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Figure 1. We propose PartSLIP, a zero/few-shot method for 3D point cloud part segmentation by leveraging pretrained image-language

models. The figure shows text prompts and corresponding semantic segmentation results (zoom in for details). Our method also supports

part-level instance segmentation. See Figure 5 and Figure 7 for more results.

Abstract
Generalizable 3D part segmentation is important but

challenging in vision and robotics. Training deep models
via conventional supervised methods requires large-scale
3D datasets with fine-grained part annotations, which are
costly to collect. This paper explores an alternative way
for low-shot part segmentation of 3D point clouds by lever-
aging a pretrained image-language model, GLIP, which
achieves superior performance on open-vocabulary 2D de-
tection. We transfer the rich knowledge from 2D to 3D
through GLIP-based part detection on point cloud ren-
dering and a novel 2D-to-3D label lifting algorithm. We
also utilize multi-view 3D priors and few-shot prompt tun-
ing to boost performance significantly. Extensive evalua-
tion on PartNet and PartNet-Mobility datasets shows that
our method enables excellent zero-shot 3D part segmenta-
tion. Our few-shot version not only outperforms existing
few-shot approaches by a large margin but also achieves
highly competitive results compared to the fully super-
vised counterpart. Furthermore, we demonstrate that our
method can be directly applied to iPhone-scanned point
clouds without significant domain gaps.

1. Introduction
Human visual perception can parse objects into parts and

generalize to unseen objects, which is crucial for under-
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standing their structure, semantics, mobility, and function-

ality. 3D part segmentation plays a critical role in empower-

ing machines with such ability and facilitates a wide range

of applications, such as robotic manipulation, AR/VR, and

shape analysis and synthesis [2, 31, 39, 69].

Recent part-annotated 3D shape datasets [40,67,72] have

promoted advances in designing various data-driven ap-

proaches for 3D part segmentation [34, 44, 65, 73]. While

standard supervised training enables these methods to

achieve remarkable results, they often struggle with out-

of-distribution test shapes (e.g., unseen classes). How-

ever, compared to image datasets, these 3D part-annotated

datasets are still orders of magnitude smaller in scale, since

building 3D models and annotating fine-grained 3D object

parts are laborious and time-consuming. It is thus challeng-

ing to provide sufficient training data covering all object

categories. For example, the recent PartNet dataset [40]

contains only 24 object categories, far less than what an in-

telligent agent would encounter in the real world.

To design a generalizable 3D part segmentation mod-

ule, many recent works have focused on the few-shot set-

ting, assuming only a few 3D shapes of each category dur-

ing training. They design various strategies to learn better

representations, and complement vanilla supervised learn-

ing [33, 53, 54, 60, 80]. While they show improvements

over the original pipeline, there is still a large gap between

what these models can do and what downstream applica-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21736



tions need. The problem of generalizable 3D part segmen-

tation is still far from being solved. Another parallel line

of work focuses on learning the concept of universal object

parts and decomposing a 3D shape into a set of (hierarchi-

cal) fine-grained parts [37, 64, 74]. However, these works

do not consider the semantic labeling of parts and may be

limited in practical use.

In this paper, we seek to solve the low-shot (zero- and

few-shot) 3D part segmentation problem by leveraging pre-

trained image-language models, inspired by their recent

striking performances in low-shot learning. By pretrain-

ing on large-scale image-text pairs, image-language mod-

els [1,22,29,45,46,50,76] learn a wide range of visual con-

cepts and knowledge, which can be referenced by natural

language. Thanks to their impressive zero-shot capabilities,

they have already enabled a variety of 2D/3D vision and

language tasks [10, 16, 20, 47, 49, 51, 77].

As shown in Figure 1, our method takes a 3D point cloud

and a text prompt as input, and generates both 3D semantic

and instance segmentations in a zero-shot or few-shot fash-

ion. Specifically, we integrate the GLIP [29] model, which

is pretrained on 2D visual grounding and detection tasks

with over 27M image-text pairs and has a strong capabil-

ity to recognize object parts. To connect our 3D input with

the 2D GLIP model, we render multi-view 2D images for

the point cloud, which are then fed into the GLIP model to-

gether with a text prompt containing part names of interest.

The GLIP model then detects parts of interest for each 2D

view and outputs detection results in the form of 2D bound-

ing boxes. Since it is non-trivial to convert 2D boxes back to

3D, we propose a novel 3D voting and grouping module to

fuse the multi-view 2D bounding boxes and generate 3D in-

stance segmentation for the input point cloud. Also, the pre-

trained GLIP model may not fully understand our definition

of parts only through text prompts. We find that an effec-

tive solution is prompt tuning with few-shot segmented 3D

shapes. In prompt tuning, we learn an offset feature vector

for the language embedding of each part name while fixing

the parameters of the pretrained GLIP model. Moreover, we

propose a multi-view visual feature aggregation module to

fuse the information of multiple 2D views, so that the GLIP

model can have a better global understanding of the input

3D shape instead of predicting bounding boxes from each

isolated 2D view.

To better understand the generalizability of various ap-

proaches and their performances in low-shot settings, we

propose a benchmark PartNet-Ensembled (PartNetE) by in-

corporating two existing datasets PartNet [40] and Part-

NetMobility [67]. Through extensive evaluation on Part-

NetE, we show that our method enables excellent zero-shot

3D part segmentation. With few-shot prompt tuning, our

method not only outperforms existing few-shot approaches

by a large margin but also achieves highly competitive per-

formance compared to the fully supervised counterpart. We

also demonstrate that our method can be directly applied

to iPhone-scanned point clouds without significant domain

gaps. In summary, our contributions mainly include:

• We introduce a novel 3D part segmentation method that

leverages pretrained image-language models and achieves

outstanding zero-shot and few-shot performance.

• We present a 3D voting and grouping module, which ef-

fectively converts multi-view 2D bounding boxes into 3D

semantic and instance segmentation.

• We utilize few-shot prompt tuning and multi-view feature

aggregation to boost GLIP’s detection performance.

• We propose a benchmark PartNetE that benefits future

work on low-shot and text-driven 3D part segmentation.

2. Related Work

2.1. 3D Part Segmentation
3D part segmentation involves two main tasks: semantic

segmentation and instance segmentation. Most 3D back-

bone networks [43, 44, 56, 65] are capable of semantic seg-

mentation by predicting a semantic label for each geometric

primitive (e.g., point or voxel). Existing learning-based ap-

proaches solve instance segmentation by incorporating var-

ious grouping [9, 15, 23, 30, 58, 62, 63, 75] or region pro-

posal [17,70,73] strategies into the pipeline. Different from

standard training with per-point part labels, some works

leverage weak supervision, such as bounding box [8, 35],

language reference game [26], or IKEA manual [61]. In-

stead of focusing on single objects, [4,42] also consider part

segmentation for scene-scale input. Moreover, unlike the

two classical tasks of semantic and instance segmentation,

another parallel line of works decomposes a 3D shape into

a set of (hierarchical) fine-grained parts but without consid-

ering semantic labels [37, 64, 74], which differs from our

objective. Recently, some works also propose to learn a

continuous implicit semantic field [25, 81].

2.2. Data-Efficient 3D Segmentation
In order to train a generalizable 3D part segmenta-

tion network with low-shot data, many existing efforts

focus on leveraging various pretext tasks and auxiliary

losses [3, 12, 14, 52, 55]. In addition, [13, 41] studies the

compositional generalization of 3D parts. [60] deforms in-

put shapes to align with few-shot template shapes. [53]

leverages 2D contrastive learning by projecting 3D shapes

and learning dense multi-view correspondences. [7] lever-

ages branched autoencoders to co-segment a collection of

shapes. Also, some works aim to learn better represen-

tations by utilizing prototype learning [80], reinforcement

learning [33], and data augmentation [54]. Moreover, there

is a line of work investigating label-efficient 3D segmenta-

tion [18, 32, 36, 68, 71, 78, 78, 79], assuming a small portion

of training data is annotated (e.g., 0.1% point labels). While
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Figure 2. The figure shows our overall pipeline. Our proposed components are highlighted in orange.

the setting may be useful in indoor and autonomous driving

scenarios, it is not aligned with our goal since the number

of training shapes is already limited in our setup.

2.3. 3D Learning with Image-Language Models
Pretrained image-language models have recently made

great strides by pretraining on large-scale image-text

pairs [1, 22, 29, 45, 46, 50, 76]. Due to their learned rich

visual concepts and impressive zero-shot capabilities, they

have been applied to a wide range of 3D vision tasks, such

as 3D avatar generation and manipulation [5, 16, 21], gen-

eral 3D shape generation [19,24,38,51], low-shot 3D shape

classification [77], neural radiance fields [20,59], 3D visual

grounding [10,57], and 3D representation learning [49]. To

the best of our knowledge, we are one of the first to utilize

pretrained image-language models to help with the task of

3D part segmentation.

3. Proposed Method: PartSLIP
3.1. Overview: 3D Part Segmentation with GLIP

We aim to solve both semantic and instance segmenta-

tion for 3D object parts by leveraging pretrained image-

language models (ILMs). There are various large-scale

ILMs emerged in the past few years. In order to enable gen-

eralizable 3D object part segmentation, the pre-trained ILM

is expected to be capable of generating region-level output

(e.g., 2D segmentation or 2D bounding boxes) and recog-

nizing object parts. After comparing several released pre-

trained ILMs (e.g., CLIP [45]), we find that the GLIP [29]

model is a good choice. The GLIP [29] model focuses on

2D visual grounding and detection tasks. It takes as input

a free-form text description and a 2D image, and locates

all phrases of the text by outputting multiple 2D bound-

ing boxes for the input image. By pretraining on large-

scale image-text pairs (e.g., 27M grounding data), the GLIP

model learns a wide range of visual concepts (e.g., object

parts) and enables open-vocabulary 2D detection.

Figure 2 shows our overall pipeline, where we take a 3D

point cloud as input. Here, we consider point clouds from

unprojecting and fusing multiple RGB-D images, which is a

common setup in real-world applications and leads to dense

points with color and normal. To connect the 2D GLIP

model with our 3D point cloud input, we render the point

cloud from K predefined camera poses. The camera poses

are uniformly spaced around the input point cloud, aiming

to cover all regions of the shape. Since we assume a dense

and colored point cloud input1, we render the point cloud

by simple rasterization without introducing significant arti-

facts. The K rendered images are then fed separately into

the pretrained GLIP model along with a text prompt. We

format the text prompt by concatenating all part names of

interest and the object category. For example, for a chair

point cloud, the text prompt could be “arm, back, seat, leg,

wheel of a chair”. Please note that unlike the traditional seg-

mentation networks, which are limited to a closed set of part

categories, our method is more flexible and can include any

part name in the text prompt. For each 2D rendered image,

the GLIP model is expected to predict multiple bounding

boxes, based on the text prompt, for all part instances that

appear. We then fuse all bounding boxes from K views into

3D to generate semantic and instance segmentation for the

input point cloud (Section 3.2).

The above pipeline introduces an intuitive zero-shot ap-

proach for 3D part segmentation without requiring any 3D

training. However, its performance may be limited by the

GLIP predictions. We thus propose two additional compo-

nents, which could be incorporated into the above pipeline

to encourage more accurate GLIP prediction: (a) prompt

tuning with few-shot 3D data, which enables the GLIP

model to quickly adapt to the meaning of each part name

(Section 3.3); (b) multi-view feature aggregation, which al-

lows the GLIP model to have a more comprehensive visual

understanding of the input 3D shape (Section 3.4).

3.2. Detected 2D BBoxes to 3D Point Segmentation
Although the correspondence between 2D pixels and 3D

points are available, there are still two main challenges

when converting the detected 2D bounding boxes to 3D

1Recent commodity-grade 3D scanning devices (e.g., iPhone 12 Pro)

can already capture high-quality point clouds (see Figure 7).
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point segmentation. First, bounding boxes are not as pre-

cise as point-wise labels. A 2D bounding box may cover

points from other part instances as well. Also, although

each bounding box may indicate a part instance, we are

not provided with their relations across views. It’s not very

straightforward to determine which sets of 2D bounding

boxes indicate the same 3D part instance.

Therefore, we propose a learning-free module to con-

vert the GLIP predictions to 3D point segmentation, which

mainly includes three steps: (a) oversegment the input point

cloud into a collection of super points; (b) assign a seman-

tic label for each super point by 3D voting; and (c) group

super points within each part category into instances based

on their similarity of bounding box coverage.

3D Super Point Generation: We follow the method in [28]

to oversegment the input point cloud into a collection of su-

per points. Specifically, we utilize point normal and color

as features and solve a generalized minimal partition prob-
lem with an l0-cut pursuit algorithm [27]. Since points in

each generated super point share similar geometry and ap-

pearance, we assume they belong to one part instance. The

super point partition serves as an important 3D prior when

assigning semantic and instance labels. It also speeds up the

label assignment, as the number of super points is orders of

magnitude smaller than the number of 3D points.

3D Semantic Voting: While a single bounding box may

cover irrelevant points from other parts, we want to lever-

age information from multiple views and the super point

partition to counteract the effect of irrelevant points. Specif-

ically, for each pair of super point and part category, we cal-

culate a score si,j measuring the proportion of the ith super

point covered by any bounding box of part category j:

si, j =

∑
k

∑
p∈SPi

[VISk(p)][∃b ∈ BBj
k : INSb(p)]∑

k

∑
p∈SPi

[VISk(p)]
, (1)

where SPi indicates the ith super point, [·] is the Iverson

bracket, VISk(p) indicates whether the 3D point p is visible

in view k, BBj
k is a list of predicted bounding boxes of

category j in view k, and INSb(p) indicates whether the

projection of point p in view k is inside the bounding box b.

Note that for each view, we only consider visible points

since bounding boxes only contain visible portions of each

part instance. Both VISk(p) and INSb(p) can be computed

based on the information from point cloud rasterization. Af-

ter that, for each super point i, we assign part category j
with the highest score si,j to be its semantic label.

3D Instance Grouping: In order to group the super points

into part instances, we first regard each super point as an

individual instance and then consider whether to merge each

pair of super points. For a pair of super points SPu and

SPv , we merge them if: (a) they have the same semantic

label, (b) they are adjacent in 3D, and (c) for each bounding

box, they are either both included or both excluded.

Specifically, for the second criterion, we find the k near-

est neighbors for all points within each super point. If any

point in SPv is among the k nearest neighbors of a point in

SPu, or vice versa, we consider the super points to be ad-

jacent. For the third criterion, we consider bounding boxes

from views where both of them are visible:
B = {b ∈ BBk|VISk(SPu) ∧VISk(SPv)}, (2)

where VISk(SPu) indicates whether the super point SPu

can be (partially) visible in view k and BBk indicates all

predicted bounding boxes of view k. Suppose B contains

n bounding boxes. We then construct two n dimensional

vectors Iu and Iv , describing the bounding box coverage of

SPu and SPv . Specifically, Iu[i] is calculated as:

Iu[i] =

∑
p∈SPu

[VISB[i](p)][INSB[i](p)]∑
p∈SPu

[VISB[i](p)]
, (3)

where B[i] indicates the ith bounding box of B, VISB[i](p)
indicates whether p is visible in the corresponding view of

B[i], and INSB[i](p) indicates whether the projection of p

is inside B[i]. If
|Iu−Iv|1

max(|Iu|1,|Iv|1) is smaller then a predefined

threshold τ , we consider they satisfy the third criterion.

After checking all pairs of super points, the super points

are divided into multiple connected components, each of

which is then considered to be a part instance. We found

that our super point-based module works well in practice.

3.3. Prompt Tuning w/ Few-Shot 3D Data
In our method, we utilize natural language to refer to a

part. However, natural language can be flexible. An object

part can be named in multiple ways (e.g., spout and mouth

for kettles; caster and wheel for chairs), and the definition

of some parts may be ambiguous (see the dispenser in Fig-

ure 1). We thus hope to finetune the GLIP model using a

few 3D shapes with ground truth part segmentation, so that

the GLIP model can quickly adapt to the actual definition

of the part names in the text prompt.

Figure 3 shows the overall architecture of the GLIP

model. It first employs a language encoder and an im-

age encoder to extract language features and multi-scale vi-

sual features, respectively, which are then fed into a vision-

language fusion module to fuse information across modal-

ities. The detection head then takes as input the language-

aware image features and predicts 2D bounding boxes. Dur-

ing pretraining, the GLIP network is supervised by both de-

tection loss and image-language alignment loss.

It is not desirable to change the parameters of the vi-

sual module or the entire GLIP model since our goal is to

leverage only a few 3D shapes for finetuning. Instead, we

follow the prompt tuning strategy introduced in GLIP [29]

to finetune only the language embedding of each part name

while freezing the parameters of the pretrained GLIP model.

Specifically, we perform prompt tuning for each object cate-

gory separately. Suppose the input text of an object category
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Figure 3. The original GLIP pipeline and our additional modules:

few-shot prompt tuning and multi-view feature aggregation. We

find that early fusion leads to better performance than late fusion.

includes l tokens and denote the extracted language features

(before VL fusion) as fl ∈ R
l×c, where c is the number of

channels. We aim to learn offset features fo ∈ R
l×c for fl

and feed their summation fl + fo to the remaining GLIP

pipeline. The offset features fo consist of constant vectors

for each token (part name), which can be interpreted as a lo-

cal adjustment of the part definition in the language embed-

ding space. Note that fo is not predicted by a network but

is directly optimized as a trainable variable during prompt

tuning. Also, fo will be fixed for each object category after

prompt tuning.

In order to utilize the detection and alignment losses

for optimization, we convert the few-shot 3D shapes with

ground truth instance segmentation into 2D images with

bounding boxes. Specifically, for each 3D point cloud, we

render K 2D images from the predefined camera poses. For

generating corresponding 2D ground-truth bounding boxes,

we project each part instance from 3D to 2D. Note that,

after projection, we need to remove occluded points (i.e.,

invisible points of each view) and noisy points (i.e., visible

but isolated in tiny regions) to generate reasonable bound-

ing boxes. We find that by prompt tuning with only one or

a few 3D shapes, the GLIP model can quickly adapt to our

part definitions and generalize to other instances.

3.4. Multi-View Visual Feature Aggregation
The GLIP model is sensitive to camera views. For ex-

ample, images taken from some unfamiliar views (e.g., the

rear view of a cabinet) can be uninformative and confusing,

making it difficult for the GLIP model to predict accurately.

However, unlike regular 2D recognition tasks, our input is

a 3D point cloud, and there are pixel-wise correspondences

between different 2D views. Therefore, we hope the GLIP

model can leverage these 3D priors to make better predic-

tions instead of focusing on each view in isolation.

In order to take full advantage of the pretrained GLIP

model, we propose a training-free multi-view visual feature

aggregation module that could be plugged into the origi-

nal GLIP network without changing any existing network

weights. Specifically, the feature aggregation module takes

Figure 4. Multi-view 2D renderings (first row) and their feature

maps (second row). For a feature cell (red), we aggregate all its

corresponding feature cells (orange) across views.

K feature maps {fk ∈ R
m×m×c} as input, where m is the

spatial resolution of the feature map and c is the number of

channels. The input feature maps {fk} are generated by the

GLIP module separately for each 2D view of the input point

cloud. Our feature aggregation module fuses them and gen-

erates K fused feature maps {f ′
k} of the same shape, which

are then used to replace the original feature maps and fed

into the remaining layers of the GLIP model.

As shown in Figure 4, for each cell (u, v) of feature map

fi, we find its corresponding cell (ui→k, vi→k) in each fea-

ture map fk and use their weighted average to serve as the

fused feature of the cell:

f ′
i [u, v] =

1∑
k w

i→k
u,v

∑

k

wi→k
u,v fk[u

i→k, vi→k]. (4)

Specifically, we define Pi(u, v) as the set of 3D points

that are visible in view i and whose projections lie within

cell (u, v). We then choose the cell in view k with the

most overlapping 3D points as the corresponding cell:

(ui→k, vi→k) = argmax
(x,y)

|Pi(u, v) ∩ Pk(x, y)| and define

the weights wi→k
u,v as

|Pi(u,v)∩Pk(u
i→k,vi→k)|

|Pi(u,v)| . Note that if

all 3D points in Pi(u, v) are not visible in a view k, then fea-

ture map fk will not contribute to f ′
i [u, v]. Since the GLIP

model generates multi-scale visual features, our aggregation

module fuses features of each scale level separately.

There are various options for which visual features to

fuse (see Figure 3). One intuitive choice is to fuse the fi-

nal visual features before the detection head, and we denote

this choice as late fusion. We find that the late fusion does

not improve or even degrade the original performance. This

is mainly because the final visual features contain too much

shape information of the predicted 2D bounding boxes. Di-

rectly averaging the final visual features can somehow be

seen as averaging bounding boxes in 2D, which does not

make sense. Instead, we choose to fuse the visual features

before the vision-language fusion (denoted as early fusion).

Since the text prompt is not involved yet, the visual features

mainly describe the geometry and appearance of the input

shape. Fusing these features across views with the 3D priors

can thus lead to a more comprehensive visual understanding

of the input shape.
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4. Experiments
4.1. Datasets and Metrics

To evaluate the generalizability of various approaches

and their performances in the low-shot setting, we curate an

ensembled dataset named PartNet-Ensembled (PartNetE),

which consists of shapes from existing datasets PartNet [40]

and PartNet-Mobility [67]. Note that PartNet-Mobility con-

tains more object categories but fewer shape instances, and

PartNet contains more shape instances but fewer object cat-

egories. We thus utilize shapes from PartNet-Mobility for

few-shot learning and test, and use shapes from PartNet

to serve as additional large-scale training data for transfer

learning. As a result, the test set of PartNetE contains 1,906

shapes covering 45 object categories. In addition, we ran-

domly reserve 8 shapes from each of the 45 object cate-

gories for few-shot training. Also, we may utilize the addi-

tional 28,367 shapes from PartNet for training, which cover

17 out of 45 object categories and have consistent part anno-

tations as the test set. Some of the original part categories

in PartNet (e.g., “back frame vertical bar” for chairs) are

too fine-grained and ambiguous to evaluate unsupervised

text-driven part segmentation approaches. We thus select a

subset of 103 parts when constructing the PartNetE dataset,

which covers both common coarse-grained parts (e.g., chair

back and tabletop) and fine-grained parts (e.g., wheel, han-

dle, button, knob, switch, touchpad) that may be useful in

downstream tasks such as robotic manipulation. See sup-

plementary for more details of the dataset.

We follow [40] to utilize category mIoU and mAP (50%
IoU threshold) as the semantic and instance segmentation

metrics, respectively. We first calculate mIoU/mAP50 for

each part category across all test shapes, and then average

part mIoUs/mAP50s that belong to each object category to

compute the object category mIoU/mAP50.

4.2. Implementation Details
For each 3D shape (i.e., ShapeNet [6] mesh), we use

BlenderProc [11] to render 6 views of RGB-D images and

segmentation masks with a resolution of 512 × 512. We

unproject the images to the world space to obtain a fused

point cloud with colors, normals, and ground truth part la-

bels. The fused point clouds are used as the input for both

our method and baseline approaches.

For our method, we render each input point cloud into

K = 10 color images with Pytorch3D [48]. In few-shot

experiments, we utilize 8 point clouds (8× 10 rendered im-

ages with 2D bounding boxes) of each object category for

prompt tuning. The threshold τ in part instance grouping is

empirically set to 0.3.

4.3. Comparison with Existing Methods
4.3.1 Low-Shot Settings and Baseline Methods
We consider three low-shot settings: (a) zero-shot: no 3D

training/finetuning involved; (b) few-shot (45 × 8): utilize

Figure 5. Instance segmentation results of our method (8-shot)

on the PartNetE dataset. Different part instances are in different

colors (zoom in for details).

only 8 shapes for each object category during training; (c)

few-shot with additional data (45×8+28k): utilize 28,367

shapes from PartNet [40] in addition to the 45 × 8 shapes

during training. The 28k shapes cover 17 of the 45 object

categories. Here, the last setting (45 × 8 + 28k) describes

a realistic setup, where we have large-scale part annotations

for some common categories (17 categories in our case) but

only a few shapes for the other categories. We aim to ex-

amine whether the 28k data of the 17 categories can help

the part segmentation of the other 28 underrepresented cat-

egories. All settings are tested on the same test set.

We compare with PointNet++ [43] and PointNext [44]

for semantic segmentation, and compare with Point-

Group [23] and SoftGroup [58] for instance segmentation.

We train four baseline approaches on the PartNetE dataset

by taking point clouds with normals as input. For seman-

tic segmentation, we follow [40] to sample 10,000 points

per shape as network input. For instance segmentation, we

sample up to 50,000 points per shape. For each pair of base-

line and setting, we train a single network.

In addition to the four baselines mentioned above, we

compare against two methods dedicated to few-shot 3D se-

mantic segmentation: ACD [12] and Prototype [80]. In

ACD, we decompose the mesh of each 3D shape into ap-

proximate convex components with CoACD [66] and uti-

lize the decomposition results for adding an auxiliary loss

to the pipeline of PointNet++. In Prototype, we utilize the

learned point features (by PointNext backbone) of few-shot

shapes to construct 100 prototypes for each part category,

which are then used to classify each point of test shapes.

See supplementary for more details of baseline approaches.

4.3.2 Evaluation Results
Table 1 shows the results of semantic segmentation. Our

method achieves impressive zero-shot performance on

some common object categories (such as bottle, chair, and

table), but also poor performances on certain categories

(e.g., kettle). This is mainly due to the pretrained GLIP

model may not understand the meaning of the text prompt

(e.g., spout for kettles). After prompt tuning with 8-shot 3D

data, our method achieves a 59.4% mIoU and outperforms
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Table 1. Semantic segmentation results on the PartNetE dataset. Object category mIoU(%) are shown. For 17 overlapping object categories,

baseline models leverage additional 28k training shapes in the 45x8+28k setting. For the other 28 non-overlapping object categories, there

are only 8 shapes per object category during training. Please refer to the supplementary for the full table of all 45 categories.

#3D data method

Overlapping Categories Non-Overlapping Categories

Bottle Chair Display Door Knife Lamp
Storage

Table
Overall

Camera Cart
Dis-

Kettle
Kitchen-

Oven
Suit-

Toaster
Overall Overll

Furniture (17) Penser Pot case (28) (45)

few-shot w/
extra data

(45x8+28k)

PointNet++ [43] 48.8 84.7 78.4 45.7 35.4 68.0 46.9 63.7 55.6 6.5 6.4 12.1 20.9 15.8 34.3 40.6 14.7 25.4 36.8
PointNext [44] 68.4 91.8 89.4 43.8 58.7 64.9 68.5 52.1 58.5 33.2 36.3 26.0 45.1 57.0 37.8 13.5 8.3 45.1 50.2
SoftGroup [58] 41.4 88.3 62.1 53.1 31.3 82.2 60.2 54.8 50.2 23.6 23.9 18.9 57.4 45.5 13.6 18.3 26.4 30.7 38.1

few-shot
(45x8)

PointNet++ [43] 27.0 42.2 30.2 20.5 22.2 10.5 8.4 7.3 18.1 9.7 11.6 7.0 28.6 31.7 19.4 3.3 0.0 21.8 20.4
PointNext [44] 67.6 65.1 53.7 46.3 59.7 55.4 20.6 22.1 39.2 26.0 47.7 22.6 60.5 66.0 36.8 14.5 0.0 41.5 40.6
SoftGroup [58] 20.8 80.5 39.7 16.3 38.3 38.3 18.9 24.9 32.8 28.6 40.8 42.9 60.7 54.8 35.6 29.8 14.8 41.1 38.0

ACD [12] 22.4 39.0 29.2 18.9 39.6 13.7 7.6 13.5 19.2 10.1 31.5 19.4 40.2 51.8 8.9 13.2 0.0 25.6 23.2
Prototype [80] 60.1 70.8 67.3 33.4 50.4 38.2 30.2 25.7 41.1 32.0 36.8 53.4 62.7 63.3 36.5 35.5 10.1 46.3 44.3

Ours 83.4 85.3 84.8 40.8 65.2 66.0 53.6 42.4 56.3 58.3 88.1 73.7 77.0 69.6 73.5 70.4 60.0 61.3 59.4

zero-shot Ours 76.3 60.7 43.8 2.7 46.8 37.1 29.4 47.7 31.8 21.4 87.7 16.5 20.8 4.7 33.0 40.2 13.8 24.4 27.2

Table 2. Instance segmentation results on the PartNetE dataset. Category mAP50 (%) are shown. See supplementary for the full table.

#3D data method

Overlapping Categories Non-Overlapping Categories

Bottle Chair Display Door Knife Lamp
Storage

Table
Overall

Camera Cart
Dis-

Kettle
Kitchen-

Oven
Suit-

Toaster
Overall Overll

Furniture (17) Penser Pot case (28) (45)

45x8+28k
PointGroup [23] 38.2 87.6 65.1 23.4 19.3 62.7 49.1 46.4 41.7 8.6 29.2 24.0 61.3 59.4 13.8 15.6 7.0 24.6 31.0
SoftGroup [58] 43.9 89.1 68.7 21.2 27.2 63.3 49.1 46.2 42.4 0.7 28.4 26.4 63.8 59.3 16.4 13.5 7.5 25.6 31.9

few-shot
(45x8)

PointGroup [23] 8.0 77.2 16.7 3.7 15.6 9.8 0.0 0.0 14.6 4.7 28.5 30.7 52.1 57.0 0.0 0.0 0.0 16.8 16.0
SoftGroup [58] 22.4 87.7 27.5 5.6 10.3 19.4 11.6 14.2 21.3 11.2 29.8 37.8 63.4 65.7 10.4 8.0 10.7 28.4 25.7

Ours 79.4 84.4 82.9 17.9 43.9 68.3 32.8 32.3 42.5 36.8 83.3 63.5 75.4 70.5 64.5 44.9 38.4 46.2 44.8

zero-shot Ours 75.5 54.5 32.9 1.3 22.1 35.8 10.9 36.6 20.9 8.4 79.3 9.3 18.3 1.1 25.9 34.2 4.5 16.2 18.0

all baseline methods from the few-shot setting and even the

45 × 8 + 28k setting. For the 45 × 8 + 28k setting, base-

line methods are trained with additional 28k shapes cov-

ering 17 categories. For these overlapping categories,
it’s a fully-supervised setting, but our 8-shot version
can achieve highly competitive overall mIoU (56.3% vs.
58.5%). Note that the 28k training data is of limited help for

the baselines to generalize to non-overlapping categories.

Our method outperforms all baselines on non-overlapping

categories by a large margin. The two few-shot strategies

ACD and Prototype improve the performance of the orig-

inal backbone, but there are still large gaps compared to

our method. Please see Figure 1 for example results of our

methods and see supplementary for qualitative comparison.

Table 2 shows the results of instance segmentation. We

observe similar phenomena as semantic segmentation. Our

method achieves 18.0% mAP50 for the zero-shot setting

and 44.8% mAP50 for the 8-shot setting, which outper-

forms all baseline approaches from both 45 × 8 and 45 ×
8 + 28k settings. See Figure 5 for qualitative examples.

4.4. Ablation Studies
Proposed Components: We ablate the proposed compo-

nents, and the results are shown in Table 3. For the first row,

we only utilize the pretrained GLIP model. In order to get

3D semantic segmentation, we assign part labels to all vis-

ible points within bounding boxes. The numbers indicate

that this strategy is less effective than our proposed 3D vot-

Table 3. Ablation study of the proposed components. We show the

performances of both GLIP 2D detection (category mAP50) and

3D semantic segmentation (category mIoU) on three categories.

*3D semantic segmentation is generated by assigning part labels

to all visible points in bounding boxes.

BBox2 Prompt Feat Chair Kettle Suitcase All

3DSeg Tuning Aggre. 2D 3D 2D 3D 2D 3D 3D

50.4 50.6* 26.4 7.5* 31.9 21.1*

� 50.4 60.7 26.4 20.8 31.9 40.2 27.2

� � 80.7 83.8 82.1 72.7 65.6 65.1 58.0

� � 52.3 64.5 32.2 25.9 36.4 49.1 27.7

� � � 82.4 85.3 84.3 77.0 68.9 70.4 59.4

ing and grouping module (second row). Moreover, without

our proposed module, we are not able to get 3D instance

segmentation. The second and third rows compare the im-

pact of (8-shot) prompt tuning. We observe significant im-

provements, especially on the Kettle category, as the zero-

shot GLIP model fails to understand the meaning of “spout”

but it adapts to the definition after few-shot prompt tuning.

The second and fourth rows compare our multi-view fea-

ture aggregation module. Without utilizing any extra data

for finetuning, we leverage multi-view 3D priors to help the

GLIP model better understand the input 3D shape and thus

improve performance. After integrating all three modules,

we achieve the final good performance (last row).

Variations of Input Point Clouds: Table 4 evaluates the

robustness of our method about variations of input point

clouds. We observe that when the input point cloud is par-
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Table 4. Ablation study of various input point clouds. We show

the semantic segmentation results of the Chair category.

setting # views image reso. texture Chair mIoU (%)

original 6 512× 512 w/ 85.3

partial pc 2 512× 512 w/ 84.3

no texture 6 512× 512 w/o 84.0

sparse pc 6 128× 128 w/ 82.4

sparse pc 6 64× 64 w/ 68.3

Figure 6. Ablation study of the number of shapes in prompt tuning

and the number of 2D views (K). Category mIoU of 3D semantic

segmentation on the PartNetE dataset are shown.

tial and does not cover all regions of the object, our method

still performs well (second row). Also, we find that after

removing the textures of the ShapeNet models and gener-

ating the input point cloud by using gray-scale images, our

method can achieve good performance as well, suggesting

that textures are less important in recognizing object parts.

However, we find that the performance of our method may

degrade when the input point cloud becomes sparse. On the

one hand, sparse point clouds cause a larger domain gap for

2D renderings of point clouds. On the other hand, the spar-

sity makes it hard for our super point generation algorithm

to produce good results. That being said, we want to point

out that dense point clouds are already mostly available in

our daily life (see Section 4.5).

Number of Shapes in Prompt Tuning: We ablate the

number of shapes used for prompt tuning, and the results

are shown in Figure 6 (left). We observe that only using

one single shape for prompt tuning can already improve the

performance of the pretrained GLIP model a lot in some cat-

egories (e.g., Kettle). Also, after using more than 4 shapes,

the gain from increasing the number of shapes slows down.

We also find that prompt tuning is less effective for object

categories that have richer appearance and structure varia-

tions (e.g., StorageFurniture).

Number of 2D Views: We render K = 10 2D views for

each input point cloud in our main experiments. We ab-

late the value of K, and the results are shown in Figure 6

(right). We observe a significant performance drop when K
is reduced to 5 and also a mild gain when using a larger K.

Early Fusion vs. Late Fusion: In the last paragraph of

Section 3.4, we discuss two choices for multi-view feature

aggregation: early fusion and late fusion. Table 5 compares

these two choices and verifies that late fusion will even de-

Table 5. Early vs. late fusion in multi-view feature aggregation.

We compare GLIP detection (mAP50) on the Suitcase category.

w/o fusion early fusion late fusion

65.6 68.9 47.3

Figure 7. Each pair shows a captured point cloud by iPhone (left)

and the semantic segmentation result of our method (right).

grade the performance while early fusion is helpful.

GLIP vs. CLIP: We have also considered using other

pretrained vision-language models, such as CLIP [45].

However, we find that the pretrained CLIP model fails to

recognize fine-grained object parts and has difficulty gener-

ating region-level output. See supplementary for details.

4.5. Real-World Demo
Thanks to the strong generalizability of the GLIP model,

our method can be directly deployed in the real world with-

out a significant domain gap. As shown in Figure 7, we

use an iPhone 12 Pro Max, equipped with a LiDAR sen-

sor, to capture a video and feed the fused point cloud to

our method. We observe similar performances as in our

synthetic experiments. Please note that existing 3D net-

works are sensitive to the input format. For example, they

assume objects are normalized in per-category canonical

poses. Also, they need to overcome the significant domain

gap, making it hard to deploy them directly in real scenar-

ios. See supplementary for more details.

5. Discussion and Limitations
The current pipeline utilizes predicted bounding boxes

from the GLIP model. We notice that GLIPv2 [76] has 2D

segmentation capabilities, but their pretrained model is not

released at the time of submission. We admit that it will

be more natural to use 2D segmentation results, which are

more accurate than bounding boxes, from pretrained mod-

els. However, we want to point out that it is still non-trivial

to get 3D instance segmentation even from multi-view 2D

segmentation, and all components of our proposed method

would still be useful (with necessary adaptations). A bigger

concern is that our method cannot handle the interior points

of objects. It also suffers from long running time due to

point cloud rendering and multiple inferences of the GLIP

model. Therefore, using our method to distill the knowl-

edge of 2D VL models and train 3D foundation models is

a promising future direction, which may lead to more effi-

cient inferences.
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