DexPoint: Generalizable Point Cloud Reinforcement
Learning for Sim-to-Real Dexterous Manipulation

Yuzhe Qin*' Binghao Huang*' Zhao-Heng Yin?
Hao Su' Xiaolong Wang'

UC San Diego! HKUST?

Abstract: We propose a sim-to-real framework for dexterous manipulation which
can generalize to new objects of the same category in the real world. The key
of our framework is to train the manipulation policy with point cloud inputs and
dexterous hands. We propose two new techniques to enable joint learning on
multiple objects and sim-to-real generalization: (i) using imagined hand point
clouds as augmented inputs; and (ii) designing novel contact-based rewards. We
empirically evaluate our method using an Allegro Hand to grasp novel objects in
both simulation and real world. To the best of our knowledge, this is the first policy
learning-based framework that achieves such generalization results with dexterous
hands. Our project page is available at https://yzqin.github.io/dexpoint.

Keywords: Dexterous Manipulation, Point Clouds, Sim-to-Real

GrasP = = = = =
Known
Object

Door
Opening

Train

Figure 1: We introduce a reinforcement learning method which takes the point cloud as input for two manip-
ulation tasks: grasping and door opening. By introducing several techniques in the policy learning process, our
point cloud based policy trained purely in simulation can successfully generalize to novel objects and transfer
to real-world without any real-world data.

* indicates equal contribution.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

1 Introduction

Dexterous manipulation has remained to be one of the most challenging problems in robotics [1].
While multi-finger hands create ample opportunities for robots to flexibly manipulate objects in
our daily life, the nature of the high degree of freedom and high-dimensional action space creates
significant optimization challenges for both search-based planning algorithms and policy learning
algorithms. Recent efforts using model-free Reinforcement Learning have achieved encouraging
results on complex manipulation tasks [1, 2]. However, it still faces many challenges in generalizing
to diverse objects and being deployed on multi-finger hand in the real-world.

For example, the dexterous manipulation framework proposed by OpenAl et al. [1] can solve in-hand
manipulation of Rubik’s Cube with RL and transfer to the real robot hand. However, the policy is
only trained with one particular object and it is not able to generalize to diverse objects. To achieve
cross-object generalization, recent efforts proposed to learn robust 3D point cloud representations [3,
4,5, 6] with diverse objects using RL in simulation. While point cloud input has also been shown
easier for Sim2Real transfer [7] given its focus on geometry instead of texture, the assumption on
the access of complete object point clouds and ground truth states limit the transferability of above
methods to the real robot deployment. Among these works, Chen et al. [3] showed that cross-object
generalization is achievable in simulation without knowing the shape of the object to grasp, but
its requirement of real-time access to the object states is itself a very challenging robot perception
problem, especially under large occlusions during hand object interaction.

In this paper, we provide a sim-to-real reinforcement learning framework for generalizable dexterous
manipulation, using two tasks with the Allegro Hand[8]: (i) object grasping where the test objects
has not been seen during training; (ii) door opening where the test doors have levers of novel shape
that has not been used in training. The tasks are visualized in Figure 1.

the robot needs to first rotate the lever to unlock the door latch and then pull the lever in a circular
motion to open the door.

We perform our studies by training a point cloud based reinforcement learning policy in the grasping
and door opening task. With this approach, we list the three key discoveries of our framework for
learning generalizable point cloud policy below:

(1) We justified that it is possible to achieve direct sim-to-real transfer for a dexterous manipulation
policy with category-level generalizability when we use point cloud as the data representation.

(i) Raw point clouds captured by sensors often come with heavy occlusions and noise: only a very
small portion of the points from the observation are representing the robot fingers. We propose
to imagine the complete robot finger point clouds according to the robot kinematic model and use
them to augment the occluded real point cloud observations. We find that explicitly augmenting the
input by imagined points can help achieve better robustness and sample efficiency for reinforcement
learning.

(iii) Different from existing works that add contact information to the input of RL, we design a
novel reward using contact pair information without adding contact to the observation. This practice
remarkably improves sample efficiency as well as learning stability and avoids the dependency on
contact sensor that is often unavailable for real robot models.

2 Related Work

Dexterous Manipulation. Dexterous manipulation aims to enable robotic hands to achieve human-
level dexterity for grasping and manipulating objects. Analytical methods have been proposed to
adopt planning to solve this problem [9, 10, 11, 12, 13, 14, 15]. However, they rely on detailed object
models, which are not accessible when testing on unseen objects. To mitigate this issue, researchers
propose a learning-based method for dexterous manipulation [16]. Some methods [17, 1, 2, 3, 5] take
a reinforcement learning (RL) approach, while another line of work [18, 19, 20, 21] also proposes
to learn from demonstration using imitation learning (IL) to acquire the control policy. Recently, the
combination of RL and IL [22, 23, 24, 25, 26, 4] has also shown encouraging dexterous manipulation
results in simulation. However, most methods are either learning policy for one single object or
assume access to object states produced by perfect detector which increases challenges to Sim2Real

transfer. In this paper, we surpass these limitations by introducing training on multiple objects and
applying point cloud inputs for control.

Point Cloud in Robotic Manipulation. Point cloud representation has been widely applied in the
robotics community. Researchers have studied matching the observed point clouds to an object in a
grasping dataset [27] and executing the corresponding grasping action [28, 14]. For learning-based
approaches, one line of research has focused on first estimating grasp proposals or affordance given
the point cloud input and then planning accordingly for manipulation [29, 30, 31, 32, 33, 34, 35, 36].
While these methods are designed for parallel-jaw grippers, recent advancements have also been
made for grasping with dexterous hands with similar approaches [37, 38, 39, 40]. However, this
line of methods requires feedback from motion planning to estimate whether a grasp is plausible.
Oftentimes, a stable grasp pose is proposed but it is not achievable by planning. To achieve efficient
and flexible manipulation, a Reinforcement Learning policy with point cloud inputs is proposed [3,
5, 4], which allows the robot hand to flexibly adjust its pose while interacting with the object.
However, these approaches still face challenges in transferring to the real robot, given the noisy,
occluded point clouds in the real world, and training RL policy with noisy point clouds increases the
optimization difficulty. In this paper, we propose to use imagined point clouds, contact information,
and multi-object training to combat these problems and achieve Sim2Real generalization.

Using Contact Information for Manipulation. Humans can manipulate objects purely from tactile
sensing without seeing them. This biological fact inspires researchers to integrate contact and tactile
information into the learning pipeline [41, 42, 43, 44, 45, 46, 47]. For example, both tactile and
visual information inputs are combined together in [46] for decision making. The tactile informa-
tion is also utilized as inputs for RL-based manipulation policies [48, 49, 50, 23, 51]. For example,
visual-tactile sensor is used with an Allegro hand in simulator for playing piano [51]. Instead of
using contacts as inputs, some methods also use contact and tactile information as reward to encour-
age exploration and boost policy learning [49, 23]. Motivated by these works, we provide a novel
design of reward based on each contact link of the robot hand, which encourages more reasonable
grasping behavior. Our design does not require a real tactile sensor when training in simulation or
deploying in the real robot.

3 Approach

Our objective is to train a generalizable point e

cloud policy on a dexterous robot hand-arm) = e
system that is able to grasp a wide range of ob- Eml [[t or—
jects or open an closed door with RL. We aims M , T it
at Sim-to-Real transfer without any real-world 1 ‘a ..
training or data. During testing, the robot can ~~_—=%

only access the single-viewed point cloud and % o |
the robot proprioception data. As is discussed /‘"l : ‘"
before, training such a policy comes with nu- ;

merous technical challenges, including reward ;

design and imperfect point cloud information.

In this work, we propose a novel reward design Figure 2: Real-experiment Setup: we use an Alle-

technique based on COPtaCt and imagined point gro Hand attached on an XArm6 and a RealSense D435
cloud model to deal with these challenges. camera facing forward the robot.

Preliminaries: We model the dexterous manipulation problem as a Partially Observable Markov
Decision Process (POMDP) M = (O, S, A, R, T,U). Here, O is the observation space, S is the
underlying state space, A is the action space, R is the reward function, 7 is the transition dynamics,
and U generates agent’s observation. At timestep ¢, the environment is at the state s; € S. The agent
observes o; ~ U(+|s;) € O. The agent takes action a; and receives reward r, = R (s, a;). The
environment state at timestep ¢ + 1 then transit to s;11 ~ T (s, a¢). The objective of the agent is to

.. T . .
maximize the return Y ,_, v'r;, where + is a discount factor.

System Setup: Many previous works on learning-based dexterous manipulation attach the hand to
a fixed platform to simplify the experiment environment in the real world. In this work, we create
a more flexible and powerful dexterous manipulation system which includes both the robotic hand
and the arm (Figure 2). Concretely, we attach the Allegro Hand to an XArm6 robot. Allegro Hand

is a 16-DoF anthropomorphic hand with four fingers and XArm6 is a 6-DoF robot arm. We place a
RealSense D435 camera at the right front of the robot to capture the point cloud. This setup brings
additional challenges to RL exploration and Sim2Real deployment. We use SAPIEN [52] platform
with uses a full-physics simulator to build the environment of the whole system. The simulation
time step is 0.005s to ensure stable contact simulation. Each control step lasts for 0.05s.

Tasks and Objects: In this paper, we expect our robot to perform the grasping task over a diverse
set of objects and to open a locked door by rotating the lever. In the grasping task, we first select a
random object from an object dataset and place it on the table. The robot is then required to move
it to a target pose. Moreover, the robot should be able to generalize to different initial states, so we
randomize both the initial pose and the goal pose for each trial. In simulation experiments, we use
bottles and cans from both ShapeNet [53] dataset and YCB [54] dataset. In real-world experiments,
we use novel unseen objects to test the policy. In the door opening task, the robot hand is required
first to rotate the lever to unlock the door latch and then pull the lever in a circular motion. We use
three doors to test the policies both in the simulation and the real world, only one is used for training
and the other two are unseen doors. We also randomize the initial pose for each trial.

Observation Space: The observation contains both visual and proprioceptive information with four
modalities: (1) Observed point cloud provided by the camera; (2) Proprioception signals of the
robot including joint positions and end-effector position; (3) Imagined hand point cloud proposed in
Sec. 3.2; (4) Object goal position provided in each trial. All the information is accessible on the real
robot. The dimension of each observation modality is shown in Figure 3.

Action Space: The action is responsible for controlling both the 6-DOF robot arm and the 16-DOF
hand. It has 6 + 16 = 22 dimension in total. The robot arm is parametrized by the 6D translation
and rotation of the end-effector relative to a reference pose. We use the damped least square inverse
kinematics solver with a damping constant A = 0.05 to compute the joint motion. Each finger joint
of the Allegro hand is controlled by a position controller. Both robot arm and hand are controlled by
PD controllers.

Network Architecture: The network architecture is visualized in Figure 3,

3.1 Reward Design with Oracle Contact

Since we aim to solve the dexterous manipulation problem with pure RL, the reward design is
central to the method. We need a good reward function to ensure proper interaction between the
robotic hand and the object. The whole interaction process consists of two phases. The first phase is
to simply reach the object. The second phase is to grasp the object and move it to the target, which
is more challenging. For the first phase, we encourage reaching with the following reaching reward:

1

Xfinger, Xobj)

Treach = Z €r+d((1)
finger

Here, Xgnger and Xop,j are the Cartesian position of each fingertip and the target object. Note that

Xobj 1s available when we perform training in simulation. However, using this reward alone cannot

ensure proper contact for grasping. For example, the robot can touch the object with the back of the

hand rather than the palm and then get stuck in this local minimum. Therefore, we introduce a novel

contact reward to guarantee meaningful contact behavior:

Teontact = IsContact(thumb, object) AND Z IsContact(finger,object) > 2| . (2)
finger

This contact reward function outputs a boolean value in {0, 1}. It outputs 1 only if the thumb is in
contact with the object and there are more than one finger in contact with the object. Intuitively, it
encourages the robot to cage the object within fingers. In this case, the robot can quickly find out
stable grasping and lift the object to the target location. The lifting behavior is encouraged by

Tift = TcontactLift(Xobj; Xtarget)- 3)
The Lift function is basically in the form of Equation 1 and the main difference is that it will return

a large reward value upon task completion. The overall reward function is a weighted combination
of the terms above plus a control penalty:

R = WreachTreach T Weontact contact + Wit Mife + Wpenalty I'penalty - (4)

J

[x[v]z] @ Concatenate, dim = 0
BEE] ;
s + : + Concatenate, dim = -1
() o
| B

o
-
@
o
2
@

d One-Hot :
Point Cloud Indicator o m Actlon
+ g.
e
L]
& (+)

Imagined One-Hot
Critic
> MLP Value
Observed Point Cloud (L LJseel)
& Imagined Point Cloud

HHHJ

Point Cloud Indicator

Robot Proprioception
Figure 3: Architecture: our feature extractor takes the observed point cloud, imagined point cloud, robot
proprioception, and goal pose as input to output a feature embedding. Both actor and critic take the same

feature to predict action and value. The red point represented the imaged point cloud of robot hand. Note that
our network does not require RGB information.

3.2 Imagined Hand Point Cloud

The usage of point cloud comes with two challenges. The first challenge is occlusion, which may
occur to both the object under manipulation and the hand itself. When the robot hand is interacting
with an object, the fingers may be occluded by the object. Since we do not assume tactile sensors
in this work, this occlusion problem can be serious. The second challenge is the low point cloud
resolution during RL training, where we can only use a limited number of points due to the memory
limit. In this case, the number of points from hand finger may not be adequate to precisely capture
the spatial relationship between the robot and the object. We propose a simple yet effective method
to handle both issues in a unified manner. Our idea is to use an imagined hand point cloud in the
observation to help the robot to see the interaction.

We provide one example in Figure 3. Black points indicate the point cloud captured by the camera,
in which some important details of fingers are missing. These missing details provide crucial infor-
mation of the interaction. Though such interaction information can also be inferred by combining
the information from both the proprioception and visual input, we find that the best way is to syn-
thesize these missing details. Concretely, we can compute the pose for each finger link via forward
kinematics given the joint position from the robot joint encoder and the robot kinematics model.
Then, we synthesize the imagined point cloud (blue points in Figure 3) by sampling the points from
the mesh of each finger link. This process is possible in both simulation and the real world.

3.3 Training

We adopt Proximal Policy Optimization (PPO) [55] to train the agent in simulation, and then de-
ployed to real without real-world fine-tuning. The network architecture is illustrated in Figure 3.
Both value and policy networks share the same visual feature extraction backbone. We concatenate
the observed point cloud with the imagined hand point cloud together as the input to the feature
extractor. We also attach a one-hot encoding to each point which indicates whether it is observed or
an imagined point.

4 Experiments

4.1 Experimental Setup

Point Cloud Pre-processing: To enable smooth transfer from simulation to real-world, we apply
the same data preprocessing procedure to the point cloud captured by the camera. It involves four
steps: (i) Crop the point cloud to the work region with a manually-defined bounding-box; (ii) Down-
sample the point cloud uniformly to 512 points; (iii) Add a distance-dependent Gaussian noise to
the simulated point cloud to improve the sim2real robustness; (iv) Transform point cloud from the
camera frame to the robot base frame using camera pose. In simulation, we use the ground-truth

—— Single Bottle 10— Single Can
—— Multi Bottles 08 —— Multi Cans

0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 20 300 400 500 600

Figure 4: Training Curves. The left two plots show the single-object and multi-object training curve of (a)
bottle category and (b) can category. The right three plots show the ablation results on the (c) grasping bottle
(d) grasping can and (e) door opening. The x-axis is the training iterations and y-axis is the normalized episodic
return. The shaded area indicates standard error and the performance is evaluated on five random seeds.

Settings Bottle \ Can

Known Obj. | Novel Obj. | Known Obj. | Novel Obj. |
Single Obj. Training | 0.81+0.09 | 0.60 +0.06 | 0.96 +0.04 | 0.63 +0.18
Multi Obj. Training | 0.83£0.16 | 0.81=£0.15 | 0.93+0.07 | 0.68 = 0.09

Table 1: Experiment on Multi-object Training. We evaluate the policy trained with single and multiple
objects on bottle (upper two rows) and can (bottom two rows) categories with point cloud input. We test them
on both known or novel objects. The success rate are reported on 5 seeds.

camera pose with multiplicative noise for frame transformation. In the real-world, we perform hand-
eye calibration to get the camera extrinsic parameters.

Evaluation Criterion: We evaluate the performance of a policy by its success rate. For grasping
tasks, a task is considered a success if d,; < 0.05m in simulation, where d is the distance between
object position and goal position. In real world, the task is considered as success if the XY position
of the object is within Scm from the target position and the height of the object is at least 15¢cm from
table top. For the door opening, the task is considered as success if the door is opened to at least
around 45 degrees.

EigenGrasp Baseline: We choose the EigenGrasp [56] as the grasp representation. Given an object
mesh model, we use the Grasplt [57] to search valid grasp for Allegro Hand. Then, we use the
RRTConnect [58] motion planner implemented in OMPL [59] to plan a joint trajectory to the pre-
grasp pose and then plan a screw motion from pre-grasp pose to the grasp pose. Finally, we close
all fingers based on searched grasp pose and lift the object to the target. Note that different from
our approach, the baseline method requires complete object model to search for grasps and
ground-truth object pose to align the grasp pose in the robot frame. To evaluate the performance
of baseline on novel objects, we first build a grasp database on ShapeNet bottle and can categories
using Grasplt. Given the sensory data of a new object, we search for the most similar objects in
the dataset and use the query grasps for the novel object. Here we compare the performance of our
method with baselines in the real-world.

Training: We train RL in two settings for grasping: (i) training on a single object (ii) training on
multiple objects jointly. For the single object grasping, we perform experiments on both “tomato
soup can” and “mustard bottle” from YCB. For the multi-object training, we choose 10 objects
from the can or bottle categories of ShapetNet. We randomly choose one object to train for each
episode in the multi-object training. Here, we use can and bottle as experimental subjects since they
represent two different basic grasping patterns [60] for anthropomorphic hand: precision grasp and
power grasp. For door opening, we only train the policy on the door with fixed lever geometry.

4.2 Comparison of Single-object and Multi-object Training

We plot the training curve of RL in Figure 4 (a) and (b). In general, our method can learn to
grasp and move the object to the goal pose within 600 iterations, where each iteration contains 20K
environment steps. Then we evaluate the policy trained on both known and novel objects, and the
results are shown in Table 1. We run 100 trials to compute the average success rate. On grasping
known objects, we find that agent trained on single-object outperforms the agent trained on multi-
object by a small margin, for both learning efficiency and final success rate. However, agent trained
on multi-objects does much better at grasping novel objects. Our results suggest that using multiple
object during training is important, and is of great importance for novel object generalization.

Figure 5: Real-experiment: We evaluate our point cloud policy on various unseen objects.

Settings Bottle Can ‘ Door

Known Obj. | Novel Obj. | Known Obj. | Novel Obj. | Known Obj. | Novel Obj

w/o Imagined PC. | 0.60 £0.46 | 0.56 =0.51 | 0.91 £0.17 | 0.63 £0.07 | 0.14 +£0.28 | 0.11 £0.27
w/o Contact Rew. | 0.00 £0.00 | 0.00 +=0.00 | 0.06 £0.08 | 0.03 £0.06 | 0.21 +£0.26 | 0.20 £ 0.25
w/o Both 0.00 £0.00 | 0.004+0.00 | 0.00£0.00 | 0.00=+£0.00 | 0.0040.00 | 0.00 = 0.00
Ours 0.83£0.16 | 0.81 £0.15 | 0.93 £0.07 | 0.68 = 0.09 | 0.92£0.06 | 0.79 £+ 0.11

Table 2: Ablation Study: we investigate the influence of contact-based reward design and imaged
point cloud. We evaluate the success rate on both known and novel objects under four settings: (i)
without imaged point cloud; (ii) without contact reward; (iii) without both; (iv) with both.

4.3 Ablation Results in Simulation

We ablate two key innovations of the work: the reward design with oracle contact and the imaged
hand point cloud. We perform experiments on four different variants: (i) without imagined point
cloud; (ii) without contact-based reward design; (iii) without both imagined point cloud and contact
based reward design; (iv) our standard approach with both techniques. Note that the variant (iii) is
an approximation of [3] in our environments and tasks. We compare both the learning curve and the
evaluation success rate of these four variants. For grasping task, Figure 4 (¢) and (d) show the results
on bottle and can categories, and Table 2 shows the success rate. Our findings can be summarized
as follows.

First, we find that contact reward information is of vital importance for training the point cloud RL
policy on the multi-finger robot hand. Without using contact reward, the agent can hardly learn
anything (red and green curve in the figure) and get nearly zero success rate during evaluation for
both bottle and can categories. By encouraging the contact between fingers and object, the RL agent
can avoid getting stuck in local minimums and learn meaningful manipulation behavior.

Second, the imagined point cloud can also improve the training and test performance for both cat-
egories, though it is not so important as the contact reward. As is shown in the learning curves of
Figure 4 (c) and (d), the policy utilizing the imagined point cloud as input can learn faster in the
early stage of the training and show much smaller variances. An interesting fact is that imagined
point cloud is more beneficial for the bottle category than the can category. One possible reason is
that grasping a bottle requires multi-finger coordination to perform a power grasp. Such coordina-
tion is highly dependent on the detailed finger information provided by the imagined point cloud.
The imagined point cloud can help the agent to better see the fingers even if they are occluded by
the object, e.g., fingers behind the object.

The experiments on the door opening task also support these findings. As shown in Figure 4 (e),
the policy trained with contact based reward and imaged hand point cloud outperform other abla-
tion methods, which also demonstrate the effectiveness of our two key design. Compared with the
grasping experiments, we can observe larger variations during policy training. One possible reason
is that door opening suffers from heavier occlusion than grasping, when the door lever is grasped by
the robot hand, which influence the temporal consistence of PointNet feature.

4.4 Real-World Evaluation

Method | Bottle | Can | Mixed Category
EigenGrasp Oracle 0.66 0.45 N/A
EigenGrasp 0.50 0.41 N/A
Single Obj. Train 0.75+£0.06 | 0.75 4+ 0.08 N/A

Multi Obj. Train 0.87 +0.03 | 0.83 £0.13 0.73 £0.12

Table 3: Real-World Grasping Experiment: This experiment |
consist of 3 categories, which incorporate 26 objects: 10 bottles, 6
cans, and 10 other objects in multiple mixed categories. ‘

Settings | Original Door | Novel Door 1 | Novel Door 2
Single Door Train \ 0.72 +£0.07 \ 0.60 £ 0.03 \ 0.67 £0.01
Table 4: Real-World Door Opening Experiment: This experi-
ment consist of 3 different doors, the first one on the left is used

for training and the other two are for testing.

2z ~ =]
We perform sim2real experiments to evaluate the performance of our method in the real world. As
is shown in Figure 2, we attached an Allegro hand onto a XArm-6 robot arm to grasp the object
on the front table. We apply the same data-preprocessing steps for both simulated environment and
real-world as mentioned in Sec.4.1.

The task execution sequence is visualized on the bottom row of Figure 1. Both Single Obj. Training
and Multi Obj. Training will be evaluated in the corresponding category, while policies training with
multiple objects even evaluated in the Mixed category with unseen objects. We run 10 independent
trials seeds for each object-policy pair.

The real-world evaluation results are shown in Table 3 and Table 4. The policy trained in the simu-
lator with point cloud input can directly transfer to the real-world without fine-tuning. For both two
tasks, our policy can even deploy on objects that have never been seen during the training. Moreover,
We find that for grasping, training on multiple objects can ensure better performance than single-
object training. Compared with the EigenGrasp baseline shown in Table 3, our policies trained on
both single-object and multi-object performs better, even if the EigenGrasp baseline use the object
model information. Since EigenGrasp + motion planning is a open-loop manipulation policy, small
error in object and scene modeling, e.g. initial object pose or object geometry, can lead to a fail-
ure in final grasp results. In contrast, our methods works in a closed-loop fashion with point cloud
observation, which does not require privilege knowledge about the object.

5 Conclusion and Limitation

Limitations In our experiments, we only train and test our method on two tasks, which limits the
scope of the proposed method. More dexterous manipulation tasks will be our future research di-
rection. Another potential improvement of our method is to use Recurrent Neural Network and
temporal information for policy networks. It will enable us to do long-horizon tasks.

Conclusion To the best of our knowledge, our approach is the first work to train a dexterous ma-
nipulation reinforcement learning policy with point cloud inputs that can transfer to the real world.
We justified that direct sim-to-real transfer is possible for two manipulation tasks with point cloud
representation.

Acknowledgments

This work was supported, in part, by grants from NSF CCF-2112665 (TILOS), NSF 1730158 CI-
New: Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI), NSF
ACI-1541349 CC*DNI Pacific Research Platform, the Industrial Technology Innovation Program
(20018112, Development of autonomous manipulation and gripping technology using imitation
learning based on visualtactile sensing) funded by the Ministry of Trade, Industry and Energy of
the Republic of Korea, and gifts from Meta, Google, Qualcomm. We also thanks Fanbo Xiang for
suggestion on shader setting in SAPIEN, Ruihan Yang for helpful discussion on RL training.

References

[1] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3-20, 2020.

[2] H.Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with deep
reinforcement learning: Efficient, general, and low-cost. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3651-3657. IEEE, 2019.

[3] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. In Confer-
ence on Robot Learning, pages 297-307. PMLR, 2022.

[4] Y.-H. Wu, J. Wang, and X. Wang. Learning generalizable dexterous manipulation from human
grasp affordance. arXiv preprint arXiv:2204.02320, 2022.

[5] W. Huang, I. Mordatch, P. Abbeel, and D. Pathak. Generalization in dexterous manipulation
via geometry-aware multi-task learning. arXiv preprint arXiv:2111.03062, 2021.

[6] T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill:
Generalizable manipulation skill benchmark with large-scale demonstrations. arXiv preprint
arXiv:2107.14483, 2021.

[7] X.Zhang, R. Chen, F. Xiang, Y. Qin, J. Gu, Z. Ling, M. Liu, P. Zeng, S. Han, Z. Huang, et al.
Close the visual domain gap by physics-grounded active stereovision depth sensor simulation.
arXiv preprint arXiv:2201.11924, 2022.

[8] W. Robotics. Allegro robot hand. https://www.wonikrobotics.com/
research-robot-hand.

[9] J. K. Salisbury and J. J. Craig. Articulated hands: Force control and kinematic issues. The
International journal of Robotics research, 1(1):4—17, 1982.

[10] L. Han and J. C. Trinkle. Dexterous manipulation by rolling and finger gaiting. In IEEE
International Conference on Robotics and Automation, volume 1, pages 730-735. IEEE, 1998.

[11] D. Rus. In-hand dexterous manipulation of piecewise-smooth 3-d objects. The International
Journal of Robotics Research, 1999.

[12] D. Prattichizzo and J. C. Trinkle. Grasping. In Springer handbook of robotics, pages 955-988.
Springer, 2016.

[13] A. Bicchi and V. Kumar. Robotic grasping and contact: A review. In IEEE International
Conference on Robotics and Automation, volume 1, pages 348-353. IEEE, 2000.

[14] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis—a survey. IEEE
Transactions on robotics, 30(2):289-309, 2013.

[15] M. R. Dogar and S. S. Srinivasa. Push-grasping with dexterous hands: Mechanics and a
method. 2010.

[16] O. Kroemer, S. Niekum, and G. D. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. Journal of machine learning research, 22(30),
2021.

[17] S. Levine, N. Wagener, and P. Abbeel. Learning contact-rich manipulation skills with guided
policy search. In IEEE International Conference on Robotics and Automation, ICRA, pages
156-163. IEEE, 2015.

[18] A. Gupta, C. Eppner, S. Levine, and P. Abbeel. Learning dexterous manipulation for a soft
robotic hand from human demonstrations. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3786-3793. IEEE, 2016.

[19] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imita-
tion learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 5628-5635, 2018.

[20] I. Radosavovic, X. Wang, L. Pinto, and J. Malik. State-only imitation learning for dexterous
manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7865-7871. IEEE, 2020.

[21] E. Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration.
In IEEE International Conference on Robotics and Automation (ICRA), pages 4613-4619.
IEEE, 2021.

[22] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. In Robotics: Science and Systems, 2018.

[23] S. Christen, S. Stevsi¢, and O. Hilliges. Guided deep reinforcement learning of control policies
for dexterous human-robot interaction. In 2019 International Conference on Robotics and
Automation (ICRA), pages 2161-2167. IEEE, 2019.

[24] Y. Qin, H. Su, and X. Wang. From one hand to multiple hands: Imitation learning for dexterous
manipulation from single-camera teleoperation. IEEE Robotics and Automation Letters, 7(4):
10873-10881, 2022. doi:10.1109/LRA.2022.3196104.

[25] R. Jeong, J. T. Springenberg, J. Kay, D. Zheng, A. Galashov, N. Heess, and F. Nori. Learning
dexterous manipulation from suboptimal experts. In J. Kober, F. Ramos, and C. J. Tomlin,
editors, Conference on Robot Learning, volume 155 of Proceedings of Machine Learning Re-
search, pages 915-934. PMLR, 2020.

[26] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang. Dexmv: Imitation learning
for dexterous manipulation from human videos. arXiv preprint arXiv:2108.05877, 2021.

[27] F. Pomerleau, F. Colas, and R. Siegwart. A review of point cloud registration algorithms for
mobile robotics. Foundations and Trends in Robotics, 4(1):1-104, 2015.

[28] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. Robotics: Science and System, 2017.

[29] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt. Grasp pose detection in point clouds. The
International Journal of Robotics Research, 36(13-14):1455-1473, 2017.

[30] H. Liang, X. Ma, S. Li, M. Gorner, S. Tang, B. Fang, F. Sun, and J. Zhang. Pointnetgpd:
Detecting grasp configurations from point sets. In 2019 International Conference on Robotics
and Automation (ICRA), pages 3629-3635, 2019. doi:10.1109/ICRA.2019.8794435.

[31] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2901-2910, 2019.

[32] Y. Qin, R. Chen, H. Zhu, M. Song, J. Xu, and H. Su. S4g: Amodal single-view single-shot
se(3) grasp detection in cluttered scenes. In Proceedings of the Conference on Robot Learning,
volume 100 of Proceedings of Machine Learning Research, pages 53—65. PMLR, 2020.

[33] P. Ni, W. Zhang, X. Zhu, and Q. Cao. Pointnet++ grasping: Learning an end-to-end spatial
grasp generation algorithm from sparse point clouds. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 3619-3625, 2020. doi:10.1109/ICRA40945.2020.
9196740.

[34] C. Wu, J. Chen, Q. Cao, J. Zhang, Y. Tai, L. Sun, and K. Jia. Grasp proposal networks: An
end-to-end solution for visual learning of robotic grasps. Advances in Neural Information
Processing Systems, 33:13174-13184, 2020.

[35] W. Wei, Y. Luo, F. Li, G. Xu, J. Zhong, W. Li, and P. Wang. Gpr: Grasp pose refinement net-

work for cluttered scenes. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 4295-4302. IEEE, 2021.

10

[36] W. Wei, D. Li, P. Wang, Y. Li, W. Li, Y. Luo, and J. Zhong. Dvgg: Deep variational grasp
generation for dextrous manipulation. IEEE Robotics and Automation Letters, 2022.

[37] S. Andrews and P. G. Kry. Goal directed multi-finger manipulation: Control policies and
analysis. Computers & Graphics, 2013.

[38] J. Varley, J. Weisz, J. Weiss, and P. Allen. Generating multi-fingered robotic grasps via deep
learning. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS),
pages 4415-4420. IEEE, 2015.

[39] S. Brahmbhatt, A. Handa, J. Hays, and D. Fox. Contactgrasp: Functional multi-finger grasp
synthesis from contact. In 20719 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2386-2393. IEEE, 2019.

[40] Q.Lu, K. Chenna, B. Sundaralingam, and T. Hermans. Planning multi-fingered grasps as prob-
abilistic inference in a learned deep network. In Robotics Research, pages 455—472. Springer,
2020.

[41] Y. Chebotar, O. Kroemer, and J. Peters. Learning robot tactile sensing for object manipulation.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3368—
3375, 2014. doi:10.1109/IROS.2014.6943031.

[42] W. Yuan, S. Dong, and E. H. Adelson. Gelsight: High-resolution robot tactile sensors for
estimating geometry and force. Sensors, 17(12):2762, 2017.

[43] R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H. Adelson, and S. Levine.
More than a feeling: Learning to grasp and regrasp using vision and touch. /EEE Robotics and
Automation Letters, 3(4):3300-3307, 2018.

[44] A. Murali, Y. Li, D. Gandhi, and A. Gupta. Learning to grasp without seeing. In International
Symposium on Experimental Robotics, pages 375-386. Springer, 2018.

[45] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos,
A. Byagowi, G. Kammerer, et al. Digit: A novel design for a low-cost compact high-resolution

tactile sensor with application to in-hand manipulation. IEEE Robotics and Automation Letters,
5(3):3838-3845, 2020.

[46] M. A. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese, L. Fei-Fei, A. Garg, and
J. Bohg. Making sense of vision and touch: Learning multimodal representations for contact-
rich tasks. IEEE Transactions on Robotics, 36(3):582-596, 2020.

[47] R. Bhirangi, T. Hellebrekers, C. Majidi, and A. Gupta. Reskin: versatile, replaceable, lasting
tactile skins. arXiv preprint arXiv:2111.00071, 2021.

[48] H. Van Hoof, T. Hermans, G. Neumann, and J. Peters. Learning robot in-hand manipulation
with tactile features. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), pages 121-127. IEEE, 2015.

[49] N. Vulin, S. Christen, S. Stevsi¢, and O. Hilliges. Improved learning of robot manipulation
tasks via tactile intrinsic motivation. IEEE Robotics and Automation Letters, 6(2):2194-2201,
2021.

[50] S. H. Huang, M. Zambelli, J. Kay, M. F. Martins, Y. Tassa, P. M. Pilarski, and R. Hadsell.
Learning gentle object manipulation with curiosity-driven deep reinforcement learning. arXiv
preprint arXiv:1903.08542, 2019.

[51] H. Xu, Y. Luo, S. Wang, T. Darrell, and R. Calandra. Towards learning to play piano with
dexterous hands and touch. arXiv preprint arXiv:2106.02040, 2021.

[52] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, L. Yi,
A. X. Chang, L. J. Guibas, and H. Su. SAPIEN: A simulated part-based interactive environ-
ment. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

11

[53] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[54] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and
model set: Towards common benchmarks for manipulation research. In 2015 international
conference on advanced robotics (ICAR), pages 510-517. IEEE, 2015.

[55] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[56] M. Ciocarlie, C. Goldfeder, and P. Allen. Dexterous grasping via eigengrasps: A low-
dimensional approach to a high-complexity problem. In Robotics: Science and systems ma-
nipulation workshop-sensing and adapting to the real world, 2007.

[57] A.T.Miller and P. K. Allen. Graspit! a versatile simulator for robotic grasping. IEEE Robotics
& Automation Magazine, 11(4):110-122, 2004.

[58] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path
planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages
995-1001. IEEE, 2000.

[59] I. A. Sucan, M. Moll, and L. E. Kavraki. The open motion planning library. IEEE Robotics &
Automation Magazine, 19(4):72-82, 2012.

[60] J. R. Napier. The prehensile movements of the human hand. The Journal of bone and joint
surgery. British volume, 38(4):902-913, 1956.

12

