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ABSTRACT

We consider representation learning for proteins with 3D structures. We build
3D graphs based on protein structures and develop graph networks to learn their
representations. Depending on the levels of details that we wish to capture, protein
representations can be computed at different levels, e.g., the amino acid, back-
bone, or all-atom levels. Importantly, there exist hierarchical relations among
different levels. In this work, we propose to develop a novel hierarchical graph
network, known as ProNet, to capture the relations. Our ProNet is very flexible
and can be used to compute protein representations at different levels of gran-
ularity. By treating each amino acid as a node in graph modeling as well as
harnessing the inherent hierarchies, our ProNet is more effective and efficient
than existing methods. We also show that, given a base 3D graph network that
is complete, our ProNet representations are also complete at all levels. Experi-
mental results show that ProNet outperforms recent methods on most datasets. In
addition, results indicate that different downstream tasks may require representa-
tions at different levels. Our code is publicly available as part of the DIG library
(https://github.com/divelab/DIG).

1 INTRODUCTION

Proteins consist of one or more amino acid chains and perform various functions by folding into 3D
conformations. Learning representations of proteins with 3D structures is crucial for a wide range
of tasks (Cao et al., 2021; Strokach et al., 2020; Wu et al., 2021; Yang et al., 2019; Ganea et al.,
2022; Stark et al., 2022; Morehead et al., 2022a;b; Liu et al., 2020). In machine learning, molecules,
proteins, etc. are usually modeled as graphs (Liu et al., 2022; Fout et al., 2017; Jumper et al., 2021;
Gao et al., 2021; Gao & Ji, 2019; Yan et al., 2022; Wang et al., 2022b; Yu et al., 2022; Xie et al.,
2022a;b; Gui et al., 2022; Luo et al., 2022). With the advances of deep learning, 3D graph neural
networks (GNNs) have been developed to learn from 3D graph data (Liu et al., 2022; Jumper et al.,
2021; Xie & Grossman, 2018; Liu et al., 2021; Joshi et al., 2023). In this work, we build 3D graphs
based on protein structures and develop 3D GNNs to learn protein representations.

Depending on the levels of granularity we wish to capture, we construct protein graphs at different
levels, including the amino acid, backbone, and all-atom levels, as shown in Fig. 1. Specifically, each
node in constructed graphs represents an amino acid, and each amino acid possesses internal structures
at different levels. Importantly, there exist hierarchical relations among different levels. Existing
methods for protein representation learning either ignore hierarchical relations within proteins (Jing
et al., 2021b; Zhang et al., 2023), or suffer from excessive computational complexity (Jing et al.,
2021a; Hermosilla et al., 2021) as shown in Table 1. In this work, we propose a novel hierarchical
graph network, known as ProNet, to learn protein representations at different levels. Our ProNet
effectively captures the hierarchical relations naturally present in proteins.

By constructing representations at different levels, our ProNet effectively integrates the inherent
hierarchical relations of proteins, resulting in a more rational protein learning scheme. Building
on a novel hierarchical fashion, our method can achieve great efficiency, even at the most complex
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Figure 1: Illustration of h1erarch1ca1 representations of proteins. Different colors indicate different
types of amino acids. The filled circles are C', atoms, and non-filled are other atoms. Each amino
acid has different levels of inner structures. From coarse-grained to fine-grained levels, we can use
C,, coordinates, backbone atom coordinates, or all-atom coordinates to represent the protein structure.
Note that we treat each amino acid as a node in the graph modeling despite different levels. The
actual atoms are in 3D, and this illustration uses 2D for simplicity.

all-atom level. In addition, completeness at all levels enable models to generate informative and
discriminative representations. Practically, ProNet possesses great flexibility for different data and
downstream tasks. Users can easily choose the level of granularity at which the model should operate
based on their data and tasks. We conduct experiments on multiple downstream tasks, including
protein fold and function prediction, protein-ligand binding affinity prediction, and protein-protein
interaction prediction. Results show that ProNet outperforms recent methods on most datasets. We
also show that different data and tasks may require representations at different levels.

2 BACKGROUND

Representation learning of small molecules with 3D structures has been studied recently (Schiitt
et al., 2017; Klicpera et al., 2020; Liu et al., 2022; Wang et al., 2022a), and existing methods can
fully determine 3D structures of molecules (Wang et al., 2022a). However, representation learning
of proteins with 3D structures is still challenging due to the large number of atoms and special
hierarchies that naturally present in protein structures. Existing methods for protein representation
learning either ignore hierarchical relations within proteins, or suffer from excessive computational
complexity, as explained in Table 1. Detailed related work is listed in Sec. 5. In this section, we
first introduce hierarchical structures of proteins in Sec. 2.1, which inspires us to design hierarchical
representations of proteins in Sec. 3. We then introduce existing complete 3D graph networks in
Sec. 2.2, which can be used to capture protein structures completely.

2.1 HIERARCHICAL PROTEIN STRUCTURES

Proteins are macromolecules consisting of one or more chains of amino acids. Each chain may
contain up to hundreds or even thousands of amino acids. An amino acid consists of an amino (-NHs)
group, a carboxyl (-COOH) group, and a side chain that is unique to each amino acid. The functional
groups are all attached to the alpha carbon (C,) atom. The C', atoms, together with the corresponding
amino group and carboxyl group, form the backbone of a protein. As shown in Fig. 1, we can use
C,, coordinates, backbone atom coordinates, or all-atom coordinates to represent protein structures,
leading to three levels of representations. Note that protein structures are traditionally organized into
primary, secondary, tertiary, and quaternary levels, and our categorization of levels is different. Next,
we can use complete 3D graph networks to fully capture protein structures at three levels.

Table 1: Comparisons of existing protein learning methods. Firstly, treating atoms instead of amino
acids as nodes leads to high complexity. Here n, IV, and k£ denote the number of amino acids, the
number of atoms, and the average degree in a 3D protein graph, and N > n. In addition, most
existing methods only capture one level of protein structures, and only IEConv considers hierarchical
relations of proteins using several pooling layers. Our method can learn hierarchical representations
at three levels. Lastly, our method can capture 3D structures completely at all levels.

Method Node Complexity Hierarchical Hierarchical Complete
Level Relations or not

GearNet (Zhang et al., 2023) Amino Acid O(nk) Amino Acid X X
GVP-GNN etc. (Jing et al., 2021b; Ingraham et al., 2019) ~ Amino Acid O(nk) Backbone X v
vector-gated GVP-GNN (Jing et al., 2021a) Atom O(NEk) All-Atom X 4
IEConv (Hermosilla et al., 2021) Atom O(Nk) All-Atom v X

Amino Acid v
Ours Amino Acid O(nk) — Backbone v 4

— All-Atom v
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2.2 COMPLETE 3D GRAPH NETWORKS

3D Graphs. Many real-world data can be modeled as 3D graphs. A 3D graph can be represented as
G = (V,&,P). Here, V = {v;}i—1,.._, is the set of node features, where each v; € R denotes the
feature vector for node i. £ = {eij}i}jzlw,n is the set of edge features, where e;; € R4 denotes the
edge feature vector for edge ij. P = {P;}i=1.... » is the set of position matrices, where P; € RFix3
denotes the position matrix for node 7. k; can be different for different applications. For example,
if we treat each atom in a molecule as a node, then k; = 1 for each node ¢. For a protein, if we
treat each amino acid as a node, then k; is the number of atoms in amino acid 7. In our method, we
represent proteins as 3D graphs and learn hierarchical representations of proteins in Sec. 3.

Complete Geometric Representations. As defined in ComENet (Wang et al., 2022a), a geometric
transformation F(-) is complete if for two 3D graphs G! = (V, &, P1) and G% = (V, &, P?), the
geometric representations F(G') = F(G?) <= 3R € SE(3), fori = 1,...,n, P} = R(P?).
Here SE(3) is the Special Euclidean group that includes all rotations and translations in 3D. Based on
the definition, ComENet proposes a complete representation for small molecules with torsion angles

and spherical coordinates.

Complete Message Passing Scheme. By incorporating complete geometric representations to the
commonly-used message passing framework (Gilmer et al., 2017), we achieve a complete message
passing scheme as

vi"! = UPDATE | v}, > MESSAGE (v}, ¢;;, 7 (G)) | , 1)
JEN;
where N; denotes the set of node ¢’s neighbors, and UPDATE and MASSAGE functions are usually
implemented by neural networks or mathematical operations.

3 HIERARCHICAL REPRESENTATIONS OF PROTEIN STRUCTURES

Notations. To learn representations of proteins with 3D structures, we first model a protein as a
3D graph G = (V, £, P) as introduced in Sec. 2.2. Specifically, we treat each amino acid as a node
and define edges between nodes using a cutoff radius. That is, if the distance between two nodes
is less than a predefined radius, there is an edge between these two nodes. For a node 7, the node
feature v; is the one-hot embedding of the amino acid type. For an edge ¢j, the edge feature e;; is an
embedding of the sequential distance j — i, following existing studies (Ingraham et al., 2019; Zhang
et al., 2023). In addition, the position matrix P; for a node 7 includes the coordinates of all atoms in
the amino acid if available. Note that the rows in P; are given in a fixed atom order. For example, for
the amino acid alanine, the atom order in the position matrix is N, C,, C, O, and Cp.

Considering the hierarchical structures of amino acids and proteins as introduced in Sec. 2.1, we
propose to learn protein representations at different levels, including the amino acid, backbone, and
all-atom levels, as shown in Fig. 1. In addition, we aim to capture protein structures completely
at each level. Therefore, for levels from top to bottom in Fig. 1, we design complete geometric
representations as J (G )pases F (G)vb, and F(G),y, respectively. By incorporating the designed
complete geometric representations into Eq. 1, we can fully capture protein structures at all levels.

3.1 AMINO ACID LEVEL REPRESENTATIONS

At the amino acid level, we treat each amino acid as a node and use C, coordinates as the position
of the node. This leads to the most coarse-grained representation of the protein. By ignoring the
detailed inner structures like the backbone and side chain of amino acids, methods designed for small
molecules can be applied directly to learn amino acid level representations of proteins. To achieve
complete representations, we design the geometric representation F (G )pase at the amino acid level
as {(djs, 05i, dji, Tji) i=1.... n, jen; following ComENet (Wang et al., 2022a). Here (d;;, 0;;, ¢;:) is
the spherical coordinate of node j in the local coordinate system of node 7 to determine the relative
position of j, and 7;; is the rotation angle of edge ji to capture the remaining degree of freedom.

ComENet is used to obtain complete representations at the amino acid level in our study. However,
our method is significantly different from ComENet. Firstly and most importantly, we study
protein representation learning based on the unique structural properties of proteins. As a result, we
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Figure 2: Illustratim(ls) of our proposed backborgezlevel representations. (a() )Construction of the
backbone coordinate system for amino acid ¢. (b) Computation of the three Euler angles between
the backbone coordinate systems for two amino acids ¢ and j. (c) Illustrations of determining the
relative rotation between amino acids ¢ and j for existing methods and our proposed method. The
purple dashed line indicates how existing methods determine the relative rotation between ¢ and j by
computing all backbone dihedral angles along the chain. The yellow arrow shows how our method
determines the relative rotation between amino acids ¢ and j using only three Euler angles.

design a hierarchical protein learning framework, which can incorporate the inherent hierarchies in
protein structures and can largely advance protein representation learning. ComENet is designed for
small molecules whose structures are less complicated than protein structures. Secondly, we seek to
obtain complete representations at each hierarchical level, and ComENet can only be applied to learn
complete representations at the amino acid level. Given F (G )pase at the amino acid level, we further
design F(G)py and F(G), based on the unique structural properties of proteins to learn complete
representations at all levels. Thirdly and technically, even at the amino acid level, we use a different
strategy to define the local coordinate system (LCS) for each amino acid, not directly analogizing
amino acids in our methods to atoms in ComENet. The LCS is used to compute (d;i, 0;;, ¢;i, 75:) for
each edge ji. Our strategy is also developed based on protein structures. Specifically, we define the
LCS for node ¢ based on nodes ¢ — 1 and 7 + 1 following existing protein learning studies (Ingraham
et al., 2019). ComENet defines it based on i-th nearest neighbor f; and second nearest neighbor
si, which requires extra computation to sort the neighbors and find the nearest two. Therefore, our
method can reduce the computation of ComENet and is more efficient.

3.2 BACKBONE LEVEL REPRESENTATIONS WITH EULER ANGLES

Building on the proposed amino acid level representation, we further consider all backbone atoms
for each amino acid to derive finer-grained protein representations. Since we can fully capture C|,
coordinates via the complete geometric representation J (G )pase at the amino acid level, the remaining
degree of freedom at the backbone level is the rotation between two backbone planes. This is because,
with such rotation, we can easily determine the coordinates of other backbone atoms besides C,,
atoms based on rigid bond lengths and bond angles (Jumper et al., 2021). Therefore, we propose to
use Euler angles to capture such rotation. Specifically, we first define the local coordinate system
for an amino acid i as y; = rl¥ — r&, t; = r¢ — e

ri X =1t; X y;,and x; = y; X z;, as shown
in Fig. 2(a). We then compute three Euler angles i i3 T j, and 73 between two backbone coordrnate

systems as shown in Fig. 2(b). Here n = z; X z; is the 1ntersect10n of two local system, 7;; is the

signed angle between n and x;, T J is the angle between z; and z;, and 7 ;; 18 the angle from n to x;.
By considering these three Euler angles, the orientation between any two backbone planes can be
determined, thereby fully capturing backbone structures of proteins Thus, the complete geometric
representation at this level is F(G)ob = F(G)base U {(7)5, 755, 753) Yiz1,..n, jen; -

i g Ty

Advantages of using Euler angles. Most existing approaches directly integrate backbone information
into amino acid features. Specifically, they compute three backbone dihedral angles w;}, w?, and
w? (Ingraham et al., 2019; Jing et al., 2021a; Li et al., 2022) for each amino acid ¢ based on N;, Cl,,,
C;, and N, 1 atoms as shown in Fig. 2(c). Then the sin and cos values for the three angles are part
of the node features of amino acid . For any two amino acids 7 and j, if we safely assume j > 1,
the relative rotation of these two backbone triangles is determined by all the amino acids between
i and j along the protein chain. Thus, the relative rotation is determined by all the (5 — ¢+ 1) x 3
bond rotation angles {wj,w?, w3 }x—;. . ;, as shown in Fig. 2(c). However, our proposed backbone
level method can determine the relative rotation for any two amino acids ¢ and j by only three Euler
angles lei, Tfi, and Tfi, regardless of the sequential distance j — ¢ along the protein chain. Hence, our
method can significantly improve the efficiency of representation learning at this level.
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3.3 ALL-ATOM LEVEL REPRESENTATIONS WITH SIDE CHAIN TORSION ANGLES

To obtain the most fine-grained representations of proteins, we consider all atoms in each amino acid.
As introduced in Sec. 2.1, an amino acid consists of backbone atoms and side chain atoms. Therefore,
building on our backbone level representation, we further incorporate side chain information, leading
to the all-atom level representation as shown in Fig. 1. We assume all bond lengths and bond angles in
each amino acid are fully rigid (Jumper et al., 2021), then the degree of freedom we need to consider is
torsion angles in side chains (Jumper et al., 2021). There are at most five torsion angles for any amino
acid. For example, as shown in Fig. 5 in Appendix A, the alanine has zero side chain torsion angle,
the cysteine has only one, and the leucine has two. Note that only the amino acid arginine has five side
chain torsion angles, and the fifth angle is close to 0. Therefore, we only consider the first four torsion
angles for efficiency, denoted as x', x2, x>, x*. We list the atoms used to compute side chain torsion
angles for each amino acid in Table 7 in Appendix A. With such side chain torsion angles, we can
determine the side chain structure for each amino acid. Based on the backbone level representation,
the geometric representation at this level is F(G)a = F(G)w U {(x}, X2, X3, X}) }i=1,...n- Note
that although side chain torsion angles are important properties of protein structures, it is only used
in recent studies (Jumper et al., 2021) for all-atom coordinates prediction, and none of the existing
protein representation learning methods use it to capture protein structure information. Here we
incorporate it for protein representation learning, leading to our all-atom level representation.

Differences with existing all-atom

level methods. Several existing stud-
ies also consider all-atom information
of proteins (Hermosilla et al., 2021;

Jing et al., 2021a), but our method is
significantly different and possesses
unique advantages, as illustrated in
Fig. 3. Specifically, The vector-gated GVP-GNN (Jing et al., 2021a) belongs to the "w/o hier-
archies"” methods in Fig. 3. It treats each atom as a node and uses an equivariant GNN to update node
features. However, the important hierarchical information is not considered. IEConv (Hermosilla
et al., 2021) follows the "mainstream hierarchical” methods in Fig. 3. It treats each atom as a node
and employs several pooling layers to obtain representations at different levels. For each level, it
needs several intrinsic-extrinsic convolution layers for message passing. By treating an atom as a node
and employing a large model with more than ten layers, IEConv induces excessive computing costs.
Our proposed method effectively preserves hierarchical relations of proteins. In addition, by treating
each amino acid as a node and integrating side chain torsion angles as node features, our method
has much fewer nodes in constructed graphs, resulting in a much more efficient learning scheme.
We provide mathematical expressions and explanations in Table 1. We also conduct experiments in
Sec. 6.5 to show the efficiency and effectiveness of our all-atom level method.

w/o hierarchies Mainstream h|erarch|ca| Ours-All-Atom
Figure 3: Illustrations of three kind of all-atom level methods.

3.4 COMPLETENESS ANALYSIS

In this study, our primary objective is to develop a hierarchical representation learning framework for
proteins based on their unique structural properties. After constructing a 3D graph G = (V, £, P) for
a protein from the framework, we further achieve complete representations at three hierarchical levels.
Intuitively, complete representations can capture all details of 3D protein structures and enable our
method to generate distinct representations for different 3D graphs, subject to rigid transformations
such as rotation and translation. Based on the definition of completeness in Sec. 2.2 and Wang et al.
(2022a), we rigorously show how our method can achieve completeness at all three levels. We also
summarize whether existing methods are complete or not in Table 1.

Completeness of the Amino Acid Level. At the amino acid level, we only consider C,, coordinate
of each amino acid. The methods designed for small molecules can be applied directly at this level.
As shown in Sec. 3.1, we design our geometric representation JF (G )pase 0f a 3D protein graph based
on ComENet (Wang et al., 2022a). Since ComENet is provably complete, and the different definition
of a local coordinate system in our method does not affect the completeness proof of ComENet, our
method can naturally achieve completeness at this level.

Completeness of the Backbone Level. Given a complete F(G)pase, We rigorously show the geo-

metric representation at the backbone level F(G)oy = F(G)base U { (755, 7575 T55) Yiz1,...m, jens; 1
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complete in Appendix B.1. Note that our proof is based on the assumption that all bond lengths and
bond angles are fully rigid in amino acids, and this assumption is widely accepted (Jumper et al.,
2021). Intuitively, a complete geometric representation at the backbone level can capture all 3D infor-
mation of the backbone structure. As protein backbones largely determine protein functions (Lopez
& Mohiuddin, 2020; Nelson et al., 2008), capturing fine details of them can benefit various tasks.

Completeness of the All-Atom Level. Given a complete F(G)yp, We rigorously show the geometric
representation at the all-atom level F(G)ar = F(G)wo U {(X}, X7, X3, X3) Fi=1...n is complete
in Appendix B.2. With the complete geometric representation at this level, our method can fully
capture 3D information of all atoms in a protein. Therefore, our method can distinguish any two
distinct protein structures in nature. Especially, our all-atom method can capture side chain structures
compared with the backbone level method. Side chains are important for proteins (Spassov et al.,
2007). The tertiary and quaternary structures of a protein are determined by interactions between side
chains and environment (O’Connor et al., 2010). In addition, interactions between side chains also
play a crucial role in protein-protein and protein-ligand interactions (Tanaka & Scheraga, 1976; Berka
et al., 2009). Overall, the all-atom method can capture information for both inter- and intra-protein
interactions, leading to better performances on various tasks.

4 PRONET

Based on the message pass-  ejjer, v LY e F(@asel P (@) F(@ar VY]
ing scheme Eq. 1 and the #() JEN; ,0,4,7 J4F (Gpase
hierarchical geometric rep- LT

Interaction

o7 ¢ (d, 0,07 4 F (G
Conv  Hier-Geom-MP (@)pp

resentations in Sec. 3, we Interaction O Pl e 6,6, e (),
propose our ProNet for hi- Interaction MLP :‘F = I

erarchical protein represen- Interaction i l

tation learning as shown (%) \—Gir) Conv Conv

in Fig. 4. The inputs to ) MLP

ProNet are node features, Out o

edge features, and geomet- . ) )
ric representations.  Fol- Figure 4: An illustration of ProNet. || denotes concatenation. Conv

lowing existing graph neu- denotes a graph convolution layer to update node features. Hier-Geom-
ral networks (Schiitt et al., MP denotes the proposed hierarchical message passing layer. BF
2017; Wang et al., 2022a), denotes basis functions to embed distances and angles. Details of the
our ProNet contains several Mmodel architecture and basis functions are provided in Appendix C.2.

interaction blocks to update node features and one Readout function to obtain graph-level represen-
tations. The Readout function includes a summation function and several fully-connected layers.
Specifically, in the interaction block, we design our novel hierarchical message passing layer Hier-
Geom-MP to learn protein representations based on node features, edge features, and either one
level of geometric representations. Hier-Geom-MP is specially designed for protein learning and can
effectively capture hierarchical relations of proteins. The Conv is adapted from GraphConv (Morris
et al., 2019) and is used to update node features based on edge features. A detailed description of the
model architecture is provided in Appendix C. Note that there are three levels of geometric represen-
tations, and our model only takes one as input. The three levels of geometric representations result in
three levels of ProNet, namely ProNet-Amino Acid, ProNet-Backbone, and ProNet-All-Atom. Users
can easily adapt the framework to different downstream tasks by specifying the level of geometric
representations. Qur experiment results in Sec. 6 also show that different data and tasks may
require representations at different levels.

5 RELATED WORK

Learning protein representations is essential to a variety of tasks in protein engineering. Existing
methods for protein learning consider different kinds of protein information, including amino acid
sequences (Oztiirk et al., 2018; Bepler & Berger, 2019; Rao et al., 2019; Elnaggar et al., 2021; Bileschi
et al., 2022), protein surfaces (Gainza et al., 2020; Sverrisson et al., 2021; Dai & Bailey-Kellogg,
2021; Somnath et al., 2021), and protein 3D structures (Fout et al., 2017; Gligorijevic et al., 2021;
Baldassarre et al., 2021; Jing et al., 2021a; Cha et al., 2022). Due to recent advances in protein
structure prediction (Senior et al., 2020; Jumper et al., 2021; Varadi et al., 2022; Baek et al., 2021),
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structures of many proteins are becoming available with high accuracy. In addition, protein structures
are crucial for protein functions. In this work, we focus on representation learning of proteins with
3D structures. Earlier studies formulate proteins as 3D grid-like data and employ 3D CNNs for
learning (Derevyanko et al., 2018; Townshend et al., 2021). However, the grid-like data is extremely
sparse, leading to expensive learning cost and unsatisfactory performance. Hence, recent studies
model proteins as 3D graphs and use 3D GNNs to learn representations (Hermosilla et al., 2021;
Hermosilla & Ropinski, 2022; Jing et al., 2021b; Ingraham et al., 2019; Zhang et al., 2023; Li et al.,
2022). Based on the analysis in Sec. 3 and Table 1, previous methods on 3D protein graphs can be
categorized into three levels, including amino acid level, backbone level, and all-atom level. For
example, GearNet (Zhang et al., 2023) treats an amino acid as a node and uses amino acid types as
node features, thus it is categorized as an amino acid level method. GVP-GNN (Jing et al., 2021b)
represents protein backbone structures with backbone dihedral angles computed from backbone
atoms. Thus it is a backbone level method. IEConv (Hermosilla et al., 2021) treats each atom as a
node in protein graphs, therefore, it is an all-atom level method. The differences between existing
methods and our ProNet are illustrated mathematically in Table 1 and explained in details at the
end of Sec. 3.1, Sec. 3.2, and Sec. 3.3.

6 EXPERIMENTS

We evaluate our ProNet on various protein tasks, including protein fold and reaction prediction,
protein-ligand binding affinity prediction, and protein-protein interaction prediction. Detailed de-
scriptions of the datasets are provided in Appendix D. We also conduct ablation study on the design
of our all-atom method in Sec. 6.5, showing the efficiency and effectiveness of our method. Detailed
experimental setup and optimal hyperparameters are provided in Appendix E. Additional experimen-
tal results are provided in Appendix F. The code is integrated in the 3Dgraph part of DIG library (Liu
et al., 2021) and available at https://github.com/divelab/DIG.

6.1 FoLD CLASSIFICATION

Protein fold classification (Hou et al., Table 2: Accuracy (%) on fold and reaction classification
2018; Levitt & Chothia, 1976) is tasks. The top two results are highlighted as 1st and 2nd.
crucial to capture protein structure-

. . . Fold
function relations and protein evolu-  Method React
. . Fold Sup. Fam. Avg.
tion. Following the dataset and exper- - -
. . . GCN (Kipf & Welling, 2017) 673 168 213 828 403
imental settings in Hou et al. (2018)  peepSF (Hou et al., 2018) 709 170 310 77.0 417
and Hermosilla et al. (2021), we eval- ~ GYP-GNN (Jing etal., 2021b) 655 160 225 838 408
. IEConv (Hermosilla et al., 2021) 872 450 697 989 712
uate our methods on the fold classifi-  New IEConv (Hermosilla & Ropinski, 2022) 872 47.6 702 992 723
cation task. A detailed description of ~ HoloProt (Somnath et al., 2021) %9 - - - =
. . . . DWNN (Li et al., 2022) 767 318 378 852 515
the data is provided in Appendix D. In  GearNet (Zhang et al., 2023) 794 284 426 953 554
total, this dataset contains 16,712 pro- GearNet-IEConv (Zhang et al., 2023) 83.7 423  64.1 99.1 685
. GearNet-Edge (Zhang et al., 2023) 86.6 440 66.7 99.1 699
teins from 1,195 folds. There are three  GearNet-Edge-TECony (Zhang etal., 2023) 853 483 703 995 727
test sets, namely Fold, Superfamily, “proNet-Amino Acid 860 515 699 990 735
and Famﬂy We report the accuracies ProNet-Backbone 864 527 703 993 741
ProNet-All-Atom 856 521 690 99.0 734

on the three test sets and the average
of the three accuracy values in Table 2. The results for baseline methods are taken from original
papers (Hermosilla et al., 2021; Somnath et al., 2021; Zhang et al., 2023; Li et al., 2022).

Table 2 shows that our methods can  Typle 3. Comparisons between ProNet and other methods
achieve the best results on two of i termyg of computational cost on the Fold dataset using the

the three test sets and the best av-  ¢,e Nvidia GeForce RTX 2080 Ti 11GB GPU.
erage value. For Superfamily and

Famﬂy, our methOdS Outperform all Method Hierarchical Time (sec.) Converge

of the baseline methods and achieve Level  Train Inference  Time
. 1 f G N Ed GearNet-Edge (Zhang et al., 2023) Amino Acid  OOM - -
similar performance as GearNet-Edge-  GearNet-Edge-IEConv (Zhang et al., 2023)  Amino Acid  OOM - -

_ _ GVP-GNN (Jing et al., 2021b) Backbone 35 6 ~9h

IECOHV‘ But GeaINet Edge IECOHV IEConv (Hermosilla et al., 2021) All-Atom 165 22 ~24h

uses edge message passing scheme, = K iino Acid Amino Acid 32 5 ~9h

which is more computationally expen-  ProNet-Backbone Backbone 32 6 ~9h

ProNet-All-Atom All-Atom 32 6 ~9h

sive than the node message passing
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scheme in our method, as discussed in Liu et al. (2022). In addition, as shown in Table 3, GearNet-
Edge-IEConv can not be trained using one Nvidia GeForce RTX 2080 Ti 11GB GPU due to its high
complexity. For Fold, the most difficult one among the three test sets, all of our methods on three
levels can significantly outperform baseline methods, and ProNet-backbone improves the accuracy
from 48.3% to 52.7%, demonstrating the good generalization ability of our methods. Our methods
also set the new state of the art for the average value.

6.2 REACTION CLASSIFICATION

Enzymes are proteins that act as biological catalysts. They can be classified with enzyme commission
(EC) numbers which groups enzymes based on the reactions they catalyze (Webb, 1992; Omelchenko
et al., 2010). We follow the dataset and experiment settings in Hermosilla et al. (2021) to evaluate our
methods on this task. In total, this dataset contains 37,428 proteins from 384 EC numbers (Berman
et al., 2000; Dana et al., 2019). Comparison results are summarized in Table 2, where the results for
baseline methods are taken from original papers (Hermosilla et al., 2021; Hermosilla & Ropinski,
2022; Li et al., 2022; Zhang et al., 2023). Our methods achieve better or comparable results compared
with previous methods. Note that IEConv methods (Hermosilla et al., 2021; Hermosilla & Ropinski,
2022) are complicated and have larger numbers of parameters. Specifically, the numbers of parameters
for IEConv methods are about 10M and 20M, while that of our methods are less than 2M.

6.3 LIGAND BINDING AFFINITY

Computational prediction of protein-ligand binding affinity (LBA) is essential for many downstream
tasks in drug discovery as it mitigates the cost of wet-lab experiments and accelerates virtual
screening (Huang et al., 2021). In this task, we use the dataset curated from PDBbind (Wang et al.,
2004; Liu et al., 2015) and experiment settings in Somnath et al. (2021). We adopt dataset split with
30% and 60% sequence identity thresholds to verify the generalization ability of our models for unseen
proteins. In terms of experiment settings, we employ the two-branch network following Somnath
et al. (2021) for fair comparison. We use the same ligand network as Holoprot (Somnath et al., 2021)
and use our ProNet as the protein network. Detailed experimental setup is provided in Appendix E.

Comparison results are summarized in Table 4, where the baseline results are taken from Somnath
et al. (2021) and Townshend et al. (2021). Results are reported for 3 experimental runs. The detailed
standard deviation of experiment results are provided in Appendix F. Note that methods in Atom3D
use a different experiment setting than other methods. Therefore, it is not fair to compare our results
with Atom3D methods. However, we still include their results in Table 4 in case readers are interested
in their setting. Specifically, the models in Atom3D are trained with binding pockets only, making
the task less challenging. This is because the binding affinity would be highly related to binding
structure (Lu et al., 2022), the models that take binding pockets as input incorporate prior information
on the binding site, binding pose, and the interaction between protein and ligand. Other baseline
methods do not consider such prior information in the input. The results show that our methods
achieve either best or second best results on both splits and obtain significantly better results than
previous state-of-the-art methods on the sequence identity 60% split. For our methods at different

Table 4: Results on protein-ligand binding affinity prediction task. The top two results are highlighted
as 1st and 2nd. * denotes methods trained with the complex binding pockets only, which provides
prior information on the interaction between protein and ligand and makes the task less challenging.

Method Sequence Identity 30% Sequence Identity 60%
RMSE | Pearson]T Spearman? RMSE | Pearson? Spearman T

Atom3D-3DCNN* (Townshend et al., 2021) 1.416 0.550 0.553 1.621 0.608 0.615
Atom3D-ENN* (Townshend et al., 2021) 1.568 0.389 0.408 1.620 0.623 0.633
Atom3D-GNN* (Townshend et al., 2021) 1.601 0.545 0.533 1.408 0.743 0.743
DeepDTA (Oztiirk et al., 2018) 1.866 0.472 0.471 1.762 0.666 0.663
Bepler and Berger (2019) (Bepler & Berger, 2019) 1.985 0.165 0.152 1.891 0.249 0.275
TAPE (Rao et al., 2019) 1.890 0.338 0.286 1.633 0.568 0.571
ProtTrans (Elnaggar et al., 2021) 1.544 0.438 0.434 1.641 0.595 0.588
MaSIF (Gainza et al., 2020) 1.484 0.467 0.455 1.426 0.709 0.701
IEConv (Hermosilla et al., 2021) 1.554 0.414 0.428 1.473 0.667 0.675
Holoprot-Full Surface (Somnath et al., 2021) 1.464 0.509 0.500 1.365 0.749 0.742
Holoprot-Superpixel (Somnath et al., 2021) 1.491 0.491 0.482 1.416 0.724 0.715
ProNet-Amino Acid 1.455 0.536 0.526 1.397 0.741 0.734
ProNet-Backbone 1.458 0.546 0.550 1.349 0.764 0.759
ProNet-All-Atom 1.463 0.551 0.551 1.343 0.765 0.761
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levels, the all-atom one is best on 5 out of 6 metrics. As the binding affinity may correlate to the
chemical reactions on the side chain of a protein, the results may imply that the all-atom method can
capture more information for both inter- and intra- protein interaction.

6.4 PROTEIN PROTEIN INTERACTION

Protein-protein interactions (PPI) are involved in most cellular pro- Table 5: Results on the PPI task.
cesses and essential for biological applications (Ganea et al., 2022). The top two results are high-
For example, antibody proteins bind to antigens to recognize dis- lighted as 1st and 2nd.

eases (Townshend et al., 2021). Following the dataset (Townshend —— AUROCT
et al., 2019; Vreven et al., 2015) and experiment settings in TOWN-  ~Awm3D3DCNN (Townshend etal, 2021) 0,844

. . . Atom3D-GNN (T shend et al., 2021 0.669

shend et al. (2021), we predict whether two amino acids contact — cveoan oimeeca s o566

when the two proteins bind. The evaluation metric is AUROC. Re-  ProNetamino Acia 0857
. T -bBackbon: .0)

sults in Table 5 show that our all-atom level method outperforms —_ProNetAl-Atom 0871

all previous methods, improving the result from 0.866 to 0.871. In addition, the results for three
levels may imply that our all-atom representation can capture more details from side chains on both
interacting proteins and thus benefits the binding site prediction.

6.5 OBSERVATIONS AND ABLATION STUDIES

Observations: different downstream tasks may require methods at different levels. As shown in
Table 2, our ProNet-backbone outperforms the methods of the other two levels on function prediction
tasks, including fold and reaction classification tasks. This indicates the backbone-level method
can capture details from the folding structure of proteins, rendering better predictions for protein
functions. In contrast to function prediction tasks, as shown in Table 4 and Table 5, our ProNet-all-
atom outperforms the methods of the other levels on most metrics of interaction prediction tasks,
namely LBA and PPI tasks. This observation implies that our all-atom level method is able to capture
fine-grained side chain structure information, eventually contributing to the predictions of binding
affinity and binding sites for interacted proteins.

Ablation studies on all-atom level. Table 6: Comparison of three all-atom methods on the Fold
As discussed in Sec. 3.3, we con- dataset. The best results are highlighted in the table. All the
duct experiments on three all-atom models are trained using the same computing infrastructure
level methods to show the advan- (Nvidia GeForce RTX 2080 TI 11GB) for fair comparison.
tages of our proposed all-atom level The training time is the average time per epoch, and the three
method. We adopt the same base methods use similar epochs to converge.

model (Wang et al., 2022a) for fair

Method Time (sec.) Accuracy (%)

comparison. The results are shown Train Inference Fold Sup. Fam. Avg.
in Table 6 The first baseline is "w/0 ~/q hierarchies 1812 181 369 495 942 602
hierarchies", where each atom is Mainstream hierarchical ~ 148.7 17.7 515 687 99.0 73.1

ProNet-All-Atom 32.1 6.3 521 690 99.0 734

treated as a node in a 3D protein
graph. The performance of this method is unsatisfying, possibly due to the lack of hierarchical infor-
mation in graph modeling. In addition, it takes a much longer time for both training and inference.
The second baseline is "Mainstream hierarchical” with one hierarchical pooling layer, which naturally
requires a two-level architecture. The first level follows the "w/o hierarchies"” method, and the second
level treats each amino acid as a node with features obtained by aggregating representations of atoms
in the corresponding amino acid. The computational cost is high since two base models are involved
for two levels. Our proposed ProNet-All-Atom achieves the best performance among the three
methods with less computing time. Overall, our method is both efficient and effective.

7 CONCLUSION

Protein structures are crucial for protein functions and can be represented at different levels, including
the amino acid, backbone, and all-atom levels. We propose ProNet to capture hierarchical relations
among different levels and learn protein representations. Particularly, ProNet is complete at all levels,
leading to informative and discriminative representations. Results show that ProNet outperforms
previous methods on most datasets, and different tasks may require representations at different levels.
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Appendix

A SIDE CHAIN TORSION ANGLES

o

o

Alanine

SH

Cysteine

Leucine

Figure 5: Illustration of amino acid structures. The red circles are side chain torsion angles.

Table 7: Atoms for computing the side chain torsion angles for each amino acid.

—

2

3

4

5

X | X | X | X | X
ALA
ARG | N,Ca,Cs,C. | CayCs,C..C5 | C5.C.,C5,N. | C,,Cs,N.,C; | Cs,Ne,Ce, Nyn
ASN | N.Ca.Ch.Co | CoCs.C., 081
ASP | N.Ca.Cs.Co | CarCs.C..Os
CYS | N.C..Cp.5.
GLN N7C()uc’ﬁvc’y Ca,Cﬁ,C»y,Cé 0570’77057061
GLU chaycﬁvc’y COHCﬁ,C—y,C(S Cﬁ7c’yvc57061
GLY
HIS | N,Ca,Cs5,Cy | Ca,Cs Gy N
ILE | N,Cu,Cs.Co1 | CaCsyConsCat
LEU | N,Ch,Cs5,Cy | Ca,Cs,Ch,Csi
LYS Nacaac’ﬁ70’y Ca,Cﬁ,C»Y7C5 05,07,05705 077057067]\7@
MET | N,C,,Cg,C, Ca,Cs,C,, S5 Cs,Cy, Ss,Ce
PHE N,CQ,CQ,C»Y COH /370770(51
PRO N,C,,C3,C, Ca,Cs,C,,Cs
SER | N,Ca.Cs. 0,
THR | N,C.Cj,0,1
TRP | N,Ca,Cs,C, | Cu,Cs,C.\Cs
TYR N,Ca,Cﬂ,ny CCmCﬁaC’w 01
VAL | N,C.,Cp,Coy

We list atoms used to compute side chain torsion angles for each amino acid in Table 7. Note that
AlphaFold2 (Jumper et al., 2021) also considers alternative side chain torsion angles. This is because
some side chains parts are 180°-rotation-symmetric, and the torsion angle x and x + 7 result in the
same physical structure with the internal atom names changed. But in our method, atom names are
given, therefore, we do not need to consider the alternative side chain torsion angles.

B PROOFS

As defined in Wang et al. (2022a) and discussed in Sec. 2.2, the formal definition of completeness for
3D protein graphs is shown as below.
Definition 1 (Completeness). For two protein graphs G = (V, €, R') and G* = (V,E,R?), where
RY = {Rl}ic1,.. . and R?* = {R?},_1, ., respectively, a geometric representation F(G) is
considered complete if

F(GY) = F(G*) < 3T € SE(3), fori=1,...,n, R} = T(R3?).
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Here SE(3) is the Special Euclidean group that includes all rotations and translations in 3D. To
show whether F(G) is complete, we need to prove in both directions. We first need to show Eq. 2
holds from right to left, which is obvious. This is because our proposed F(G) is based on relative
information such as distances and angles, thus it is naturally SE(3) invariant. Secondly, we need
to show that Eq. 2 holds from left to right. Essentially, we need to show that a 3D structure can be
uniquely determined by F(G). In this section, we rigorously show that our proposed J (G )y, and
F(GQ)an are complete.

B.1 PROOF OF THE COMPLETENESS FOR BACKBONE LEVEL REPRESENTATION

Proof. Based on Def. 1, we need to prove that the coordinates of all backbone atoms in each amino
acid can be uniquely determined given F(G)pp. As F(G)pase i complete for amino acid level, the
positions of all C,, atoms in a 3D protein graph are determined as stated in Sec. 3.4. Thus the
remaining degree of freedom at the backbone level is the rotation between two backbone planes. This
is because, with such rotation, we can easily determine the coordinates of other backbone atoms
besides C', atoms based on the rigid bond lengths and bond angles. Hence, building on the amino
acid level, we only need to prove that the local coordinate system for each backbone plane can be
uniquely determined.

We prove this by induction. First, we denote n as the number of nodes, i.e., amino acids, in a 3D
protein graph. Apparently, the case n = 1 holds. Assume the case n = k holds that the geometric
representation F(G)pp is complete, thus, the locations of all the k& backbone planes are uniquely
determined. Then we need to prove the proposition holds for the n = k£ 4 1 case. Without losing
generality, we denote node j as the (k + 1)-th node, which is connected to node 7 among existing k
nodes, forming a connected graph G of size (k 4 1). We then prove that the local coordinate system
of the (k + 1)-th backbone plane is uniquely determined by the proposed Euler angles (7']-12-, szi, sz)
As illustrated in Fig. 2(b), we use unit vectors (X;,y;,2;) and (x;,y;,z;) to denote the backbone
coordinate axes of node ¢ and node j, respectively. The intersection vector between plane x;y; and

x,y; is denoted as n = z; x z;. Given the Euler angles 7};, 73, 73, we have

gty e
X; - = COS lei, 3)
X; X -2z; = sin lei, )
Z; - Zj = COS szi, Q)
n-X; = cos Tfi, (6)
nx X; -z; = sin lei. @)

Then we sequentially prove by contradiction that vectors z;, x;, and y; can be uniquely determined
by the Euler angles.

Assume the coordination system for the backbone of node j is not unique, i.e., there are alternative
unit vectors (x’;,y’,z}) satisfying Eq. 3- 7. And the alternative intersection vector is denoted as
n =z; x z;-.
Step 1: Prove the intersection n is unique.
Substituting n’ into Eq. 3 and Eq. 4 and subtracting the derived equations with Eq. 3 and Eq. 4,
respectively, we can derive that
x;-(n—m')=0,
/ (®)
x; X (n—n') -z, =0.
Since vectors x; and (n — n’) are on the same plane perpendicular to z;, there exist A # 0 such that
x; X (n—n') = \z,. 9
Then we can derive that

Since A # 0 and z; is a unit vector, Eq. 10 creates a contradiction. Therefore, such n’ does not exist.
The intersection vector n of the planes x;y; and X;y; is uniquely determined by the Euler angle lez-.

Step 2: Prove z; is unique.
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Substituting z; into Eq. 5 and subtracting the derived equation with Eq. 5, we can derive that
z; - (z; —2}) = 0. (11)
Besides, based on the proof in Step 1, we have

n=1z; X1zj,

, (12)
n=1z; X z;.
By subtracting the above equations on both sides, we have
z; x (z; — z;) = 0. (13)

Eq. 11 and Eq. 13 are contradicted since the non-zero vector (z; i -z ) 1s both parallel and perpendic-
ular to the unit vector z;. Thus, z; is uniquely determined by Tﬂ and ﬂ

Step 3: Prove x; is unique.

Substituting x;. into Eq. 6 and Eq. 7 and subtracting the derived equations with Eq. 6 and Eq. 7,
respectively, we can derive that
n-(x; —x;) =0,

n x (x; — x})-z; =0. (9
As (x; — x}) and n are on the same plane perpendicular to z;, n x (x; — x’;) = pz; holds for some
w # 0. Thus, we can derive that
nzj;-z; =0, (15)
which is contradicted to the fact that ;¢ # 0 and z; is a unit vector. Therefore, x; can not have
alternative solutions, i.e., x; is uniquely determined by T]Z, 7]21, TJSl

Step 4: Prove y; is unique.
Since z; and x; are unique, y; = z; X X; is also uniquely determined by the Euler angles.

The geometric representation F (G, = F (G)base U {(Tﬂ, 7'”, Tﬂ)}l 1,...n, jeN; on backbone level
provides unique representation for different protein backbone structures. Thus the backbone level

representation F(G)pp is complete. O

With the complete representation we can compute the unique rotation matrix corresponding to the

2 3
three static Euler angles TW Tiis T5; s
M = M; My Ms, (16)
where
cosTy; —sinT); 0 1 0 0 cosTy —sinTy 0
. 2 .
M, = |sin7j; cos7j; O0|,Ms= [0 cos Tﬁ‘ —sin7 | Mz = |sin7j; cosTy 0
0 0 1 0 sin7f;, cosT} 0 1

Je

Thus, given the unit vectors (X;,y;, z;) of node ¢, we can derive the backbone coordinate system of
node j as
X X;
yi| =M |yq| . 17
Z; Z;

B.2 PROOF OF THE COMPLETENESS FOR ALL-ATOM LEVEL REPRESENTATION

Proof. To prove completeness at the all-atom level, based on Def. 1, we need to prove the positions of
all atoms in each amino acid are uniquely determined with F(G) ;. Since the geometric representation
at the backbone level is complete, the backbone structure of a given protein can be uniquely determined
by F(G)pb. Therefore, for each amino acid ¢, we only need to prove that all the atoms of the side
chain are uniquely determined by four side chain torsion angles. Note that all bond lengths and bond
angles in each amino acid are fully rigid, thus we only consider the unit vector between two atoms
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in an amino acid. Here we provide rigorous proof for the amino acid cysteine. The proof can be
generalized to other types of amino acids.

A cysteine has six atoms, including N, C,,, C, O, Cg, and S,,. Firstly, the positions of NV, C,,, C, and
O are determined at the backbone level. We can easily further determine the position of C3 since the
atoms IV, Cy,, C, and Cj are in a rigid group as shown in Table 2 of (Jumper et al., 2021). Therefore,
we only need to prove that the position of atom S, is uniquely determined. For an amino acid cysteine

. . , . c
with node index i, we use p;, pZ, and pL to denote the unit vectors of r&> — r{ r;’” — r& and
S,

r;” —r; s The unit vectors of p} x p? and p? x p are denoted as a; and b;. Given the side chain
torsion angle x7 , we have

az'bi:COSX}7 (18)
a; x b; - p? =sin x}.
Assume the position of atom S is not uniquely determined by X}, then there is an alternative position

of S, satisfying Eq. 18. The new unit vector from Cj to S, is denoted as p? , and b}, = p? x p?.
Substituting b, into Eq. 18 and subtracting the derived equations with Eq. 18, we can derive that

a; - (b; — b}) =0,

19
< (b~ b]) - p? =0, )

Since vectors a; and b; — b, are perpendicular to p?, a; x (b; — b}) = pp? holds for some p # 0.
Then we can derive that

i % (b; = b}) - pi = pp; - p} = 0. (20)
Since p # 0 and p? is a unit vector, Eq. 20 creates a contradlctlon Therefore, such p3 does not exist,
and the position of atom S, is uniquely determined by Xk O
C PRONET

In this section, we provide details about the geometric representations and the model architecture.

C.1 GEOMETRIC REPRESENTATIONS

The geometric representation at the amino acid level is F(G)vase = {(dji, 0ji, @jis Tji) Fi=1,...n, jeN;
as introduced in Sec. 3.1. For each edge ji, we need to compute four geometries based on the
positions of nodes i, 5,4 — 1,7+ 1,7 — 1 and j + 1. We use p;, p, Pi;, P}, P; to denote the unit
vectorsof r;_q —r;,r;41 —r;,r; —r;,r;_1 —r;and rj;q —r;. Then the four geometries for edge
7t are computed based on

dji = |Ipislly

1
0;; = arccos (pi . pij) ,
1 2 1
n; =p; Xp;, nN2=Dp; XDPij,
¢ji = atan2 (ny - ng, N1 X ny),
_[p? ifj=i-1 B p?, ifi=45—-1
Pi= p}, otherwise 7 \pj, otherwise

2

n3 = p;; X p;, g =Pp;; XDPy,
Tj; = atan2 (ng - Ny, N3 X Ny) .
As introduced in Sec. 3.2, the geometric representation at the backbone level is
f(G)bb = F(G)base U {(Tjw T]w sz)}z 1,...,n, JEN;
3
= {(dji, 0ji, Dji, Tji) Yi=1,....n, jeN; U{(TymT]szjz)}izl,...,n,jENi (22)
1.2 3
= {(djis Ojis Gjis Tjis Tjis Tiis Tii) Yim1,..m, JEN; -

The steps to compute the Euler angles 71, 72, 73 are provided in Sec. 3.2 and Fig. 2.
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As introduced in Sec. 3.3, the geometric representation at the all-atom level is
]:(G)all = ‘F(G)bb U {(X117 X?v X?v X?)}i:l,...,n
= {(dju@jzv¢jz‘7sz',lem7']‘2“7']31*)}1‘:17...,71,3‘@\& U {(le,X?,X?’X?)}izl,...,n-

The atoms used to compute the side chain torsion angles ', x2, x3, x* are provided in Table 7.

(23)

C.2 MODEL ARCHITECTURE

Overall architecture. As shown in Fig. 4, the architecture of ProNet contains several interaction
layers and an output layer. Each of the interaction layers updates node features based on the message
passing scheme in Eq. 1. Specifically, for an interaction layer, the inputs are node features, edge
features, and geometric representations, and the outputs are updated node features. Given the inputs,
we firstly construct two intermediate updated node features. The first one is obtained by the Conv
layer, and the second one is obtained by the Hier-Geom-MP layer. Then we concatenate these
intermediate updated node features and use several fully-connected layers to obtain the final output
of this interaction layer. Following interaction blocks, the final protein representation g is obtained
with the output layer, which is implemented with a READOUT function:

g = READOUT ({v}/}i=1,..n). (24)

Here, vF indicates the feature vector of node i at the last layer. Specifically, the Readout function
includes a summation function and several fully-connected layers.

Basis function. We use basis functions to embed our proposed geometric representations. Specifically,
we use spherical harmonics to encode distance d and angles 6, ¢, 7, 71, 72, 73 following Liu et al.

(2022). Formally, (d, 0, ¢) is encoded with j (%d) Y7(0, ), and (d, 7). (d, V), (d, 72). (d, 7%)

c
are encoded with j, (%d) Y (a). Here a canbe 7, 71, 72, or 73. jy(-) is a spherical Bessel function

of order £, Y™ is a spherical harmonic function of degree m and order ¢, c is the cutoff, and 3y, is
the n-th root of the Bessel function of order ¢. In addition, we use sin and cos functions to embed the
side chain torsion angles x*, x2, x3, x*.

Conv block. The Conv block is adapted from the GraphConv layer (Morris et al., 2019) to update node
features. Specifically, given input node features {Vf}zzln and edge attributes {f;; }i=1, . n_jen;,
the updating function is mj = Wyv} + Wy Y. \- v§ © (Wafi;). Here © denotes element-wise
multiplication, f;; can be edge features e;; or encoded geometric representations.

D DATASET DESCRIPTION

Fold Dataset. We use the same dataset as in Hou et al. (2018) and Hermosilla et al. (2021). In total,
this dataset contains 16,292 proteins from 1,195 folds. There are three test sets used to evaluate the
generalization ability, namely Fold in which proteins from the same superfamily are unseen during
training, Superfamily in which proteins from the same family are unseen during training, and Family
in which proteins from the same family are present during training. Among the three test sets, Fold is
the most difficult one since this test set differs the most from the training set. In this task, 12,312
proteins are used for training, 736 for validation, 718 for Fold, 1,254 for Superfamily, and 1,272 for
Family.

Reaction Dataset. For reaction classification, the 3D structure for 37,428 proteins representing 384
EC numbers are collected from PDB (Berman et al., 2000), and EC annotations for each protein are
downloaded from the SIFTS database (Dana et al., 2019). The dataset is split into 29,215 proteins for
training, 2,562 for validation, and 5,651 for testing. Every EC number is represented in all 3 splits,
and protein chains with more than 50% similarity are grouped together.

LBA Dataset. Following Somnath et al. (2021) and Townshend et al. (2021), we perform ligand
binding affinity predictions on a subset of the commonly-used PDBbind refined set (Wang et al.,
2004; Liu et al., 2015). The curated dataset of 3,507 complexes is split into train/val/test splits based
on a 30% or 60% sequence identity threshold to verify the model generalization ability for unseen
proteins. For a protein-ligand complex, we predict the negative log-transformed binding affinity
pK = —log1o(K) in Molar units.
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Table 8: Model and training hyperparameters for our method on different tasks.

Values/Search Space

Hyperparameter

Fold Reaction LBA PPI
Number of layers 3,4,5 3,4,5 3,4,5 3,4,5
Hidden dim 64, 128, 256 64, 128, 256 64, 128, 256 64, 128, 256
Cutoff 6,8, 10 6,8, 10 6,8, 10 30
Dropout 0.2,0.3,0.5 0.2,0.3,0.5 0.2,0.3 0
Epochs 1000 400 300 20
Batch size 16, 32 16, 32 8, 16, 32, 64 8,16, 32
Learning rate le-4, 2e-4, 5e-4  le-4, 2e-4, 5e-4  le-5, 5e-5, le-4, 5e-4  le-4, 2e-4, Se-4
Learning rate decay factor 0.5 0.5 0.5 0.5
Learning rate decay epochs 100, 150, 200 50, 60, 70, 80 50, 70, 100 4,8,10

PPI Dataset. Following the dataset and experiment settings in Townshend et al. (2021), we predict
whether two amino acids contact when the two proteins bind. We use the Database of Interacting
Protein Structures (DIPS) (Townshend et al., 2019) for training and make prediction on the Docking
Benchmark 5 (DBS5) (Vreven et al., 2015). The split of protein complexes ensures that no protein in
the training dataset has more than 30% sequence identity with any protein in the DIPS test set or the
DBS5 dataset.

E EXPERIMENTAL SETUP

This section describes the full experiment setup for each task considered in this paper. The imple-
mentation of our methods is based on the PyTorch (Paszke et al., 2019) and Pytorch Geometric (Fey
& Lenssen, 2019), and all models are trained with the Adam optimizer (Kingma & Ba, 2014). All
experiments are conducted on a single NVIDIA GeForce RTX 2080 Ti 11GB GPU. The search space
for model and training hyperparameters are listed in Table 8. Note that we select hyperparameters at
the amino acid, backbone, and all-atom levels by the same search space, and optimal hyperparameters
are chosen by the performance on the validation set.

Fold and Reaction dataset. Similar to Hermosilla et al. (2021), we apply data augmentation
techniques to increase data on fold and reaction classification tasks. Specifically, for the input data,
we apply Gaussian noise with a standard deviation of 0.1 and anisotropic scaling in the range [0.9, 1.1]
for amino acid coordinates. The same noise is added to the atomic coordinates within the same amino
acid, ensuring that the internal structure of each amino acid is not changed. We also mask the amino
acid type with a probability of 0.1 or 0.2. For each interaction layer, we employ a Gaussian noise with
a standard deviation of 0.025 to both features and Euler angles to further enhance the robustness of
our models. We also find that warmup can further improve the performance on reaction classification.

LBA dataset. We follow the experiment settings in Somnath et al. (2021) for LBA tasks. Since our
proposed methods focus on protein representation learning, we employ a two-branch network for a
fair comparison. One branch of the network provides the representations for protein structures using
our methods and the other branch generates the representations for ligands with a graph convolutional
network. We employ the same architecture for the ligand branch as in Somnath et al. (2021) and use
our models as the protein branch. A few fully-connected layers are then applied to the concatenations
of protein and ligand representations to obtain the final representation of the corresponding complex.

F ADDITIONAL EXPERIMENTAL RESULTS
F.1 RESULTS ON LBA

Results on LBA Dataset with standard deviation are listed in Table 9 and Table 10.

F.2 RESULTS ON ADDITIONAL DATASETS FROM ATOM3D
We also conduct experiments on additional datasets from Atom3D (Townshend et al., 2021), specifi-

cally on Protein Structure Ranking (PSR) and Ligand Efficacy Prediction (LEP) datasets. Detailed
descriptions of these datasets are provided below.
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Table 9: Results with standard deviation on LBA dataset split by sequence identity 30%. The top two
results are highlighted as 1st and 2nd. * denotes methods trained with binding pockets only.

Method Sequence Identity 30 %
RMSE Pearson Spearman

Atom3D-3DCNN* (Townshend et al., 2021) 1.416 £ 0.021  0.550 £+ 0.021  0.553 +0.009
Atom3D-ENN* (Townshend et al., 2021) 1.568 £ 0.012 0.389 +0.024 0.408 + 0.021
Atom3D-GNN* (Townshend et al., 2021) 1.601 +0.048 0.545 +£0.027 0.533 +0.033
DeepDTA (Oztiirk et al., 2018) 1.866 + 0.080 0.472 +0.022 0.471 £+ 0.024
Bepler and Berger (2019) (Bepler & Berger, 2019)  1.985 £ 0.006  0.165 £ 0.006  0.152 £ 0.024
TAPE (Rao et al., 2019) 1.890 +£0.035 0.338 £0.044 0.286 £ 0.124
ProtTrans (Elnaggar et al., 2021) 1.544 £ 0.015 0.438 £ 0.053 0.434 £+ 0.058
MaSIF (Gainza et al., 2020) 1.484 +£0.018 0.467 £ 0.020 0.455 £ 0.014
GVP* (Jing et al., 2021a) 1.594 + 0.073 - -
IEConv (Hermosilla et al., 2021) 1.554 £ 0.016 0.414 +0.053 0.428 +0.032
Holoprot-Full Surface (Somnath et al., 2021) 1.464 +0.006 0.509 £+ 0.002 0.500 £ 0.005
Holoprot-Superpixel (Somnath et al., 2021) 1.491 £ 0.004 0.491 +£0.014 0.482 +0.032
ProNet-Amino Acid 1.455 +£0.009 0.536 +£0.012 0.526 + 0.012
ProNet-Backbone 1.458 +£0.003  0.546 + 0.007 0.550 + 0.008
ProNet-All-Atom 1.463 +£0.001  0.551 +0.005 0.551 + 0.008

Table 10: Results with standard deviation on LBA dataset split by sequence identity 60%. The top
two results are highlighted as 1st and 2nd. * denotes methods trained with binding pockets only.

Method Sequence Identity 60 %
RMSE Pearson Spearman

Atom3D-3DCNN* (Townshend et al., 2021) 1.621 £0.025 0.608 + 0.020 0.615 £+ 0.028
Atom3D-ENN* (Townshend et al., 2021) 1.620 £ 0.049 0.623 £ 0.015 0.633 £+ 0.021
Atom3D-GNN* (Townshend et al., 2021) 1.408 +0.069 0.743 +£0.022 0.743 + 0.027
DeepDTA (Oztiirk et al., 2018) 1.762 £ 0.261  0.666 + 0.012  0.663 £ 0.015
Bepler and Berger (2019) (Bepler & Berger, 2019)  1.891 £ 0.004  0.249 + 0.006  0.275 + 0.008
TAPE (Rao et al., 2019) 1.633 £ 0.016 0.568 +0.033  0.571 &+ 0.021
ProtTrans (Elnaggar et al., 2021) 1.641 £0.016  0.595 + 0.014  0.588 + 0.009
MaSIF (Gainza et al., 2020) 1.426 +£0.017 0.709 &+ 0.008 0.701 & 0.001
IEConv (Hermosilla et al., 2021) 1.473 £0.024 0.667 +£0.011  0.675 &+ 0.019
Holoprot-Full Surface (Somnath et al., 2021) 1.365 +0.038  0.749 +0.014 0.742 + 0.011
Holoprot-Superpixel (Somnath et al., 2021) 1.416 £0.022 0.724 £ 0.011  0.715 £ 0.006
ProNet-Amino Acid 1.397 £ 0.018 0.741 +£0.008 0.734 & 0.009
ProNet-Backbone 1.349 £ 0.019 0.764 &+ 0.006 0.759 + 0.001
ProNet-All-Atom 1.343 £ 0.025  0.765 £+ 0.009 0.761 £ 0.003

PSR (Protein Structure Ranking). Table 11: Results on the PSR task. The top two results are

This task aims to predict the global Nighlighted as 1st and 2nd.

distance test (GDT_TS) for each pro-

: dis f Tated Method Mean Rs T Global Rg 1
ten and s formulated as a regres- o LR NN Townshend etal,, 2021) 0431 0.789
sion task. In terms of the evaluation  Aom3D-GNN (Townshend et al., 2021) 0.411 0.750
metrics, Rg is Spearman correlation. ~ GVP-GNN (Jing et al., 2021a) 0.511 0.845
Mean Rg measures the correlation for  proNet-Amino Acid 0.621 0.795
structures corresponding to the same  ProNet-Backbone 0.638 0.845

ProNet-All-Atom 0.632 0.849

biopolymer, whereas global Rg mea-
sures the correlation across all biopolymers. The results are listed in Table 11. As shown in the table,
our methods can outperform all baseline methods and significantly improve mean Rg results.

LEP (Ligand Efficacy Prediction). Table 12: Results on the LEP task. The top two results are
This task aims to predict whether a highlighted as 1st and 2nd.
molecule bound to the structures will

be an activator of the protein’s func- Method AUROC 1
tion or not. This task is formulated Atom3D-3DCNN (Townshend et al., 2021) 0.589
inarv classification k. and th Atom3D-GNN (Townshend et al., 2021) 0.681
as alb ary class. .CafA%Rt"gC’ ant N Atom3D-ENN (Townshend et al., 2021) 0.663
e"f‘ uatl"l‘_‘ mzt_rlc%sbl DA he re- GVP-GNN (Jing et al., 20212) 0.628
sults are listed in lable 12. As shown
in the tabl thod t ProNet-Amino Acid 0.646
1n the table, our methods can outper- ProNet-Backbone 0.687
form all baseline methods. ProNet-All-Atom 0.692

21



	Introduction
	Background
	Hierarchical Protein Structures
	Complete 3D Graph Networks

	Hierarchical Representations of Protein Structures
	Amino Acid Level Representations
	Backbone Level Representations with Euler Angles
	All-Atom Level Representations with Side Chain Torsion Angles
	Completeness Analysis

	ProNet
	Related Work
	Experiments
	Fold Classification
	Reaction Classification
	Ligand Binding Affinity
	Protein Protein Interaction
	Observations and Ablation Studies

	Conclusion
	Side Chain Torsion Angles
	Proofs
	Proof of the Completeness for Backbone Level Representation
	Proof of the Completeness for All-Atom Level Representation

	ProNet
	Geometric Representations
	Model Architecture

	Dataset Description
	Experimental Setup
	Additional Experimental Results
	Results on LBA
	Results on additional datasets from Atom3D


