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ABSTRACT

We consider fair graph representation learning via data augmentations. While
this direction has been explored previously, existing methods invariably rely on
certain assumptions on the properties of fair graph data in order to design fixed
strategies on data augmentations. Nevertheless, the exact properties of fair graph
data may vary significantly in different scenarios. Hence, heuristically designed
augmentations may not always generate fair graph data in different application
scenarios. In this work, we propose a method, known as Graphair, to learn fair rep-
resentations based on automated graph data augmentations. Such fairness-aware
augmentations are themselves learned from data. Our Graphair is designed to au-
tomatically discover fairness-aware augmentations from input graphs in order to
circumvent sensitive information while preserving other useful information. Ex-
perimental results demonstrate that our Graphair consistently outperforms many
baselines on multiple node classification datasets in terms of fairness-accuracy
trade-off performance. In addition, results indicate that Graphair can automati-
cally learn to generate fair graph data without prior knowledge on fairness-relevant
graph properties. Our code is publicly available as part of the DIG package
(https://github.com/divelab/DIG).

1 INTRODUCTION

Recently, graph neural networks (GNNs) attract increasing attentions due to their remarkable perfor-
mance (Gao et al., 2021; Gao & Ji, 2019; Liu et al., 2021a;b; Yuan et al., 2021) in many applications,
such as knowledge graphs (Hamaguchi et al., 2017), molecular property prediction (Liu et al., 2022;
2020; Han et al., 2022a) and social media mining (Hamilton et al., 2017). Despite recent advances in
graph representation learning (Grover & Leskovec, 2016; Kipf & Welling, 2017; 2016; Gilmer et al.,
2017; Han et al., 2022b), these GNN models may inherit or even amplify bias from training data
(Dai & Wang, 2021), thereby introducing prediction discrimination against certain groups defined
by sensitive attributes, such as race and gender. Such discriminative behavior may lead to serious
ethical and societal concerns, thus limiting the applications of GNNs to many real-world high-stake
tasks, such as criminal justice (Suresh & Guttag, 2019), job hunting (Mehrabi et al., 2021), health-
care (Rajkomar et al., 2018), and credit scoring (Feldman et al., 2015; Petrasic et al., 2017). Hence,
it is highly desirable to learn fair graph representations without discriminatory biases (Dong et al.,
2022; Zhang et al., 2022; Kang et al., 2022; Dai et al., 2022).

A primary issue (Mehrabi et al., 2021; Olteanu et al., 2019) in fairness is that training data usually
contain biases, which is the source of discriminative behavior of models. Thereby, many existing
works (Agarwal et al., 2021; Kose & Shen, 2022; Spinelli et al., 2021) propose to learn fair graph
representations by modifying training data with fairness-aware graph data augmentations. These
methods propose some graph data properties that are beneficial to fair representation learning, and
then adopt heuristic graph data augmentation operations, including node feature masking and edge
perturbation, to refine graph data. However, the proposed graph properties (Spinelli et al., 2021;
Kose & Shen, 2022) may not be appropriate for all graph datasets due to the diverse nature of
graph data. For example, balanced inter/intra edges (Kose & Shen, 2022) may destroy topology
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structures of social networks, leading to the loss of important information. Even if the proposed
graph properties are effective, the best graph properties may vary significantly in different scenarios.
Hence, it is highly desirable to automatically discover dataset-specific fairness-aware augmentation
strategies among different datasets with a single framework. To this end, a natural question is raised:

Can we achieve fair graph representation learning via automated data augmentations?

In this work, we attempt to address this question via proposing Graphair, a novel automated graph
augmentation method for fair graph representation learning. A primary challenge is how to achieve
fairness and informativeness simultaneously in the augmented data. As we intentionally avoid as-
suming prior knowledge on what types of graphs are considered fair, we propose to employ an
adversary model to predict sensitive attributes from augmented graph data. A fair augmented
graph should prevent the adversary model from identifying the sensitive attributes. In addition,
we propose to retain useful information from original graphs by using contrastive learning to maxi-
mize the agreement between original and augmented graphs. Experimental results demonstrate that
Graphair consistently outperforms many baselines on multiple node classification datasets in terms
of fairness-accuracy trade-off performance.

2 BACKGROUND AND RELATED WORK

2.1 FAIR GRAPH REPRESENTATION LEARNING

In this work, we study the problem of fair graph representation learning. Let G = {A,X, S} be
a graph with n nodes. Here, A ∈ {0, 1}n×n is the adjacency matrix, and Aij = 1 if and only
if there exists an edge between nodes i and j. X = [x1, · · · , xn]

T ∈ Rn×d is the node feature
matrix, where each xi ∈ Rd is the d-dimensional feature vector of node i. S ∈ {0, 1}n is the
vector containing sensitive attributes (e.g., gender or race) of nodes that should not be captured
by machine learning models to make decisions. Our target is to learn a fair graph representation
model f : (A,X) → H ∈ Rn×d′

, and the learned representation H = f(A,X) is fed into a
classification model θ : H → Ŷ ∈ {0, 1}n to predict the binary label of nodes in G. Particularly,
for an ideal fair model f , the output representation H should result in a prediction Ŷ that satisfies
the fairness criteria. In general, there exist several different definitions of fairness criteria, including
group fairness (Dwork et al., 2012; Rahmattalabi et al., 2019; Jiang et al., 2022b), individual fairness
(Kang et al., 2020; Dong et al., 2021; Petersen et al., 2021), and counterfactual fairness (Agarwal
et al., 2021; Ma et al., 2022). In this work, we focus on group fairness, which is defined as

P(Ŷi|Si = 0) = P(Ŷi|Si = 1), i = 1, . . . , n, (1)

where Ŷi is the prediction for node i, and Si is the sensitive attribute of node i. Note that even
though the sets of node attributes or features in X and S are disjoint, correlations may exist between
(A,X) and S. Hence, even if S is not explicitly exposed to f , f may implicitly infer parts of S
from (A,X) and produce biased representation H , thereby making the prediction Ŷ unfair. How
to prevent models from intentionally fitting these correlations is the central problem to be solved in
achieving fair graph representation learning.

Currently, several studies have proposed different strategies to achieve fair graph representation
learning. An early study (Rahman et al., 2019) proposes to train the model through fair random
walks. Some recent studies (Li et al., 2020; Laclau et al., 2021) propose to reduce prediction dis-
crimination through optimizing adjacency matrices, which can improve fairness for link prediction
tasks. In addition, adversarial learning is another popular strategy to achieve fairness on node rep-
resentation learning tasks. Many studies (Fisher et al., 2020; Dai & Wang, 2021; Bose & Hamilton,
2019) adopt adversarial learning to filter out sensitive attribute information from the learned node
representations. Overall, most existing methods learn fair representations via altering model train-
ing strategy with fairness regularization. However, a primary issue in fairness learning lies in the
fact that training data usually possess bias. Hence, an alternative and highly desirable solution is to
modify data through data augmentations, thus enabling models to learn fair representations easily.
In this work, we design a learnable graph augmentation method to reduce bias in graph data, leading
to more effective fairness-aware representation learning on graphs.
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2.2 GRAPH DATA AUGMENTATIONS

Inspired by the success of data augmentations in computer vision and natural language process-
ing, graph data augmentation (Zhao et al., 2022) attracts increasing attention in academia. Most
studies (You et al., 2020; Zhu et al., 2020; Wang et al., 2021; Veličković et al., 2019; You et al.,
2021; Rong et al., 2020) are based on uniformly random modifications of graph adjacency matrices
or node features, such as masking node features, dropping edges, or cropping subgraphs. In addi-
tion, recent studies (Luo et al., 2023; Zheng et al., 2020; Luo et al., 2021; Zhao et al., 2021; Chen
et al., 2020) design learnable data augmentation methods to enhance task-relevant information in
augmented graphs. Note that none of the above methods are fairness-aware and only a few studies
have investigated fairness-aware graph augmentations. Spinelli et al. (2021) argue that the tendency
of nodes with the same sensitive attribute to connect leads to prediction discrimination. Thereby,
they propose a biased edge drop algorithm to reduce such tendency in graphs, resulting in fairness
improvement on prediction tasks. Agarwal et al. (2021) design a graph data augmentation method
in the contrastive learning framework via modifying sensitive attributes. Kose & Shen (2022) study
correlations between sensitive attributes and learned node representations, and propose several graph
augmentations to minimize an upper bound of the correlations to achieve fairness. However, these
fairness-aware augmentation methods are all based on some strong assumptions or definitions about
the properties that fair graph data should have. Such assumptions or definitions may not hold in
different scenarios, so in practice, empirical comparisons are needed to find out the best choice. In
addition, these heuristic augmentation operations may accidentally remove most of the useful infor-
mation from the graph. For instance, both edge drop algorithms proposed by Kose & Shen (2022)
and Spinelli et al. (2021) may drop most of the edges and destroys the graph structure in some cases.
Hence, in practice, these methods do not consistently achieve good performance on all datasets.

3 FAIRNESS VIA AUTOMATED DATA AUGMENTATIONS

While previous fairness-aware graph data augmentations all rely on manually defined and fixed
fairness-relevant augmentation strategies, we explore a more adaptive and effective method to dis-
cover fairness-aware graph augmentations by automated augmentation models. Note that though
automated graph augmentations have been applied to some graph representation tasks (Luo et al.,
2023; 2021; Zhao et al., 2021), they have not been studied in fair graph representation learning. In
this work, we propose Graphair, an automated graph augmentation method for fair graph represen-
tation learning. Graphair uses an automated augmentation model to generate new graphs with fair
topology structures and node features while preserving the most informative components from input
graphs. The augmentation model is trained end-to-end with multiple optimization objectives in or-
der to circumvent sensitive information while retaining other useful information simultaneously. To
the best of our knowledge, Graphair is the first automated graph augmentation method addressing
group fairness with a theoretical guarantee of fairness and informativeness.

3.1 AUTOMATED GRAPH AUGMENTATIONS

We first present the details of the augmentation process. Given an input graph G = {A,X, S}, we
use the automated augmentation model g to generate a new graph G′ = {A′, X ′, S} as

TA, TX = g(A,X), A′ = TA(A), X ′ = TX(X). (2)
Here, TA is the edge perturbation transformation, which maps A to the new adjacency matrix A′

by removing existing edges and adding new edges. TX is the node feature masking transformation,
which produces the new node feature matrix X ′ by setting some values of X to zero. TA and
TX contain the exact transformations for each edge and node feature in G. In other words, the
augmentation model g decides whether there is an edge connecting any two nodes in G and whether
each value in X should be set to zero or not.

In the augmentation model g, a GNN-based augmentation encoder genc : (A,X) → Z ∈ Rn×dr is
first used to extract dr-dimensional embeddings Z for nodes in G. We adopt graph convolutional
network (GCN) (Kipf & Welling, 2017) as the GNN encoder here. Afterward, the exact transforma-
tions for each edge and node feature are performed as described below.

Edge perturbation. Given the embedding Z, an multi-layer perceptron (MLP) model MLPA first
computes the hidden embeddings ZA ∈ Rn×dr′ from Z, then an inner-product decoder computes the
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edge probability matrix Ã′ ∈ Rn×n, where the value Ã′
ij at the i-th row, j-th column of the matrix

Ã′ denotes the predicted probability that an edge exists between the nodes i and j in G′. Finally, the
output adjacency matrix A′ is obtained by sampling from the Bernoulli distribution parameterized
with the probabilities in Ã′. Formally, this process can be described as

ZA = MLPA(Z), Ã′ = σ
(
ZAZ

T
A

)
, A′

ij ∼ Bernoulli
(
Ã′

ij

)
for i, j = 1, · · · , n, (3)

where σ(·) is the sigmoid function.

Node feature masking. Given the embedding Z, an MLP model MLPX first computes the mask
probability matrix M̃ ∈ Rn×d, where the value M̃ij at the i-th row, j-th column of the matrix M̃
denotes the predicted probability that the j-th feature of node i is not set to zero. Afterward, the
mask matrix M is sampled from the Bernoulli distribution parameterized with the probabilities in
M̃ , and the new feature matrix X ′ is obtained by multiplying X by M . This process can be formally
described as

ZX = MLPX(Z), M̃ = σ(ZX), Mij ∼ Bernoulli
(
M̃ij

)
for i, j = 1, · · · , n, X ′ = M⊙X, (4)

where ⊙ is the Hadamard product, and σ(·) is the sigmoid function.

Note that the Bernoulli sampling for adjacency matrix A′ and mask matrix M are non-differentiable.
To make the augmentation model g end-to-end trainable, we adopt the commonly-used trick to ap-
proximate the Bernoulli sampling in Eq. (3) and (4). Specifically, we relax the Bernoulli sampling
procedure by the Gumbel-Softmax reparameterization trick (Jang et al., 2017; Maddison et al., 2017;
2014). Given a probability P̃ computed from a parameterized model φ, the relaxed Bernoulli sam-
pling calculates a continuous approximation P̂ = 1

1+exp(−(logP̃+G)/τ)
, where τ is a temperature

hyperparameter and G ∼ Gumbel(0, 1) is a random variable sampled from the standard Gumbel
distribution. For the forward propagation, the discrete value P = ⌊P̂ + 1

2⌋ is used as the result
sampled from the Bernoulli distribution with the probability P̃ . For the backward propagation, a
straight-through gradient estimator (Bengio et al., 2013) is used, which approximates the gradient
as ∇φP̂ ≈ ∇φP .

3.2 ADVERSARIAL TRAINING

As our objective is to generate fair augmentations to reduce bias, the ideal augmentation model
g should satisfy the fairness property. In other words, it should assign low probabilities to graph
elements (edges, node features) that cause prediction bias. However, we cannot achieve it via super-
vised training because there is no ground truth indicating which graph elements lead to prediction
bias and should be modified. To tackle this issue, we propose to use an adversarial learning based
method to implicitly optimize the model to learn to mitigate bias in the input graph. Specifically, we
use an adversary model k : (A′, X ′)→ Ŝ ∈ [0, 1]n to predict the sensitive attribute S from the new
adjacency matrix A′ and new node feature matrix X ′ generated by the augmentation model g. The
adversary model k and the augmentation model g are jointly trained via an adversarial fashion. In
this process, k is optimized to maximize the prediction accuracy of the sensitive attribute, while g
is optimized to mitigate bias in A′ and X ′ so that it is difficult for the adversary model k to identify
sensitive attribute information from A′ and X ′. Formally, this adversarial training process can be
described as the following optimization problem:

min
g

max
k

Ladv = min
g

max
k

1

n

n∑
i=1

[
SilogŜi + (1− Si)log

(
1− Ŝi

)]
, (5)

where Ŝi is the prediction of the sensitive attribute of node i by the adversary model k. 1

3.3 CONTRASTIVE TRAINING

We note that only using the adversarial training may cause the augmentation model g to collapse
into trivial solutions. For instance, g may learn to always generate a complete graph and set all node

1Here we use negative binary cross-entropy loss, so the adversary model k aims to maximize Ladv.
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Figure 1: An overview of our framework.

features to zero, which contains no bias, since all nodes are equivalent. Such augmented graphs
are not informative at all because they lose all the information from the input graphs. To make the
augmentation model g satisfy the informativeness property, i.e., preserving the most informative
components of the input graph in the generated graphs, we additionally use a contrastive learning
objective during training.

Given the input graph G = {A,X, S} and the augmented graph G′ = {A′, X ′, S}, we first use
a GNN-based representation encoder f to extract node representations H = f(A,X) and H ′ =
f(A′, X ′) from G and G′, respectively. Afterward, we optimize the augmentation model g and
the representation encoder f jointly by minimizing a contrastive objective, which maximizes the
similarity between the representations of the same node in H and H ′. Specifically, let hi and h′

i
denote the representation of node i in H and H ′, respectively. For node i, we consider (hi, h

′
i) as a

positive pair, and (hi, hj) and (hi, h
′
j) for any node j other than i as negative pairs. We define the

representation similarity as sim(hi, h
′
j) = c(t(hi), t(h

′
j)), where c is the cosine similarity and t is

a non-linear projection implemented with a two-layer MLP model. We follow Zhu et al. (2020) to
define the contrastive objective for any positive pair (hi, h

′
i) as

l(hi, h
′
i) = −log

exp (sim(hi, h
′
i)/τ)∑n

j=1 exp
(
sim(hi, h′

j)/τ
)
+

∑n
j=1 1[j ̸=i]exp (sim(hi, hj)/τ)

, (6)

where τ denotes the temperature parameter, 1[j ̸=i] ∈ {0, 1} is the indicator function whose value is
1 if and only if j ̸= i. The overall contrastive objective is computed over the positive pairs (hi, h

′
i)

and (h′
i, hi) for all nodes as

Lcon =
1

2n

n∑
i=1

[l(hi, h
′
i) + l(h′

i, hi)] . (7)

To prevent the augmentation model g from generating graphs that deviate too much from input
graphs, we add a reconstruction-based regularization term to the overall training objective. Specifi-
cally, let LBCE and LMSE denote binary cross-entropy loss and mean squared error loss, respectively,
and the regularization term is defined as

Lreconst = LBCE(A, Ã′) + λLMSE(X,X ′)

= −
n∑

i=1

n∑
j=1

[
Aij log

(
Ã′

ij

)
+ (1−Aij)log

(
1− Ã′

ij

)]
+ ∥X −X ′∥2F , (8)

where λ is a hyperparameter, and ∥ · ∥F denotes the Frobenius norm of matrix (Golub & Van Loan,
1996).

To sum up, the overall training process can be described as the following min-max optimization
procedure,

min
f,g

max
k

L = min
f,g

max
k

αLadv + βLcon + γLreconst, (9)
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where α, β, γ are hyperparameters. The parameters of augmentation model g, adversary model k,
and representation encoder f are jointly optimized with this min-max optimization procedure. In
each training step, we first update the parameters of f and g to minimize L while keeping k fixed,
then update the parameters of k to maximize Ladv while keeping f and g fixed. See Figure 1 for an
overview of our proposed Graphair method. The training algorithm is summarized in Appendix B.

3.4 DISCUSSIONS

Graphair learns different fairness-aware augmentation strategies for different graph datasets by the
automated augmentation model, thereby eliminating the negative effect of fixed fairness-relevant
augmentation strategies (Spinelli et al., 2021; Agarwal et al., 2021; Kose & Shen, 2022). In addi-
tion, Graphair mitigates bias by modifying both graph topology structures and node features, while
some existing studies (Spinelli et al., 2021) only consider one of them. We demonstrate these advan-
tages through extensive empirical studies in Section 4.2 and 4.3. Furthermore, we show in Section
3.5 and 3.6 that the used training objectives can be theoretically proven to help the augmentation
model generate new graphs with fair topology structures and node features, and preserve the most
informative components from the input graph simultaneously. Specifically, we use adversarial and
contrastive learning to optimize the augmentation model to satisfy the fairness and informativeness
properties, respectively.

3.5 THEORETICAL ANALYSIS OF FAIRNESS

Following Madras et al. (2018), we quantify the unfairness of a classifier d : (A′, X ′) → [0, 1]n

using demographic parity distance. Given a graph G′ = (A′, X ′, S), let Ŷ = d(A′, X ′) ∈ [0, 1]n

denote the prediction of the classifier d and Ŷi is the prediction of node i. The demographic parity
distance is defined as ∆DP (d) ≜ |Ei∼S0(Ŷi)−Ej∼S1(Ŷj)|, where S0 and S1 denote the set of nodes
whose sensitive attributes are 0 and 1, respectively. Note that ∆DP (d) = 0 if Ŷ ⊥ S, i.e., the group
fairness discussed in Section 2.1 is satisfied. The following theorem shows that minimizing the
optimal adversarial loss is equivalent to minimizing the unfairness of the classifier d, so minimizing
the performance of the adversary model can indeed encourage the augmentation model to generate
fair graphs.
Theorem 1. Let G′, k, S be defined as above. For any downstream task, we consider a classifier d :

(A′, X ′)→ Ŷ ∈ [0, 1]n predicting label Y ∈ {0, 1}n using G′ as input. Assume the adversarial loss

for each sample is bounded, i.e., there exists constant M so that |SilogŜi+(1−Si)log
(
1− Ŝi

)
| ≤

M holds for each sample. Then we show that the demographic parity ∆DP (d) is bounded by the
optimal adversarial objective value Ladv

∗, i.e., Ladv
∗ ≥ n′M

n(1−eM )
∆DP (d) − n′M

n(1−e−M )
, where n′

represents the maximal number of samples with the same sensitive attributes.

Detailed proof of this theorem is given in Appendix A.1.

3.6 THEORETICAL ANALYSIS OF INFORMATIVENESS

We quantify the amount of information obtained about one random variable by observing the other
random variable by mutual information. We show in the following theorem that minimizing the
contrastive loss Lcon is equivalent to maximizing a lower bound of the mutual information I(G;G′)
between the original graph G and the augmented graph G′, thus achieving informativeness.
Theorem 2. Let G,G′, H and H ′ be defined as above. Our contrastive objective is a lower bound
of mutual information between the input graph G and the augmented graph G′. Formally,

−Lcon ≤ I(G;G′). (10)

Detailed proof of this theorem is given in Appendix A.2.

3.7 COMPLEXITY ANALYSIS

Graphair shares the same time and space complexity as the GNN architecture of the representation
encoder f during inference because only f is used to compute node representations. During training,
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Table 1: Comparisons between our method and baselines on node classification tasks in terms of
accuracy and fairness. The best results are shown in bold.

Method
NBA Pokec-z Pokec-n

ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓
FairWalk 64.54 ± 2.35 3.67 ± 1.28 9.12 ± 7.06 67.07 ± 0.24 7.12 ± 0.74 8.24 ± 0.75 65.23 ± 0.78 4.45 ± 1.25 4.59 ± 0.86

FairWalk+X 69.74 ± 1.71 14.61 ± 4.98 12.01 ± 5.38 69.01 ± 0.38 7.59 ± 0.96 9.69 ± 0.09 67.65 ± 0.60 4.46 ± 0.38 6.11 ± 0.54

GRACE 70.14 ± 1.40 7.49 ± 3.78 7.67 ±3.78 68.25 ± 0.99 6.41 ± 0.71 7.38 ± 0.84 67.81 ± 0.41 10.77 ± 0.68 10.69 ± 0.69

GCA 70.43 ± 1.19 18.08 ± 4.80 20.04 ± 4.34 69.34 ± 0.20 6.07 ± 0.96 7.39 ± 0.82 67.07 ± 0.14 7.90 ± 1.10 8.05 ± 1.07

FairDrop 69.01 ± 1.11 3.66 ± 2.32 7.61 ± 2.21 67.78 ± 0.60 5.77 ± 1.83 5.48 ± 1.32 67.32 ± 0.61 4.05 ± 1.05 3.77 ± 1.00

NIFTY 69.93 ± 0.09 3.31 ± 1.52 4.70 ± 1.04 67.15 ± 0.43 4.40 ± 0.99 3.75 ± 1.04 65.52 ± 0.31 6.51 ± 0.51 5.14 ± 0.68

FairAug 66.38 ± 0.85 4.99 ± 1.02 6.21 ± 1.95 69.17 ± 0.18 5.28 ± 0.49 6.77 ± 0.45 68.61 ± 0.19 5.10 ± 0.69 5.22 ± 0.84

Graphair 69.36 ± 0.45 2.56 ± 0.41 4.64 ± 0.17 68.17 ± 0.08 2.10 ± 0.17 2.76 ± 0.19 67.43 ± 0.25 2.02 ± 0.40 1.62 ± 0.47

Graphair computes the adjacency matrix A′ and the pairwise similarity in the contrastive loss, thus
having a space complexity of O(n2), where n is the number of nodes. Fortunately, we can easily
adopt the graph sampling-based batch training method proposed by Zeng et al. (2020) to perform
mini-batch training and reduce the space complexity to O(m2), where m is the batch size. More
details on mini-batch training are given in Appendix C.

4 EXPERIMENTS

In this section, we evaluate Graphair on three real-world datasets, including NBA, Pokec-z and
Pokec-n 2. More details on datasets are given in Appendix F.1. Experimental results show that
Graphair outperforms many baselines on node classification tasks in terms of both fairness and
accuracy. To gain insights from learned fair graph data, we provide a comprehensive analysis on
learned fair graph topology structures and fair node features. Our analysis results are consistent
with studies (Spinelli et al., 2021; Kose & Shen, 2022; Jiang et al., 2022a; Dai & Wang, 2021). We
also provide runtime experiments and hyperparameter studies in Appendix D.

4.1 EXPERIMENTAL SETTINGS

Evaluation metrics. We use accuracy to evaluate prediction performance of node classification
tasks. To quantify group fairness, we follow studies (Louizos et al., 2016; Beutel et al., 2017) to
adopt demographic parity ∆DP = |P(Ŷ = 1|S = 0) − P(Ŷ = 1|S = 1)| and equal opportunity
∆EO = |P(Ŷ = 1|S = 0, Y = 1)−P(Ŷ = 1|S = 1, Y = 1)|, where Y and Ŷ denote ground-truth
labels and predictions, respectively. Note that a model with lower DP and EO implies better fairness
performance.

Baselines. We compare our methods with the following baseline methods, including (1) Fairwalk
(Rahman et al., 2019), a fairness-aware random walk (Grover & Leskovec, 2016) for unsupervised
node representation learning task; (2) GRACE (Zhu et al., 2020), deep graph contrastive repre-
sentation learning with uniform random graph augmentations; (3) GCA (Zhu et al., 2021), graph
contrastive learning with adaptive augmentations; (4) NIFTY (Agarwal et al., 2021), the first graph
contrastive learning method with fairness-aware graph augmentations. Note that we only use the un-
supervised component of NIFTY to learn node representations; (5) FairDrop (Spinelli et al., 2021),
a heuristic edge dropping method to enhance fairness in graph representation learning; (6) FairAug
(Kose & Shen, 2022), an adaptive data augmentation method for fair node representation learning.
We adopt FairDrop and FairAug in the contrastive learning framework of GRACE to learn node
representations, since they are both graph augmentation methods. The optimal hyperparameters for
all methods are obtained by grid search.

Evaluation protocol. We use an evaluation protocol following Veličković et al. (2019) for a fair
comparison. Specifically, we first learn the fair representation H in a fully unsupervised manner
as described in Section 3.2 and 3.3. Then the representation H is used to train and test a simple

2We adopt the graph mini-batch training method proposed by Zeng et al. (2020) on Pokec-z and Pokec-n
datasets.
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NBA Pokec_z Pokec_n

Figure 2: ACC and DP trade-off on three real-world datasets. Upper-left corner (high accuracy, low
demographic parity) is preferable.

Table 2: Comparisons among different components in the augmentation model.

Models
NBA Pokec-z Pokec-n

ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓
Graphair w/o FM 69.36 ± 0.28 4.95 ± 1.43 6.49 ± 1.78 67.04 ± 0.26 2.34 ± 0.34 3.99 ± 0.45 66.62 ± 0.18 2.36 ± 0.50 2.71 ± 0.41

Graphair w/o EP 66.67 ± 0.71 4.44 ± 2.64 6.74 ± 2.13 69.34 ± 0.40 5.75 ± 0.63 5.91 ± 0.66 68.59 ± 0.17 3.31 ± 0.57 3.71 ± 0.97

Graphair 69.36 ± 0.45 2.56 ± 0.41 4.64 ± 0.17 68.17 ± 0.08 2.10 ± 0.17 2.76 ± 0.19 67.43 ± 0.25 2.02 ± 0.40 1.62 ± 0.47

classifier. The test accuracy and fairness of this classifier are used as the proxy for the quality of the
learned representation H .

4.2 EXPERIMENTAL RESULTS

Fairness and accuracy performance. Table 1 shows accuracy, demographic parity, and equal
opportunity metrics of our proposed Graphair, compared with baselines in Section 4.1 on the three
real-world datasets. From the results, we have the following observations:

• Our proposed Graphair consistently achieves the best fairness performance in terms of demo-
graphic parity and equal opportunity on evaluated datasets. For example, compared with GRACE,
our method reduces demographic parity by 65.8%, 67.2% and 81.2% on NBA, Pokec-z, and
Pokec-n datasets, respectively, with comparable accuracy performance.

• Fairness-aware augmentation methods (e.g., FairDrop, NIFTY, and FairAug) have lower predic-
tion bias compared to GRACE and GCA. It is worth noting that these heuristic augmentation
methods targeting manually designed fair graph properties may not consistently achieve state-of-
the-art performance for all datasets due to diverse graph data. Specifically, FairDrop outperforms
NIFTY on Pokec-n dataset, while NIFTY outperforms FairDrop on NBA and Pokec-z datasets.
To this end, Graphair can automatically learn to discover fairness-aware augmentations on differ-
ent graph datasets and thus outperforms all these fairness-aware methods in terms of demographic
parity and equal opportunity on all three datasets.

Trade-off between accuracy and fairness. We further compare the accuracy-fairness trade-off
performance of Graphair with several baselines. We choose demographic parity as the fairness
metric. Figure 2 shows the Pareto front curves generated by a grid search of hyperparameters for
each method. The upper-left corner point represents the ideal performance, i.e., highest accuracy
and lowest prediction bias. The results show that Graphair achieves the best ACC-DP trade-off
compared with all fairness-aware baselines on three datasets.

4.3 ABLATION STUDIES

Graphair considers two graph transformations to mitigate bias in node features and graph topology
structures. In this subsection, we conduct ablation studies to investigate the contributions of two
graph transformations and demonstrate the advances of Graphair. In other words, we investigate if
both fair node features and graph topology structures enhance prediction fairness (i.e., lower DP and
EO). Specifically, we remove node feature masking, denoted as ”Graphair w/o FM”, and remove
edge perturbation, denoted as ”Graphair w/o EP”. Table 2 shows that Graphair outperforms both
”Graphair w/o FM” and ”Graphair w/o EP” in terms of demographic parity and equal opportunity on
all three datasets. Experimental results demonstrate that both fair node features and graph topology
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Figure 3: Node sensitive homophily distributions in the original and the fair graph data.
NBA Pokec_z Pokec_n

Figure 4: Spearman correlation between node features and the sensitive attribute in the original and
the fair graph data.

structures are beneficial to mitigating prediction bias. Methods only considering either node features
or graph topology (e.g., FairDrop) are not promising due to the limited graph transformation space.

4.4 ANALYSIS OF FAIR VIEW

In this subsection, we study the properties of fair graph data generated by Graphair from graph
topology and node features perspectives. Firstly, we introduce node-wise sensitive homophily coef-
ficient to characterize the distribution of sensitive attributes from the neighborhood. Given a graph
G = {A,X, S}, node-wise sensitive homophily coefficient for node i, denoted as ϵi, represents the

proportion of neighbors with the same sensitive attributes, i.e., ϵi =
∑n

j=1 Aij1[si=sj ]∑n
j=1 Aij

, where n is
the number of nodes, and 1[si=sj ] is the indicator function evaluating to 1 if and only if si = sj .
Subsequently, we analyze the learned fair graph topology via node sensitive homophily distribution
compared with the original graph topology. Figure 3 shows that the learned fair graph topology re-
duces average node sensitive homophily compared to the original graph topology. Such observation
is consistent with several previous studies (Spinelli et al., 2021; Kose & Shen, 2022; Jiang et al.,
2022a; Dai & Wang, 2021) that high node sensitive homophily values lead to prediction bias.

Additionally, we analyze the learned fair node features via Spearman correlation (Zwillinger &
Kokoska, 1999) between the sensitive attribute and non-sensitive features. Note that fair node fea-
tures should have low Spearman correlation values. Figure 4 shows the top-10 Spearman correlation
values in the original graph data. We can see that the learned fair node features reduce Spearman cor-
relation values compared to the original node features, thus preventing models from fitting the corre-
lations as discussed in Section 2.1. These analysis results demonstrate that our method Graphair can
automatically learn to generate fair graph data without prior knowledge of fairness-relevant graph
properties.

5 CONCLUSIONS

In this work, we propose Graphair, an automated graph augmentation method for fair representation
learning. Graphair uses an automated augmentation model to generate new graphs with fair topology
structures and node features, while preserving the most informative components from input graphs.
We adopt adversarial learning and contrastive learning to achieve fairness and informativeness si-
multaneously in the augmented data. Experimental results demonstrate that Graphair consistently
outperforms state-of-the-art baselines on node classification tasks for real-world graph datasets in
terms of fairness-accuracy trade-off performance. In the future, we would like to improve the effi-
ciency of Graphair and extend Graphair to the case where only limited sensitive attribute information
is available.
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A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1

Proof. Let Ŷ = d(G′) ∈ [0, 1]n denotes the prediction of the classifier d and Ŷi is the prediction of
node i. Suppose without loss of generality that Ei∼S1 [Ŷi] ≤ Ej∼S0 [Ŷj ]. Then, we have

∆DP (d) = Ei∼S0 [Ŷi]− Ej∼S1 [Ŷj ] = Ei∼S0 [Ŷi − 1] + Ej∼S1 [−Ŷj ] + 1 (11)

We assume the bounded adversarial loss of each sample, i.e., |log(Ŝi)| ≤ M for the sample with
sensitive attribute S = 1, and |log(1−Ŝi)| ≤M for the sample with sensitive attribute S = 0. Based
on the concavity of log(·) function and Jensen’s inequality, for any x ∈ [0, 1] with |log(x)| ≤ M ,
we have

log(x) ≥ M

1− e−M
(x− 1) (12)

Note that higher prediction indicates lower sensitive attribute value since Ei∼S1 [Ŷi] ≤ Ej∼S0 [Ŷj ],
we consider an adversary model k̃ that output the opposite of classifier d, i.e., k̃(G′) = 1 − d(G′).
Let Ŝ = k̃(G′) denote the prediction of the adversary model k̃. Then, we have

Ladv =
1

n

n∑
i=1

[SilogŜi + (1− Si)log(1− Ŝi)]

=
|S1|
n

Ei∼S1 [log(Ŝi)] +
|S0|
n

Ei∼S0 [log(1− Ŝi)]

=
|S1|
n

Ei∼S1 [log(1− Ŷi)] +
|S0|
n

Ei∼S0 [log(Ŷi)]

(a)

≥ n′

n

[
Ei∼S1 [log(1− Ŷi)] + Ei∼S0 [log(Ŷi)]

]
(b)

≥ n′

n

[
Ei∼S1

(
− M

1− e−M
Ŷi

)
+ Ei∼S0

[(
M

1− e−M
Ŷi −

M

1− e−M

)]]
=

n′M

n(1− e−M )

[
−Ei∼S1 [Ŷi] + Ei∼S0 [Ŷi − 1]

]
=

n′M

n(1− e−M )
∆DP (d)−

n′M

n(1− e−M )
, (13)

where inequality (a) holds since n′ = max(|S0|, |S1|), and inequality (b) holds due to equation (12).
An optimal adversary model k∗ should do at least better than any arbitrary choice of k, thereby we
have Ladv

∗ ≥ Ladv ≥ n′M
n(1−eM )

∆DP (d)− n′M
n(1−e−M )

.

A.2 PROOF OF THEOREM 2

Proof. According to (Zhu et al., 2020), the contrastive objective −Lcon is a lower bound of the true
mutual information between H and H ′, i.e.,

−Lcon ≤ I(H;H ′). (14)

According to the data processing inequality, we have I(U ;V ) ≥ I(U ;W ) for a Markov chain
U → V → W , where U, V,W are random variables. The representations H and H ′ are extracted
from the original graph G and the fair view G′, thus H,A,X,A′, X ′, H ′ satisfying relationship
H ← (A,X) → (A′, X ′) → (H ′). This relation is Markov equivalent to H → (A,X) →
(A′, X ′) → (H ′), since H and (A′, X ′) are conditionally independent given (A,X). The Markov
chain leads to the following inequality,

I(H;H ′) ≤ I(A,X;H ′) ≤ I(A,X;A,X ′) ≤ I(A,X, S;A′, X ′, S) = I(G;G′). (15)

Combining Eq. 14 and 15, we have
−Lcon ≤ I(G;G′), (16)

which completes our proof.
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Figure 5: The running time comparison.

B TRAINING ALGORITHM FOR GRAPHAIR

We summarize the training algorithm for Graphair and provide the pseudo codes in Algorithm 1.

Algorithm 1 Training algorithm
Require: adjacency matrix A, feature matrix X , sensitive attribute S

while not converged do
Generate a fair view G′ using the augmentation model g
Obtain node representations H of G using the representation encoder f
Obtain node representations H ′ of G′ using the representation encoder f
Compute L by Eq. (9)
Update f and g by applying stochastic gradient descent to minimize L
Update the adversary k by applying stochastic gradient ascent to maximize L

end while

C BATCH TRAINING FOR LARGE GRAPHS

Because Graphair has a space complexity of O(n2) in the full-batch setting, it is expensive to train
Graphair on large graph datasets. To reduce space complexity, we adopt the graph sampling-based
batch training method proposed by Zeng et al. (2020) to perform mini-batch training. Specifically,
we construct a subgraph via a random walk sampler for each batch. Then the subgraph is used as
the input of Graphair, and the augmentation model g generates a fair view of the subgraph. Both
adversarial training and contrastive training are performed on the subgraph. The normalization
techniques in (Zeng et al., 2020) are also used to eliminate biases caused by subgraph sampling.

Note that the generated fair view for each batch might be subtly different from the one in the full-
batch setting, because the augmentation model can only modify edges inside subgraphs in the mini-
batch setting. Nevertheless, such a small difference won’t make a big change when the batch size is
large enough.

D MORE EXPERIMENTAL RESULTS

D.1 RUNNING TIME COMPARISON

We provide the running time comparison in Figure 5 for our Graphair and baselines. We don’t
include FairWalk because the implementation we used doesn’t use GPU to accelerate the training
process. To achieve a fair comparison, we train all models for 500 epochs and report the average
running time over 5 runs. When performing batch training on Pokec-z and Pokec-n datasets, we
use a random walk sampler with 1000 root nodes and walk length 3. Note that FairAug proposes a
fairness-aware graph sampling operation, so we use it to sample subgraphs with 3000 nodes instead
of using a random walk sampler. Figure 5 shows that Graphair has a higher time complexity than
other baselines. This is not surprising because all the baselines rely on fixed augmentation strategies
and don’t need a learnable neural network model.

15



Published as a conference paper at ICLR 2023

NBA Pokec_z Pokec_n

Figure 6: Ablation study on hyperparameter β.

NBA Pokec_z Pokec_n

Figure 7: Ablation study on hyperparameter γ.

D.2 HYPERPARAMETER STUDIES

In this subsection, we conduct hyperparameter studies for further investigation on the contribution of
different components in Graphair. First, we tune hyperparameter β among {0.1, 0.5, 1, 5, 10}. Note
that the contrastive loss is unavoidable in training the representation encoder f , so we don’t consider
the case where β = 0. Results in Figure 6 show that change of β leads to a trade-off between fairness
and prediction performance. Additionally, we tune hyperparameter γ among {0, 0.1, 0.5, 1, 5, 10}.
Results in Figure 7 show that Graphair has a better performance (higher accuracy and lower demo-
graphic parity) with the reconstruction based regularization term (γ ̸= 0) than without it (γ = 0).
This is because the reconstruction loss can prevent the augmentation model g from generating graphs
that deviate too much from the input graph.

E VISUALIZATION OF DIFFERENT AUGMENTATION METHODS

In this section, we provide a case study comparing different fairness-aware augmentation methods.
In Figure 8, we show the change of a 1-hop ego graph in the NBA dataset. Node 1 is the ego node
of this ego graph and other nodes are the 1-hop neighbors of Node 1. Results in Figure 8, show that
FairDrop drops most edges in the original ego graph due to the high sensitive homophily of the ego
node. In contrast, Graphair only drops one edge and preserves the original graph topology. Besides,
Graphair reduces the sensitive homophily by connecting the ego node to a node with a different
sensitive attribute (node 9).

F MORE DETAILS ON EXPERIMENTAL SETTINGS

F.1 DATASETS

We use three real-world social network datasets, including NBA, Pokec-z, and Pokec-n (Dai &
Wang, 2021), to evaluate Graphair on node classification tasks. Pokec-z and Pokec-n are sampled
from a larger social network Pokec, which is the most popular social network in Slovakia. User
features contain gender, age, hobbies, interests, education, working field, etc. Among these features,
region is treated as the sensitive attribute and working field is used as the predicted label. Since the
node representations are learned in an unsupervised manner, we use a small portion of labeled data
to train the classifier. In other words, we randomly split 10%/10%/80% for training, validating and
testing the classifier. NBA is extended from a Kaggle dataset with more than 400 NBA basketball
players. The player information contains nationality, age, salary, performance statistics in the 2016-
2017 season, etc. Nationality is treated as the sensitive attribute and the task is to predict if the
salary of the player is over median. We randomly split 20%/35%/45% for training, validating and
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Figure 8: Comparison of different fairness-aware augmentation methods on the NBA dataset.

Table 3: The statistics of datasets.
Dataset NBA Pokec-z Pokec-n
# Nodes 403 67,797 66,569

# Node features 39 59 59
# Edges 16,570 882,765 729,129

# Inter-group edges 4,401 39,804 31,515
# Intra-group edges 12,169 842,961 697,614

testing the classifier. The statistics of the datasets are given in Table 3. Note that we use the mini-
batch training discussed in Appendix C on Pokec-z and Pokec-n datasets to reduce computation
complexity.

F.2 IMPLEMENTATION DETAILS

For Graphair, we adopt two-layer GCN models as the adversary model k and augmentation encoder
genc, and a three-layer GCN model as the representation encoder f . We use 64 as the hidden di-
mension in all three models. For the augmentation model, we use an MLP model with 2 layers,
the hidden size of 64, and ReLU as the non-linear activation function for MLPA and MLPX . The
hyperparameter β is set to 1, and the hyperparameters α, γ and λ are determined with a grid search
among {0.1, 1, 10}. For a fair comparison, we use three-layer GCN models for all baselines except
FairWalk. The dimension of the node representations is selected as 64 for all datasets. We run the
experiments 5 times and report the average performance for each method. We train the models for
500 epochs using Adam optimizer with 1× 10−4 learning rate and 1× 10−5 weight decay. For the
results in Table 1, we select the optimal hyperparameters with the highest accuracy. For the classifier
used for evaluation, we use an MLP model with 2 layers, the hidden size of 128, and ReLU as the
non-linear activation function. The classifier is trained for 500 epochs using Adam optimizer with
1× 10−3 learning rate and 1× 10−5 weight decay.

G EXPERIMENTS ON A SYNTHETIC GRAPH DATASET

To further validate the scalability of Graphair on larger graphs, we conduct experiments on a large
synthetic graph dataset with 1,000,000 nodes. The synthetic dataset is generated as follows. We as-
sume that the sensitive attribute is a binary value and randomly assign 0 or 1 to each node with equal
probability. For node features, we use Gaussian Mixture Model to generate biased two-dimensional
node features. The distributions of node features of different sensitive groups are different. Specif-
ically, we use Gaussian distributions N (µ1,Σ) and N (µ2,Σ) to generate node features for nodes

with sensitive attributes 0 and 1, respectively, where µ1 = [0, 1], µ2 = [1, 0] and Σ =

[
1 0
0 2

]
.

For the adjacency matrix, we randomly generate edges via a stochastic block model. Since nodes
with the same sensitive attributes are more likely to be connected in social networks, we generate
edges with lower inter-connection and higher intra-connection probability between sensitive groups.
Specifically, we set the probability of connecting two nodes with the same and different sensitive
attributes as 1 × 10−3 and 1 × 10−4, respectively. For label generation, we intentionally make the
labels correlated to the sensitive attributes. Specifically, for the label of each node, we set 0 as the
threshold value and create a binary label based on the second dimension of the node features. Then
we add noise to the labels by randomly flipping 20% of the labels to a different class. Since the node
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Table 4: Comparisons between our method and baselines on the synthetic dataset in terms of accu-
racy and fairness. The best results are shown in bold.

Models Synthetic
ACC ↑ ∆DP ↓ ∆EO ↓

GRACE 60.41 ± 0.04 47.06 ± 4.20 47.01 ± 4.25
FairDrop 59.05 ± 9.47 29.62 ± 12.88 29.66 ± 11.88
NIFTY 56.38 ± 8.92 29.24 ± 12.16 29.16 ± 12.16
FairAug 60.42 ± 0.02 43.40 ± 1.01 43.33 ± 1.00
Graphair 60.36 ± 0.02 15.56 ± 9.01 15.57 ± 8.99

representations are learned in an unsupervised manner, we use a small portion of labeled data to train
the classifier. In other words, we randomly split 10%/10%/80% for training, validating, and testing
the classifier. We use the same hyperparameters for modeling training and the same architecture as
discussed in Appendix F.2. We run the experiments 3 times and report the average performance for
each method. We use the mini-batch training discussed in Appendix C on this large synthetic graph
dataset.

Table 4 shows accuracy, demographic parity, and equal opportunity metrics of our proposed
Graphair, compared with GRACE, FairDrop, NIFTY, and FairAug. From the results, fairness-aware
augmentation methods have lower prediction bias compared to the uniform random augmentation
method (i.e., GRACE). In addition, Graphair achieves the best fairness performance in terms of de-
mographic parity and equal opportunity on this large synthetic dataset. These results demonstrate
the scalability of our Graphair on large graph datasets.
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