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Figure 1. We propose a novel method to enable fast reconstruction of volumetric radiance fields of large-scale scenes. Our method uses a

novel recurrent network – that is generalizable and trained across scenes – to sequentially reconstruct a radiance field of a large indoor scene

in ScanNet [11] from an input image sequence (marked in yellow) via direct inference. The predicted field can be directly used to render

realistic images at novel viewpoints (marked in red), achieving comparable quality to NeRF [28] that takes 12 hours per-scene optimization.

This radiance field can be further fine-tuned for a short period of 20 min, leading to boosted quality that significantly outperforms NeRF.

Abstract

While NeRF [28] has shown great success for neural re-
construction and rendering, its limited MLP capacity and
long per-scene optimization times make it challenging to
model large-scale indoor scenes. In contrast, classical 3D
reconstruction methods can handle large-scale scenes but
do not produce realistic renderings. We propose NeRFu-
sion, a method that combines the advantages of NeRF and
TSDF-based fusion techniques to achieve efficient large-
scale reconstruction and photo-realistic rendering. We pro-
cess the input image sequence to predict per-frame local
radiance fields via direct network inference. These are then
fused using a novel recurrent neural network that incremen-
tally reconstructs a global, sparse scene representation in
real-time at 22 fps. This global volume can be further fine-
tuned to boost rendering quality. We demonstrate that NeR-
Fusionachieves state-of-the-art quality on both large-scale
indoor and small-scale object scenes, with substantially
faster reconstruction than NeRF and other recent methods.1

*Research partially done during Xiaoshuai’s internship at Adobe Re-

search
1https://jetd1.github.io/NeRFusion-Web/

1. Introduction

Reconstructing and rendering large-scale indoor scenes

from RGB images is challenging but crucial for various

applications in computer vision and graphics, including

AR/VR, e-commerce, and robotics. While truncated signed

distance function (TSDF) fusion techniques [29, 42] can

achieve efficient reconstruction, these methods often use

depth sensors and focus on geometric reconstruction only,

and cannot synthesize realistic images. Recently, NeRF

[28] proposed optimizing scene radiance fields, represented

using global MLPs, from RGB images to achieve photo-

realistic novel view synthesis. However, NeRF cannot han-

dle large-scale scenes well due to its limited MLP network

capacity and impractical slow per-scene optimization.

In this work, we aim to achieve fast, large-scale scene-

level radiance field reconstruction to make neural scene re-

construction and rendering more practical. As opposed to

small-scale object-centric scenes, we use “large-scale” to

refer to full-size indoor scenes, like ScanNet scenes [11]),

with multiple rooms and objects with complex scene geom-

etry and appearance. To achieve fast radiance field recon-

struction on such challenging scenes, we propose a novel

neural framework that uses recurrent neural modules to in-

15449



crementally reconstruct a large sparse radiance field from

a long RGB image sequence. Unlike NeRF [28], that re-

quires per-scene optimization, our network is generalizable,

pre-trained across scenes, and able to efficiently reconstruct

large-scale radiance fields via direct network inference. As

shown in Fig. 1, our framework can successfully reconstruct

a large indoor scene from from an input monocular RGB

video from ScanNet [11], to create a high-quality radiance

field with photo-realistic novel view synthesis results.

Our reconstructed radiance field is represented by a

sparse volume grid with per-voxel neural features; these

voxel features are tri-linearly interpolated at any scene

location, and used to regress volume density and view-

dependent radiance through an MLP decoder for differen-

tiable volume rendering. In contrast to previous methods

[14, 24] that reconstruct similar representations using slow

per-scene optimization, we present a novel deep neural net-

work that can be trained across scenes and generalize on

unseen novel scenes to achieve fast radiance field recon-

struction, bypassing per-scene fitting.

Given an input sequence of RGB images with known

camera poses (that can be registered by SLAM or SfM tech-

niques), our framework reconstructs a radiance field as a

sparse neural volume. Our pipeline is inspired by the clas-

sical TSDF fusion workflow [29, 30, 42] that starts from

per-view geometry (depth) and fuses the per-view recon-

struction across key frames to obtain a global sparse TSDF

volume. This workflow is widely used to reconstruct large-

scale scenes, but only focuses on geometric reconstruction.

Instead, we propose novel neural modules to reconstruct ra-

diance fields as sparse voxels for photo-realistic rendering.

We first reconstruct local radiance fields for each input

key frame. We leverage deep MVS techniques and ap-

ply sparse 3D convolutions on a world-space cost-volume

built from unprojected 2D images features (regressed from

a deep 2D CNN) of neighboring key frames. This recon-

structs sparse neural voxels that represent a local radiance

field. Once estimated, this field can already be used to ren-

der realistic images locally, though only for partial scene

content seen by the local frames. We propose a recurrent

neural fusion module to sequentially fuse multiple local

fields across frames. Our fusion module recurrently takes

a newly estimated local field as input and learns to incorpo-

rate the local voxels to progressively reconstruct a global ra-

diance field modeling the entire scene, by adding new vox-

els and updating existing voxels. Our full model is trained

from end to end, learning to reconstruct radiance fields with

arbitrary scene scales from an arbitrary number of input im-

ages. We show that our direct network output can already

render high-quality images; moreover, our neural field can

be effectively fine-tuned by optimizing the predicted voxel

features per scene in a short period to achieve better render-

ing quality (see Fig. 1 and 4).

We train our full framework from end to end with only

rendering losses on a combination of scenes from the Scan-

Net [11], DTU [16], and Google Scanned Object [34]

datasets. These datasets contain a large variety of differ-

ent objects and scenes, allowing for our method to work

properly with any scene scale. We demonstrate, on vari-

ous datasets, that our approach performs better than prior

arts, including IBRNet [41] that also designs networks that

generalize across scenes. Especially on large-scale indoor

scenes, our results from real-time direct network inference

can even be on par with NeRF’s results from long per-scene

optimization. Moreover, after only one hour of per-scene

fine-tuning, our quality can be further boosted to the state-

of-the-art, outperforming NeRF [27] and NVSF [24] that

require much longer per-scene optimization times. Our ap-

proach significantly improves the efficiency and scalability

of radiance field reconstruction. We believe this is an impor-

tant step towards making neural scene reconstruction and

rendering practical.

2. Related Work
Multi-view scene reconstruction. Abundant research has

been conducted on reproducing the appearance of of 3D

scens from multi-view data. To reconstruct the geome-

try, previous methods apply multi-view stereo [36, 37] or

depth sensors [29] to acquire the depth information of the

scene. Recently, learning-based multi-view stereo meth-

ods [8, 9, 12, 15, 26, 45, 46] based on plane-swept cost vol-

umes are also introduced for depth estimation. Given the

depth, one category of methods represent scenes with col-

ored point clouds [1, 21, 22], and utilize point splatting to

render images of the scene. Another category of meth-

ods [29, 30, 42] fuse multi-view depth and reconstruct sur-

face meshes using techniques such as TSDF fusion or Pois-

son reconstruction, and further generate textures [2, 49]

from multi-view images. However, both kinds of meth-

ods are sensitive to potential inaccuracies in point clouds

and meshes resulting from corrupted depth, especially when

there are thin structures and textureless regions, thus suffer-

ing from holes and blurry artifacts in the final renderings.

While some works apply neural networks [1, 13, 35] such

as a 2D CNN in screen-space to mitigate potential errors

in the geometry, their models are per-scene optimized for a

specific scene (similar to NeRF), requiring a long optimiza-

tion time. Moreover, the screen-space neural networks typ-

ically produce temporally unstable results with flickering

artifacts. Instead of estimating and fusing per-view depth,

previous methods [6,19,39] introduce learning-based meth-

ods to aggregate per-view features and predict opacity vol-

umes or signed distance volumes. These methods only fo-

cus on geometry reconstruction and cannot produce realistic

renderings. In contrast, our approach models scenes as neu-

ral volumetric radiance fields and can reproduce the faithful
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scene appearance, producing photo-realistic novel views.

Our pipeline is pretrained on multi-view image datasets and

can generalize to novel scenes at arbitrary scales and enable

efficient large-scale neural reconstruction.

Neural Radiance Fields. Volumetric representations [24,

25,28] have been widely adopted to reconstruct the appear-

ance of the scene. NeRF [28] uses a global MLP to regress

the volume density and view-dependent radiance at any ar-

bitrary point in the space, and applies volume rendering to

synthesize images at novel viewpoints. Following works

extend the framework for different tasks such as relight-

ing [3–5, 38], scene editing [44] and dynamic scene mod-

eling [23, 31, 32]. Similar to NeRF, most of these works

train MLP networks, specific for each scene from scratch,

which can take hours and even days to optimize, heavily

time-consuming. On the other hand, the limited network

capacity of MLPs makes these methods hard to scale up to

large scene reconstruction. NVSF [24] improves the scal-

ability by building sparse voxel grids with per-voxel fea-

tures. However their networks and features are still opti-

mized per scene from scratch and it can still take days for

large-scale scenes. In contrast, while we use a similar sparse

volume, our volume is generated from the direct inference

of a pre-trained network, leading to fast large-scale scene re-

construction. The direct network output can be further fine-

tuned in a short period to achieve better rendering quality

than NeRF and NSVF.

Some previous papers also extend NeRF for generaliza-

tion. PixelNeRF [47] uses 2D CNNs to extract image fea-

tures on each sampled point of each ray used in ray march-

ing for regressing the point’s volume properties. However,

their network is designed for object rendering with few

images and is trained specifically for each dataset. IBR-

Net [41] uses a similar network but has better designs that

enable rendering on any scene scales. However, it lever-

ages image features from neighboring views as input, vary-

ing across novel viewpoints, which often lead to blurry or

flickering artifacts from sparse inputs. Our network instead

reconstructs a neural volume with per-voxel features in 3D,

modeling scene geometry and appearance in a more con-

sistent way, leading to much better rendering than IBRNet.

MVSNeRF [7] also reconstructs 3D volumes; however, it

focuses on reconstructing a local volume from a fixed num-

ber of three nearby views. In contrast, our network can fuse

per-view local reconstruction into a global volume from

an arbitrary number of images, leading to highly efficient

large-scale scene reconstruction and rendering.

3. Method
We now present our approach for neural scene recon-

struction and rendering. Given an input sequence of images

I1,...,IN of a large-scale scene with their known camera pa-

rameters Φ1,...,ΦN , our approach reconstructs a radiance

field modeling the entire scene for realistic rendering.

Our final output radiance field is represented by a sparse

neural volume Vg with per-voxel neural features (Sec. 3.1).

Unlike per-scene optimization methods [24,28], we propose

a deep neural network that sequentially takes the images It
frame by frame as input and convert the sequence to the fi-

nal sparse reconstruction via direct network inference. Our

pipeline first learns to reconstruct a sparse volume Vt per in-

put image frame, expressing a local radiance field covered

by local frames (Sec. 3.2). We then leverage a recurrent fu-

sion module that learns to fuse the per-frame volumes Vt

online, incrementally reconstructing the global large-scale

field Vg (Sec. 3.3). We train our full pipeline from end to

end with pure rendering losses. Our model can reconstruct

high-quality radiance fields from direct network inference;

the estimated field can also be further fine-tuned to boost its

quality (Sec. 3.4).

3.1. Sparse Volumes for Radiance Fields

Our output radiance field is modeled by a sparse neural

volume V that has per-voxel neural features in voxels that

approximately cover the actual scene surface. We regress

volume density σ and view-dependent radiance c at any

given 3D location x from this volume using an MLP net-

work, in which we first tri-linearly sample a feature vector

and then use the MLP to convert the feature to volume prop-

erties, expressed by

σ, c = R(x, d,V(x)). (1)

Here V(x) represents the trilinearly interpolated feature at

x, R is the MLP, and d is the viewing direction in render-

ing. The output volume properties regressed from the vol-

ume can be directly used to synthesize images at novel tar-

get viewpoints via differentiable ray marching as is done in

NeRF [28]. This radiance field representation is similar to

the one in Neural Sparse Voxel Fields [24] that purely re-

lies on per-scene optimization for the reconstruction. We

instead propose to leverage neural networks trained across

scenes to predict the neural volumes from image sequences.

In our pipeline, such sparse volumes are reconstructed

locally as Vt per frame t and also globally as Vg for the en-

tire sequence. The MLP network R is shared across all vol-

umes in the training process. We model the local volumes

and the global volume both in the canonical world space.

3.2. Reconstructing Local Volumes

We propose a deep neural network to regress a local neu-

ral volume for each input frame t, using its image It and

K − 1 images from neighboring views. Usually, given a

monocular video, these neighboring views correspond to

temporal neighboring frames. Using multiple nearby im-

ages for per-frame reconstruction allows the network to
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Figure 2. Overview of our framework. Given a sequence of images, 1) we first extract their image features (F1 . . . FN ) using a 2D CNN. 2)

Then, at each frame, we reconstruct a local sparse neural volume V1 . . .VN in the canonical world space by fetching and aggregating 2D

features across its neighboring views at visible voxels using a sparse 3D CNN. 3) We further fuse the local sparse volumes across frames

using a recurrent neural network and sequentially build global feature volumes Vg
1 . . .Vg

N to model a radiance field of the entire scene. We

regress volume density and view-dependent radiance from the sparse neural volumes to render images with differentiable ray marching.

leverage multi-view correspondence to recover better scene

geometry, which a single image cannot provide.

To make the local reconstruction per frame well gen-

eralized across scenes, we leverage deep MVS techniques

[18, 45], which are known to be generalizable. We extract

2D image features, build a cost volume from the features,

and regress a neural feature volume from the cost volume.

However, unlike MVSNeRF [7] and other MVS techniques

[9, 45] that built frustum volumes in view’s perspective co-

ordinate, we construct volumes in the canonical world coor-

dinate frame to align it with the final global volume output

Vg , facilitating the following fusion process.

Image feature extraction. We use a deep 2D convolutional

neural network to extract 2D image features for each input

image. This network maps the input image It into a 2D

feature map Ft, encoding the scene content from each view.

Local sparse volume. We consider the bounding box that

covers the frustums of all K neighboring viewpoints in the

world coordinate frame, containing of a set of voxels in the

canonical space. The bounding volume is axis-aligned with

the world frame; each voxel inside it can be visible to a

different number of neighboring views. We mask out all the

voxels invisible to all view, leading to a sparse set of voxels

in the bounding box. We then unproject the image features

into this volume for our local reconstruction.

3D feature volume. For each neighboring viewpoint i and

its feature map Fi, we build a 3D feature volume Ui. In

particular, for each visible voxel centered at v, we fetch the

2D image feature at its 2D projection from each neighbor-

ing view at frame t. In addition to pure image features, we

leverage the corresponding viewing direction di at v from

each viewpoint and compute additional features using an

MLP G. The per-view 3D volume Ui is expressed by

Ui(v) = [Fi(ui), G(di)], (2)

where Ui(v) is the feature at a voxel centered at v, ui is the

center’s 2D projection in view i, [·, ·] represents feature con-

catenation. Note that, we encode the additional information

of input viewing directions in the reconstruction process;

this crucial information makes our following fusion module

effectively account for the view-dependent effects captured

across frames.

Neural reconstruction. We then aggregate the features

across multiple neighboring viewpoints to regress a local

volume Vt at frame t, expressing a local radiance field.

We propose to leverage the mean and variance of the per-

voxel features in Ui computed across neighboring view-

points; such operations have been widely used in build-

ing cost volumes in MVS-based techniques [7, 45], where

the mean can fuse per-view appearance information and the

variance provides rich correspondence cues for geometry

reasoning. These two operation are also invariant to the

number/order of input; in our case, this naturally handles

voxels that have different numbers of visible viewpoints.

We use a deep neural network J to process the mean and

variance features per voxel to regress the per-view recon-

struction by

Vt = J([Meani∈Nt
Ui, Vari∈Nt

Ui]), (3)

Here Nt represents all K neighboring viewpoints used at

frame t; Mean and Var represent element-wise average and

variance operation, respectively.

Essentially, we regress the local radiance field from the

features across neighboring views. This is similar to MVS-

NeRF [7]. However, unlike MVSNeRF that considers only

local reconstruction and builds perspective frustrum vol-

umes for small-baseline rendering, we leverage these local

volumes for global large-scale reconstruction and render-

ing. We build volumes directly in canonical space, naturally

providing per-frame voxel inputs for our fusion module.
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Figure 3. A 2D example illustrating the GRU fusion step. The hid-

den state, which is also the global feature volume Vg
t−1, is adap-

tively updated by aggregating new information in the incoming

local feature volume Vt.

3.3. Fusing Volumes for Global Reconstruction

In order to create a consistent, efficient, and extensible

scene reconstruction, we propose to use a global neural vol-

ume fusion network to incrementally fuse local feature vol-

umes {Vt} per frame into a global volume Vg .

Fusion. At each frame t, we consider its local sparse vol-

ume reconstruction Vt and the global reconstruction Vg
t−1

from the previous frame as recurrent input. We leverage

GRUs (Gated Recurrent Unit) [10] with sparse 3D CNNs

in our fusion module, allowing our network to learn to re-

currently fuse the per-frame local reconstruction and output

high-quality global radiance fields. This is expressed by

zt = Mz([Vg
t−1,Vt]), (4)

rt = Mr([Vg
t−1,Vt]), (5)

Ṽg
t = Mt([rt ∗ Vg

t−1,Vt]), (6)

Vg
t = (1− zt) ∗ Vg

t−1 + zt ∗ Ṽg
t , (7)

where ∗ is the element-wise multiplication, zt and rt are

the update gate and the reset gate, Mz , Mr and Mt all deep

neural networks with sparse 3D convolution layers. As in

standard GRU, Mz and Mr are designed with sigmoid ac-

tivation in the end, while Mt uses tanh, allowing for the

entire model sequentially updating the global reconstruc-

tion Vg
t (seen as the hidden state in a GRU) for every input

frame. In this process, we only apply the networks on the

voxels covered by the local volume Vt; all other voxels in

the global volume are kept unchanged. A 2D illustration of

this GRU fusion process is shown in Fig. 3.

Intuitively, the update gate zt and reset gate rt in the

GRU determine how much information from the previous

global volume Vg
t−1 as well as how much information from

the current local volume Vt should be incorporated into the

new global features. In this way, our module can adaptively

improve the global scene reconstruction by filling up holes

and refining features while keeping the representation con-

sistent. This fusion process is similar to previous 3D recon-

struction pipelines [20, 33, 39] that focus on geometry re-

construction; in contrast, we instead reconstruct neural fea-

ture volumes to represent neural radiance fields for volume

rendering, leading to photo-realistic novel view synthesis.

Voxel pruning. To maximize the memory and rendering

efficiency, we adaptively prune the global volume recon-

struction Vg
t for every frame by removing the non-essential

voxels that do not have any scene content inside. We nat-

urally leverage the volume density in each voxel regressed

by our radiance field (Eqn. 1), which models the scene ge-

ometry. In particular, we prune voxels V if:

min
i=1...k

exp(−σ(vi)) > γ, vi ∈ V, (8)

where {vi}ki=1 are k uniformly sampled points inside the

voxel V , σ(vi) is the predicted density at location vi, and γ
is a pruning threshold. This pruning step is performed in

both later training phase and inference phase once we get a

global feature volume Vg
t . By doing so, we make our global

volume sparser, leading to more efficient reconstruction and

rendering.

3.4. Training and optimization

Once a radiance field (that is represented by a sparse neu-

ral volume as described in Sec. 3.1) is reconstructed, our

final rendering is achieved via differentiable ray marching

using the regressed volume density and view-dependent ra-

diance at any sampled ray points, as is done in NeRF and

any other radiance field methods [24, 28]. In this work, our

full pipeline is trained, completely depending on the render-

ing supervision with the ground truth images, without any

extra geometry supervision.

In particular, we first train our local reconstruction net-

work and the radiance field decoder (R) with a loss

Llocal = ‖Ct − Ĉ‖22, (9)

where Ĉ is the ground truth pixel color and Ct represents

the rendered pixel color using the local volume Vt recon-

structed at frame t. This makes the network learn to predict

reasonable local neural volumes, which are already render-

able and able to produce realistic images locally; it also

initializes the radiance field decoder MLP to a reasonable

state, which is later shared across local and global volumes.

This pre-training allows the local reconstruction module to

provide meaningful volume features for the fusion module

to utilize in the end-to-end training, effectively facilitating

the fusion task. We then train our full pipeline with the

local reconstruction network, fusion network, and the ra-

diance field decoder network all together from end to end,
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using a rendering loss:

Lfuse =
∑

t

‖Ct − Ĉ‖22 + ‖Cg
t − Ĉ‖22, (10)

where Ct is the pixel color rendered from the local recon-

struction Vt (as is in Eqn. 9) and Cg
t is the color rendered

from the global volume Vg
t after fusing frame t. Basically,

we take every intermediate global and local volume (Vt and

Vg
t ) at every frame to render novel view images and super-

vise them with the ground truth. The fusion module thus

reasonably learns to fuse local volumes from an arbitrary

number of input frames.

After trained, our full network is able to output a high-

quality radiance field from direct network inference and

produce realistic rendering results (as shown in Fig. 1). In

addition, the reconstructed radiance field as a sparse neural

volume can also be easily optimized (fine-tuned) per scene

further to boost the rendering quality.

Fine-tuning. To fine-tune the estimated radiance field, we

optimize the per-voxel neural features in the sparse volume

reconstruction Vg and the MLP decoder per scene with the

captured images, leading to better rendering results. Since

our initial reconstruction is already very good, a short pe-

riod of optimization with less than 25k iterations can usu-

ally lead to very high quality, which takes less than 1 hour.

This is substantially less optimization time than NeRF and

other pure per-scene optimization methods.

In this per-scene optimization stage, we also do a coarse-

to-fine reconstruction, similar to NSVF [24]. Basically, af-

ter every 10k optimization iterations, we further prune un-

necessary voxels (using Eqn. 8) and also subdivide each

voxel into 8 sub voxels. This prune and subdivision step

progressively increases the spatial resolution of the neural

volume, further improving our final rendering quality.

4. Implementation Details.
Training datasets. Our training data consists of both large-

scale indoor scenes from ScanNet [11] and small objects

from DTU [17] and Google Scanned Objects [34]. We ran-

domly sample 100 scenes from ScanNet for training. For

DTU, We adopt the training split from PixelNeRF [47],

which includes 88 training scenes. In addition, we use the

object-centric synthetic renderings of 1,023 models from

the Google Scanned Objects [34] generated by [41]. Our

training data includes various camera setups and scene

types, enabling our model to generalize to all kinds of sce-

narios. We demonstrate that our model can effectively work

on large-scale indoor scenes, as well as scenes of objects.

Training details. For each input image sequence, we uni-

formly sample key frames from the full sequences for the in-

put frames in network training. For object-centric datasets,

we sample 16 views for each scene, and for ScanNet, we

sample 2% − 5% of the full sequence as key frames. All

other frames are used for supervision. We use K = 3
neighboring views for each input frame, for local volume

reconstruction. For video sequence captured by a monocu-

lar camera, such as the scenes in ScanNet, we directly take

the 3 neighboring key frames temporally. For other datasets,

we select the 3 spatially closest viewpoints, in terms of both

viewing location and direction.

The sparse volumes and networks are implemented with

torchsparse [40]. We train our model using Adam optimizer

with an initial learning rate of 0.003. We train our network

with 2 NVIDIA 2080Ti GPUs for 3 days. During inference,

our network processes frames from ScanNet sequences in

real-time at 22 FPS. The final model takes 38 seconds on

average to render a 640× 480 image on ScanNet .

5. Results
In this section, we evaluate the our model on various

datasets. For all results, we denote our results from direct

network inference as Ours and our results after per-scene

fine-tuning as Oursft in all figure and tables. Similar labels

are applied to IBRNet and other generalizing methods.

Baselines. We compare our method against the state-

of-the-art NeRF methods on novel view synthesis includ-

ing per-scene optimization methods, such as NeRF [28],

NVSF [24], and NerfingMVS [43], and methods that can

generalize to new scenes, such as PixelNeRF [47], IBR-

Net [41], and MVSNeRF [7].

To achieve fair and accurate comparisons, we run our

method on the same experiment settings in previous papers,

and we try our best to directly use the reported official quan-

titative results in previous papers or use the official code to

run the experiments. We find that the official NeRF and

IBRNet code can easily run and work on different datasets,

producing corresponding images. We demonstrate visual

comparison with these two methods across the three testing

sets in Fig. 4. On the other hand, NSVF is very hard to run

without enough GPU memory; their official models are op-

timized on a V100 GPU that has 32G memory; we found it

impractical to generate their corresponding results with our

resources. We therefore only include NSVF’s quantitative

results whenever they are reported previously. Besides, the

recent MVSNeRF [7] is a very relevant technique, but it is

designed to take a fixed number of three nearby views as its

network input; as a result, it cannot support large-baseline

rendering or arbitrary number of input images for inference.

We therefore only compare with MVSNeRF on the DTU

dataset in the same experiment setting used in their paper.
Large-scale scenes in ScanNet. We follow the same train-

ing and evaluation scheme as described in NerfingMVS [43]

for the comparison on ScanNet. We tested our model on the

8 testing scenes used in their paper. From Table 1, we can

see that our recurrent neural reconstruction network gener-

65454



Method Settings PSNR↑ SSIM↑ LPIPS↓
IBRNet No per-scene

optimization
21.19 0.786 0.358

Ours 22.99 0.838 0.335

NeRF

Per-scene
optimization

24.04 0.860 0.334

NSVF 26.01 0.881 -

NeRFingMVS 26.37 0.903 0.245

IBRNetft-1.5h 25.14 0.871 0.266

Oursft-1h 26.49 0.915 0.209

Table 1. Quantitative comparisons on the ScanNet dataset [11].

We follow the same experiment settings as in NeRFingMVS [43]

and report the error metrics including PSNR (higher is better),

SSIM (higher is better) and LPIPS (lower is better). Note that,

our diret inference results are better than IBRNet [41]. Our fine-

tuning results achieve the best numbers in all three metrics.

Method Settings PSNR↑ SSIM↑ LPIPS↓
IBRNet No per-scene

optimization
25.51 0.916 0.100

Ours 25.47 0.922 0.093

NeRF

Per-scene
optimization

31.01 0.947 0.081

NSVF 31.75 0.954 0.048
IBRNetft-1.5h 28.19 0.943 0.072

Oursft-1h 31.25 0.953 0.069

Table 2. Quantitative comparison on the NeRF Synthetic

dataset [28]. Our model is able to generate better results than IBR-

Net in both direct inference and fine-tuning settings. Our model

after 1 hour fine-tuning achieves comparable performance to the

state-of-the-art per-scene overfitting methods such as NeRF [28]

and NVSF [24].

ates significantly better results than IBRNet via direct net-

work inference. After fine-tuning for only a short period

of 1 hour, the quality of our results is further boosted sig-

nificantly, leading to the best PSNR, SSIM and LIPIPS in

all compared methods. Note that, the per-scene optimiza-

tion methods like NeRF, NeRFing MVS and NSVF require

substantially longer per-scene optimization time but are still

outperformed by our method. Our approach is impressively

better than NSVF in this case though both methods have

similar final radiance field representation; this indicates that

the data priors learned by our recurrent neural network can

effectively help the reconstruction and lead to reasonable

initial radiance fields, even benefiting the per-scene fine-

tuning process.

As shown in Fig. 4, our results on these large-scale

scenes are of very high visual quality. Our results are visu-

ally much better than the IBRNet’s results from both direct

inference and per-scene fine-tuning. IBRNet generates tear-

ing artifacts since it performs image-based rendering and

can only aggregate a small set of local neighboring views

due to limited GPU memory. In contrast, our model learns

a unified 3D representation in the canonical space with a

Method Settings PSNR↑ SSIM↑ LPIPS↓
PixelNeRF

No per-scene

optimization

19.31 0.789 0.382

IBRNet 26.04 0.917 0.190

MVSNeRF 26.63 0.931 0.168
Ours 26.19 0.922 0.177

NeRF

Per-scene
optimization

27.01 0.902 0.263

IBRNetft-1.5h 31.35 0.956 0.131

MVSNeRFft-15min 28.50 0.933 0.179

Oursft-1h 31.79 0.962 0.119

Table 3. Quantitative comparisons on the DTU dataset [16]. Our

model is able to generate good results under this difficult setting

where only 3 input views are given for the direct inference. Our

fine-tuning results outperforms other methods in all three metrics.

recurrent module that is able to efficiently aggregate per-

view information across all input views, leading to signifi-

cantly better rendering quality with better across-view con-

sistency. Note that, even our direct inference renderings are

already very realistic and contain few noticeable artifacts;

they are arguably comparable to the rendering results of

NeRF which require long per-scene optimization. Our ap-

proach achieves highly efficient and highly accurate large-

scale radiance field reconstruction.

NeRF Synthetic. Our method also works well on small-

scale scenes. We conduct experiments on the NeRF Syn-

thetic 360◦ dataset, and apply the same evaluation setting as

in [28]. As shown in Table 2, without per-scene fine-tuning,

our model generates results that are comparable to IBRNet;

however, fine-tuning significantly boosts the performance

of our model, leading to high accuracy that is much supe-

rior to the fine-tuned IBRNet. In practice, IBRNet suffers

from the sparsely distributed input views of the dataset with

large baselines, where interpolating neighboring views are

not effective to synthesize realistic novel view images. Our

fine-tuned model also achieves similar performance when

compared to per-scene optimization methods [24,28], while

ours is optimized for only 1 hour, substantially less than the

time other methods require.

DTU. To show that our method works with a small num-

ber of input views with small baselines. We also evaluate

our model on the DTU dataset, following the experiment

settings in MVSNeRF [7], where only 3 views are pro-

vided for the setting without per-scene optimization and 16

more views are provided in the per-scene optimization set-

ting. Here we also compare with PixelNeRF [47], which is

specifically trained for the DTU dataset in their paper. As

demonstrated in Tab. 3 and Fig. 4, similar to previous re-

sults, our model generalizes well to the testing scenes and

can be efficiently fine-tuned to outperform NeRF and other

generalizable methods including IBRNet [41] and MVS-

NeRF [7].
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Figure 4. Qualitative comparisons of rendering quality on diverse scenes between our method and state-of-the-art method. Our method

achieves better performance than state-of-the-art generalizable method IBRNet [41] in both the direct-inference and the fine-tuned settings,

where IBRNet generates results with obvious blurry and tearing artifacts. Our model fine-tuned for 1 hour can generate even better results

than NeRF [28] that requires 12 hours of training, especially on large-scale scenes from ScanNet [11].

6. Limitations.
Our approach currently focuses on handling large-scale

indoor scenes, but might not be efficient on handling

scenes that have foreground objects with distant back-

ground, which might appear in unbounded outdoor scenes.

This is because we consider a uniform grid for the entire

scene, similar to [24]. This can be potentially addressed

in the future by doing per-view reconstruction in disparity

space or applying spherical coordinates for regions at long

distances (similar to [48]). Our method relies on multi-

view correspondence; hence, extreme camera poses with-

out enough parallax could lead to problems, which cannot

be addressed by any MVS-based techniques. For our cur-

rent pipeline, we simply sample input frames uniformly,

because the camera motion in ScanNet has enough trans-

lation. However, a more careful input view selection tech-

nique that accounts for relative camera poses may be neces-

sary in practice to address various types of camera motions.

7. Conclusion
In this work, we present a novel neural approach that

can achieve fast, large-scale, and high-quality scene recon-

struction for photo-realistic rendering. In contrast to tradi-

tional TSDF-based reconstruction, we reconstruct scenes as

volumetric radiance fields, leading to photo-realistic view

synthesis results. Our approach leverages a novel recurrent

neural network to process the input image sequence and in-

crementally reconstruct a global large-scale radiance field

by reconstructing and fusing per-frame local radiance fields.

We demonstrate that our approach can achieve the state-of-

the-art rendering quality for large-scale indoor scenes from

ScanNet while taking substantially less reconstruction time.
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Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy,

David Kriegman, and Ravi Ramamoorthi. Neural re-

flectance fields for appearance acquisition. arXiv preprint
arXiv:2008.03824, 2020. 3

[4] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yan-
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