
Improving Policy Optimization with Generalist-Specialist Learning

Zhiwei Jia 1 Xuanlin Li 1 Zhan Ling 1 Shuang Liu 1 Yiran Wu 1 Hao Su 1

Abstract

Generalization in deep reinforcement learning

over unseen environment variations usually re-

quires policy learning over a large set of diverse

training variations. We empirically observe that

an agent trained on many variations (a general-
ist) tends to learn faster at the beginning, yet its

performance plateaus at a less optimal level for a

long time. In contrast, an agent trained only on

a few variations (a specialist) can often achieve

high returns under a limited computational bud-

get. To have the best of both worlds, we propose

a novel generalist-specialist training framework.

Specifically, we first train a generalist on all en-

vironment variations; when it fails to improve,

we launch a large population of specialists with

weights cloned from the generalist, each trained

to master a selected small subset of variations.

We finally resume the training of the generalist

with auxiliary rewards induced by demonstrations

of all specialists. In particular, we investigate

the timing to start specialist training and com-

pare strategies to learn generalists with assistance

from specialists. We show that this framework

pushes the envelope of policy learning on several

challenging and popular benchmarks including

Procgen, Meta-World and ManiSkill.

1. Introduction
Deep Reinforcement Learning (DRL) holds the promise in

a wide range of applications such as autonomous vehicles

(Filos et al., 2020), gaming (Silver et al., 2017), robotics

(Kalashnikov et al., 2018) and healthcare (Yu et al., 2021).

To fulfill the potential of RL, we need algorithms and mod-

els capable of adapting and generalizing to unseen (but

similar) environment variations during their deployment.

Recently, several benchmarks (Gupta et al., 2018; Cobbe

1University of California, San Diego. Correspondence to: Zhi-
wei Jia <zjia@eng.ucsd.edu>, Hao Su <haosu@eng.ucsd.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

et al., 2020a; Mu et al., 2021; Szot et al., 2021; Gan et al.,

2020; Zhao et al., 2021) were proposed to this end, featuring

a very high diversity of variations in training environments,

accomplished through procedural generation and layout ran-

domization, to encourage policy generalization.

However, due to the sheer number of variations, many ex-

isting DRL algorithms struggle to efficiently achieve high

performance during training, let alone generalization. For

instance, in Procgen Benchmark (Cobbe et al., 2020a), a

PPO (Schulman et al., 2017b) agent trained on a thousand

levels can have poor performance even with hundreds of

millions of samples. Training PPO on visual navigation

tasks involving ∼100 scenes might require billions of sam-

ples to achieve good performance (Wijmans et al., 2019).

Several lines of work have been proposed to alleviate this

issue, by accelerating training with automatic curriculum

(Jiang et al., 2021), improving learned representations with

the help of extra constraints (Igl et al., 2019; Raileanu et al.,

2020), or decoupling the learning of the policy and value

networks (Cobbe et al., 2021; Raileanu & Fergus, 2021).

Orthogonal to these approaches, we tackle the challenge

from a perspective inspired by how human organizations

solve difficult problems. We first define a generalist agent to

be a single policy that can solve all environment variations.

We also define a specialist agent to be a policy that masters

a subset, but not all, of environment variations. Our goal is

to utilize experiences from the specialists to aid the policy

optimization of the generalist.

We observe that trajectories belonging to different environ-

ment variations often consist of shared early stages and

context-specific later stages. It is often more efficient for a

single generalist to learn the shared early stages for all con-

texts than first training different specialists and then merging

them to a generalist. For instance, learning to push a chair

towards a goal, regardless of variations in chair geometry,

topology, or dynamics, requires an agent to first recognize

the chair and approach it. During these early stages, jointly

training an agent on all chairs, starting and goal states results

in faster learning. However, as the visited states get more

and more diverse, it becomes increasingly hard for the policy

and value network to maintain the predictive power with-

out forgetting (i.e., “catastrophic forgetting”), or be vigilant

to input dimensions that were not useful at the beginning

Improving Policy Optimization with Generalist-Specialist Learning

but crucial for later stages (i.e., “catastrophic ignorance” in

Sec. 4). This poses a significant challenge and results in

performance plateaus. Meanwhile, if we only consider a

small subset of environment variations and train a specialist

on it, then due to the low state variance, the specialist can

often master these variations, achieving a higher return on

them than the generalist.

Inspired by these observations, we propose a novel frame-

work1, Generalist-Specialist Learning (GSL), to take ad-

vantage of both specialist’s high return and generalist’s
faster early training. As illustrated in Fig. 1, we first op-

timize the generalist on all environment variations for fast

initial policy learning. When it fails to improve (by a simple

criteria), we launch a large population of specialist agents,

each loaded from the generalist checkpoint, and optimize

on a small subset of environment variations. After special-

ists’ performance quickly surpass the generalist’s, we use

specialists’ demonstrations as auxiliary rewards for gener-

alist training, advancing its own performance. While some

previous approaches also involve specialist training (Mu

et al., 2021; Teh et al., 2017; Ghosh et al., 2017; Mu et al.,

2020; Chen et al., 2022), they either do not realize or di-

agnose the gains and losses for generalist vs. specialist, or

focus on a different setup with their essential idea orthogo-

nal to our proposal. We demonstrate the effectiveness of our

framework on subsets of two very challenging benchmarks:

Procgen (Cobbe et al., 2020b) that consists of procedurally

generated 2D games (with 1024 training levels, more than

the official 200 levels setup), and ManiSkill (Mu et al., 2021)

that evaluates physical manipulation skills over diverse 3D

objects with high geometry and topology variations.

2. Related Work
Divide-and-Conquer in RL Our work is most closely re-

lated to works along this line. Previous works like (Teh et al.,

2017; Ghosh et al., 2017) have adopted divide-and-conquer

for training an RL agent. They split the state space into

subsets, and alternate between training each local policy

on each subset and merging the local policies into a sin-

gle center policy using imitation learning. Although these

approaches also adopt a perspective of generalists and spe-

cialists, they did not study the timing for starting specialist

training, which is a key contribution of our work. In ad-

dition, when distilling experiences from specialists into a

generalist, they usually use behavior cloning and address

the demonstration inconsistency issue by KL divergence

regularization between local policies (Ghosh et al., 2017),

which requires a synchronized training strategy, making it

intractable when scaling to large numbers of specialists as

in our experiments. We show that our approach can still

work well with large number of specialists.

1As a meta-algorithm, the (pseudo)code is available here.

Figure 1. Illustration of Generalist-Specialist Learning (GSL)

framework. During initial generalist learning (phase I), a gen-

eralist agent learns to master all environment variations at once.

Next, each specialist agent works on a subset of environment varia-

tions. Finally, the generalist is fine-tuned (phase II) with guidance

provided by the specialists (e.g., via demonstrations).

Policy Distillation and Imitation Learning Distilling a

single generalist (student) from a group of specialists (teach-

ers) is a promising way to achieve good performance on

challenging tasks (Rusu et al., 2015; Ross et al., 2011;

Mu et al., 2020; Czarnecki et al., 2018; Team et al., 2021).

Population-based agent training (PBT) was utilized in (Czar-

necki et al., 2018; Team et al., 2021). Previous works like

(Rusu et al., 2015) have adopted supervised learning to

training a generalist over specialists’ demonstrations. Other

works convert demonstrations into rewards for online learn-

ing (Finn et al., 2016; Ho & Ermon, 2016; Zakka et al., 2022;

Rajeswaran et al., 2017; Shen et al., 2022). Our framework

makes good use of the policy distillation as its sub-module.

Large-Scale RL Training an RL agent over a large num-

ber of environment variations is a promising approach to

obtaining a generalizable policy (Cobbe et al., 2020b; Mu

et al., 2021). One series of benchmarks for this objective

involve variations on object geometry and topology (Mu

et al., 2021) and task semantics (Yu et al., 2020b; James

et al., 2020), which are usually mentioned as multi-task

RL benchmarks. Another series of benchmarks procedu-

rally generate diverse levels and layouts for an environment

(Urakami et al., 2019; Cobbe et al., 2020b). For both se-

ries of benchmarks, training a single agent over multiple

variations is known to be challenging, which warrants more

exploration into this field.

Multi-task RL In multi-task RL, an agent is trained on

multiple tasks given a task-specific encoding. Recent works

have made significant progress accelerating policy optimiza-

tion across multiple tasks. One stream of work focuses on

Improving Policy Optimization with Generalist-Specialist Learning

improving task (context) encoding representations from en-

vironment dynamics or reward signal (Bram et al., 2019;

Sodhani et al., 2021b). Another stream focuses on studying

and alleviating negative gradient interference from different

tasks (Schaul et al., 2019; Yu et al., 2020a; Kurin et al.,

2022). Different from these approaches, our framework is

designed for general RL tasks, which not only encompasses

multi-task RL environments, but also general RL environ-

ments such as Procgen, whose environment variations do not

have semantic encoding (i.e, each variation is represented

by a random seed).

3. Background
A general Markov decision Process (MDP) is defined as

a tuple M = (S,A, T,R, γ), where S,A are state space

and action space, T (s′|s, a) is the state transition probabil-

ity, R(s, a) is the reward function, and γ ∈ [0, 1) is the

discount factor. In reinforcement learning, we aim to train

a policy π(a|s) that maximizes the expected accumulated

return given by J(π) = E(st,at)∼ρπ
[
∑

t=0 γ
tr(st, at)].

A Block Contextual Markov Decision Process (BC-MDP)

(Zhang et al., 2020; Du et al., 2019; Sodhani et al., 2021a)

augments an MDP with context information, which can be

defined as (C,A,M(c), γ), where C is the context space,

M is a function which maps any context c ∈ C to an MDP

M(c) = {Sc, T c, Rc}. BC-MDP can be adapted to the

multi-task setting, where contexts control objects used in the

environments (e.g. object variations in ManiSkill (Mu et al.,

2021)) and task semantics (e.g. tasks in MetaWorld (Yu

et al., 2020b)). BC-MDP can also be adapted to a general

MDP to control the random seeds (e.g. seeds for procedural

generation in Procgen (Cobbe et al., 2020b)). In this paper,

we consider both settings. Unlike previous works (Sodhani

et al., 2021a), our framework does not require the context

to contain any semantic meaning, which is typical in the

multi-task RL setting. The context can be anything that

splits an MDP into several sub-MDPs.

In the following sections, we first motivate our approach by

analyzing a simple example in Section 4. We then introduce

several important ingredients in our Generalist-Specialist

Learning (GSL) framework.

4. An Illustrative Example
Consider a simple “brush”-like maze illustrated in Fig. 3a.

An agent (a generalist) starts from the leftmost position

in the corridor and needs to reach the goal specified by a

real context c. For each i = {1, 2, · · · , 5}, Ci = (i−1
5 , i

5]
indicates the context space for the i-th goal (marked as red

stars). Upon environment resets, we first uniformly sample

the goal i and then sample c uniformly from Ci. An agent

is given the position and velocity (both are real vectors) as

Figure 2. Training curve of PPO on the brush-like maze. The

generalist learns fast but plateaus quickly (dashed blue line). The

specialists (cloned from the generalist) learn to solve individual

goals better (solid red line). The fine-tuned generalist (trained

by DAPG) with the specialists’ demos achieves the best results

efficiently (green arrow). This improvement is consistent among 5

runs. See details in Appendix.

an observation and is capable of setting its velocity as an

action. The reward is the approximated negative geodesic

distance between the current position and the goal.

We train a PPO agent and discover the phenomenon of

“catastrophic ignorance” (we coin this term inspired by

“catastrophic forgetting”). As in Fig. 2, in early stages,

the agent quickly learns to move rightwards in the maze.

However, the agent tends to ignore the goal context c since

it plays little role in the early stages. This is revealed by

the agent’s tendency to always move rightwards after the

intersection and arrive at the middle goal regardless of the

goal context. It requires a large amount of samples for the

agent to learn to extract features about the goal context.

To overcome this challenge, at the performance plateau of

the generalist, we split the environment into 5 environment

variations, each with a different goal (context interval), and

initiate 5 specialists from the generalist checkpoint to master

each of the variations. For each specialist, because the re-

ward distribution is identical across environment resets, the

specialist can quickly succeed even though it does not un-

derstand the semantic meaning of the context. Then, we use

specialists to generate demonstrations. In practice, auxiliary

rewards can be generated from the demos using techniques

such as Demonstration Augmented Policy Gradient (DAPG,

(Rajeswaran et al., 2017)) and Generative Adversarial Imi-

tation Learning (GAIL, (Ho & Ermon, 2016)). With strong

rewards obtained from demonstrations, the generalist is not

bothered by the challenges in path-finding and can focus on

discriminating goal context. As a result, it quickly learns

(as shown in Fig. 2) to factor the previously-ignored goal

context into making its decisions, thereby overcoming the

performance plateau.

Besides that catastrophic ignorance can be cured by our

framework, GSL can also deal with the catastrophic forget-

ting issue. As the generalist learning proceeds, it becomes

increasingly hard for its policy/value network to maintain

Improving Policy Optimization with Generalist-Specialist Learning

(a) Illustrative environment (b) Procgen (c) Meta-World (d) ManiSkill

Figure 3. (a) An illustrative environment that consists of a long corridor and a “brush”-like maze, where the agent starts from the left

and needs to reach one of the five targets (stars in the figure) specified by a goal context. (b) Sample environments in Procgen, a 2D

vision-based game environment where levels are generated procedurally. (c) Sample environments in Meta-World, where the agent is

asked to perform diverse manipulation tasks given state-space observations. (d) The PushChair task in ManiSkill, where an agent is

required to push a chair towards a goal (red ball) given point cloud observations of diverse chairs.

the predictive power for all the environment variations with-

out forgetting. The introduction of specialists can mitigate

this issue, because each specialist usually only needs to work

well on a smaller subset of the environment variations and

these specialized knowledge is transferred and consolidated

into a single agent with the help of the collected demon-

strations. As catastrophic forgetting is well-known to the

neural network community, we do not provide an illustrative

example here.

Algorithm 1 GSL: Generalist-Specialist Learning

Require: (1) Environment E with context space C (2)

Number of specialists Ns (3) Number of env. varia-

tions for specialist Nlenv (4) Number of demonstra-

tions Ng
D from generalist and Ns

D from specialists (5)

Performance plateau criteria H
1: Initialize generalist policy πg

2: Train πg on E until H = 1 � e.g., PPO, SAC

3: if πg optimal enough then
4: Exit � done with GSL

5: end if
6: Find the Nlenv lowest-performing environment varia-

tions from E, collectively denoted as Elow.

7: Split Elow into Ns disjoint environment variations {Ei}
by splitting the context space C.

8: Obtain πg
low by fine-tuning πg on Elow � optional

9: for each i = 1 · · ·Ns do � in parallel

10: Initialize specialist πs
i = πg or πg

low

11: Train πs
i on Ei

12: Generate
Ns

D

Ns
demos Ti with πs

i on Ei

13: end for each
14: Generate Ng

D demos Tg with πg on E\Elow

15: Continue training πg on E with auxiliary rewards in-

duced from {T D
i } ∪ Tg (via DAPG, GAIL, etc.)

5. Generalist-Specialist Learning
Motivated by our previous example, we now introduce

our GSL framework. At a high-level, the framework is

a “meta-algorithm” that integrates a reinforcement learning

algorithm and a learning-from-demonstration algorithm as

building blocks and produce a more powerful reinforcement

learning algorithm. While there exists works with similar

spirit, we identify several design choices that are crucial to

the success but were not revealed in the literature. We will

first describe the basic framework, and then introduce our

solutions to the key design choices which lead to improved

sample complexity in environments that are too difficult for

the building block reinforcement learning algorithm due to

the catastrophic forgetting and ignorance issues.

5.1. The Meta-Algorithm Framework

We first initialize a generalist policy πg and train the model

over all variations of the environment using actor-critic

algorithms such as PPO (Schulman et al., 2017a) and

SAC (Haarnoja et al., 2018). When the performance plateau

criteria H (introduced later) is satisfied, we stop the train-

ing of πg. This could occur either when πg reaches op-

timal performance (in which case we are done), or when

the performance is still sub-optimal. If the performance is

sub-optimal, we then split all environment variations into

small subsets, and launch a population of specialists, each

initiated from the checkpoint of generalist, to master each

subset of variations. We finally obtain demonstrations from

the specialists, and resume generalist training with auxil-

iary rewards created by these demonstrations. The basic

framework is outlined in Algorithm 1.

5.2. When and How to Train Specialists

While there exist attempts on using the divide-and-conquer

strategy to solve tasks in diverse environments, a systematic

study over the timing to start specialist training is missing.

Improving Policy Optimization with Generalist-Specialist Learning

The default choice in the literature (Teh et al., 2017; Ghosh

et al., 2017) starts specialist training from the very beginning

and periodically distills the specialists into the generalist.

However, as in Fig. 7, we observe that training the special-

ists before the generalist’s performance plateaus does not

take full advantage of generalist’s fast learning during the

early stages, and therefore results in less optimal sample

complexity. Consequently, we start specialist training only

after the generalist’s performance plateaus.

Performance plateau criteria for generalists. We intro-

duce a binary criteria H to decide when the performance

of generalist plateaus. In our implementation, we design a

simple but effective criteria based on the change of average

return, which works well in our benchmarks. Given returns

from M epochs {R1, . . . , RM}, we first apply a 1D Gaus-

sian filter with kernel size 400 to smooth the data. Then,

H(t) = �(Rt + ε ≥ Rt′ , ∀ t′ ∈ {t+ 1, t+ 2..., t+W}).
Intuitively, the criteria is satisfied if the smoothed return at

a certain epoch is approximately higher than (more than a

margin ε) all smoothed returns in the future W epochs.

Assigning environment variations to specialists. When

we assign sets of environment variations to specialists, we

hope that each specialist can master their assigned variations,

yet we also hope that the number of specialists Ns is not too

large if the number of all training environment variations

is already large (in which case we need a large amount

computational resource to train the specialists in parallel).

Empirically, we observe that the generalist can solve some

environment variations reasonably well, yet performs poorly

on others. Therefore, we launch specialist training only on

the Nlenv lowest performing environment variations.

We empirically find that an optional step (line 8 of Alg. 1),

specifically fine-tuning πg on the Nlenv lowest performing

environment variations before training the specialists, can

help to improve sample efficiency as it gives the specialists

a better starting point. Specifically, we fine-tune πg for 200
epochs, or 200 ∗ 16384 samples (a very small number com-

pared to the 100M total budget) and find this step helpful

for tasks in Procgen if PPO is used as the backbone RL

algorithm.

After we assign the variations to specialists, we start to train

these specialists in parallel. We assume that a specialist can

always solve the environment with a few variations. For

example, for most tasks in Procgen which contain 1024

procedurally generated levels for training, we find Nlenv =
300 and Ns = 75 good enough (i.e. each specialist is trained

on 300/75 = 4 variations). Therefore, we can train the

specialists until they accomplish their assigned variations.

In practice, we set a fixed number of samples Nsample for

training each specialist.

5.3. Generalist Training Guided by Specialist Demos

After training each specialist to master a small set of en-

vironment variations, we still need the common generalist

to consolidate specialist experiences and master all train-

ing environment variations. In our proposed framework,

we first collect the demonstration set {T D
i } using the spe-

cialists on their respective training environment variations

(we only collect trajectories whose rewards are greater than

a threshold τ). Specifically, we use the best performing

model checkpoint stored of each specialist to generate the

demonstration set. To ensure training stability, we also col-

lect demos Tg for the remaining training variations using

the generalist. We then resume generalist training using a

learning-from-demonstrations algorithm by combining the

environment reward and the auxiliary rewards induced from

these demonstrations. To train a generalist in this process,

we can adopt many approaches, such as Behavior Cloning

(BC), Demonstration-Augmented Policy Gradient (DAPG,

(Rajeswaran et al., 2017)), and Generative-Adversarial Imi-

tation Learning (GAIL, (Ho & Ermon, 2016)).

It is a key design factor to choose this learning-from-

demonstrations algorithm. The crucial challenge comes

from the inconsistency of specialist behaviors in similar

states. To our knowledge, previous works of divide-and-

conquer RL uses BC to distill from specialists in an offline

manner; however, even if different environment variations

share the same reward structure and various regularization

techniques can be added to the specialist training process,

we find it not scalable to the number of specialists and it

fails to work well in diverse environments such as Procgen

or ManiSkill in our paper. Moreover, pure offline methods

such as BC usually achieve inferior performance since they

are limited to a fixed set of demonstrations.

With the demos collected from specialists, we find online

learning-from-demonstration methods such as DAPG and

GAIL to be quite effective. For DAPG and GAIL, besides

utilizing all the collected demos {T D
i } ∪ Tg, we also let

the generalist interact with the environment to obtain online

samples. From here, we use ρD and ρπ to denote a batch

of transitions sampled from the demonstrations and from

the environment, respectively. While DAPG and GAIL in

principle can be adapted to any RL algorithms (PPO, PPG,

SAC, etc.), we evaluate GSL on challenging benchmarks

using their corresponding strong baseline RL algorithms

(PPO/PPG on Procgen, PPO on Meta-World, and SAC on

ManiSkill). Below, we derive formula to illustrate how we

adapt DAPG and GAIL in our experiments.

We modify DAPG for DAPG + PPO. We first calculate

the advantage value A(s, a) for (s, a) ∼ ρπ using GAE

(Schulman et al., 2015). Then, in each PPO epoch, we

compute the maximum advantage denoted as Â. We obtain

the overall policy loss (value loss omitted here):

Improving Policy Optimization with Generalist-Specialist Learning

LCLIP
ρ (θ) = −E(s,a)∼ρ[

min

(
πθ(a|s)

πθold
(a|s)A(s,a),clip(rt(θ),1−ε,1+ε)A(s,a)

)]

L1
ρ(θ) = −E(s,a)∼ρ[πθ(a|s)]

LDAPG+PPO(θ) = LCLIP
ρπ

(θ) + ω · Â · L1
ρD

(θ)

We find that a smoothed loss L1(·) here significantly im-

proves training stability for some tasks, compared to the

cross entropy (style) loss used in the original DAPG paper.

We set ω = 0.5 in all our experiments and find that decreas-

ing it over time (as in the original DAPG paper) can lead to

worse performance.

For GAIL + SAC, we train a discriminator to determine

whether a transition comes from policy or comes from

demonstration. We obtain the following losses for policy

πφ, discriminator Dψ , and Q-function Qθ:

LGAIL+SAC = Lπ(φ) + LD(ψ) + LQ(θ)

Lπ(φ)=−Est∼ρπ [Eat∼πφ
[α log(πφ(at|st))−Qθ(st,at)]]

LD(ψ)=Eρπ [log(Dψ(st,at))]+EρD
[log(1−Dψ(st,at))]

LQ(θ)=Eρπ∪ρD
[(Qθ(st,at)−(r̃(st,at)+γVθ̄(st+1)))

2]

r̃(st, at) = βr(st, at) + (1− β) log(Dψ(st, at))

here α is the temperature in SAC; β is the hyper-parameter

thlat interpolates between the environment reward and

the reward from the discriminator; moreover, Vθ̄(st) =
Eat∼πφ(·|st) [Qθ(st, at)− α log(πφ(at|st))] is target value.

More implementation details are in Appendix.

PPG (Cobbe et al., 2021) is a recently proposed RL algo-

rithm that equips PPO with an auxiliary phase for learning

the value function. It achieves state-of-the-art training per-

formance on Procgen. We therefore evaluate the PPG +

DAPG combination on Procgen, with essentially the same

adaptation as for PPO + DAPG. Our experiments illustrate

the generality of our framework as a meta-algorithm.

5.4. Benchmarks

We evaluate our Generalist-Specialist Learning (GSL)

framework on three challenging benchmarks: Proc-

gen (Cobbe et al., 2020b), Meta-World (Yu et al., 2020b)

and SAPIEN Manipulation Skill Benchmark (ManiSkill

Benchmark (Mu et al., 2021)).

Procgen is a set of 16 vision-based game environments,

where each environment leverages seed-based procedural

generation to generate highly-diverse levels. All Procgen

environments use 15-dimensional discrete action space and

produce (64, 64, 3) RGB observation space. In our experi-

ments, we use 1024 levels for training, which is different

from the original 200-training-level setup (as we try to evalu-

ate how well GSL scales). We select the 7 most challenging

environments under our setting based on the normalized

score obtained by training the baseline PPO algorithm (PPO

can achieve a close to perfect score on the remaining envi-

ronments given 100M total samples). These environments

are BigFish, BossFight, Chaser, Dodgeball, FruitBot, Plun-

der, and StarPilot. A subset of environments are illustrated

in Fig. 3b. This benchmark leverages procedural generation

and is also suitable for evaluating the generalization per-

formance of our framework. We adopt the IMPALA CNN

model (Espeholt et al., 2018) as the network backbone.

Meta-World is a large-scale manipulation benchmark for

meta RL and multi-task RL featuring 50 distinct object ma-

nipulation skills (see samples in Fig. 3c). We choose multi-

task RL as our testbed, including MT-10 and MT-50 (with

10 and 50 skills to learn, respectively), which only evalu-

ate the agents’ performance on the training environments.

The state space for this benchmark is high-dimensional and

continuous, representing the coordinates & orientations of

the target objects and the parameters for the robotic arms as

well as encodings for the skill ID. We use the V2 version of

the benchmark. See Appendix for the network details.

ManiSkill is a recently proposed benchmark suite desig-

nated for learning generalizable low-level physical manip-

ulation skills on 3D objects. The diverse topological and

geometric variations of objects, along with randomized po-

sitions and physical parameters, leads to challenging policy

optimization. Since realistic physical simulation and point

cloud rendering processes (see Fig. 3d) are very expen-

sive for ManiSkill environments (empirically we observe

that the speed is at 30 environment steps per second), we

only evaluate our framework on the PushChair task. In

this task, an agent needs to move a chair towards a goal

through dual-arm coordination (see Fig. 3d). The environ-

ment has a 22-dimensional continuous joint action space.

Each observation consists of a panoramic 3D point cloud

captured from robot cameras and a 68-dimensional robot

state (which includes proprioceptive information such as

robot position and end-effector pose). In our experiments,

we use a smaller scale of the PushChair environment that

consists of 8 different chairs, where we already find our

framework significantly improves the baseline. We also

transform all world-based coordinates in the observation

space into robot-centric coordinates. Different from the

original environment setup, we add an indicator of whether

the robot joints experience force feedback due to contact

with objects, and we do not reset the environment until the

time limit is reached. We adopt the PointNet + Transformer

over object segmentations model in the original baseline as

our network backbone.

Improving Policy Optimization with Generalist-Specialist Learning

Figure 4. GSL significantly improves baselines (in blue) on Procgen (PPO) and ManiSkill (SAC) for their most challenging environments,

respectively. X-axis is the overall training samples (M), and y-axis is the return. The unit for the y-axis in PushChair is 1000. The dashed

blue line indicates what happens if we choose to continuously train the generalist. For clarity, we only show the starting and ending points

for the step of converting specialist experiences into the generalist (green arrow) and only plot one run (See Appendix for more details

including training curves across all runs with mean and std.). We report the numerical results in Tab. 1.

Figure 5. We also evaluate GSL on MT-10 & MT-50 (PPO) and on the first two challenging tasks of Procgen (with PPG as the baseline,

which already achieves close-to-optimal performance). Again, GSL consistently improves the baselines. The unit for the x-axis is million.

Similar to Fig. 4, we only plot one run out of 5 for clarity. See Tab. 1 & 2 for numerical results and the Appendix for more details.

BigFish BossFight Chaser Dodgeball FruitBot Plunder StarPilot

PPO-Train 24.6±0.7 8.6±0.2 8.5±0.3 13.7±0.3 30.1±0.6 10.5±0.8 39.4±1.4

GSL-Train 31.1±0.8 11.3±0.2 11.5±0.3 15.5±0.2 31.9±0.3 13.4±0.4 49.5±0.4
PPO-Test 24.3±1.1 8.6±0.3 7.9±0.4 12.7±0.3 29.1±0.5 9.7±0.5 38.0±0.9

GSL-Test 30.0 ±0.5 10.4 ±0.2 10.9±0.2 14.1±0.3 30.5±0.4 13.1±0.3 48.7±0.5

BigFish BossFight

PPG-Train 29.4±1.1 11.3±0.2

GSL-Train 33.5±1.3 11.9±0.2
PPG-Test 28.0±0.9 11.1±0.2

GSL-Test 30.9 ±0.8 11.6±0.2

Table 1. Our GSL framework outperforms PPO and PPG baselines on both training and generalization. Models are trained over 1024

levels for each environment and tested over 1000 unseen levels. Results are averaged over 5 runs with std. from raw episode rewards.

5.5. Results

We first train a baseline PPO model on Procgen and MT-10

and MT-50 from Meta-World, along with a baseline SAC

model on ManiSkill (full details in Appendix A). We then

compare these baselines with our GSL framework where

PPO+DAPG is trained on Procgen and Meta-World and

SAC+GAIL is trained on ManiSkill. We demonstrate the

results in Fig. 4 & 5 and Tab. 1 & 2. We also perform exper-

iments with PPG+DAPG on the first two tasks of Procgen

to further verify the generality of GSL (See Tab. 1). Since

our GSL framework involves online interactions from spe-

cialists, we perform necessary scaling to reflect the actual
total sample complexity of our framework.

MT-10 (%) MT-50 (%)

PPO-Train 58.4±10.1 31.1±4.5

GSL-Train 77.5±2.9 43.5±2.2

PushChair (k)

SAC-Train -2.97±2.7

GSL-Train -2.78±2.3

Table 2. GSL boosts training efficiency on MT-10/MT-50 and

PushChair. Results are averaged over 5 and 3 runs, respectively.

We observe that the generalist learns fast at the beginning,

yet its performance plateaus at a sub-optimal level. However,

as soon as we launch specialist training, they quickly mas-

ter their assigned variations. The strong rewards obtained

from specialists’ demonstrations efficiently and effectively

lift the generalist out of performance plateaus, resulting in

significant improvement over baselines. These observations

Improving Policy Optimization with Generalist-Specialist Learning

also corroborate those in Fig. 2 of our illustrative example.

We compare the final average performance of GSL with

PPO/PPG baselines on (1) the 1024 training levels and also

(2) the 1000 hold-out test levels of Procgen. We observe

that our framework not only improves over the baseline

on the training environment variations, but also on unseen

environment variations, demonstrating our framework’s ef-

fectiveness for obtaining generalizable policies.

6. Ablation Studies
In this section, we perform several ablation studies to justify

our design. In ablation experiments, we use 256 different

levels for all Procgens experiments, as opposed to 1024
different levels in the main result section (Sec. 5.5), since

obtaining results on fewer levels is faster.

6.1. Influence of Environment Variations on Training
Efficiency and Effectiveness

Figure 6. The average training returns on BigFish and StarPilot

over 256 levels for Ns = 256/K specialists trained by PPO. The

generalist (K = 256) is more efficient early on but the specialists

are more effective in the end.

A motivating observation for our framework is that training

with more environment variations tends to be faster at the

beginning but plateaus at a sub-optimal performance. We

show the evidence here, by varying the number of environ-

ment variations to train an RL agent. We pay attention to

both the learning speed (efficiency) and the performance at

plateau (effectiveness).

On BigFish and StarPilot in Procgen, we use 256 lev-

els generated with seeds from 2000 to 2256. We choose

K = {4, 16, 64, 256} for the number of levels per special-

ist. Notice that K = 256 is equivalent to training a single

generalist over all levels. For each K, we evenly and ran-

domly distribute the 256 training levels to Ns = 256/K
specialists so that each specialist only learn on its distinc-

tive set of levels. Each of the Ns specialist has a budget

of 200 million/Ns samples to train the PPO, so that the

total sample budget is fixed for fair comparison of sample

complexity. We use the default network architecture and

hyper-parameters for PPO in the Procgen paper, except that

we reduce the number of parallel threads from 64 to 16 for

better sample efficiency for specialists of K = {4, 16}. We

plot the training curve as the average of the Ns = 256/K

specialists and scale it horizontally so that it reflects the

total number of samples in a way same as the generalist’s

training curve.

The results in Fig. 6 clearly suggest our findings. In short,

when trained from scratch, training a generalist enjoys a

more efficient early learning process; in contrast, later on,

training specialists with smaller variations is more effective

in achieving better performance without plateauing early.

6.2. Influence of Specialist Training Timing on
Efficiency and Effectiveness

Figure 7. Training curves of specialists launched from the gener-

alist trained with different numbers of epochs. Starting specialist

training after generalist’s performance plateaus is more sample

efficient.

In Sec. 5.2, we mentioned that the timing to start specialist

training plays a crucial role in the efficiency and effective-

ness of our framework. In this section, we show further

evidence. We launch specialist training at different stages

of generalist’s training curve and present results in Fig. 7.

We also conduct an experiment where specialists are trained

from scratch instead of initiated from a generalist checkpoint

(this corresponds to “Spec @ 0 epochs” in the figure). We

use 64 specialist agents for BigFish training and 8 specialist

agents for PushChair training.

We observe that, when the generalist is still in the early

stages of fast learning and has not reached a performance

plateau, launching specialist training results in worse sample

complexity. In particular, training specialists from scratch

as in previous works (Teh et al., 2017; Ghosh et al., 2017)

leads to inefficient and ineffective learning. On the other

hand, after the generalist reaches a performance plateau,

specialist training has very close efficiency and efficacy

regardless of when the training is launched, as shown in

the nearly parallel specialist curves in BigFish after the

generalist has been trained for 2k epochs. Therefore, a good

strategy for specialist training is to launch it as soon as the

generalist reaches a performance plateau, which we adopt

in Algorithm 1.

6.3. Hyperparameter Tuning of Plateau Criteria H
In Appendix, we show that our performance plateau cri-

teria H (see Sec. 5.2) can identify when the generalist

Improving Policy Optimization with Generalist-Specialist Learning

Figure 8. Training returns of PPO on BigFish with 256 levels and

performance histograms over the withheld levels at four generalist

checkpoints during training. Policy learning on BigFish achieves

good progress in a large portion of levels but slow to no improve-

ments on the remaining.

reaches a performance plateau. Fig. 9 provides a qualitative

evaluation on Procgen, ManiSkill and Meta-World. The

smoothing kernel size is 200 epochs for Procgen & Man-

iSkill and 10 for Meta-World; the window size is W = 600
for Procgen, W = 2000 for ManiSkill and W = 10 for

Meta-World; ε = 0.03 for Procgen, ε = 0.01 for Meta-

World and ε = 0.05k for ManiSkill. Areas around the black

vertical lines are suitable for starting specialist training.

Due to the different training dynamics of various RL al-

gorithms on the benchmarks, the plateau criteria H does

require some hyper-parameter tuning. However, we find it

relatively robust and easy to tune. It turns out that starting

specialist learning at a time 5% of the total training budget

earlier or later than the one suggested by H achieves very

similar final results. Nevertheless, if H is tuned too aggres-

sively (too early), we lose some efficiency from the initial

generalist learning; if it is tuned too conservatively (too

late), the generalist plateaus too long (i.e., less efficiency)

and could become too certain about its decisions, rendering

it harder to be fine-tuned with specialists’ knowledge.

6.4. Diagnosis into Generalist Performance at Plateau

In Sec. 5.2, we discussed the strategy to assign environment

variations to specialists. Specifically, we launch specialist

training only on the Ns variants with the lowest training

performance evaluated using the generalist. Our strategy is

BigFish (train) BigFish (test)

PPO (generalist only) 24.6±0.7 24.3±1.1

DnC RL - -

GSL with BC 25.3±0.4 22.1±0.9

GSL with DAPG 31.1±0.8 30.0±0.5

Table 3. Comparison to baselines and other design choices. DnC

RL requires synchronized training across all specialists with a

quadratic computational complexity w.r.t. the number of special-

ists, and we find it hard to scale up to our setup of 75 specialists as

in GSL. Using GSL with BC harms the performance. Our design

works the best over all choices.

based on the observation that the generalist can solve some

environment variations reasonably well, but performs poorly

on others. We visualize performance of the generalist on

BigFish from Procgen in Fig. 8, where the PPO agent makes

quick progress on most of the levels, with poor performance

only on a portion of variations at the time of plateau. We

find this quite common for environments in Procgen, except

for Plunder where PPO struggles in a majority of levels.

6.5. Influence of Specialist-to-Generalist Algorithm on
Final Performance

In Sec. 5.3, we mentioned the importance of selecting the

algorithm for consolidating specialists’ experience for gen-

eralist learning. We conduct experiments on BigFish of

Procgen, where we set the number of specialists to be 75.

We compare GSL+BC, GSL+DAPG, and DnC (Ghosh et al.,

2017), a classic divide-and-conquer RL work which uses

BC. As a baseline, we also show the performance of jointly

training a PPO on all variations. However, for DnC RL, we

find that unlike any other setups, it has quadratic computa-

tional complexity w.r.t. the number of specialists, rendering

it computationally intractable, so we skip this method. As

shown in Table. 3, using BC in our GSL framework does not

help to outperform a single PPO generalist. One possible

reason is that GSL does not restrict specialists to be close to

the generalist as in DnC, so specialists’ demonstrations can

be inconsistent, posing learning difficulties for BC. On the

other hand, our GSL with DAPG can outperform a single

PPO by a large margin. Additionally, we sample 1,000 novel

levels from BigFish to test the generalization performance

of our models. Results show that GSL+DAPG stays the best

for generalization.

7. Conclusion
Generalization in RL usually requires training on diverse

environments. In this work, we develop a simple yet effec-

tive framework to solve RL problems that involve a large

number of environment variations. The framework is a meta-

algorithm that turns a pair of RL algorithm and learning-

from-demonstrations algorithm into a more powerful RL

algorithm. By analysis into prototypical cases, we iden-

tify that the catastrophic ignorance and forgetting of neural

networks pose significant challenges to RL training in envi-

ronments with many variations, and may cause the agent to

reach performance plateau at sub-optimal level. We show

that introducing specialists to train in subsets of environ-

ments can effectively escape from this performance plateau

and reach a high reward. Design choices that are crucial yet

unknown in the literature must be taken care of for the suc-

cess of our framework. Empirically, our framework achieves

high efficiency and effectiveness by improving modern RL

algorithms on several popular and challenging benchmarks.

Improving Policy Optimization with Generalist-Specialist Learning

References
Bram, T., Brunner, G., Richter, O., and Wattenhofer, R.

Attentive multi-task deep reinforcement learning. arXiv
preprint arXiv:1907.02874, 2019.

Chen, T., Xu, J., and Agrawal, P. A system for general

in-hand object re-orientation. In Conference on Robot
Learning, pp. 297–307. PMLR, 2022.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-

aging procedural generation to benchmark reinforcement

learning. In International conference on machine learn-
ing, pp. 2048–2056. PMLR, 2020a.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-

aging procedural generation to benchmark reinforcement

learning. In International conference on machine learn-
ing, pp. 2048–2056. PMLR, 2020b.

Cobbe, K. W., Hilton, J., Klimov, O., and Schulman, J.

Phasic policy gradient. In International Conference on
Machine Learning, pp. 2020–2027. PMLR, 2021.

Czarnecki, W., Jayakumar, S., Jaderberg, M., Hasenclever,

L., Teh, Y. W., Heess, N., Osindero, S., and Pascanu, R.

Mix & match agent curricula for reinforcement learning.

In International Conference on Machine Learning, pp.

1087–1095. PMLR, 2018.

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik,

M., and Langford, J. Provably efficient rl with rich obser-

vations via latent state decoding. In International Con-
ference on Machine Learning, pp. 1665–1674. PMLR,

2019.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,

V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,

I., et al. Impala: Scalable distributed deep-rl with im-

portance weighted actor-learner architectures. In Interna-
tional Conference on Machine Learning, pp. 1407–1416.

PMLR, 2018.

Filos, A., Tigkas, P., McAllister, R., Rhinehart, N., Levine,

S., and Gal, Y. Can autonomous vehicles identify, re-

cover from, and adapt to distribution shifts? In Interna-
tional Conference on Machine Learning, pp. 3145–3153.

PMLR, 2020.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:

Deep inverse optimal control via policy optimization. In

International conference on machine learning, pp. 49–58.

PMLR, 2016.

Gan, C., Schwartz, J., Alter, S., Schrimpf, M., Traer, J.,

De Freitas, J., Kubilius, J., Bhandwaldar, A., Haber, N.,

Sano, M., et al. Threedworld: A platform for interac-

tive multi-modal physical simulation. arXiv preprint
arXiv:2007.04954, 2020.

Ghosh, D., Singh, A., Rajeswaran, A., Kumar, V., and

Levine, S. Divide-and-conquer reinforcement learning.

arXiv preprint arXiv:1711.09874, 2017.

Gupta, A., Murali, A., Gandhi, D., and Pinto, L. Robot

learning in homes: Improving generalization and reduc-

ing dataset bias. arXiv preprint arXiv:1807.07049, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft

actor-critic: Off-policy maximum entropy deep reinforce-

ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,

2018.

Ho, J. and Ermon, S. Generative adversarial imitation learn-

ing. Advances in neural information processing systems,

29:4565–4573, 2016.

Igl, M., Ciosek, K., Li, Y., Tschiatschek, S., Zhang, C.,

Devlin, S., and Hofmann, K. Generalization in reinforce-

ment learning with selective noise injection and informa-

tion bottleneck. arXiv preprint arXiv:1910.12911, 2019.

James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. Rlbench:

The robot learning benchmark & learning environment.

IEEE Robotics and Automation Letters, 5(2):3019–3026,

2020.

Jiang, M., Grefenstette, E., and Rocktäschel, T. Prioritized

level replay. In International Conference on Machine
Learning, pp. 4940–4950. PMLR, 2021.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,

A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,

Vanhoucke, V., et al. Qt-opt: Scalable deep reinforcement

learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293, 2018.

Kurin, V., De Palma, A., Kostrikov, I., Whiteson, S., and Ku-

mar, M. P. In defense of the unitary scalarization for deep

multi-task learning. arXiv preprint arXiv:2201.04122,

2022.

Mu, T., Gu, J., Jia, Z., Tang, H., and Su, H. Refac-

toring policy for compositional generalizability us-

ing self-supervised object proposals. arXiv preprint
arXiv:2011.00971, 2020.

Mu, T., Ling, Z., Xiang, F., Yang, D., Li, X., Tao, S., Huang,

Z., Jia, Z., and Su, H. Maniskill: Generalizable manipu-

lation skill benchmark with large-scale demonstrations.

arXiv preprint arXiv:2107.14483, 2021.

Raileanu, R. and Fergus, R. Decoupling value and policy for

generalization in reinforcement learning. arXiv preprint
arXiv:2102.10330, 2021.

Improving Policy Optimization with Generalist-Specialist Learning

Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, I., and

Fergus, R. Automatic data augmentation for general-

ization in deep reinforcement learning. arXiv preprint
arXiv:2006.12862, 2020.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-

man, J., Todorov, E., and Levine, S. Learning complex

dexterous manipulation with deep reinforcement learning

and demonstrations. arXiv preprint arXiv:1709.10087,

2017.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-

tion learning and structured prediction to no-regret online

learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.

627–635. JMLR Workshop and Conference Proceedings,

2011.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins,

G., Kirkpatrick, J., Pascanu, R., Mnih, V., Kavukcuoglu,

K., and Hadsell, R. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Schaul, T., Borsa, D., Modayil, J., and Pascanu, R. Ray

interference: a source of plateaus in deep reinforcement

learning. arXiv preprint arXiv:1904.11455, 2019.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,

P. High-dimensional continuous control using generalized

advantage estimation. arXiv preprint arXiv:1506.02438,

2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017a.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017b.

Shen, H., Wan, W., and Wang, H. Learning category-level

generalizable object manipulation policy via generative

adversarial self-imitation learning from demonstrations.

arXiv preprint arXiv:2203.02107, 2022.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,

I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,

Bolton, A., et al. Mastering the game of go without

human knowledge. nature, 550(7676):354–359, 2017.

Sodhani, S., Zhang, A., and Pineau, J. Multi-task

reinforcement learning with context-based represen-

tations. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 9767–9779. PMLR, 18–

24 Jul 2021a. URL https://proceedings.mlr.
press/v139/sodhani21a.html.

Sodhani, S., Zhang, A., and Pineau, J. Multi-task reinforce-

ment learning with context-based representations. arXiv
preprint arXiv:2102.06177, 2021b.

Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao,

Y., Turner, J., Maestre, N., Mukadam, M., Chaplot, D. S.,

Maksymets, O., et al. Habitat 2.0: Training home as-

sistants to rearrange their habitat. Advances in Neural
Information Processing Systems, 34, 2021.

Team, O. E. L., Stooke, A., Mahajan, A., Barros, C., Deck,

C., Bauer, J., Sygnowski, J., Trebacz, M., Jaderberg, M.,

Mathieu, M., et al. Open-ended learning leads to gener-

ally capable agents. arXiv preprint arXiv:2107.12808,

2021.

Teh, Y. W., Bapst, V., Czarnecki, W. M., Quan, J., Kirk-

patrick, J., Hadsell, R., Heess, N., and Pascanu, R. Distral:

Robust multitask reinforcement learning. arXiv preprint
arXiv:1707.04175, 2017.

Urakami, Y., Hodgkinson, A., Carlin, C., Leu, R., Rigazio,

L., and Abbeel, P. Doorgym: A scalable door open-

ing environment and baseline agent. arXiv preprint
arXiv:1908.01887, 2019.

Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I.,

Parikh, D., Savva, M., and Batra, D. Dd-ppo: Learning

near-perfect pointgoal navigators from 2.5 billion frames.

arXiv preprint arXiv:1911.00357, 2019.

Yu, C., Liu, J., Nemati, S., and Yin, G. Reinforcement learn-

ing in healthcare: A survey. ACM Computing Surveys
(CSUR), 55(1):1–36, 2021.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and

Finn, C. Gradient surgery for multi-task learning. arXiv
preprint arXiv:2001.06782, 2020a.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,

C., and Levine, S. Meta-world: A benchmark and evalua-

tion for multi-task and meta reinforcement learning. In

Conference on Robot Learning, pp. 1094–1100. PMLR,

2020b.

Zakka, K., Zeng, A., Florence, P., Tompson, J., Bohg, J.,

and Dwibedi, D. Xirl: Cross-embodiment inverse rein-

forcement learning. In Conference on Robot Learning,

pp. 537–546. PMLR, 2022.

Zhang, A., Lyle, C., Sodhani, S., Filos, A., Kwiatkowska,

M., Pineau, J., Gal, Y., and Precup, D. Invariant causal

prediction for block mdps. In International Conference
on Machine Learning, pp. 11214–11224. PMLR, 2020.

Zhao, Y., Lin, K., Jia, Z., Gao, Q., Thattai, G., Thoma-

son, J., and Sukhatme, G. S. Luminous: Indoor scene

generation for embodied ai challenges. arXiv preprint
arXiv:2111.05527, 2021.

Improving Policy Optimization with Generalist-Specialist Learning

A. Hyperparameters
A.1. Illustrative example

In our illustrative example, we train the generalist and the specialists using PPO, and use DAPG + PPO to resume generalist

training with demos from specialists. We use the following hyperparameters:

Hyperparameters Value

Optimizer Adam

Learning rate 3× 10−4

Discount (γ) 0.95
λ in GAE 0.97

PPO clip range 0.2
Coefficient of the entropy loss term of PPO cent 0.01

Coefficient of the entropy loss term of PPO cent (during DAPG) 0.01
Number of hidden layers (all networks) 2

Number of hidden units per layer 256
Number of threads for collecting samples 5

Number of samples in per PPO step 104

Number of samples per minibatch 2000
Nonlinearity ReLU

Total Simulation Steps 5× 106

Number of environment variations 5
Environment horizon 150

Table 4. Hyperparameters for DAPG and PPO in our illustrative example

Hyperparameters Value

Number of specialists Ns 5
Number of lowest performing environment variations assigned to specialists Nlenv 5

Number of environment variations per specialist K 1
Number of demo samples from specialists (epochs × time steps per epoch × Ns) Ns

D 10× 150× 5
Number of demo samples from generalist Ng

D N/A
Sliding window size (epochs) for the plateau criteria W 50
Number of samples for training each specialist Nsample 500K

Number of samples for DAPG 1M
Margin in the plateau criteria ε 0.01

Table 5. Hyperparameters of GSL in our illustrative example.

A.2. Procgen

In Procgen, we train the generalist and the specialists using PPO/PPG (which is an extension of PPO), and use DAPG +

PPO/PPG to resume generalist training with demos from specialists. We use the following hyperparameters:

Improving Policy Optimization with Generalist-Specialist Learning

Hyperparameters Value

Optimizer Adam

Learning rate 5× 10−4

Discount (γ) 0.999
λ in GAE 0.95

PPO clip range 0.2
Coefficient of the entropy loss term of PPO cent 0.01

Coefficient of the entropy loss term of PPO cent (during DAPG) 0.05
Number of threads for collecting samples 64

Number of samples per PPO epoch 256× 64
Number of samples per minibatch 1024

Nonlinearity ReLU

Total Simulation Steps 108

Table 6. The hyperparameters of PPO and DAPG for Procgen experiments.

Hyperparameters Value

Number of policy update epochs in each policy phase n pi 32
Number of auxiliary epochs in each auxiliary phase n aux epochs 6

Coefficient of the entropy loss term of PPO cent 0.0
Coefficient of the entropy loss term of PPO cent (during DAPG) 0.01

Table 7. Additional hyperparameters of PPG for Procgen experiments.

Hyperparameters Value

Number of specialists Ns 75
Number of lowest performing environment variations assigned to specialists Nlenv 300

Number of environment variations per specialist K 4
Number of demo samples (epochs × sampled time steps per epoch ×Ns) Ns

D 256× 32× 75
Number of demo samples (epochs × sampled time steps per epoch × number of env. variations) Ng

D 256× 8× 724
Sliding window size (epochs) for the plateau criteria W 600

Threshold for filtering demos (in terms of the normalized score) τ 0.15
Number of samples for training each specialist Nsample (PPO) 16× 256× 64
Number of samples for training each specialist Nsample (PPG) 20× 256× 64

Number of samples for DAPG (for PPO) 50× 256× 64
Number of samples for DAPG (for PPG) 800× 256× 64

Margin in the plateau criteria ε 0.03

Table 8. The hyperparameters of GSL for experiments on Procgen.

Other implementation details For all environments, we use seeds (levels) from 1000 to 2023 for training and from

100000 to 100999 for testing. When training the specialists, we change the number of parallel environments in PPO from

64 to 16 for a slightly better sample efficiency, and we change both n pi and n aux epochs to 4 from PPG for a similar

reason. We find that increasing the coefficient cent for the entropy regularization loss during DAPG can help improve both

the optmization and generalization performance for Procgen. For the Plunder environment (with PPO as the baseline), we

have observed poor generalist training performance across a majority of levels. We therefore set Ns = 1024, i.e., we train

specialists on all levels. We also change the number of samples used in DAPG to 200 × 256 × 64 since there are more

demos collected from the specialists than that in other tasks. Moreover, in Plunder we set cent to 0.1 during DAPG.

A.3. Meta-World

For both MT-10 and MT-50 from Meta-World, we train the generalist and the specialists using PPO (with a policy network of

two hidden layers, each of hidden size 32), and use DAPG + PPO to resume generalist training with demos from specialists.

Improving Policy Optimization with Generalist-Specialist Learning

We use the following hyperparameters:

Hyperparameters Value

Optimizer Adam

Learning rate 2.5× 10−4

Discount (γ) 0.99
λ in GAE 0.95

Minimum std. of the Gaussian policy min std 0.5
Maximum std. of the Gaussian policy max std 1.5

PPO clip range 0.2
Coefficient of the entropy loss term of PPO cent (MT-10) 0.005
Coefficient of the entropy loss term of PPO cent (MT-50) 0.05

Number of threads for collecting samples (MT-10) 10
Number of threads for collecting samples (MT-50) 50

Number of samples per PPO epoch 105

Number of samples per minibatch 32
Nonlinearity ReLU

Total Simulation Steps (MT-10) 2× 107

Total Simulation Steps (MT-50) 4× 107

Table 9. The hyperparameters of PPO and DAPG for Meta-World experiments.

Hyperparameters Value

Number of lowest performing environment variations assigned to specialists Nlenv Varied
Number of specialists Ns Nlenv

Number of environment variations per specialist K 1
Number of demo samples (sampled time steps per env. variations ×Ns) Ns

D 105 ×Ns

Number of demo samples (sampled time steps per env. variations × number of remaining env. variations Nr) Ng
D 105× Nr

Sliding window size (epochs) for the plateau criteria W 10
Threshold for filtering demos (in terms of success rate) τ 1.0 (successful)
Number of samples for training each specialist Nsample 3000× 700

Number of samples for DAPG (MT-10) 2× 106

Number of samples for DAPG (MT-50) 6× 106

Margin in the plateau criteria ε 0.01

Table 10. The hyperparameters of GSL for experiments on Meta-World.

Other implementation details We find that in MT-10/50, there always exist some tasks (i.e., environment variations) that

the generalist agent performs extremely poorly after the initial learning phase. We therefore use a threshold of success rate of

0.5 for MT-10 and 0.2 for MT-50 to select the Nlenv (which varies across different runs) lowest performing env. variations

and correspondingly launch Nlenv specialists. During specialist training, we reduce the number of samples per PPO epoch

from 105 to 3 × 103 to improve the sample efficiency (since each specialist now only learns to solve one environment

variation).

A.4. ManiSkill

For ManiSkill experimenets, we adopt the same PointNet + Transfomer over object segmentation architecture as in the

original paper. We proportionally downsample point cloud observations to 1200 points following the same strategy in the

original paper. We train the generalist and the specialists using SAC, and use GAIL + SAC to resume generalist training

with demos from specialists. Notice that each specialist only focuses on one chair model in the PushChair task. We use the

hyperparameters listed in Tab. 11, inspired by the implementations of Shen et al. (2022). We also show hyperparameters for

GSL in Tab. 12.

Improving Policy Optimization with Generalist-Specialist Learning

Hyperparameters Value

Optimizer Adam

Learning rate 3× 10−4

Discount (γ) 0.95

Replay buffer size (γ) 2× 106

Number of threads for collecting samples 4
Number of samples per minibatch 200

Nonlinearity ReLU
Target smoothing coefficient(τ) 0.005

Target update interval 1
Q, π update frequency 4 updates per 64 online samples

GAIL discriminator update frequency 5 updates per 100 policy updates

Total Simulation Steps 2× 107

Table 11. The hyperparameters of SAC and GAIL+SAC for ManiSKill

Hyperparameters Value

Number of specialists Ns 8
Number of lowest performing environment variations assigned to specialists Nlenv 8

Number of environment variations per specialist K 1
Number of demo samples from specialists Ns

D 200× 300× 8
Number of demo samples from generalist Ng

D N/A
Sliding window size (epochs) for the plateau criteria W 2000

Threshold for filter the demos τ −3.5× 103

Number of samples for training each specialist Nsample 1.5× 106

Number of samples used in GAIL+SAC 2× 106

Margin used in the plateau criteria ε 50

Table 12. The hyperparameters of GSL for experiments on ManiSkill.

B. Criteria function H for performance plateaus
Here we verify the effectiveness of our criteria H that indicates when the generalist’s training performance plateaus.

Specifically, for each of the 5 runs in Procgen environments and one run in PushChair from ManiSkill, we mark the first

timestamp t where our proposed criteria H(t) is evaluated as 1. We qualititatively demonstrate the effectiveness of our

criteria in Fig. 9.

In addition, in practice, we do not consider the first 15% to avoid the cases where the generalist gets stuck at the very

beginning (i.e., a “slow start” generalist). We also do not consider the last 15% to leave a sufficient amount of samples for

launching specialist training and using specialists’ demonstrations to guide generalist training.

C. Training curves of multiple runs
For the main results on Procgen and Meta-World, we perform 5 runs for both the baseline and GSL in each environment; for

ManiSkill, we perform 3 runs (due to its high computation complexity). In the main paper, we only plot one run of training

curve for GSL (for each environment) to ensure a clear presentation. Here, we aggregate the curves across multiple runs to

illustrate the mean rewards and their standard deviations. Notice that, due to the performance plateau criteria H, each run

has different starting and ending points for both the generalists and the specialists. We therefore normalize the x-axis to

align each training curve. Specifically, we use percentage (ranging from 0 to 100) as the x-axis. We display curves for the

initial generalist training in the first 50%, those for the specialists in the next 25% and finally the fine-tuned generalist in the

remaining 25%.

Since the training curves plotted here are subject to smoothing, their values (mean episode rewards or success rates) at

the end of the training process might not exactly equal the results reported in Tab. 1 & 2, which are obtained by batch

evaluations using the model checkpoints.

Improving Policy Optimization with Generalist-Specialist Learning

Figure 9. Qualitative evaluation of criteria H. Vertical black lines indicate where H(t) = 1 for the first time in each run of 5 runs for

Procgen and Meta-World and 3 runs for PushChair in ManiSkill. The y-axis is raw episode rewards for Procgen and ManiSkill (whose

unit is 1000) and average success rate for Meta-World. The x-axis is million (of steps).

Figure 10. Aggregated training curves for GSL across multiple runs in Procgen, Meta-World and ManiSkill, where GSL consistently

improves the baseline (dashed blue curves). The y-axis units are raw episode rewards for Procgen, average success rate for Meta-World

and 1000 for ManiSkill. To align the training curves across different runs, we use percentage to represent the x-axis (0 ∼ 50% for initial

generalist training, 50 ∼ 75% for specialists, and 75 ∼ 100% for specialist-guided generalist training).

