
Single-Stage Visual Relationship Learning using
Conditional Queries

Alakh Desai1, Tz-Ying Wu1, Subarna Tripathi2, Nuno Vasconcelos1

1University of California San Diego, USA
2Intel Labs, USA

Abstract

Research in scene graph generation (SGG) usually considers two-stage models, that
is, detecting a set of entities, followed by combining them and labelling all possible
relationships. While showing promising results, the pipeline structure induces large
parameter and computation overhead, and typically hinders end-to-end optimiza-
tions. To address this, recent research attempts to train single-stage models that
are computationally efficient. With the advent of DETR[3], a set based detection
model, one-stage models attempt to predict a set of subject-predicate-object triplets
directly in a single shot. However, SGG is inherently a multi-task learning problem
that requires modeling entity and predicate distributions simultaneously. In this
paper, we propose Transformers with conditional queries for SGG, namely, TraCQ
with a new formulation for SGG that avoids the multi-task learning problem and the
combinatorial entity pair distribution. We employ a DETR-based encoder-decoder
design and leverage conditional queries to significantly reduce the entity label
space as well, which leads to 20% less parameters compared to state-of-the-art
single-stage models. Experimental results show that TraCQ not only outperforms
existing single-stage scene graph generation methods, it also beats many state-of-
the-art two-stage methods on Visual Genome dataset, yet is capable of end-to-end
training and faster inference.

1 Introduction

Scene graph generation (SGG) provides a structured representation of visual relations in a scene. A
scene graph is a set of subject-predicate-object triplets, where subjects and objects are entity nodes
in the graph and predicates are edges representing the relationship between pairs of entities. Due to
its compact structure, SGG has been adopted as a foundational step for several high-level machine
cognition tasks, including caption generation [48, 47, 29], visual question answering [13, 30], image
retrieval [14, 38] and image generation [15, 22, 36]. However, SGG is far from a trivial problem, due
to the complexity of detecting and pairing subject-object entities and inferring the predicate between
each subject-object pair, requiring the model to excel at both entity and relationship detection. Hence,
most research in the problem decomposes it into two separate sub-tasks, entity detection and predicate
detection, which are modeled sequentially. This leverages success in object detection [7, 31] and
leads to the predominance of two-stage networks in the literature [4, 52, 35, 34, 21, 43, 45, 25],
where an object detector such as the faster-RCNN [31] solves the first sub-task, reducing the SGG
modeling to the second stage that addresses the pairing of subject-object entities and classifying
of predicate categories. The predicate detection part is typically achieved by ranking the O(N2)
triplet proposals generated by the exhaustive pairing of N entity predictions. While these models
have shown promising results, the pipeline structure usually comes with significant parameter and
computation overhead, which hinders end-to-end SGG optimization under memory constraints, and
leads to sub-optimal solutions.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

To enable end-to-end optimization, some recent works introduce one-stage models based on point-
based detection [26] and transformer-based detectors [5, 33, 20]. Since SGG is inherently a multi-task
learning problem, the main idea is to model the entity detection and predicate detection in parallel,
which can be done in multiple ways. These models, however, face the problem of having to learn
a joint feature space for two very different tasks. To circumvent the difficulty of this problem,
they disentangle entity detection and predicate classification by training separate decoder branches
for the two tasks. However, we hypothesize that this form of disentanglement is too strong for
SGG, since capturing the interactions in a scene requires three kinds of features: fe tuned for entity
detection (object detection), fp tuned for predicate classification, and fi tuned for capturing the
relationships between entities and their surroundings. While fe can be learned well under a complete
disentanglement of the two tasks, fi is hard to capture without some amount of feature tuning for
entity detection. In general, the task of predicate classification is what drives the learning of the
interaction features. Therefore, fp and fi rely heavily on each other and benefit from some amount of
coupled learning.

With this in mind, we propose Transformers with conditional queries (TraCQ), with a new formulation
for scene graph generation. Instead of trying to learn fe and fi together in the entity detection branch,
TraCQ learns fp and fi together in a predicate detection branch H, which then conditions the learning
of fe by a separate entity refinement module C. A weak coupling between predicate and entity
detection is then ensured by forcing H to learn fi through the prediction of loose estimates of subject
and object bounding boxes. A major effect of this formulation is that the distribution that H learns is
conditioned on the non-combinatorial predicate space, while typical SGG models disentangle the
learning of fp from (fi, fe) where the entity decoder is expected to learn a distribution based on the
combinatorial O(E × E) space. Given that we have limited features and (fi, fp) are closely related, it
is easier to learn from the non-combinatorial predicate space than the O(E × E) entity pair space.
This reduction in distribution space implies that a simpler and smaller model can be used for SGG.

Overall, this paper makes the following contributions. First, we introduce a new formulation of the
single-stage SGG task that avoids the multi-task learning problem and the combinatorial entity pair
space. Second, we propose a novel architecture, Transformers with conditional queries (TraCQ),
wherein conditional queries are leveraged to significantly reduce the inference time and the distribution
space to learn, which leads to 20% less parameters compared to state-of-the-art single-stage models.
Finally, we show that TraCQ achieves improved SGG performance than state-of-the-art methods on
Visual Genome dataset, yet is capable of end-to-end training and faster inference.

2 Preliminaries

Transformers [37] are powerful models for sequence modeling, based on an encoder-decoder
architecture. Both the encoder and the decoder modules stack multiple attention-based blocks,
differing on the type of attention mechanisms employed. Encoding blocks perform self-attention
across input tokens, while decoding blocks perform cross-attention between encoder output and
predictions. The attention operation is defined over a set of queries Q ∈ R

n×dq , keys K ∈ R
n×dk

and values V ∈ R
n×dv , where dq = dk, according to

Attention(Q,K,V) = Softmax

(
QKT

√
dk

)
V. (1)

Information from different representation subspaces is learned at different positions with resort to
multihead attention based on different attention heads,

MultiHead(Q,K,V) = Concat(head1, · · · , headh)W
O where WO ∈ R

dv×h (2)

headi = Attention(QWQ
i ,KWK

i ,VWV
i), (3)

where {WQ
i ,W

K
i ,WV

i } are the parameters of the ith head. This is followed by a normalization
layer [2] (LN) with residual connection in each block. We denote the entire module as the attention
stack, Attnstack(Q,K,V), of queries Q, keys K and values V, moving forward.

DETR [3] is a Transformer-based object detector. A CNN backbone first generates a fea-
ture tensor Fb ∈ R

H×W×d for an image I. An encoder then learns context features Fv =
Attnstack(QE ,KE ,VE) ∈ R

L×d, where L = H × W , QE = KE = VE = flatten(Fb) + Ep,

2

FFN
I FFN

FFN
FFN
FFN

FFN
FFN
FFN

FFN
FFN

I

FFN
FFN
FFN

FFN
FFN

ISPO SPO SPO

Single Decoder (SD) Dual Decoders (DD) Dual DETR (DDTR)

Figure 1: Baselines. Enc, Dec, and M denote the encoder, decoder, and Hungarian matching
respectively. (·)p represents that the instance is for predicate detection, and (·)e is for entity detection.
SPO denotes triplets of <subject,predicate,object>.

and Ep ∈ R
L×d is a fixed positional encoding. The decoder transforms a set of entity queries

Qentity ∈ R
Ne×de into entity representations

ZE = Attnstack(Qentity,Qentity,Fv) ∈ RNe×d. (4)

Separate feed forward networks (FFNs) are finally used to predict each entity ê = (b̂, ĉ), composed

by class label ĉ and a bounding box b̂, from ZE .

DETR adopts a set prediction loss for entity detection, which performs bipartite matching between

the ground truth set Y and the predicted set Ŷ with the Hungarian matching algorithm [19], i.e.

σ̂ = argmin
σ∈GNe

Ne∑
i=1

Cmatch(êσ(i), ei), (5)

where GNe
denotes the set of permutations of Ne predicted entities, ei = (ci, bi) ∈ Y , c, b indicate

target class and box coordinates respectively, êσ(i) ∈ Ŷ ,

Cmatch(ê, e) = −�{c �=φ}pc
ê + �{c �=φ}Lbox(b̂, b) (6)

and pc
ê is the logit for class c of entity ê. Note that Y is padded with background tokens φ. Finally,

the set prediction loss is formulated as,

LDETR =

Ne∑
i=1

[Lcls(ĉσ̂(i), ci) + �{ci �=φ}Lbox(b̂σ̂(i), bi)], (7)

where Lcls denotes the cross-entropy loss for label classification, Lbox consists of L1 and generalized
IoU loss [32] for box coordinates regression.

In this work, we adopt a modified attention mechanism, namely Poll and Pool attention from PnP-
DETR[39], which abstracts the image feature map into fine foreground object feature vectors and
a small number of coarse background contextual feature vectors. We use PnP-DETR for faster
convergence and computation efficiency.

3 Toward Single-Stage End-to-End Scene Graph Generation

3.1 Two-stage models

Given an image I, scene graph generation produces a scene graph G to describe visual relations
in a scene. G consists of a set of entity vertices E , typically objects, and a set of directed edges P
representing predicates, typically relationships between objects such as “to the left of." Each vertex
in E is a tuple consisting of the bounding box b and the class label y of an entity instance, while
each edge in P denotes the predicate label between a pair of entities. Each edge and its connected
vertices form a relation tuple < (bsub, ysub) − p − (bobj , yobj) >, which is alternatively called

subject-predicate-object (SPO) triplet, e.g. “a man in region bsub - to the left of - a car in region
bobj ." This is a complex task involving entity and predicate detection, which requires to model both
entity and predicate distributions. Prior research [52, 6] usually models the problem as

Pr(G|I) = Pr(Y,B|I)Pr(P|B,Y, I), (8)

3

Table 1: Preliminary experiments. The architectures of these baselines are presented in Figure 1.

Model
mean Recall (↑) #params (↓) Inference time (↓)

@20 @50 @100 (M) (sec)

SD 5.7 6.2 6.3 41.7M 0.063
DD 6.5 6.9 7.0 51.1M 0.068

DDTR 9.2 11.8 13.0 82.9M 0.220

where Y = {yi}|E|i=1 and B = {bi}|E|i=1. A state-of-the-art object detector [7, 31] is then used to handle
the first component, reducing the SGG problem to the second. While this two-stage formulation has
produced good results, it leads to quite slow inference, since it requires an exhaustive search through
the space of O(N2). In addition, two-stage models usually have large parameter and computation
overhead, which inhibits end-to-end SGG optimization, and makes the overall solution sub-optimal.

3.2 Learning scene graph generation with set predictions

With the advent of DETR [3], there has been a shift to single-stage end-to-end SGG learning, by
adoption of a Transformer-based encoder-decoder architecture for SPO triplet set predictions. Several
models have been proposed [5, 33, 20]. While efficient, these methods tend to have a weaker
performance than two-stage models. We hypothesize that this is due to the entanglement between
the feature spaces used to represent entities and predicates. This entanglement is unavoidable, since
the detection of a predicate always requires some knowledge of the associated subject and object.
However, a very strong entanglement is undesirable, because predicates and entities have very
different distributions. Since the individual distributions of predicates and entities are long-tailed, the
joint distribution of their pairs is extremely long-tailed. Hence, most pairs are very poorly represented
in a highly entangled feature space.

We next test this hypothesis by performing some preliminary experiments on a set of baseline models
of varying levels of disentanglement between the entity and predicate feature spaces.

Single decoder (SD) uses a pair of encoder and decoder modules, followed by five FFNs to decode
each element < (bsub, ysub) − p − (bobj , yobj) > of the SPO tuple. The encoder learns a context
feature tensor from the input image I , and the decoder takes these features and random queries Q to
generate the FFN input. Since it generates the whole SPO triplet at once, this model learns a feature
space where entities and predicates are highly entangled.

Dual decoders (DD) consists of a shared encoder and dual decoders for predicate and entity detection
respectively, where the former decodes < bsub − p − bobj > tuples and the latter decodes <
ysub − yobj > pairs. By feeding a common set of random queries Q to the two decoders, we ensure
that no matching between the two output sets is needed. This is important to keep complexity
competitive with that of SD. While introducing some additional cost, the use of two separate decoders
encourages the disentanglement of the predicate and entity feature spaces. However, two architecture
components still encourage entanglement: 1) the use of a common encoder and 2) the sharing of
queries by the two decoders.

Dual DETRs (DDTR) avoids these problems by introducing separate DETR models, each with its
own encoder, decoder and random queries, for detecting predicates and entities respectively. Similar
to DD, one model decodes < bsub − p− bobj >, and the other < ysub − yobj >. Since each DETR
has an individual set of random queries, a brute-forced matching between the two sets of outputs is
needed to generate the detected graph. Assuming M predicates and N entity predictions, there are
M ×PN

2 SPO tuples. Generating the cost matrix between the two sets is computationally expensive.
However, this model also has the weakest entanglement between feature spaces.

In table 1, we compare the performance of these three baselines, in terms of mean Recall (see
Section 5.1) on the Visual Genome (VG) [18] dataset. The number of parameters and the inference
time are also provided. It is clear that disentangling predicate and entity representations is a good
strategy for solving SGG. However, the computational cost of disjoint queries is quite high, including
more parameters and lower inference speed. The question is whether the DD architecture can be
improved to achieve performance closer to DDTR, while maintaining low parameter and computation
overhead. To accomplish this, we next propose a model, TraCQ, based on the DD architecture. TraCQ

4

FFN
FFN

FFN
FFN
FFN

Entity
Refinement C

CNN Feature
Encoder F

Predicate
Decoder H ̂

()̂

∀ ∈

∀ ∈

Detection Heads

addition ∀ ∈ ,
()

Figure 2: Model architecture of TraCQ.

reduces entanglement by replacing the shared queries of DD with conditional queries and leveraging
decoupled training for predicates and entities.

4 Transformers with Conditional Queries

In this section, we introduce the proposed architecture, Transformers with conditional queries
(TraCQ).

Architecture As shown in Figure 2, the TraCQ model employs the encoder-decoder Transformer
design, composed of a feature extractor F , a predicate decoder H, and a conditional entity refinement
decoder C. The predicate decoder H predicts a set Spred of < bsub − p − bobj > tuples. The
refinement decoder C predicts entity class labels and refines the bounding boxes detected by H,
to predict < (bsub, ysub) − (bobj , yobj) > pairs. The idea is that, the use of C to refine the entity
bounding boxes, frees H from solving this task with high accuracy. Hence, the feature space of H
has to be less representative of entities, enhancing its disentanglement from the space of predicates.
The details of each component are described below.

Feature Extractor The feature encoder F is a transformer encoder that takes a feature tensor Fb

extracted from the image by the CNN backbone and a fixed positional encoding EPos and implements
the self-attention stack to produce a feature tensor Fp that encodes the global image context. To
ensure that Fp emphasizes attention on scene relations, F is trained jointly with H and then frozen
for the training of C. This results in features that are optimal for predicate detection. These features
are richer than those for entity detection, since predicate detection involves an understanding of the
constituent entities in order to detect the relationship between them and even captures the interplay
between the entities in the scene which is difficult to learn if F was trained with C.

The feature Fp is used as the K and V values for both decoders H and C. This module, therefore,
acts as the common encoder for both decoders.

Predicate Detection The predicate detection module H lies at the heart of TraCQ. This module
comprises of a decoder which complements the encoder from F . Similar to an entity detector,
it transforms a set of predicate queries Qp ∈ RNp×dp into the predicate representations ZP =
Attnstack(Qp,Qp,Fp) ∈ RNp×d. Hence, the composition of F and H is equivalent to that of
DETR. However, ZP is fed to three distinct multi-layer FFNs that learn to predict the bounding boxes

b̃sub and b̃obj and the predicate class p̂.

In this way, H learns to predict not only the predicate label but also a pair of bounding boxes for the
subject and the object. This requires H to both learn to localize related entities and understand the
relationship between them. However, predicting two bounding boxes along with the predicate label
is far from trivial, due to the entanglement problems discussed above. To reduce entanglement, H
learns to only roughly localize the subject and object, leaving the exact bounding box localization to
C. Since the key goal of the DETR-like combination of F and H is to predict predicate categories

5

accurately, it learns a visually rich feature space for the predicate distribution. Overall, H predicts a

set Spred of Np 3-tuples < b̃sub, p̂, b̃obj >, which is fed into the entity refinement module C.

Conditioned Entity Refinement C While not accurate, the bounding boxes {b̃sub, b̃obj} received
from H, provide an initial estimate of entity locations. The entity refinement model, C, leverages

these estimates to propose a set of Nce refined bounding boxes {b̂sub, b̂obj}, conditioned on the
predicate label estimate p̂. This is implemented with a second decoder that shares the features Fp

produced by the feature extractor F and a set of queries designed to induce the conditional operation.

For each bounding box estimate in Spred, C predicts Nce refined entity bounding boxes. The queries
used to generate these refinements are

Q(i)
ce = Embb(b̃) + Embp(p̂) +Q

(i)
0 where i ∈ {1, 2, ..., Nce} , (9)

Embb(.) and Embp(.) are two embeddings and Q0 is a DETR-like randomly generated set of Nce

queries, introduced to guarantee that the queries Q
(i)
ce are distinct. From the conditional queries Qce,

C produces Nce distinct corrections by computing representations Zce = Attnstack(Qce,Qce,Fp) ∈
RNce×d. It follows from (1)-(4) that the queries Qce bias the attention of C to the bounding boxes

b̃sub and b̃obj . This constraint encourages C to predict boxes in a substantially smaller region, thereby
limiting the box search space. Furthermore, because attention is modulated by the predicted predicate
label p̂, this search is selective for boxes that comply with the former, which encourages agreement
between entities and predicates, thus limiting the entity label search space.

For each bounding box in Spred, this process produces Nce entity refinements, for a total of N2
ce

5-tuples. k 5-tuples are chosen per predicate in Spred to be part of the predicted scene graph G, which
contains k ×Np scene graph nodes.

Training TraCQ is trained with a set prediction loss for triplet detection that generalizes the

entity detection set prediction loss of (7). Denote by ŷH =< b̃sub, p̂, b̃obj > the prediction of H,

by yH =< bsub, p, bobj > its groundtruth, by ŷC =< ŷe, b̂e > the entity correction of C and by
yC =< ye, be > its groundtruth. TraCQ predicts Np relationships, where Np is larger than the
number of relations in any given image. Similarly to DETR, this is handled by padding the ground
truth set of relations with no-relation tokens φ. This circumvents a difficulty of single-stage models,
which must account for the fact that relations of the types < valid subj - no rel - valid object> are
different from those of the type < no subj - no rel - no object >, or other combinations. The predicate
detection matching cost Cmatch(ŷH, yH) between a predicted and a ground truth triplet generalizes
the matching cost function of (6), considering both the predicate class prediction and the similarity of

predicted b̃ and ground truth b subject/object boxes, according to

Cmatch(ŷH, yH) = −�{p �=φ}pp
yH + �{p �=φ}[Lbox(b̃

sub, bsub) + Lbox(b̃
obj , bobj)] (10)

Similarly, the entity refinement matching cost Cmatch(ŷC , yC) uses both entity boxes and labels to
calculate similarity, according to

Cmatch(ŷC , yC) = −�{ye �=φ}pye

yC + �{ye �=φ}Lbox(b̂
e, be) (11)

where the groundtruth entity e is either the subject (sub) or object (obj) entity of the corresponding
prediction by H. For both subject and object, the box alignment cost is

Lbox(b̂, b) = λgIoULgIoU (b̂, b) + λL1LL1(b̂, b)

Given the triplet cost matrix Cmatch, the Hungarian algorithm [19] is executed for the bipartite
matching and each ground truth triplet i is assigned to a predicted triplet σ̂(i). Let the σ̂H be the
matching of H and σ̂C that of C. Two losses are then defined as

Lp =

Np∑
i=1

[
λlblLcls(p̂j , pi) + �{pi �=φ}{Lbox(b̃

sub
j , bsubi) + Lbox(b̃

obj
j , bobji)}

]
|j=σ̂H(i) (12)

Le =

Np∑
i=1

�{pi �=φ}

⎧⎨
⎩

Nce∑
j=1

[λlblLcls(ŷ
e
k, y

e
j) + �{ye

j �=φ}Lbox(b̂
e
k, b

e
j)] |k=σ̂C(j)

⎫⎬
⎭ (13)

where Lcls is the cross-entropy loss. F and H are trained using Lp, whereas C is trained with Le.
This encourages the decoupling of feature spaces, encouraging the features of F and H to specialize
in predicate prediction and those of C on predicate-conditioned entity detection.

6

Inference The inference stage involves combining the outputs of entity refinement FFNs of C and
the predicate detection FFNs of H to form final triplets. Due to the conditional structure of the
decoder, the predicate detection outputs and the set of k entity refinement outputs have a one-to-one
correspondence. Therefore, k×Np SPO-tuples < (bsub, ysub)−p− (bobj , yobj) > are automatically
generated.

An SGG triplet score striplet is computed per SPO-tuple with striplet = spredssubsobj where ssub
and sobj are the scores of subject and object classification from C, respectively, and spred is the
predicate classification score from H. Finally, the predictions are sorted by descending striplet and
the top m < kNp predictions selected as nodes of the predicted scene graph G.

Comparison to previous approaches When compared to two-stage SGG models, TraCQ replaces
the model of (8) by

Pr(G|I) =
∑
B̂

Pr(P, B̂|I)Pr(Y,B|P , B̂, I), (14)

where B̂ is the set of bounding box estimates computed by H and the marginalization over B̂ is
performed by the conditioning of the queries of C on the predictions of H. Assume, for simplicity,
that the labels Y,P are independent of the bounding boxes B. Then, (8) reduces to Pr(G|I) =
Pr(Y|I)Pr(B|I)Pr(P|Y, I) and its modeling complexity is dominated by the term Pr(P|Y, I),
which is a distribution conditioned the large combinatorial space of O(E × E) entity pairs. On
the other hand, (14) reduces to Pr(G|I) = Pr(P|I)Pr(B|I)Pr(Y|P, I) and its complexity is
determined by Pr(Y|P, I), which is a distribution conditioned on the non-combinatorial space of
predicates. Hence, TraCQ has an innate advantage over the two-stage models, the modeling of
probabilities conditioned on much smaller spaces, which allows it to perform inference much more
efficiently. Furthermore, the conditional queries Qce enforce something akin to ROI pooling, highly
constraining the refinements made by C. First, these are constrained to the region of the bounding
boxes predicted by H. Second, the queries are generated with the predicate label as well and therefore
must learn only those entities that are consistent with this label.

When compared to single-stage models, TraCQ has the advantage of a feature representation where
entities and predicates are less entangled, due to the training of the two decoders with different loss
functions, and the use of decoder C to predict the entity labels and refine the bounding boxes predicted
by H. This places less stress on the training of F and H to produce high quality features for entity
localization and encourages C to produce such features.

In other one-stage models, which predict combinations of entities and decouple just the predicate
classification from entity classification, we observe that the features are not fully disentangled leading
to drop in performance. The disentanglement induced by the predicate detection task reduces the
feature representation space needed to detect the predicates and allows the use of a lightweight model
to learn it.

5 Experiments

In this section, we present the results of TraCQ and ablates its components.

5.1 Settings

Dataset. Visual Genome (VG) [18] is a popular benchmark for SGG. While it is a large dataset
containing 75k object categories and 37k predicate categories, both object and predicate distributions
are highly long-tailed, where most of the categories only have few instances. Hence, a popular subset
VG150 of VG is proposed by [43], which contains the most frequent 150 object classes and 50
predicate classes. We follow the setting of prior works, adopting VG150 in all the experiments.

Metrics. Since the annotations for SGG datasets are usually incomplete, early works in SGG are
mostly evaluated with Recall@K (R@K). However, since SGG is a highly long-tailed problem, most
recent research [4, 34] also present mean Recall@K (R@K), K = {20, 50, 100} as the metric.

7

Table 2: Quantitative results of TraCQ in comparison with state-of-the-art methods on the VG dataset.
TraCQ achieves new state-of-the-art results outperforming existing one-stage and two-stage models
in most metrics, while reducing model complexity without the need for any extra features (e.g., glove
vector, knowledge graph, etc.). Note that ‘-’ indicates that the corresponding results are unavailable.

Extra mean-Recall (↑) Recall (↑) #params (↓)
Method Features Backbone @20 @50 @100 @20 @50 @100 (M)

T
w

o
-S

ta
g
e

MOTIFS[52] � X-101FPN 4.2 5.7 6.6 21.4 27.2 30.5 240.7
KERN[4] � VGG16 - 6.4 7.3 22.3 27.1 - 405.2

GPS-Net[25] � VGG16 6.9 8.7 9.8 22.3 28.9 33.2 -
BGNN[21] � X-101FPN 7.5 10.7 13.6 23.3 31.0 34.6 341.9

VCTree-TDE[34] � X-101FPN 6.3 9.3 11.1 14.3 19.6 23.2 360.8
IMP+[43] � VGG16 2.9 3.8 4.8 14.6 20.7 24.5 203.8

G-RCNN[45] � VGG16 - - - - 11.4 13.7 -

O
n
e

S
ta

g
e

FCSGG[26] � HRNetW48-5S-FPN 2.7 3.6 4.2 16.1 21.3 25.1 87.1
RelTR[5] � ResNet-50 5.8 8.5 - 20.2 25.2 - 63.7

Relationformer[33] � ResNet-50 4.6 9.3 10.7 22.2 28.4 31.3 92.9
TraCQ (ours) � ResNet-50 12.0 13.8 14.6 19.7 28.3 35.7 51.2

5.2 Implementation details

The PnP-DETR[39] is set with sample ratio α of 0.33 and pool samples M of 60. We adopt ResNet-
50 [10] with a 6-layer transformer encoder as the visual feature extractor F . Both decoders H and
C have a 6-layer transformer, with 8 and 4 attention heads respectively. The number of queries Np

is set to 200 and Nce is set to 10 with k = 5. The FFNs for bounding box prediction have 3 linear
layers with ReLU, while the FFNs for predicting object and relation labels have one linear layer.

We initialize the network with the parameters of PnP-DETR trained on VG for object detection, and
adopt the default weight coefficients λL1 , λGIoU and λlbl from [39]. The network is optimized with
AdamW [27] where the weight decay is 10−4. The learning rates for training the backbone and the
rest modules are 10−5 and 10−4 respectively. All experiments are conducted on 8 NVIDIA TITAN
X GPUs, with total batch size of 32.

5.3 Comparisons to baselines

The baselines in Table 1 show the importance of disentanglement, where the performance increase
from SD to DDTR. However, disjoint queries lead to large computational overhead due to the
post-processing matching step and there is no way for further joint optimization. Learning from
these baselines, TraCQ is a DD-type model leveraging decoupled training to disentangle the two
distributions in representation learning while maintaining certain degree of dependence between the
two tasks. As a result, TraCQ outperforms all these baselines with a large margin (2.8 point gain
over DDTR in mR@20), while maintaining similar number of parameters as DD and achieving 1.5x
faster inference than DDTR. This highlights that complete disentanglement is not possible, since the
detection of a predicate always requires some knowledge of the associated subject and object.

5.4 Comparisons to prior methods

We compare scores of R@K, mR@K and number of parameters of TraCQ with several two-stage and
one-stage models in Table 2. The usage of extra features such as semantic and statistic information
by the model is indicated to distinguish those models from visual appearance based models. TraCQ
beats all models in terms of mR@K while having 20% fewer parameters than [5], reportedly having
the smallest model size. It also exhibits a much less drastic drop in the mean recall values when we
go from 100 to 20 for mR@K. This shows that the model is more confident about it’s predictions
than others. In R@20 and R@50, TraCQ lags behind only those two-stage models, that are heavier
and/or use extra features in their pipeline. TracQ is the first one-stage model that beats two-stage
models in terms of performance with a much smaller model size.

5.5 Ablation studies

We perform the following ablations on TraCQ to understand the influence of each component.

8

Table 3: Ablations on the orders of entity
detection and predicate detection.

Model
mean Recall (↑)

@20 @50 @100

Entity-first 11.2 12.3 12.7
Predicate-first (ours) 12.0 13.8 14.6

Table 4: Ablation on the hyper-parameter k. SGG
is evaluated with mR@20 and R@20.

k #Predictions (↓) mR@20 (↑) R@20 (↑)

1 200 8.9 18.4
5 1000 12.0 19.7
10 2000 12.1 19.7
15 3000 12.1 19.7

Table 5: Ablation on bounding box refinements.

Entity box prediction b̂e mR@ 20 / 50 / 100

From H (no correction) 17.2 / 18.0 / 18.1
From C (ours) 16.9 / 18.6 / 19.2

Table 6: Ablation on conditioned queries.

Conditioned queries mR@ 20 / 50 / 100

w/o Embp(p̂) 10.8 / 12.4 / 13.1
Qce (ours) 12.0 / 13.8 / 14.6

Ablations on the formulation To validate the effectiveness of the proposed formulation, we
also conduct the experiment of the entity-first variant. Different from TraCQ that predicts entity
labels based on predicate predictions, this variant performs entity detection first and conditions
predicate classification on it. We maintain similar setup as TraCQ on other components to ensure fair
comparison. Table 3 shows that this variant underperforms the proposed formulation. This supports
our idea of avoiding the combinatorial entity label space.

Ablations on the hyperparameter k The hyperparameter k controls the number of candidate entity
bounding boxes. We evaluate TraCQ with different values of k and present the mR@20 and R@20 in
Table 4. We can see that the performance saturates quickly as the number of predictions (denoted as
#Predictions) increases. Since the inference time is proportional to k, we pick k = 5.

Ablations on bounding box refinements The entity refinement module, C, performs entity detec-
tion using the global features and the conditioned queries of entity bounding boxes and predicates. To
study how much box refinement was happening from H to C, we directly take the predicted bounding

box of subject and object, i.e. b̃sub and b̃obj , from the predicate decoder H as the final prediction, but
not correct the entity bounding boxes with C. Since H does not produce class labels for subjects and
objects, we evaluate the network in the task of Predicate Detection (PredDet), where ground-truth
entity labels are given and the task is to predict < bsub − p− bobj > tuples. Table 5 presents such
results compared to TraCQ under the mR@K metric, which shows that the model performance drops
when removing the entity refinement module.

Ablations on conditioned queries We also ablate the impact of using the predicate labels p̂ for
generating the predicate conditioned queries Qce for C. We retrain C conditioned only on the bounding
boxes from H, namely, removing Embp(p̂) from (9). The bounding box conditioning cannot be
removed, since that reduces C to a general entity set detection model. Table 6 presents the effect
of removing the predicate conditioning for C. The performance of the overall model drops by ∼ 2
points at mR@20. This shows that the explicit condition forced onto C by the predicate conditioned
queries does in fact reduce the searching space for inferring entity labels.

6 Related work

Scene graph generation (SGG) has long been studied in the literature due to its wide applicability [48,
47, 13, 14, 38, 15, 22, 36, 15, 22, 36]. Since SGG is a highly complex problem, pioneer works [18,
43, 52] leverage marginalization to decompose the problem into predicate classification, entity
classification and entity localization. This formulation largely impacts the latter research. Most
of the works follow the same pipeline structure which first detects a set of entity proposals with
state-of-the-art object detectors [7, 31] and then classify all the pairs of entity proposals into a
predicate class at the second stage. While object detection is considered as solved, most research
focuses on learning a better mapping between entity pairs and predicate classes [54, 35, 4, 50,
24, 8, 23, 40, 42]. This can be achieved either by learning better representations for contextual
reasoning [52, 21, 4, 41, 42, 46, 49, 17, 28], leveraging external knowledge [9, 51, 8, 50], or unbiased
learning strategy [34, 25, 40, 1, 44, 6]. Among these, Relation Transformer Network[17] and Lu et

9

al [28] are pioneering works adopting Transformer encoder-decoder pair for learning SGG, while
both of them rely on bounding box predictions from a CNN-based object detector. These research
has provided insightful observations and promising results. However, the two-stage formulation
has a fundamental problem, the searching space for relation detection is always O(N2), which can
retard the inference speed. In addition, building another computation module on top of a large
object detector is inefficient in terms of parameters and computations, which prevents end-to-end
optimizations for the SGG task.

To address this, [26, 5, 33, 20] propose one-stage models for SGG. [26] encodes objects as center
points and relationships as vector fields. Although it is lightweight and fast, it has a significant
performance gap compared to other two-stage methods. Others adopt DETR [3]-based architectures.
RelTR[5] combines subject and object queries to decode the triplet predictions, while [33] produces
a set of object tokens and a relation token, and decodes them respectively. [20] is a concurrent work
that requires bipartite graph assembling similar to DDTR. While these works provide inspirational
ideas and allows end-to-end optimizations, they still perform poor than two-stage methods. We
hypothesize that the reason is because of the entangled feature space of entities and predicates. This
paper focuses on a single-stage model with less entanglement between the two distributions.

Transformer-based Detection has become popular for many computer vision tasks recently. The
pioneering work, DETR [3], introduces the set prediction with a Transformer encoder-decoder
architecture, where the encoder learns contextual features and the decoder takes object queries to
generate object proposals. This drastically changes the way object detection is viewed, and inspires
several later works on other tasks, such as instance segmentation [12], visual grounding [11], multi-
object tracking [53] and HOI detection [16]. HOI detection is most similar to our task, SGG, in that
it localizes and recognizes the relationships of each human-object pair. However, there are inherent
differences between these two tasks. The HOI task does not need to deal with the O(E × E) space
since the subject of each interaction tuple is always the human in the scene. Hence, most of the HOI
models cannot be directly transferred to tackle the complexity of the SGG task.

7 Conclusions

Scene graph generation (SGG) deals with two different distributions, namely entities and predicates.
Most methods rely on detecting all entities, followed by combining pairs of entites. Unlike such
two-stage methods, we propose an end-to-end trainable framework for SGG using a Transformer
architecture which decouples these two distributions effectively with conditional queries (TraCQ),
leading to a small model size and an efficient inference mechanism. TraCQ significantly outperforms
existing single-stage methods, even beating the performance of many state-of-the-art two-stage
methods on Visual Genome benchmark.

8 Societal Impacts

SGG models have wide applicability, e.g. caption generation [48, 47], visual question answering [13].
The model itself is harmless and helpful for providing a compact description of the scene. However,
there may be some privacy concerns when the model is utilized for monitoring people and their
interactions. Note that no explicit recognition is involved in this framework.

9 Limitations

In this paper, we focus on developing a single-stage detector for visual relations. We extensively
study different formulations of SGG models with different degrees of entanglement between the
predicate and entity detection task. However, we didn’t deliberately aimed at addressing the long-tail
nature of the two distributions in this work. The unbiased training techniques like resampling or
reweighting can be considered in the future work.

Acknowledgments

This work was partially funded by NSF awards IIS1924937 and IIS-2041009, a gift from Amazon, a
gift from Qualcomm, and NVIDIA GPU donations. We also acknowledge and thank the use of the
Nautilus platform for some of the experiments discussed above.

10

References
[1] Sherif Abdelkarim, Aniket Agarwal, Panos Achlioptas, Jun Chen, Jiaji Huang, Boyang Li, Kenneth Church,

and Mohamed Elhoseiny. Exploring long tail visual relationship recognition with large vocabulary. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15921–15930, 2021.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In Computer Vision – ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, page 213–229, Berlin,
Heidelberg, 2020. Springer-Verlag.

[4] Tianshui Chen, Weihao Yu, Riquan Chen, and Liang Lin. Knowledge-embedded routing network for scene
graph generation. In Conference on Computer Vision and Pattern Recognition, 2019.

[5] Yuren Cong, Michael Ying Yang, and Bodo Rosenhahn. Reltr: Relation transformer for scene graph
generation, 2022.

[6] Alakh Desai, Tz-Ying Wu, Subarna Tripathi, and Nuno Vasconcelos. Learning of visual relations: The
devil is in the tails, 2021.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation, 2013.

[8] Nikolaos Gkanatsios, Vassilis Pitsikalis, Petros Koutras, and Petros Maragos. Attention-translation-relation
network for scalable scene graph generation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pages 0–0, 2019.

[9] Jiuxiang Gu, Handong Zhao, Zhe Lin, Sheng Li, Jianfei Cai, and Mingyang Ling. Scene graph generation
with external knowledge and image reconstruction. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1969–1978, 2019.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[11] Chih-Hui Ho, Srikar Appalaraju, Bhavan Jasani, R Manmatha, and Nuno Vasconcelos. Yoro-lightweight
end to end visual grounding. In ECCV 2022 Workshop on International Challenge on Compositional and
Multimodal Perception, 2022.

[12] Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wang, Ke Li, Feiyue Huang, Ling Shao, and
Rongrong Ji. Istr: End-to-end instance segmentation with transformers. arXiv preprint arXiv:2105.00637,
2021.

[13] Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual reasoning and
compositional question answering. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[14] J. Johnson, R. Krishna, M. Stark, L. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei. Image retrieval
using scene graphs. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 00, pages 3668–3678, June 2015.

[15] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[16] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim, and Hyunwoo J. Kim. Hotr: End-to-end
human-object interaction detection with transformers. In CVPR. IEEE, 2021.

[17] Rajat Koner, Suprosanna Shit, and Volker Tresp. Relation transformer network. arXiv preprint
arXiv:2004.06193, 2020.

[18] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Fei-Fei Li. Visual genome:
Connecting language and vision using crowdsourced dense image annotations. CoRR, abs/1602.07332,
2016.

[19] Harold W. Kuhn. The hungarian method for the assignment problem. In 50 Years of Integer Programming,
2010.

11

[20] Rongjie Li, Songyang Zhang, and Xuming He. Sgtr: End-to-end scene graph generation with transformer,
2021.

[21] Rongjie Li, Songyang Zhang, Bo Wan, and Xuming He. Bipartite graph network with adaptive message
passing for unbiased scene graph generation. In CVPR, 2021.

[22] Yikang Li, Tao Ma, Yeqi Bai, Nan Duan, Sining Wei, and Xiaogang Wang. Pastegan: A semi-parametric
method to generate image from scene graph. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14, December 2019,
Vancouver, BC, Canada, pages 3950–3960, 2019.

[23] Yikang Li, Wanli Ouyang, Bolei Zhou, Jianping Shi, Chao Zhang, and Xiaogang Wang. Factorizable
net: an efficient subgraph-based framework for scene graph generation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 335–351, 2018.

[24] Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xiaogang Wang. Scene graph generation from
objects, phrases and region captions. In Proceedings of the IEEE international conference on computer
vision, pages 1261–1270, 2017.

[25] Xin Lin, Changxing Ding, Jinquan Zeng, and Dacheng Tao. Gps-net: Graph property sensing network for
scene graph generation, 2020.

[26] Hengyue Liu, Ning Yan, Masood Mortazavi, and Bir Bhanu. Fully convolutional scene graph generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
11546–11556, June 2021.

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017.

[28] Yichao Lu, Himanshu Rai, Jason Chang, Boris Knyazev, Guangwei Yu, Shashank Shekhar, Graham W
Taylor, and Maksims Volkovs. Context-aware scene graph generation with seq2seq transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15931–15941, 2021.

[29] Kien Nguyen, Subarna Tripathi, Bang Du, Tanaya Guha, and Truong Q. Nguyen. In defense of scene
graphs for image captioning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1407–1416, October 2021.

[30] Tianwen Qian, Jingjing Chen, Shaoxiang Chen, Bo Wu, and Yu-Gang Jiang. Scene graph refinement
network for visual question answering. IEEE Transactions on Multimedia, pages 1–1, 2022.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28, pages 91–99. Curran Associates, Inc.,
2015.

[32] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese.
Generalized intersection over union: A metric and a loss for bounding box regression, 2019.

[33] Suprosanna Shit, Rajat Koner, Bastian Wittmann, Johannes Paetzold, Ivan Ezhov, Hongwei Li, Jiazhen
Pan, Sahand Sharifzadeh, Georgios Kaissis, Volker Tresp, and Bjoern Menze. Relationformer: A unified
framework for image-to-graph generation, 2022.

[34] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang Zhang. Unbiased scene graph genera-
tion from biased training. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 3713–3722. IEEE, 2020.

[35] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo, and Wei Liu. Learning to compose dynamic
tree structures for visual contexts. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[36] Hung-Yu Tseng, Hsin ying Lee, Lu Jiang, Ming-Hsuan Yang, and Weilong Yang. RetrieveGAN: Image
synthesis via differentiable patch retrieval. In ECCV, 2020.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[38] Sijin Wang, Ruiping Wang, Ziwei Yao, Shiguang Shan, and Xilin Chen. Cross-modal scene graph matching
for relationship-aware image-text retrieval. In IEEE Winter Conference on Applications of Computer
Vision, WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020, pages 1497–1506. IEEE, 2020.

12

[39] Tao Wang, Li Yuan, Yunpeng Chen, Jiashi Feng, and Shuicheng Yan. Pnp-detr: Towards efficient visual
analysis with transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 4661–4670, 2021.

[40] Tzu-Jui Julius Wang, Selen Pehlivan, and Jorma Laaksonen. Tackling the unannotated: Scene graph
generation with bias-reduced models. arXiv preprint arXiv:2008.07832, 2020.

[41] Wenbin Wang, Ruiping Wang, Shiguang Shan, and Xilin Chen. Exploring context and visual pattern of
relationship for scene graph generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8188–8197, 2019.

[42] Sanghyun Woo, Dahun Kim, Donghyeon Cho, and In So Kweon. Linknet: Relational embedding for scene
graph. Advances in Neural Information Processing Systems, 31, 2018.

[43] Danfei Xu, Yuke Zhu, Christopher Choy, and Li Fei-Fei. Scene graph generation by iterative message
passing. In Computer Vision and Pattern Recognition (CVPR), 2017.

[44] Shaotian Yan, Chen Shen, Zhongming Jin, Jianqiang Huang, Rongxin Jiang, Yaowu Chen, and Xian-Sheng
Hua. PCPL: predicate-correlation perception learning for unbiased scene graph generation. In MM ’20:
The 28th ACM International Conference on Multimedia, Virtual Event / Seattle, WA, USA, October 12-16,
2020, pages 265–273, 2020.

[45] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for scene graph generation,
2018.

[46] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for scene graph generation.
In Proceedings of the European conference on computer vision (ECCV), pages 670–685, 2018.

[47] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai. Auto-encoding scene graphs for image captioning.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[48] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual relationship for image captioning. In
The European Conference on Computer Vision (ECCV), September 2018.

[49] Guojun Yin, Lu Sheng, Bin Liu, Nenghai Yu, Xiaogang Wang, Jing Shao, and Chen Change Loy. Zoom-net:
Mining deep feature interactions for visual relationship recognition. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 322–338, 2018.

[50] Ruichi Yu, Ang Li, Vlad I Morariu, and Larry S Davis. Visual relationship detection with internal and
external linguistic knowledge distillation. In Proceedings of the IEEE international conference on computer
vision, pages 1974–1982, 2017.

[51] Alireza Zareian, Svebor Karaman, and Shih-Fu Chang. Bridging knowledge graphs to generate scene
graphs. In European Conference on Computer Vision, pages 606–623. Springer, 2020.

[52] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural motifs: Scene graph parsing with
global context. CoRR, abs/1711.06640, 2017.

[53] Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xiangyu Zhang, and Yichen Wei. Motr: End-to-end
multiple-object tracking with transformer. arXiv preprint arXiv:2105.03247, 2021.

[54] Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-Seng Chua. Visual translation embedding network
for visual relation detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5532–5540, 2017.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

13

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] The code will
be released.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [No]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

