaudhuri
(USENIX2021) and analyzed by Imola, Murakami and Chaudhuri (CCS2022) for constant . We
use a different postprocessing of Randomized Response and provide tight bounds on the variance of
the resulting algorithm.

In the interactive setting, we prove a lower bound of Q(n3/ 2) on the additive error. Previously,
no hardness results were known for interactive, edge-private algorithms in the local model, except
for those that follow trivially from the results for the central model. Our work significantly improves
on the state of the art in differentially private graph analysis in the local model.
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Triangle Counting with Local Edge Differential Privacy

1 Introduction

Triangle counting is a fundamental primitive in graph analysis, used in numerous applications
and widely studied in different computational models [3, 12, 26, 37, 7, 44, 45, 48, 50]. Statistics
based on triangle counts reveal important structural information about networks (as discussed,
e.g., in [30, 46, 51]). They are used to perform many computational tasks on social networks,
including community detection [49], link prediction [25], and spam filtering [5]. See [1] for a
survey on algorithms for and applications of triangle counting.

In applications where a graph (e.g., a social network) holds sensitive information, the
algorithm that computes on the graph has to protect personal information, such as friendships
between specific individuals. Differential privacy [22] has emerged as the standard of rigorous
privacy guarantees. See [53] for a survey of differentially private graph analysis. The most
investigated setting of differential privacy is called the central model. It implicitly assumes
a curator that collects all the data, computes on it, and provides data releases. In some
situations, however, it might be undesirable to collect all information in one place, for instance,
because of trust or liability issues. To address this, the local model of differential privacy was
proposed [29, 22, 40] and is now used in many industry deployments [28, 8, 14, 2, 17].

In this model, each party releases its private information via a differentially private
randomizer. Then the algorithm processes the information and, in the case of the local
noninteractive model, outputs the answer. In the case of the local interactive model, the
algorithm may have multiple rounds where it asks all parties to run different randomizers on
their private data. These randomizers can have arbitrary dependencies on previous messages.
Differential privacy in the local model is defined with respect to the whole transcript of
interactions between the parties and the algorithm. In the local model applied to graph
data, each vertex represents a party. It receives the list of its neighbors as input and applies
local randomizers to it. In contrast to the typical datasets, where information belongs to
individual parties, in the graph setting, each pair of parties (vertices) share the information
of whether there is an edge between them.

Differential privacy, intuitively, guarantees that, for any two neighboring datasets, the
output distributions of the algorithm are roughly the same. There are two natural notions of
neighboring graphs: edge-neighboring and node-neighboring. Two graphs are edge-neighboring
if they differ in one edge; they are node-neighboring if they differ in one node and its adjacent
edges. Edge differential privacy is, in general, easier to attain, but node differential privacy
provides stronger guarantees. Edge differential privacy was introduced and first applied to
triangle counting in [47]. The edge-differentially private algorithm from [47] was generalized
and implemented in [38]. The first node-differentially private algorithms appeared in [9, 41, 13],
and all three of these articles considered the problem of triangle counting. Edge differential
privacy in the local model has been studied in [52, 31, 54, 56, 33, 34, 16] with most of the
listed articles focusing on triangle counting.

In this work, we investigate edge differentially private algorithms for estimating the
number of triangles in a graph in the local model. Our goal is to understand the additive
error achievable by such algorithms both in the noninteractive and in the interactive model.
For the noninteractive model, we provide upper and lower bounds on additive error. Our
bounds are tight in terms of n, the number of nodes in the input graph. For the interactive
model, we provide the first lower bound specific to local, edge differentially private (LEDP)
algorithms. There are trivial lower bounds for the central model (based on global sensitivity)
which apply to the local model, but no lower bounds specific to the local model were previously
known for any graph problem, even for 2-round algorithms. Together, our results improve
our understanding of both noninteractive and interactive LEDP algorithms.
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1.1 Results

Our results and comparison to previous work are summarized in Table 1.

Table 1 Summary of lower and upper bounds on the additive error for triangle counting in the
noninteractive and interactive models. Note that the largest value of C4(G) is (Z) = O(n*). For
ease of comparison, the results of [33] and [34] are stated for graphs with dmaz = O(n).

Model Previous Results Our Results
Non- Lower Bound Q(n®'?) [33] Q(n?) Thm. 1.1
interactive
Upper Bound || O(n?) (constant &) | [35] O(*VC:(G) + "2;2) Thm. 1.2
Lower Bound Q(n) easy Q(”in) Thm. 1.3
Interactive
Upper Bound || O (7”0;4(m + ":2{2) [34]

1.1.1 Lower Bound for the Noninteractive Local Model

Our main technical contribution is a lower bound in the noninteractive setting. It uses a
reconstruction attack (for the central model) with a new class of linear queries and a novel
mix-and-match strategy of running local randomizers with different completions of their
adjacency lists. While reconstruction attacks are a powerful tool in proving lower bounds
in the central model of differential privacy, they have not been used to obtain bounds in
the local model. Previous lower bounds in the local model are based on quite different
techniques — typically, information-theoretic arguments (see, for example, [40, 6, 19] and
many subsequent works).

» Theorem 1.1 (Noninteractive Lower Bound, informal version). Let e € (0,1/20) and § > 0 be
a sufficiently small constant. There exists a family of graphs such that every moninteractive
(e,9)-local edge differentially private algorithm that gets an n-node graph from the family as
input and approximates the number of triangles in the graph within additive error at most «
(with sufficiently high constant probability) must have o = Q(n?).

Our lower bound holds for all small § > 0 (the case referred to as “approximate” differential
privacy). Observe that such lower bounds are stronger than those for é = 0 (the case referred
to as “pure” differential privacy), because they include 6 = 0 as a special case. The only
previously known lower bound, due to Imola et al. [33], showed that noninteractive algorithms
must have error Q(v/n - dpaz)-

To prove the lower bound in Theorem 1.1, we develop a novel mix-and-match technique
for noninteractive local model. For a technical overview of the proof of Theorem 1.1, see
Section 1.2.

Our lower bound matches the upper bound of O(n?) proved by [35, Theorem G.3] (for
constant €) for an algorithm based on randomized response. In this work, we give a simpler
variant of the algorithm and a more refined analysis, which works for all ¢.
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1.1.2 Tight Analysis of Randomized Response

The most natural algorithm for the noninteractive model is Randomized Response, which
dates back to Warner [55]. In this algorithm, each bit is flipped with probability ee—il,
€ is the privacy parameter. In the case of graphs, each bit represents a presence or absence
of an edge. An algorithm based on Randomized Response for triangle counting was first
analyzed by [33] for the special case of Erdés-Rényi graphs, and then [35] proved that this
algorithm has O(n?) additive error for constant ¢ for general graphs. These works first

where

compute the number of triangles and other induced subgraphs with three vertices as though
the noisy edges are real edges and then appropriately adjust the estimate using these counts
to make it unbiased.

We use a different postprocessing of Randomized Response. We rescale the noisy edges
right away, so we need not compute counts for graphs other than triangles, which makes
the analysis much simpler. We obtain tight upper and lower bounds on the variance of the
resulting algorithm that hold for all e. Our bounds are more refined, as they are stated in
terms of Cy(G), the number of four cycles in the graph.

» Theorem 1.2 (Analysis of Randomized Response). For alle > 0, there exists a noninteractive
e-LEDP algorithm based on Randomized Response that gets an n-node graph as input and
returns an unbiased estimate T of the number of triangles in a graph that has variance

@(04(@ L )

In particular, with high constant probability, T has additive error o = O(

3

Ca(G) + L/?)

Note that for constant &, Theorem 1.2 implies an upper bound of O(n?) on the additive
error of the algorithm’s estimate. Thus, Randomized Response is optimal for graphs that have
C, = ©(n*) by our lower bound in Theorem 1.1. Also, observe that Randomized Response
achieves pure differential privacy (with 6 = 0), whereas the lower bound in Theorem 1.1
holds even for approximate differential privacy. Even though allowing § > 0 results in better
accuracy for many problems, it does not give any additional utility for noninteractive triangle
counting. The proof of Theorem 1.2 is deferred to the full version.

1.1.3 Lower Bound for the Interactive Local Model

Next, we investigate triangle counting in the interactive setting. Imola et al. [33] present an
e-LEDP for triangle counting in the interactive model with additive error of O(1/C4(G)/e +
Vo dmaz/ 52), where d;,q. is an upper bound on the maximum degree.

We give a lower bound on the additive error of LEDP algorithms for triangle counting in
the interactive model. Note that Q(n) additive error is unavoidable for triangle counting
even in the central model, because the (edge) global sensitivity of the number of triangles is
n — 2 (and this lower bound is tight in the central model). There were no previously known
lower bounds for this problem (or any other problem on graphs) specific to the interactive
LEDP model that applied to even 2-round algorithms. Our lower bound applies to interactive
algorithms with any number of rounds.

» Theorem 1.3 (Interactive Lower Bound). There exist a family of graphs and a constant
3 2

¢ > 0 such that for every e € (0,1), n € N,a € (0,n%] and § € [O, 105 ° W} every
(potentially interactive) (g,9)-local edge differentially private algorithm that gets an n-node
graph from the family as input and approximates the number of triangles in the graph with
additive error at most o (with probability at least 2/3) must have o > ¢ - n’2
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Our lower bound is obtained via a reduction from the problem of computing the summation of
n randomly sampled bits in {0, 1} in the LDP model, studied in a series of works [6, 10, 20, 36].
Our lower bound matches the upper bound of [33] for constant e and for graphs where
dimaz = O(n) and C4(G) = O(n?). It is open whether additive error of o(n?) can be achieved
for general graphs.

1.2 Technical Overview of the Noninteractive Lower Bound

Typical techniques for proving lower bounds in the local model heavily rely on two facts
that hold for simpler datasets: first, each party’s information is not seen by other parties;
second, arbitrary changes to the information of one party have to be protected. Both of these
conditions fail for graphs in the LEDP model: each edge is shared between two parties, and
only changes to one edge are protected in the strong sense of neighboring datasets, imposed
by differential privacy.

To overcome these difficulties, we develop a new lower bound method, based on recon-
struction attacks in the central model. Such attacks use accurate answers to many queries to
reconstruct nearly all the entries of a secret data set [18, 23, 24, 42, 43, 15]. They are usually
applied to algorithms that release many different values. However, a triangle-estimation
algorithm returns a single number. Consider a naive attempt to mount an attack using the
algorithm as a black box, that is, by simulating every query using a separate invocation of
the triangle counting algorithm. This would require us to run the local randomizers many
times, degrading their privacy parameters and making a privacy breach vacuous.

To overcome this difficulty, in our attack, we use the noninteractive triangle-estimation
algorithm as a gray box. Since the algorithm is noninteractive, it is specified by local
randomizers for all vertices and a postprocessing algorithm that runs on the outputs of the
randomizers. We use a secret dataset X to create a secret subgraph, run the randomizers for
the vertices in the secret subgraph only twice, and publish the results. By properties of the
randomizers and by composition, the resulting procedure is differentially private. In the next
phase, we postprocess the published information to complete the secret subgraph to different
graphs corresponding to the queries needed for our attack. Then we feed these graphs to
the triangle approximation algorithm, except that for the vertices in the secret subgraph,
we rely only on the published outputs. If the triangle counting algorithm is accurate, we
get accurate answers to our queries. Even though the randomness used to answer different
queries is correlated, we show that a good approximation algorithm for triangle counts allows
us to get most of the queries answered correctly. Finally, we use a novel anti-concentration
bound (Lemma 1.4, below) to demonstrate that our attack succeeds in reconstructing most
of the secret dataset with high probability. This shows that the overall algorithm we run
in this process is not differentially private, leading to the conclusion that a very accurate
triangle counting algorithm cannot exist in the noninteractive LEDP setting.

We call the queries used in our attack outer-product queries. The queries are linear, but
their entries are dependent. To define this class of queries, we represent the secret dataset X
with n? bits as an n x n matrix. An outer-product query to X specifies two vectors A and
B of length n with entries in {—1,1} and returns A7 X B, that is, Zi,je[n] A; X;;B;.

To analyze our reconstruction attack, we prove the following anti-concentration bound
for random outer-product queries, which might be of independent interest.

» Lemma 1.4 (Anti-concentration for random outer-product queries). Let M be an n X n
matriz with entries M;; € {—1,0,1} for all i,j € [n] and m be the number of nonzero entries
in M. Let A and B be drawn uniformly and independently from {—1,1}". If m > yn? for
some constant vy, then

Pr [|ATMB| > @] > %.
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The literature on reconstruction attacks describes other classes of dependent queries [42];
the outer-product queries arising here required a new and qualitatively different analysis.

1.3 Additional Related Work

One of the difficulties with proving lower bounds in the local model is that Randomized
Response, despite providing strong privacy guarantees, supplies enough information to
compute fairly sophisticated statistics. For example, Gupta, Roth and Ullman [32] show how
the output of Randomized Response can be used to estimate the density of all cuts in a graph.
Karwa et al. [39] show how to fit exponential random graph models based on randomized
response output. For certain model families, this would entail estimation of the number of
triangles; however, they provide no theoretical error analysis, only experimental evidence
for convergence. Randomized Response has also been studied in the statistics literature
with a focus on small probabilities of flipping an edge. Balachandran et al. [4] analyze the
distribution of the naive estimator that counts the number of triangles in the randomized
responses (when flip probabilities are very low). Chang et al. [11] give estimation strategies
for settings where the flip rate is unknown but multiple replicates with independent noise
are available. To the best of our understanding, these works do not shed light on the regime
most relevant to privacy, where edge-flip probabilities are close to 1/2.

A number of works have looked at triangle counting and other graph problems in the
empirical setting [54, 52, 31, 56] in “decentralized” privacy models. In all but [54], the local
view consists of the adjacency list. The local views in Sun et al. [54] consist of two-hop
neighborhoods. Such a model results in less error since nodes can see all of their adjacent
triangles and can report their adjacent triangles using the geometric mechanism.

1.4 Organization

Various models of differential privacy, including LEDP, are defined in Section 2. Our proof
of the lower bound for the noninteractive model, Theorem 1.1, appears in Section 3. The
anti-concentration lemma for out-product queries (Lemma 1.4) is proved in Section 3.2.
Our analysis of Randomized Response and the proof of Theorem 1.2 appears in the full
version [27]. The proof of Theorem 1.3 for the interactive LEDP model appears in Section 4.

2 Background on Differential Privacy

We begin with the definition of differential privacy that applies to datasets represented as
vectors as well as to graph datasets.

» Definition 2.1 (Differential Privacy [22, 21]). Let e > 0 and § € [0,1). A randomized
algorithm A is (g, 0)-differentially private (DP) (with respect to the neighbor relation on the

universe of the datasets) if for all events S in the output space of A and all neighboring
datasets X and X',

Pr[A(z) € S] < exp(e) - Pr[A(X’) € S] + 4.

When 6 = 0, the algorithm is e-differentially private (sometimes also called “purely differen-
tially private”).
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Differential privacy can be defined with respect to any notion of neighboring datasets.
When datasets are represented as vectors, datasets X and Y are consider neighbors if they
differ in one entry. In the context of graphs, there are two natural notions of neighboring
graphs that can be used in the definition: edge-neighboring and node-neighboring. We use
predominantly the former, but define both to make discussion of previous work clear.

» Definition 2.2. Two graphs G = (V, E) and G' = (V', E’) are edge-neighboring if G and
G’ differ in exactly one edge, that is, if V. =V’ and E and E’ differ in exactly one element.
Two graphs are node-neighboring if one can be obtained from the other by removing a node
and its adjacent edges.

If the datasets are graphs with edge (respectively, node) neighbor relationship, we call a
differentially private algorithm simply edge-private (respectively, node-private).

2.1 The local model

The definition of differential privacy implicitly assumes a trusted curator that has access
to the data, runs a private algorithm on it, and releases the result. This setup is called the
central model of differential privacy. In contrast, in the local model of differential privacy,
each party participating in the computation holds its own data. The interaction between
the parties is coordinated by an algorithm A that accesses data via local randomizers. A
local randomizer is a differentially private algorithm that runs on the data of one party. In
the context of graph datasets, the input graph is distributed among the parties as follows:
each party corresponds to a node of the graph and its data is the corresponding row in the
adjacency matrix of the graph. In each round of interaction, the algorithm A assigns each
party a local randomizer (or randomizers) that can depend on the information obtained in
previous rounds.

We adapt the definition of local differential privacy from [36, 40] to the graph setting.
Consider an undirected graph G = ([n], E) represented by an n x n adjacency matrix A.
Each party i € [n] holds the i-th row of A, denoted a;,. We sometimes refer to a;. as the
adjacency vector of party i. Entries of A are denoted a;; for i,j € [n].

» Definition 2.3 (Local Randomizer). Let € > 0 and 6 € [0,1). An (,d)-local randomizer
R:{0,1}" = Y is an (g,0)-edge DP algorithm that takes as input the set of neighbors of
one node, represented by an adjacency vector a € {0,1}"™. In other words, Pr[R(a) € Y] <
€€ -Pr{R(a’) € Y]+ for all a and a’ that differ in one bit and all sets of outputs Y C ).
The probability is taken over the random coins of R (but not over the choice of the input).
When 6 = 0, we say that R is an e-local randomizer.

A randomized algorithm A on a distributed graph is (e,d)-LEDP if it satisfies Defini-
tion 2.4.

» Definition 2.4 (Local Edge Differential Privacy). A tramscript © is a vector consisting of
5-tuples (S}, Sk, SL, Sk, SY) — encoding the set of parties chosen, set of randomizers assigned,
set of randomizer privacy parameters, and set of randomized outputs produced — for each
round t. Let S, be the collection of all transcripts and Sg be the collection of all randomizers.
Let L denote a special character indicating that the computation halts. An algorithm in this
model is a function A : Sy — (2" x 257 x 9R= QRZO) U{L} mapping transcripts to sets
of parties, randomizers, and randomizer privacy parameters. The length of the transcript, as
indexed by t, is its round complezity.

52:7
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Given € > 0 and ¢ € [0,1), a randomized algorithm A on a (distributed) graph G is
(,0)-locally edge differentially private (LEDP) if the algorithm that outputs the entire
transcript generated by A is (e,0)-edge differentially private on graph G. When 6 = 0, we
say that A is an e-LEDP.

Ift =1, that is, if there is only one round, then A is called noninteractive. Otherwise,
A is called interactive.

Observe that a noninteractive LEDP algorithm is specified by a local randomizer for each
node and a postprocessing algorithm P that takes the outputs of the local randomizers as
input.

We use a local algorithm known as randomized response, initially due to [55], but since
adapted to differential privacy [40].

» Definition 2.5 (Randomized Response). Given a privacy parameter € > 0 and a k-bit vector
a, the algorithm RandomizedResponse,(a) outputs a k-bit vector, where for each i € [k], bit i
is a; with probability % and 1 — a; otherwise.

» Theorem 2.6 (Randomized Response is e-LR). Randomized response is an -local randomizer.

Additional privacy tools are described in the full version of this paper.

3 The Noninteractive Lower Bound

In this section, we prove Theorem 1.1, which we restate formally here.

» Theorem 3.1. There exists a family of graphs, such that every noninteractive (e,d)-LEDP
algorithm with ¢ € (0, %) and ¢ € [0, ﬁ) that gets an n-node graph from the family as an
input and approximates the number of triangles in the graph within additive error o with
probability at least 1 — 35%, must have o = Q(n?).

At a high level, the lower bound is proved by showing that a noninteractive local algorithm
for counting triangles can be used to mount a reconstruction attack on a secret dataset X in
the central model of differential privacy. A groundbreaking result of Dinur and Nissim [18§]
— generalized in subsequent works [23, 24, 42, 43, 15] — shows that if an algorithm answers
too many random linear queries on a sensitive dataset of N bits too accurately then a large
constant fraction of the dataset can be reconstructed. This is referred to as a “reconstruction
attack” Specifically, Dinur and Nissim show that N random linear queries answered to
within +O(v/N) are sufficient for reconstruction. It is well known that if the output of an
algorithm on a secret dataset can be used for reconstruction, then this algorithm is not
differentially private. This line of reasoning leads to a lower bound of Q(v/N) on the additive
error of any differentially private algorithm answering N random linear queries.

Suppose we could show that an LEDP triangle counting algorithm with O(n?) additive
error can be used to construct a DP algorithm for answering n linear queries with O(y/n)
additive error on some data set of size n — then by the above, we reach a contradiction to
the privacy of the algorithm. While indeed a triangle counting algorithm can be used to
answer a single linear query, the main challenge is that the Dinur-Nissim reconstruction
attack requires answering not one, but rather n, linear queries on the same dataset. Let
A be an (g,9)-LEDP triangle counting algorithm. If we naively try to answer each linear
query to X using a new invocation of the triangle counting algorithm in a black-box manner,
this would result in n invocations of A. This in turn would cause the privacy parameters to
grow linearly with n, making the privacy breach vacuous. That is, the result would be of
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the following sort. An (e,d)-LEDP algorithm for triangle counting with low additive error
implies an (O(en), O(nd))-DP algorithm for answering linear queries with low additive error.
Since the latter statement is too weak to be used with the results of Dinur and Nissim, we
take a different approach.

In order to avoid making n invocations of a triangle counting algorithm, we develop a new
type of reconstruction attack on a secret dataset X, where the set of allowed linear queries
has a special combinatorial structure. We call the new type of queries outer-product queries.
We show that, given access to an (g,0)-LEDP algorithm A that approximates the number of
triangles up to O(n?) additive error, we can design a (2¢,24)-DP algorithm B for answering
©(n?) outer-product queries on dataset X of size N = n?, so that a constant fraction of
them is answered with O(n) additive error. (The dataset size is n?, so asymptotically the
number of random queries and the required accuracy are the same as in the Dinur-Nissim
attack.) The main insight is that instead of using A as a black-box, we use it in a “gray-box”
manner. This allows us to answer all ©(n?) queries without degrading the privacy parameters
of B. This in turn allows us to reconstruct X, which is a contradiction to the privacy of
algorithm B, and thus also to the privacy of algorithm A. Hence, we conclude that any
LEDP triangle-counting algorithm must have Q(n?) additive error.

The rest of Section 3.1 is organized as follows. In Section 3.1, we define outer-product
queries, and show that an (e,d)-DP algorithm A for triangle-counting with low additive
error can be used to construct a (2¢,26)-DP algorithm B for answering outer-product queries
with low additive error. In Section 3.2, we prove an anti-concentration result for random
outer-product queries. In Section 3.3, we use the anti-concentration result to show that an
algorithm B that accurately answers ©(n?) outer-product queries on a sensitive data set
X € {0,1}™*"™ can be used to reconstruct most of X and complete the proof of Theorem 3.1.

3.1 Reduction from Outer-product Queries to Triangle Counting

In this section, we prove Lemma 3.3, which is at the heart of our reduction. It shows that,
given access to an (g, )-LEDP algorithm A for approximating the number of triangles with
low additive error, we can construct an (2e,2§)-DP algorithm B (in the central model) that
accurately answers ©(n?) outer-product queries on a sensitive data set X. We start by
formally defining this new class of queries.

» Definition 3.2 (Outer-product queries). Let X € {0,1}"*". An outer-product query to X
specifies two vectors A and B of length n with entries in {—1,1} and returns AT X B, that is,

2ijemn) AiXi;B;.

Let v be the desired reconstruction parameter that indicates that the attack has been
successful if we reconstruct at least (1 —~)n? bits of X correctly. (Later, in Section 3.3, ~y
will be set to § and the number of queries, k, will be set to ©(n?).)

» Lemma 3.3 (Answering Outer-product Queries via Triangle Counting). Let £,§ > 0 and
~v € (0,1/2). Assume that there is a noninteractive (g,0)-LEDP algorithm A that, for every
2

3n-node graph, approximates the number of triangles with probability at least 1 — 9.’;—28 and
2
has additive error at most \/jg . Then there is an (2¢,20)-DP algorithm B in the central

model that, for every secret dataset X € {0,1}™*" and every set of k outer-product queries
(AW BWY (AR BW), gives answers ay,...,ay satisfying

2
Pr { {z e [k : ‘(A(“)TXB(@ —ag‘ > ‘/Zn}’ > Wﬁﬂ < %.
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Figure 1 The construction of the query graph Gx ¢. Each of the parts Ui, Uz, W consists of n
nodes. The dashed line is an edge iff X;; = 1. Only the subgraph Gx (induced by U; U Uz) holds
secret information.

That is, with probability at most 5/6, for every dataset X and a set of k outer-product queries,
2
Algorithm B answers inaccurately mifmost ’Y6—4k of the k queries, where by inaccurately we
An

mean with additive error more than -

Proof. Consider an algorithm A described in the premise of the lemma. Since A is local
noninteractive, it is specified by a local randomizer R, (a) for each vertex v, as well as a
postprocessing algorithm P. Each randomizer takes an adjacency vector a € {0,1}"™ as input
and passes its output to P. Next, we define algorithm B that, given a sensitive dataset X
and a set of k outer-product queries, uses the randomizers and the postprocessing algorithm
as subroutines to obtain accurate answers to the outer-product queries.

Fix a dataset X € {0,1}™*". For each outer-product query (4, B), algorithm B constructs
several corresponding query graphs. All query graphs are on the same vertex set V' of size
3n, partitioned into three sets Uy, Us, and W of size n. The vertices in U; for t € {1,2}
are denoted uy1,...,us,. The vertices of W are denoted wi,...,w,. See Figure 1 for an
illustration.

Algorithm B first forms a bipartite graph Gx with parts U; and U, with X as the
adjacency matrix; that is, it adds an edge (u14, ug;) for each ¢, j € [n] with X;; = 1. We call
G x the secret subgraph, because it will be included as a subgraph in every query graph and it
will be the only part of that graph that contains any information about the original sensitive
dataset X. Note that Gx does not depend on the outer-product query. The remaining edges
of each query subgraph are between U; U Us and W and are specific to each query graph,
so that overall the resulting graph is tripartite. For each v € Uy U Uy, let T'x (v) denote the
neighbors of v in the secret subgraph Gx. A key idea in the construction is that every node
in the secret subgraph Gx will have one of only two possible neighborhoods in each query
graph. This allows algorithm B to simulate triangle-counting computations on all query
graphs by invoking a local randomizer on each vertex in U; U Us only twice. For each vertex
v € Uy U Us, algorithm B runs its local randomizer R, (-) twice: once with the adjacency list
specified by I'x (v) and once with the adjacency list specified by I'x(v) UW. Algorithm B
then records the output of the former invocation as as ro(v), and the latter as 1 (v).

By the composition property of differential privacy, the algorithm that simply outputs
the vector of all 4n responses of the local randomizers is (2¢,20)-DP by composition, because
each bit of X is encoded as a potential edge and used in two executions of the randomizers
for its endpoints, where each execution (of all randomizers) is (g,)-LEDP. In the remaining
steps, algorithm B only postprocesses the vector of responses, and thus it is (2e,20)-DP.
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Next, we describe how to postprocess the vector of responses to obtain an answer to
an outer-product query (A, B). To answer each outer-product query, algorithm B will first
obtain answers to three linear queries that we call submatriz queries. Submatrix queries are
defined the same way as outer-product queries, except that vectors A and B have entries in
{0,1} instead of {—1,1}. Next, we explain how to answer submatrix queries on X, deferring
to Claim 3.5 the description of the simulation of each outer-product query with submatrix
queries.

To answer a submatrix query @ = (Q™, Q(®) on dataset X, algorithm B completes the
secret subgraph G x to a query graph Gx g as follows. For each vertex uy; € Uy U Us, where
t € {1,2} and i € [n], it adds edges determined by Q®): specifically, if Ql(-t) =1, it adds
edges from uy; to all vertices in W. Next claim states the relationship between the number
of triangles in G'x o and the answer to the submatrix query Q.

> Claim 3.4. The number of triangles in graph Gx ¢ is equal to n - (QMTXQ®,

Proof. Observe that Gx ¢ is tripartite with parts (Uy, Uz, W), so all triangles must have one
vertex in each part. The answer to the submatrix query @ = (Q™W, Q@) is

@MTXQ™ = Y Qe Xy

i,j€[n]

For each term in the sum, both u;; and ug; are adjacent to all nodes in W iff QEI) = Qég) =1

If the edge (w14, ug;) is present in the graph, then this results in n triangles. Thus, each term
where le) = Q;Q) = X,; = 1 corresponds to n triangles of the form (uq;,ug;, we), where
¢ € [n]. All other terms create no triangles, since either X;; = 0, in which case the edge
(u1i,ug;) is not present in the graph, or either le) =0or Q§-2) =0, in which case u;; and

ug; do not have common neighbors. <

To answer a submatrix query @, algorithm B simulates a call to the triangle-counting
algorithm A on the corresponding query graph Gx . First, B runs the local randomizers
for the vertices in W with their adjacency vectors specified by the graph Gx . Note that
these vertices do not have access to any private information, so this operation does not affect
privacy. For each vertex uy; € Uy U Us, where t € {1,2} and i € [n], algorithm B uses the
result rp(ug;) from the previously run randomizer, where b = Qit). E.g., if le) = 0, then
B uses the result ro(u1;), and if le) =1, it uses the result 7 (u1;). Now algorithm B has
results from all vertex randomizers on the graph G'x g and it simply runs the postprocessing
algorithm P on these results. To obtain the answer to the submatrix query, B divides the
output of P by n.

Finally, algorithm B answers each outer-product query as specified in the following claim,
by getting answers to three submatrix queries.

> Claim 3.5. An outer-product query to X can be simulated with three submatrix queries
to X. Moreover, if all three submatrix queries are answered with additive error at most «,
then the outer product query can be answered with additive error at most ba.

Proof. Consider an outer-product query to an n x n matrix X specified by A, B € {—1,1}".
Define n-bit vectors A’ = 1(A+ I)and A” = 1(-A+ 1), where T denotes a vector of 1s of
length n. Define B’ and B” analogously. Then, as illustrated in Figure 2,

ATXB =2((AY'XB' + (ATXB") - 1TXT.
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A\B 1.1 1.1 A\@’ 1.1 0..0 AM” 0.0 1.1 T\T 1 e
- 1 -1 1.102.00 -1 1

—2.] 1 1
-1 - 2 0 + 1 1
1 ‘1 1 o O O 1 0 1 1 1 1
AQ®B A QB A" ® B" 11

Figure 2 Every outer-product query can be simulated using three submatrix queries. For the
illustration, the entries of all vectors are rearranged to group the same values together. The outer
product is denoted ®.

That is, the answer to the outer-product query (A, B) can be computed from the answers to
the submatrix queries (A4, B'), (A”, B"), and (I, 1), and the additive error increases from o
to ba, as stated. <

It remains to prove the following claim.

> Claim 3.6. Let A be as in the premise of Lemma 3.3. For every secret dataset X € {0, 1}"*"
and every set of k outer-product queries {(A®), B("))},c(;), algorithm B gives answers
ai,...,ay satisfying

2k 1
r Ee[k]:‘(A(f))TXB“ ag\ > f” >1 0 <2
64 6
That is, the number of “incorrectly” answered outer-product queries exceeds % with

probability at most 1/6.

Proof. By the assumption on A, for every graph G algorithm A returns the number of
f

2
2
9128
Given a secret dataset X and k outer—product querles, algorithm B first creates k triples
of submatrix queries corresponding to the outer-product queries. Then B uses A as a gray
box, to answer all 3k submatrix queries simultaneously. Recall that this is achieved by

triangles in G within an additive error at most with probability at least 1 —

invoking the local randomizers on vertices holding private information (that is, vertices in
parts Uy, Us) twice, once for each potential value of the bit that corresponds to this vertex in
a specific query. Then for each individual submatrix query, one local randomizer is invoked
on each of the n vertices in W with the adjacency list that corresponds to that specific query
graph. Then, to answer each specific submatrix query, algorithm B combines the new outputs
of the vertices from W with the stored outputs from running randomizers on U; U Us that
correspond to that specific query, and invokes the postprocessing algorithm P on this vector
of 3n outputs. Finally, B divides P’s answer by n to obtain the answer to the submatrix
query.

Each invocation of P by B simulates one triangle-counting computation. Overall, we
have 3k (dependent) simulated triangle-counting computations. By the assumption on A,
stated in the premise of Lemma 3.3, the postprocessing algorithm P answers each bimulated
‘f ) with

probability at most gl 128 (where this probablhty is taken over the random coins of the
individual 3n local randomizers, as well as the random coins of P). Overall, there are

3k (dependent) simulations, and so the expected number of simulated trlangle—countmg

2
computations for which A returns additive error greater than \f20 79 1(35) =& GZ

Hence, by Markov’s 1nequahty, the probability that the number of inaccurate simulated

triangles queries exceeds L'k is at most 1

triangle-counting computatlon inaccurately (i.

is at most
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Condition on the event that at most 1k 4 of the triangle-counting computations are
answered 1naccurate1y, so that the remaining computations are answered with error at most
a = ‘/27: , and denote this even by E. Recall that each triangle-counting computation
is used to answer a single submatrix query, and that by Claim 3.4, if a triangle-counting
computation is answered with additive error «, then the corresponding submatrix query
is answered with additive error «o/n. Hence, by the above conditioning, at most 76—1’“ of
the submatrix queries are answered with additive error greater than «/n. Each inaccurate

answer to a triangle-counting computation can spoil the answer to at most one outer-product
query. Furthermore, by Claim 3.5, if all three submatrix queries used to compute a single
outer-product query are answered to within additive error a/n, then the outer-product query
is answered to within additive error 5a/n. Hence, by the above conditioning, at most % of
the outer-product queries are answered with additive error greater than 5o /n = @. Since
event F occurs with probability at least 5/6, we get that with probability at least 5/6, the

fraction of outer-product queries that is answered with additive error greater than @ is at
most 2 6—4, so that Claim 3.6 holds. <
This completes the proof of Lemma 3.3. |

3.2 Anti-Concentration for Random Quter-Product Queries

In this section, we prove Lemma 1.4. To analyze our reconstruction attack, we will consider
the differences between the true dataset X and a potential reconstructed dataset Y. Let M
denote X — Y. Then, for an outer-product query (A, B), the difference between the answers
to this query on dataset X and on dataset Y is ATXB — ATY B = AT M B. The main result
of this section shows that if X and Y differ on many entries (that is, M has lots of nonzero
entries) then a random outer-product query is likely to produce significantly different answers
on X and Y.

Proof of Lemma 1.4. Let Z;; = A;B; for all i,j € [n], and U = AT MB. We prove the
lemma by computing the expectation and the second and the fourth moments of U, and then
apply the Paley-Zigmund inequality to UZ2.

By independence of A; and Bj for all ¢, j € [n], we have E[Z;;] = E[A;] - E[B;] = 0 and
Var(Z;;] = E[Z};] = E[A} B] = 1. By definition of U and the linearity of expectation,

E[U] =E[A"MB] =E| > Mi;Zi;| = Y MijElZis]=0.

i,j€[n] i,j€[n]

Note that random variables Z;; are pairwise independent. This is an important feature
of random outer-product queries and the main reason to use them instead of the submatrix

queries. This feature greatly simplifies the analysis. Since U is unbiased, E[U?] = Var[U].

By pairwise independence of Z;;,

Var[U] =Var[ Z MijZij] Z M Var[Z;)] Z

i,j€[n] i,j€[n] i,j€[n]
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Next, we give an upper bound on the 4th moment of U.
> Claim 3.7. E[U%] < 9n*.

Proof. We use the definition of U, write it out as a sum, and multiply out the terms of the
product:

4
B0 =E[(4"MBYY =E[( 3 MyZy) |
i,j€[n]
= > Mi, j, Miy g, Miyjo My B Z:jy Zigj Zigj Zigial (1)
(41,51) 5, (1a,34) €[d] X [d]
where Equation (1) is obtained by using the linearity of expectation. Next, we evaluate the
expectation of the product in Equation (1):

E[Zi,j, Ziyjy Zisjs Zings) = ElAi, By, Aiy Bj, Aiy B, A, B, |

- E[AllAle’LgAh;] E[BJI B]ZBJSB]4]’

272

where the last equality follows by independence of A; and Bj for all 4, j € [n]. The expression
E[A;, A;, A As,] is 0 if at least one of the indices appears only once in the tuple (i1, io, i3, 14),
since, in this case, we can use the independence of the corresponding factor A; from the
remaining factors to represent this expression as E[A;] multiplied by the expectation of the
product of the remaining factors. Since E[A;] = 0 for all ¢ € [n], the overall expression
evaluates to 0.

Note that if one of the factors appears exactly three times, then another factor appears
exactly once. Therefore, the remaining case is when each factor appears an even number
of times. If there are two factors, say A; and A; that appear twice, then the expression
evaluates to E[A7A%] = 1. Tt also evaluates to 1 when i = j.

Thus, each term in Equation (1) is either 0 or 1. By symmetry, it can potentially be 1
only if each index in the tuple (i1, 1i2,43,%4) and each index in the tuple (41, jo, j3, j4) appears
an even number of times. It remains to give an upper bound on the number of such terms.
There are (g) ways to choose two distinct i-indices and (3) = 6 possible positions for them
in the 4-tuple. In addition, there are n ways to choose an index that appears 4 times in
the 4-tuple. So, the number of possibilities for nonzero E[A;, A;, A;; A;,] is at most 3n2. The
same bounds holds for E[B;, B;, B;, Bj,]. Consequently, the number of terms equal to 1 in
Equation (1) is at most 9n*. Thus, the sum evaluates to at most 9n*. This completes the
proof of Claim 3.7. <

Since U? is a nonnegative random variable with finite variance, the Paley-Zygmund
inequality gives that, for all 6 € [0, 1],

(E[U?)? m? (yn?)?
g 2 (g 2 -0 g

Pr[U? > 0 E[U?]] > (1-0) =(1- 9)2%2,

where the last inequality uses the bound m > yn? stated in the lemma. Finally, we set
6 = 1/4 and get:

Pr [|[ATMB| > @} = Pr[|U] > @} =Pr[U?> 2] > 2—2%2 =

completing the proof of Lemma 1.4. <
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3.3 Reconstruction Attack Using Outer-Product Queries

To simplify notation in this section, we represent our datasets and outer-product queries
as vectors. Formally, X here denotes the vectorization of the original sensitive dataset, i.e.,
a vector in {0,1}"". For an outer-product query (4, B), we let Q € {0,1}"" represent the
vectorization of A ® B, the outer product of A and B. (In other words, @ is the Kronecker
product of A and B.) Then the answer to the query is the dot product @ - X.

In this section, we define and analyze the attacker’s algorithm C and complete the proof
of Theorem 3.1. The attacker C runs algorithm B from Section 3.1 on the sensitive dataset
X and a set of k random outer-product queries )1, ..., Qx to obtain answers aq,...,a. For
all ¢ € [k], we call the answer a; accurate for a dataset Y if |Qp-Y — ay| < @; otherwise,
we call a inaccurate for Y. The attacker C outputs any dataset Y* € {0, 1}"2 for which at
most “g—f answers among aq, . .., ag are inaccurate for Y*. By Lemma 3.3, the probability
that X satisfies this requirement is at least %. If this event occurs, algorithm C will be able
to output some Y*. (Otherwise, the attack fails.)

Next, we analyze the attack. Let ||X — Y|y denote the Hamming distance between
datasets X and Y. Call a dataset Y bad if || X — Y1 > yn?, i.e., if it differs from X on

more than yn? entries. We will show that C is unlikely to choose a bad data set as Y*.

Fix a bad dataset Y. Let M = X — Y, and observe that M has m > «n? nonzero entries.

We say that a set of queries {Q1,...,Qk} catches the dataset Y if more than 2k entries in

32
(1Q1 - M|, ..., |Qx - M|) exceed Y™

» Lemma 3.8. Suppose the attacker C makes k = % uniformly random outer-product

queries. Then the probability that there exists a bad dataset not caught by the attacker’s set
of queries is at most %.

Proof. Consider a set of k£ uniformly random outer-product queries {Q¢}¢epr). Fix a bad
dataset Y. Then || X — Y|y > yn?. Let M = X — Y.

For every ¢ € [k], let x, = 1 if |Q¢- M| > @, and otherwise let x, = 0. Also, let
X = Zif:l X¢. By definition, the difference vector M = X — Y has more than yn? nonzero

entries. By the anti-concentration bound in Lemma 1.4, Pr {|Q5-M | > @ > %. Therefore,

E[x¢] > Y—Z. By the Chernoff bound, we have that for k = 123—2”2 and for n > 3,

2

v -k ~v2k 9 1
prls ) <o (- ) =ow () <
r|ix < ) < exp 198 exp n <6'2"2

Hence, the set {Q}epx fails to catch each specific bad dataset with probability at most
6715 By a union bound over at most 27" bad datasets, the probability that there exists a
bad dataset not caught by the attacker’s queries is at most 1/6. |

» Lemma 3.9 (Reconstruction Lemma). If algorithm B has additive error at most @ on

all but at most V;—f answers, and the set of queries it uses catches all bad datasets Y, then
the reconstruction attack is successful, that is, the attacker C outputs Y* that differs from X
on at most yn? entries, i.e., || X — Y*||; < yn?.

Proof. By the first premise of the lemma, the dataset X “disagrees” with at most %
of the answers ay. Hence, necessarily, the attacker C outputs some dataset Y*. Assume
towards a contradiction that Y™ is a bad dataset. Let {Q}scx be the set of queries
chosen by B. Let M* = X — Y™ be the difference vector. By the triangle inequality,
|QeM™| = |QeX — QoY ™| < |QeX — ag| + |QeY™ — ag|. From the first assumption in the
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lemma, |Q¢X — ay] < ‘F" for all but at most 62 4k of the querieb By the description of the
attack C, the output Y* is such that for all but at most %~ of the queries, |Q,Y™* —ay| < fn.
Therefore, for all but at most % @ of the queries, |Q@M*\ S |QeX —agl + QY™ —ay| < ‘fT
Since {Q¢}¢epi) catches all bad datasets, it in particular catches Y*, because Y* is bad. By

2
definition of catching, |Q,M*| > @ for more than % of the values Q,M*. Hence, we
have reached a contradiction, implying that Y* is a good dataset. <

The final ingredient for proving Theorem 3.1 is the following lemma, which is based on
an argument of [15]. Any algorithm that outputs a large fraction of its secret dataset is
definitely not private, for any reasonable notion of privacy. Lemma 3.10 states that such an
algorithm is not differentially private.

» Lemma 3.10. Let C be an algorithm that takes as input a secret data set X in {0,1}V
and outputs a vector in the same set, {0, 1}V. If C is (e, 6)-differentially private and X is
uniformly distributed in {0, 1}, then

EflC(X) = X|h] = e™*(5 - 0)N

Lemma 3.10 above only bounds the expectation of ||C(X) — X||;. The more sophisticated
argument in [15] yields much tighter concentration results. We use the simpler version here
since it allows for a self-contained presentation.

Proof. Fix an index ¢ € [N] and a bit r € {0,1}. Let X,_,, denote the vector obtained by
replacing the i-th entry of X with the bit r.

Consider the pair of random variables (X, C(X)). Because C is (e, §)-differentially private,
this is distributed similarly to the pair (X;_r,C(X)), where R is a uniformly random bit
independent of the other values. Specifically, for any event E C {0,1}¥ x {0, 1}V,

Pr[(X;5R,C(X)) € E] <e*Pr[(X,C(X)) € E] +6.
Applying this inequality to the event F; = {(x,y) : #; # y;} shows that
1 =Pr[C(X); # R| < e Pr[C(X); # X;]+ 0 and thus Pr[C(X); # X;] > e °(3 — ).

The Hamming distance ||C(X) — X1 is the sum of the indicator random variables for
the events C(X); # X;. By linearity of expectation, the expected Hamming distance is at

least 675(% — 6)N. <

Finally, we use Lemmas 3.3 and 3.8-3.10 to compete the proof of the main theorem.

Proof of Theorem 3.1. We set v = %. Assume towards a contradiction that for some e
and ¢ as in the statement of the theorem, there exists an (e, d)-LEDP algorithm A that for
every 3n node graph approximates the number of triangles in the graph up to additive error

a= ‘f — oo = 1— ﬁ Then by Lemma 3.3, there exists a

(2e, 25) DP algorithm B that, for every secret dataset X and every set of k outer-product
2

queries, answers inaccurately (i.e., with additive error more than @) on at most 76—f of the

k queries with probability at least %. By Lemma 3.8, the probability that a set of k = 123—2”2
random outer-product queries chosen by the attacker C does not catch all bad datasets
is at most %. By a union bound, with probability at least %, the attacker C satisfies the
premise of Lemma 3.9 and the set of chosen queries catches all bad data sets. Hence, with
probability at least %, the attacker C outputs a dataset Y* which coincides with X on at
least (1 — y)n? entries. The expected Hamming distance E[|| X — Y*||;] is therefore at most

cn? + in? = 1+27 n?. When v = §, the expected distance is less than 0.41n?.
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Recall that the attacker C runs (2¢,2§)-DP algorithm B on a secret dataset X and then
post processes the output of B. Thus, C is (2¢,2§)-DP, and we can apply Lemma 3.10 to
conclude that the expected Hamming distance E[|C(X) — X||; is at most e=2°(3 — 26)n?
Since, by assumption, ¢ < 1/20 and § < 1/100, we have E||C(X) — X||; > 0.43n%. This
contradicts the upper bound of 0.41n? above. <

4  The Interactive Lower Bound

In this section, we present an Q( ) lower bound on the additive error of every e-LEDP
algorithm for estimating the number of triangles in a graph, stated formally in Theorem 1.3.
We reduce from the problem of computing the summation in the LDP model.

» Definition 4.1 (Summation function). Let SUM,, be the following function. For all
T1,..., 2y €{0,1}, SUM,, (x1,...,2n) = Y 1y Ti-

This problem was shown to have an additive error lower bound of Q(y/n/¢) [36, Theorem
5.3 of arxiv v2]. We substitute a = ap/n and § = eag/n to obtain the following lemma.

» Lemma 4.2 ([10, 6, 36]). There exists a constant ¢ > 0 such that for every € € (0,1),
n € Nay € (0,n] and § € [O U S , if B is an (g,0)-LDP algorithm where

) 105 n3In(n?/eag)
each party i receives input x; € {0,1} and B estimates SUM,, up to additive error oy with

probability at least 2/3, then ag > ¢ /n/e.

Proof of Theorem 1.3. We reduce from SUM,, in the local model. By Lemma 4.2, every
(potentially interactive) algorithm that approximates SUM,, with additive error at most ayg
(with sufficiently high constant probability) must have gy = Q(@) In our reduction, we
will set the additive error of the triangle-counting algorithm, a = agn.

Our reduction is black-box. Given an instance of SUM,,, where each local party holds

one bit X; of the vector (X1,...,X,), the parties implicitly create the following graph G.

The vertex set consists of two sets of nodes, V; and V5, where V; has size n and V5 has size
2n. The nodes in V7 will not have any secret information and can be simulated by any local
party. The nodes in V5 are [2n], and each party ¢ € [n] is responsible for simulating nodes
2i — 1 and 2i in V5. To create the edges of G, we add edges of the complete bipartite graph
between V7 and Va. In addition, each pair of nodes (2i — 1,2i) in V2 has an edge between
them if and only if z; = 1. See Figure 3 for an illustration.

Let S =z, +...x,. Observe that any triangle in G must have two vertices in V5 and an
edge between a pair of matched nodes. Any such edge contributes exactly n triangles. So,
the total number of triangles in G is T = Sn.

For the sake of contradiction, suppose there is an (e, §)-LEDP algorithm A that estimates
the number of edges with error o(*— oz ). We run it on G. By construction, party ¢ can simulate
the two nodes ass1gned to it, and anybody can simulate nodes in V;. When the algorlthm
gets an estimate 7' for the number of triangles, it outputs S = T/ nIfT=T+ o("— ) then

S = T/n =T/n+ 0( ) =8+ of f) which is a contradiction to Lemma 4.2.

Moreover, if A is (5, 0)-LEDP, then the reduction algorithm is (g, §)-LDP with respect to
the secret dataset X. However, the latter contradicts Lemma 4.2. Thus, A cannot exist. <
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Vi

Figure 3 An instance of the interactive Q(n*?) lower bound consists of a complete bipartite

graph with parts Vi, Va of sizes n and 2n, respectively; in addition, there is an edge between each
pair {2¢ — 1,2i} iff the secret input bit X; = 1.
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