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Abstract

The integration of machine learning models in

various real-world applications is becoming more

prevalent to assist humans in their daily decision-

making tasks as a result of recent advancements

in this field. However, it has been discovered

that there is a tradeoff between the accuracy and

fairness of these decision-making tasks. In some

cases, these AI systems can be unfair by exhibit-

ing bias or discrimination against certain social

groups, which can have severe consequences in

real life. Inspired by one of the most well-known

human learning skills called grouping, we address

this issue by proposing a novel machine learning

(ML) framework where the ML model learns to

group a diverse set of problems into distinct sub-

groups to solve each subgroup using its specific

sub-model. Our proposed framework involves

three stages of learning, which are formulated

as a three-level optimization problem: 1) group-

ing problems into subgroups, 2) learning group-

specific sub-models for problem-solving, and 3)

updating group assignments of training examples

by minimizing validation loss. These three learn-

ing stages are performed end-to-end in a joint

manner using gradient descent. To improve fair-

ness and accuracy, we develop an efficient opti-

mization algorithm to solve this three-level opti-

mization problem. To further decrease the risk

of overfitting in small datasets using our LBG
method, we incorporate domain adaptation tech-

niques in the second stage of training. We further

apply our method to differentiable neural architec-

ture search (NAS) methods. The LBG implemen-

tation can be found in the Skillearn repository at

here.
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1. Introduction
Learning by grouping is an outstanding human learning skill

aiming to organize a set of given problems into different sub-

groups and domains where each subgroup contains similar

problems that can be solved independently and efficiently.

In this paper, we formulate Learning by Grouping (LBG) as

an optimization problem and investigate its effectiveness in

ML. Our proposed framework contains two types of model:

1) Group Assignment Model (GAM); and 2) Group-Specific

Classification Models (GSCM). The GAM model takes a

data example as input and predicts the subgroup it belongs

to – a K-way classification problem, where K is the num-

ber of GSCM models (i.e., experts). For each subgroup k,

a GSCM model performs the supervised learning on the

target task. We then apply the GAM and the K GSCM

models to improve the existing machine learning models’

fairness and accuracy. Additionally, we extend our LBG

formulation to the neural architecture search to obtain the

most suitable task-specific GSCM models. We depict the

high-level learning process in Fig 1.

We formulate LBG as a three-stage optimization problem.

First, we learn the Group-Assignment Model (GAM); then,

we train Group-Specific Classification Models (GSCMs);

finally, we apply the GAM and the GSCMs to the validation

set to learn the subgroups for subgroup assignment and the

learnable architecture. We develop a gradient-based method

to solve this three-level optimization problem. In previous

related works, mixture-of-expert methods learn the experts

– analogous to GSCMs; and the gating network – similar

to GAM. The mixture-of-experts (MoE) methods learn the

gating network and the experts jointly on the training data,

which has a high risk of overfitting the gating network to

the training data. We address this problem of overfitting

by MoE methods by formulating a three-stage optimization

framework that learns the subgroups for the subgroup as-

signment tasks on the validation set instead of the training

examples.

Currently, the majority of state-of-the-art neural network

performance is achieved through architectures that are man-

ually designed by humans. However, this process of design-

ing and evaluating neural network architectures by human

experts is both time-consuming and may not end with the

most suitable task-specific architecture. In recent years,
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Figure 1. Illustration of Learning by Grouping (LBG) with three

subgroups (i.e., K = 3). As shown, we update our Group Assign-
ment Model (GAM) for the training examples by validating the

performance of the validation set, which contrasts LBG method

with the existing MoE approaches.

there has been a growing interest in automating this manual

process, referred to as neural architecture search (NAS). On

the other hand, humans possess powerful learning skills that

have been developed through evolution. This study also

examines the potential of using a human-based learning

technique, known as learning by grouping, in differentiable

NAS approaches.

The major contributions of this paper include:

• Drawing inspirations from the human learning tech-

nique of Learning by Grouping (LBG), we propose a

new machine learning framework that utilizes group-

ing to divide a set of diverse problems into distinct

subgroups. The proposed framework groups similar

problems together within each subgroup and subse-

quently develops a group-specific solution for each

subgroup.

• We propose a three-level optimization framework to

formulate LBG. We provide a solution to solve the

optimization problem jointly end-to-end via gradient

descent: 1) learning to group problems into different

subgroups; 2) learning group-specific sub-models; 3)

learning group-assignments of training examples by

minimizing the validation loss.

• We also propose domain adaptive LBG (DALBG) to

mitigate the risk of overfitting within our LBG frame-

work by utilizing domain adaption techniques.

• We extend the above formulation to the challenging

neural architecture search (NAS) problem, and we

show that LBG/DALBG can be applied to any dif-

ferentiable NAS approach for further improvements.

• We perform experiments on CelebA, ISIC-18, CIFAR-

10, CIFAR-100, and ImageNet datasets to showcase

the effectiveness of our proposed method in both fair-

ness and accuracy aspects. Additionally, we apply our

proposed LBG to language understanding tasks by con-

ducting experiments on GLUE datasets, which can be

found in the Supplements.

2. Related Works
2.1. Mixture of Experts
Lately, a wide variety of works (Shazeer et al., 2017; Zhang

et al., 2019; Wang et al., 2020) have proposed applying

the mixture-of-experts (MoE) approach, which was initially

proposed by (Jacobs et al., 1991), to varied deep learning

tasks. Generally, deep learning MoE frameworks consist

of expert networks and a gating function, where the gat-

ing function assigns each expert a subset of training data.

The methods assume a set of latent experts where each ex-

pert performs a classification or regression task. A gating

function assigns the given data example to an expert. Then

this example is classified using the classification model spe-

cific to this expert. The MoE has been an active research

area aiming to improve the vanilla ML approaches, such

as (Shazeer et al., 2017; Zhang et al., 2019; Wang et al.,

2020). (Shazeer et al., 2017) introduces a trainable gat-

ing function to assign the experts’ sparse combinations for

the given data. DeepMOE (Wang et al., 2020) proposes a

deep convolutional network including a shallow embedding

network and a multi-headed sparse gating network, where

the multi-headed sparse gating network uses the mixture

weights computed by the shallow embedding network to se-

lect and re-weight gates in each layer. In MGE-CNN(Zhang

et al., 2019), experts are learned with the extra knowledge of

their previous experts along with a Kullback-Leibler (KL)

divergence constraint to improve the diversity of the experts.

Recently, (Riquelme et al., 2021) proposed the Vision Trans-

former MoE (V-MoE) that can successfully reach state-of-

the-art on ImageNet with approximately half of the required

resources.

In the existing MoE methods, which are based on single-

level optimization, the gating function and expert-specific

Classification Models are learned jointly by minimizing

the training loss. Hence, there is a high risk of the gating

function overfitting the training data, which can lead to

unfair and inaccurate decision-making. In our method, we

address this issue via learning the group assignments of

training examples by minimizing the validation loss instead

and developing a multi-stage optimization problem rather

than joint training. The results show the efficacy of our

method.

2.2. Domain Adaptation
Domain adaptation (DA) is a technique in machine learning

that aims to enhance the performance of models trained on

one domain, known as the source domain, on a different yet

related domain, referred to as the target domain. The objec-
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tive is to transfer the knowledge acquired from the source

domain to the target domain, where the input features and/or

output labels may vary. This approach is particularly valu-

able in scenarios where the amount of labeled data in the

target domain is scarce, but a large amount of labeled data

is available in the source domain. Different methods for do-

main adaptation (Gretton et al., 2009; Gopalan et al., 2011;

Pan et al., 2011; Jhuo et al., 2012) can be classified into

three main categories: instance-based, feature-based, and

adversarial-based approaches. These methods mostly fo-

cus on measuring and minimizing the distance between the

source and target domains. Some well-established distance

measuring approaches include Maximum Mean Discrep-

ancy (MMD) (Long et al., 2015; Gretton et al., 2008), Cor-

relation Alignment (CORAL) (Sun et al., 2017), Kullback-

Leibler (KL) divergence (Kullback & Leibler, 1951), and

Contrastive Domain Discrepancy (CDD) (Kang et al., 2019).

2.3. Multi-Level Optimization

In the past few years, Bi-Level Optimization (BLO)

and Multi-Level Optimization (MLO) (Vicente & Cala-

mai, 1994) techniques have been applied to Meta-

Learning (Feurer et al., 2015; Finn et al., 2017), and Au-

tomated Machine Learning (AutoML) tasks such as neural

architecture search (Cai et al., 2019; Liu et al., 2018b; Xie

et al., 2019; Xu et al., 2020; Liang et al., 2019; Hosseini

et al., 2021) and hyperparameter optimization (Feurer et al.,

2015; Baydin et al., 2017) to learn the meta parameters au-

tomatically and reduce the required resources and reliance

on humans for designing such methods. Lately, inspired

by humans’ learning skills (Xie et al., 2020), several ex-

isting works (Hosseini & Xie, 2022a; Chitnis et al., 2022;

Hosseini & Xie, 2020; Garg et al., 2021; Du et al., 2020;

Hosseini & Xie, 2022b; Sheth et al., 2021; Du & Xie, 2020;

Zhu et al., 2022) have borrowed these skills from humans

and extended them to ML problems in MLO frameworks to

study whether these techniques can assist the ML models in

learning better.

2.4. Neural Architecture Search

Recently, Neural Architecture Search (NAS) has attracted

the researchers’ attention to assist them in finding high-

performance neural architectures for different deep learn-

ing applications. In the early stages, most of the proposed

NAS methods were based on reinforcement learning (RL)

(Zoph & Le, 2016; Pham et al., 2018; Zoph et al., 2018) and

evolutionary learning (Liu et al., 2018a; Real et al., 2019).

Reinforcement learning approaches use a policy network to

generate architectures by maximizing the accuracy of the

validation set, which is used as a reward. In evolutionary

learning methods, architectures describe the individuals of

a population, and the validation accuracy of the individu-

als is used as fitness scores. Replacing low fitness scores

individuals with higher fitness scores individuals leads to

enhanced performance. Reinforcement learning and evolu-

tionary learning approaches are computationally expensive.

To solve for the high computational cost by the RL and evo-

lutionary learning-based methods, the research community

introduced differentiable search methods (Cai et al., 2019;

Liu et al., 2018b; Xie et al., 2019), which are extremely

efficient compared to the previous methods since they use

the weight-sharing techniques and perform the searching

process using gradient descent. Differentiable NAS was

first proposed by DARTS (Liu et al., 2018b). Lately, many

following works (Chen et al., 2019; Xu et al., 2020; Liang

et al., 2019) have worked on enhancing the search results

and reducing the computational cost of differentiable NAS

even further. For instance, P-DARTS (Chen et al., 2019)

increases the depth of architectures progressively during

the search. PC-DARTS (Xu et al., 2020) reduces the redun-

dancy by evaluating only a subset of channels in the search

process.

3. Methods
Our method consists of a Group-Assignment Model (GAM)

and K Group-Specific Classification Models (GSCMs). The

GAM model predicts and assigns the training samples to

their corresponding GSCM expert model. Then the GSCM

models predict the classes of the inputs. Lastly, we apply the

GAM and the GSCMs to the validation set and minimize the

validation loss to learn the assignments of training samples.

The illustration of our proposed method is shown in Fig

2. In Section 3.1, we first begin with defining the three-

level optimization framework to formulate LBG (Section

3.1.1), and then we integrate domain adaptation techniques

to our proposed LBG to mitigate the risk of overfitting

(Section 3.1.2). Afterward, we extend the LBG to the Neural

Architecture Search problem in Section 3.1.3. Finally, in

Section 3.2, we develop an efficient optimization algorithm

to address the three-level optimization problem.

3.1. Three-Level Optimization Framework

Our framework is composed of two types of models: the

Group-Assignment Model (GAM) and the Group-Specific

Classification Models (GSCM). The GAM model takes a

data example as input and assigns it to one of the subgroups,

which is a K-way classification problem, where K is the

number of GSCM models (i.e., experts). We propose an

end-to-end three-stage optimization problem where: First,

the Group-Assignment Model (GAM) is learned; then, the

Group-Specific Classification Models (GSCMs) are trained;

finally, the GAM and the GSCMs are applied to the valida-

tion set to determine the group assignments and the learn-

able architecture. As shown in Fig 1, the Group-Assignment

Model (GAM) is updated for training examples by vali-
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Training Group-Assignment Model
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Training Group-Specific Classification Models
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Figure 2. Overview of our proposed three-level optimization frame-

work (Learning by Grouping).

dating the performance on the validation set, which distin-

guishes LBG from existing MoE approaches. As discussed

in Section 3.1.1, the group assignments from GAM are con-

tinuous values Cnk ∈ [0, 1]. Therefore, to convert these

probability distributions to one-hot encoded format (similar

to Fig 1) we can compute the top-k and obtain the k-hot

encoded matrix, where k is one in this case.

3.1.1. LEARNING BY GROUPING (LBG)

We assume there are K latent subgroups. Let C be a matrix

denoting the learnable ‘ground-truth’ grouping of the train-

ing samples. The size of C is N×K where N is the number

of training examples - row n represents the grouping of the

n-th training example. We relax the values in each row from

a one-hot encoding to continuous values in order to perform

gradient descent, so that Cnk ∈ [0, 1] denotes the probabil-

ity that the n-th training example belongs to the k-th latent

subgroup. Subgroups C are initialized randomly. The latent

subgroup labels for subgroups are permutation-invariant.

We then assign the n-th training example to subgroup jn
such that jn = argmaxe Cne, and let Gn = Cnjn be the

probability of grouping the sample xn to subgroup jn. Let

the GAM be represented by f(xn;T ) with SoftMax out-

put, which takes a data example xn as input and predicts

which subgroup xn should be assigned to. T is the weights

parameter of this network. The output of f(xn;T ) is a

K-dimensional vector, where the k-th element fk(xn;T )
denotes the probability that xn should be assigned to the

k-th subgroup. The sum of elements in f(xn;T ) is one. Let

ĵn = argmaxe fe(xn;T ), and let En = fĵn(xn;T ) be the

confidence of the GAM in assigning xn the subgroup ĵn.

We then have a GSCM classifier f(xn;Sĵn
) for each latent

subgroup ĵn ∈ {1 . . .K}, which predicts the class label for

a data example xn that has been assigned ĵn as its GSCM

by the GAM: f(xn;T ). Sĵn
are the network weights of this

GSCM classifier.

Stage I. In the first stage, we optimize the GAM: f(x;T )
given C by solving the following ‘relaxed’ negative log-

likelihood optimization problem:

T ∗(C) = argmin
T

∑N
n=1 −Gn(C) log fjn(xn;T ) (1)

Note that we do not update the ‘ground-truth’ subgroups C
in this stage.

Stage II. In the second stage, we learn the K GSCM mod-

els. For each latent subgroup k, there is a GSCM classifier

f(x;Sk) with parameters Sk, which predicts the class la-

bel for a data example x assigned k as its subgroup by the

GAM. Let Dn = {xn} denote the subset of training data

examples assigned subgroup k by GAM. We want to learn

Sk by minimizing the following loss:

∑
xn∈Dn

�(f(xn;Sk), yn) (2)

where yn is the class label of xn . l(·, ·) is the cross-entropy

loss. In addition, we take into account the confidence of

the GAM in assigning the training example xn to its corre-

sponding GSCM ĵn. So we relax the above equation, and

summarize the total loss of all GSCM models and objective

of this stage as:

{S∗
k(T

∗(C))}Kk=1 = argmin
{Sk}K

k=1

∑N
n=1 En (xn;T

∗(C)) �(f(xn;Sĵn
), yn) (3)

where S∗
k(T

∗(C)) for k ∈ {1 . . .K} denotes the optimal

solution set for the K GSCM classifiers.

Stage III. Given T ∗(C) and S∗
k(T

∗(C)), we apply them

to make predictions on the validation examples and update

the ‘ground-truth’ matrix C. The validation loss is:

min
C

∑M
i=1 �

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(T ∗(C))

)
, yi

)
(4)

where ĵi = argmaxe fe(xi;T
∗(C)) and M is the number

of validation examples. yi is the class label of xi. We update

C by minimizing this validation loss.

Putting these pieces together, we have the following opti-

mization problem:

min
C

∑M
i=1 �

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(T ∗(C))

)
, yi

)

s.t.{S∗
k(T

∗(C))}Kk=1 = argmin
{Sk}K

k=1

∑N
n=1 En (xn;T

∗(C)) �(f(xn;Sĵn
), yn) (5)

T ∗(C) = argmin
T

∑N
n=1 −Gn(C) log fjn(xn;T )
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3.1.2. DOMAIN ADAPTIVE LBG

In our proposed Learing by Grouping (LBG) from Sec-

tion 3.1.1, the N training examples are divided into K
subgroups. As a result, each subgroup has approximately

N/K training examples. The reduced number of training

examples in small datasets can potentially lead to higher

risk of overfitting for each subgroup. To address this prob-

lem, we propose domain-adaptive LBG (DALBG) where we

treat each subgroup as a domain. During the second stage

of our framework, when we are training a group-specific

classifier for a subgroup k, we perform domain adaptation

to adapt examples from other subgroups into subgroup k
and use these adapted examples as additional training data

for subgroup k. For the sake of simplicity, our proposed

framework employs the MMD-based (Long et al., 2015)

domain adaptation approach. However, it should be noted

that other domain adaptation techniques can also be incorpo-

rated within our framework. For a specific subgroup, k, let

{xk
i }Nk

i=k represent the examples assigned to this subgroup

and {x−k
j }N−Nk

j=1 represent the examples not assigned to

this subgroup. In order to adapt {x−k
j }N−Nk

j=1 into subgroup

k, we minimize the Maximum Mean Discrepancy (MMD)

loss as follows:

Mk =
∥∥∥ 1
Nk

∑Nk

i=1 φ
(
xk
i ;Sk

)− 1
N−Nk

∑N−Nk

j=1 φ
(
x−k
j ;Sk

)∥∥∥
2

2
(6)

where φ
(
xk
i ;Sk

)
denotes the embedding of xk

i extracted by

Sk. This loss can be relaxed to:

Mk =
∥∥∥ 1
N

∑N
n=1 fk (xn;T

∗(A))φ (xn;Sk)− 1
N

∑N
n=1 (1− fk (xn;T

∗(A)))φ (xn;Sk)
∥∥∥
2

2
(7)

Thus, by adding Mk to our second stage Eq. (3) we define

the following domain adaptive LBG (DALBG) problem:

min
C

∑M
i=1 �

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(T ∗(C))

)
, yi

)

s.t.{S∗
k(T

∗(C))}Kk=1 = argmin
{Sk}K

k=1

∑N
n=1 En (xn;T

∗(C)) �(f(xn;Sĵn
), yn) + λMk (8)

T ∗(C) = argmin
T

∑N
n=1 −Gn(C) log fjn(xn;T )

where λ is a tradeoff parameter. Note that our proposed

LBG in Eq. (5) method is a special case of DALBG in Eq.

(8) with λ = 0. For the sake of simplicity, we refer to both

Learning by Grouping with/without domain adaptation as

(DA)LBG.

3.1.3. NEURAL ARCHITECTURE SEARCH APPLICATION

In this section, we extend the formulation in Eq. (5) to be

applicable to neural architecture search. Similar to (Liu

et al., 2018b), the k-th GSCM has a differentiable archi-

tecture Ak. The search space of Ak is composed of large

number of building blocks, where the output of each block is

associated with a weight a indicating the importance of the

block. After learning, the block whose weight a is among

the largest are retained to form the final architecture. To this

end, architecture search amounts to optimizing the set of

architecture weights Ak = {a}.

Stage I and Stage II have the same procedure as Eq. (1) and

Eq. (7). In the second stage, the network weights Sk of the

expert model are a function of its architecture Ak. We keep

the architecture fixed at this stage, and learn the weights

Sk(Ak). However, Stage III does not precisely follow Eq.

(4). Given T ∗(C) and S∗
k(Ak, T

∗(C)), we apply them to

make predictions on the validation examples and update

the ‘ground-truth’ matrix C, as well as the architectures Ak

based on the validation loss, where k ∈ {1 . . .K} . Hence,

we update Eq. (4) as follows:

min
C,{Ak}K

k=1

∑M
i=1 �

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)
(9)

Thus, the overall optimization problem with learnable archi-

tecture is as follows:

min
C,{Ak}K

k=1

∑M
i=1 �

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)

s.t.{S∗
k(Ak, T

∗(C))}Kk=1 = argmin
{Sk}K

k=1

∑N
n=1 En (xn;T

∗(C)) �(f(xn;Sĵn
(Aĵn

), yn) + λMk (10)

T ∗(C) = argmin
T

∑N
n=1 −Gn(C) log fjn(xn;T )

Our framework is orthogonal to existing differentiable NAS

methods, and hence can be applied on top of any like

DARTS (Liu et al., 2018b), P-DARTS (Chen et al., 2019),

PC-DARTS (Xu et al., 2020), and DARTS− (Chu et al.,

2020) among the others.

3.2. Optimization Algorithm

We promote an efficient algorithm to solve the LBG,

DALBG, and LBG-NAS problems described in Eq. (5),

Eq. (8), and Eq. (10), respectively. We utilize a fairly simi-

lar procedure as (Liu et al., 2018b) to calculate the gradient

of Eq. (1) w.r.t T and approximately update T ∗(C) via one-

step gradient descent. Then since DALBG in Eq. (8) is the

generalized version of LBG in Eq. (5), we plug the approxi-

mation T
′
(C) into the Eq. (7) to get an OSk

, which denotes

the approximated objective of Sk. Similarly to the previous

step, we approximate S∗
k(T

′
(C)) using a one-step gradient

descent update of Sk based on the gradient of the approxi-

mated objective. Note that in LBG-NAS, we approximate

S∗
k(Ak, T

∗(C)), which is also a function of architecture Ak.

Finally, we plug the approximations T
′
(C) and S

′
k(T

′
(C))

into the third stage equations to get the third approximate

objective denoted by OC . C can be updated using gradient

descent on OC . In LBG-NAS, we update the architectures

{Ak}Kk=1, as well. Thus, use the same approach to find the

approximate objective of the architectures {Ak} : O{Ak}
for each k ∈ {1 . . .K}, and we update it using gradient

descent. We do these steps until convergence.
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4. Experiments
In this section, we investigate the effectiveness of our

proposed (DA)LBG framework with both fixed human-

designed GSCMs and searchable GSCMs. The differen-

tiable NAS approach consists of architecture search and

evaluation stages, where the optimal cell obtained from the

search stage is stacked several times into a larger composite

network. We then train the resultant composite network

from scratch in the evaluation stage. Please refer to the

appendix (supplements) for information on adapting our

method for language understanding tasks.

4.1. Datasets

Various experiments are conducted on four datasets: ISIC-

18, CelebA, CIFAR-10, CIFAR-100, and ImageNet (Deng

et al., 2009) for image classification. The CelebA dataset,

consisting of 200k images of human faces with 40 features

per image (Liu et al., 2015), is used in this study. From the

dataset, we select a sample of 10,000 images, with 70% al-

located for training, 15% for validation, and 15% for testing.

The Skin ISIC 2018 dataset (Codella et al., 2019; Tschandl

et al., 2018) consists of a total of 11,720 dermatological

images, specifically curated for the purpose of 7-class skin

cancer classification. In this research paper, we have identi-

fied gender (male and female) as the sensitive attribute that

may introduce bias. To mitigate this potential bias, we have

performed a partitioning of the dataset into training, vali-

dation, and testing sets. The training set comprises 10,015

images, the validation set contains 1,512 images, and the

testing set consists of 193 images, collectively representing

the entirety of the dataset. The CIFAR-10 dataset contains

of 10 distinct classes, while the CIFAR-100 dataset encom-

passes 100 classes. Each dataset holds 60K images. For

each of the datasets, during grouping and architecture search

processes, we use 25K images as the training set, 25K im-

ages as the validation set, and the rest of the 10K images as

the test set. During grouping and architecture evaluations,

the combination of the above training and validation set is

used as the training set of size 50k images. ImageNet carries

1.2M training images and 50K test images with 1000 classes.

Due to extensive amount of images in ImageNet, the archi-

tecture search can be pretty costly. Thus, following (Xu

et al., 2020), we randomly choose 10%, and 2.5% of the

1.2M images to create a new training set and validation set,

respectively, for the architecture search phase. Then, we

utilize all the 1.2M images through the evaluation.

4.2. Experimental Settings

We compare the (DA)LBG image classification tasks with

fixed architectures to the following MoE baselines: ResNet

(He et al., 2016), Swin-T (Liu et al., 2021), T2T-ViT (Yuan

et al., 2021), DeepMOE (Wang et al., 2020), and MGE-

Table 1. Results on CelebA with the target label of ”attrac-
tive” and sensitive attribute of ”gender”.

Methods Error (%) DP DEO Architecture

ResNet18 17.57 0.5023 0.5683 Manual

LBG-ResNet18 (ours) 17.02 0.2173 0.0596 Manual

DALBG-ResNet18 (ours) 16.84 0.2116 0.0835 Manual

DARTS 16.39 0.4571 0.3606 NAS

LBG-DARTS (ours) 15.91 0.2149 0.0535 NAS

DALBG-DARTS (ours) 15.22 0.2185 0.0891 NAS

CNN (Zhang et al., 2019). Next, we compare LBG-NAS on

image classification with DARTS-based methods including

DARTS (Liu et al., 2018b), P-DARTS (Chen et al., 2019),

and PC-DARTS (Xu et al., 2020). To ensure the training

costs of our methods with K GSCM models are similar to

those of baselines, we reduce the parameter number of each

expert to 1/K of the parameter number of the baseline mod-

els by reducing the number of layers in each GSCM model.

In this way, the total size of our methods are comparable

to the baselines. In addition, we train each group-specific

sub-model only using examples assigned to its correspond-

ing subgroup, rather than using all training examples. So

the computation cost is O(N) rather than O(NK), where

N is the number of training examples and K is the number

of latent subgroups. In each iteration of the algorithm, we

use minibatches of training examples to update sub-models,

which further reduces computation cost. We utilize the Betty

library (Choe et al., 2022) for the implementation of our

multilevel optimization tasks.

Table 2. Results of ISIC when the sensitive attribute is ”gen-
der”.

Methods Error(%) SPD EOD AOD

ResNet18 14.3 0.114 0.143 0.170

LBG-ResNet18 (ours) 12.8 0.051 0.088 0.074
DARTS 10.2 0.121 0.139 0.154

LBG-DARTS (ours) 8.4 0.048 0.065 0.069

Human-Designed GSCMs. For experiments on CIFAR-

10/100 and ImageNet datasets, we use ResNet (He et al.,

2016), Swin-T (Liu et al., 2021), and T2T-ViT (Yuan et al.,

2021) models as our base GSCM models in the conducted

experiments. For consistency and a fair comparison, we

apply K = 2 latent subgroups to our four image classi-

fication datasets. To train our models, first we apply our

proposed LBG training, where we use half of training im-

ages as the training set and the other half as the validation

set, for 100 epochs with early stopping technique to obtain

the optimal subgroups. Then, we use the obtained subgroups

to fine-tune our GSCM models using the standard training

settings with SGD optimizer for 200 epochs on the entire

training examples. The initial learning rate is set to 0.1 with

momentum 0.9 and will be reduced using a cosine decay

scheduler with the weight decay of 3e-4. The batch size for
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Table 3. Test errors comparison of vanilla (base) models,
baselines and LBG on CIFAR-10, CIFAR-100, and Ima-
geNet.

Dataset Model Error(%)

CIFAR-10 ResNet56 (vanilla) 6.55

CIFAR-10 DeepMOE-ResNet56 6.03

CIFAR-10 MGE-CNN-ResNet56 5.91

CIFAR-10 LBG-ResNet56 (ours) 5.53

CIFAR-10 DALBG-ResNet56 (ours) 5.47
CIFAR-100 ResNet56 (vanilla) 31.46

CIFAR-100 DeepMOE-ResNet56 29.77

CIFAR-100 MGE-CNN-ResNet56 29.82

CIFAR-100 LBG-ResNet56 (ours) 27.96

CIFAR-100 DALBG-ResNet56 (ours) 27.95
ImageNet ResNet18 (vanilla) 30.24

ImageNet DeepMOE-ResNet18 29.05

ImageNet MGE-CNN-ResNet18 29.30

ImageNet LBG-ResNet18 (ours) 28.21

ImageNet DALBG-ResNet18 (ours) 28.08
ImageNet T2T-ViT-14 (vanilla) 17.16

ImageNet LBG-T2T-ViT-14 (ours) 15.50

ImageNet DALBG-T2T-ViT-14 (ours) 15.47
ImageNet Swin-T (vanilla) 18.70

ImageNet LBG-Swin-T (ours) 16.81

ImageNet DALBG-Swin-T (ours) 16.64

CIFAR-10 and CIFAR-100 is set to 128, while for ImageNet

we use the batch size of 1024. The rest of hyperparameter

settings follows as (Gururangan et al., 2020). In all DALBG

experiments we use λ = 0.1. In this study, the Adam opti-

mizer has been employed to train all models on the CelebA

dataset, utilizing a learning rate of 5e-4, and implementing

a batch size of 64. On the other hand, for the ISIC-18 ex-

periments, we have set the learning rate to 1e-3, and the

batch size to 32. For the experiments involving CelebA and

ISIC-18, we leverage models that have been pretrained on

ImageNet. Our models are trained for a range of 30 to 50

epochs, incorporating early stopping techniques to enhance

efficiency.

GSCMs with Searchable Architectures. We apply LBG

to various DARTS-based approaches: DARTS (Liu et al.,

2018b), P-DARTS (Chen et al., 2019), and PC-DARTS (Xu

et al., 2020). The search spaces of these methods are the

combination of (dilated) separable convolutions with two

different sizes of 3× 3 and 5× 5, max pooling with the size

of 3 × 3, average pooling with the size of 3 × 3, identity,

and zero operations. Each LBG experiment was repeated

five times with different random seeds. The mean and stan-

dard deviation of classification errors obtained from the

experiments are reported.

In the architecture search stage, for CIFAR-10 and CIFAR-

100, the architecture of each group-specific classification

model contains 5 cells – reduced from 8 cells to 5 cells to

match the parameter numbers of our baseline models – and

each cell consists of 7 nodes. We use two group-specific sub-

models (i.e., two subgroups K = 2) in the search process

with the initial channels of 16. The search algorithm was

based on SGD with a batch size of 64, the initial learning

rate of 0.025 (reduced in later epochs using a cosine decay

scheduler), epoch number of 50, weight decay of 3e-4, and

momentum of 0.9. The rest of hyperparameters mostly

follow the original settings in DARTS, P-DARTS, and PC-

DARTS. For a fair comparison, in all the DALBG-NAS

experiments λ = 0.1. For ISIC-18 and CelebA experiments,

we utilize the same setting as described in the previous part.

During architecture evaluation, each GSCM sub-model is

formed by stacking 11 copies (reduced from 20 layers to

align with the baselines’ sizes) of the corresponding opti-

mally searched cell for CIFAR-10 and CIFAR-100 experi-

ments. The initial channel number is set to 36. We train the

networks with a batch size of 96 and 600 epochs on a single

Tesla V100 GPU. For evaluation of ImageNet, we use the

searched architectures on CIFAR-10 and we stack 8 copies

(similarly reduced from 14 layers to match the baselines’

sizes) of obtained cells are stacked into each GSCM larger

network, which was trained using four Tesla V100 GPUs

on the 1.2M training images, with the batch size of 1024

and initial channel number of 48 for 250 epochs. Finally,

for the evaluation of architecture in ISIC-18 and CelebA,

we follow the same settings as those described for fixed

human-designed GSCMs. However, as we don’t have mod-

els pretrained on ImageNet available, we supplement our

training with additional data for both CelebA and ISIC-18.

4.3. Results

First, we evaluate and compare the fairness of our proposed

methods with the our baselines on CelebA dataset. In line

with the methodology of (Wang et al., 2022), we use ”at-

tractive” as the binary class label for prediction, and as

bias-sensitive attribute, we consider ”gender” (male and fe-

male) in relation to the predicted labels. For evaluation we

use Demographic Parity (DP) and Difference in Equalized

Odds (DEO) metrices similar to (Wang et al., 2022). The

results of our experiments, as shown in Table 1, demonstrate

that our proposed methods can improve accuracy while si-

multaneously mitigating unfair decision-making on minority

groups. This is achieved through the use of group-specific

models, which are trained on individual groups. We can

also observe that DALBG improves accuracy more than

LBG, but LBG achieves better fairness results on the DEO

metric. This could be due to the fact that domain adaptation

incorporated in DALBG may perpetuate or even amplify

any existing biases present in the source domain, which may
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Table 4. Test errors, number of model parameters (in millions), and search costs (GPU days on a Tesla v100) on CIFAR-100
and CIFAR-10. (DA)LBG-DARTS represents (DA)LBG applied to DARTS. Similar meanings hold for other notations in
such a format.

CIFAR-100 CIFAR-10

Method Error(%) Param(M) Cost Error(%) Param(M) Cost

DARTS (Liu et al., 2018b) 20.58±0.44 3.4 1.5 2.76±0.09 3.3 1.5

LBG-DARTS (ours) 18.02±0.36 3.6 1.7 2.62±0.08 3.5 1.6

DALBG-DARTS (ours) 17.97±0.43 3.7 2.0 2.64±0.12 3.6 2.0

PC-DARTS (Xu et al., 2020) 17.96±0.15 3.9 0.1 2.57±0.07 3.6 0.1

LBG-PCDARTS (ours) 16.21±0.19 4.1 0.3 2.51±0.11 3.7 0.3

DALBG-PCDARTS (ours) 16.18±0.21 4.2 0.4 2.48±0.15 3.8 0.4

P-DARTS (Chen et al., 2019) 17.49 3.6 0.3 2.50 3.4 0.3

LBG-PDARTS (ours) 16.46±0.54 3.7 0.6 2.48±0.16 3.5 0.5

DALBG-PDARTS (ours) 16.39±0.48 3.9 0.6 2.47±0.19 3.7 0.6

not be fully removed if the target domain is significantly

different.

Table 2 demonstrates the results of fairness experiments on

the ISIC-18 dataset where gender is the sensitive attribute

and we use Statistical Parity Difference (SPD), Equal Op-

portunity Difference (EOD), and Average Odds Difference

(AOD) as metrics to evaluate a model’s fairness. This table

shows that our method not only boosts accuracy perfor-

mance, but also improves fairness by effectively mitigating

bias in both fixed human-designed neural networks and NAS.

This performance improvement is attributable to our group-

aware approach, which effectively groups similar samples

with respect to unprotected sensitive attributes. This proves

the advantage of our methods in addressing imbalanced

attributes in the data.

Furthermore, in Table 3, we compare our proposed method

with ResNet, Vision Transformers (Swin-T and T2T-ViT)

,and our MoE baselines (i.e., MGE-CNN and DeepMOE).

The results in this table verify that our proposed method

performs better than the baselines on all CIFAR-10, CIFAR-

100, and ImageNet datasets considerably. This empirically

verifies our claim that (DA)LBG reduces the overfitting risk

found in MoE methods since the group assignments are

learned by minimizing the validation loss during a multi-

stage optimization.

Table 4 shows the comparison of our proposed methods

and the existing works, which includes the classification

errors with error bars, the number of model parameters, and

search costs on CIFAR-10 and CIFAR-100 test sets. By

comparing different methods, we make the following ob-

servation. Applying (DA)LBG to different NAS methods,

including DARTS, P-DARTS, and PC-DARTS, the classi-

fication errors of these methods are greatly reduced. For

instance, the original error of DARTS on CIFAR-100 is

20.58%; when DALBG is applied, this error is significantly

reduced to 17.97%. As another example, after applying

LBG to PC-DARTS and P-DARTS, the errors of CIFAR-

100 experiments are decreased from 17.96% to 16.21% and

17.49% to 16.46%, respectively. Similarly for CIFAR-10,

utilizing (DA)LBG in DARTS-based methods manages to

reduce the errors and overfittings. These results strongly in-

dicate the broad effectiveness of our framework in searching

better neural architectures.

Table 5. Results of ImageNet with gradient-based NAS meth-
ods. Notations are the same as those in Table 4.

Top-1 Top-5 Param

Method Error (%) Error (%) (M)

DARTS-CIFAR10 (Liu et al., 2018b) 26.7 8.7 4.7

DALBG-DARTS-CIFAR10 (ours) 24.9 8.1 4.9

P-DARTS (CIFAR10) (Chen et al., 2019) 24.4 7.4 4.9

DALBG-PDARTS-CIFAR10 (ours) 23.9 6.9 5.0

PC-DARTS-CIFAR10 (Xu et al., 2020) 24.8 7.3 5.3

DALBG-PCDARTS-CIFAR10 (ours) 23.1 6.3 5.7

In Table 5, we compare different methods on ImageNet, in

terms of top-1 and top-5 errors on the test set and number

of model parameters, where the search costs are the same

as the ones reported in Table 4. In these experiments, the

architectures are searched on CIFAR-10 and evaluated on

ImageNet similar to original DARTS (Liu et al., 2018b).

DALBG-DARTS-CIFAR10 denotes that DALBG is applied

to DARTS and performs search on CIFAR-10. Similar mean-

ings hold for other notations in such a format. The observa-

tions made from these results are consistent with those made

from Table 4. The architectures searched using our methods

are consistently better than those searched by correspond-

ing baselines. For example, DALBG-DARTS-CIFAR10

achieves 1.8% lower top-1 error than DARTS-CIFAR10. To

the best of our knowledge, DALBG-PCDARTS-CIFAR10

is the new SOTA on mobile setting of Imagenet.

4.4. Ablation Studies

In this section, we conduct ablation studies to analyze the

impact of individual components in our proposed frame-
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works.

Ablation on tradeoff parameter λ: We study the effec-

tiveness of tradeoff parameter λ in Eq. (8) on accuracy and

fairness. We apply DALBG on CelebA dataset with two

searchable GSCMs (i.e., K = 2) with the same setting as

described in Section 4.2. In Table 6, we illustrate how the

accuracy and fairness of DALBG on the test sets of CelebA

are affected by increasing the tradeoff parameter λ. It can be

observed that increasing λ from 0 to 0.1 leads to a decrease

in fairness but an increase in accuracy, as a result of the

MMD loss feedback. However, continuing to increase λ
leads to a drop in accuracy as well. This is because placing

too much emphasis on domain shift can result in less focus

on in-domain performance ability.

Table 6. Ablation results on tradeoff parameter λ.

Methods Error (%) DEO

LBG-DARTS with λ = 0 15.91 0.0535
DALBG-DARTS with λ = 0.01 15.73 0.0754

DALBG-DARTS with λ = 0.1 15.22 0.0891

DALBG-DARTS with λ = 1 15.38 0.0917

Ablation on number of subgroups: Next, we examine

how different numbers of GSCM models with different num-

ber of subgroups K ∈ {1, 2, 3, 4} in Eq. (10) impact both

accuracy and fairness performances. We apply (DA)LBG

to DARTS. Table 7 indicates that for CelebA larger num-

ber of subgroups can decrease the classification error and

improve the fairness. However, in our experiments number

of subgroups K = 3 and K = 4 seem to achieve on par

results, while K = 3 is more computationally efficient. The

improved performance with a larger number of subgroups

can be due to the fact that, in real life, many unprotected

attributes may not be considered, but their combinations can

still be used as proxies and affect decision-making processes.

Thus, depending on the data and task, we can choose the

most suitable number of subgroups, which can be different

in various scenarios. Also, additional experiments and com-

parisons of (DA)LBG with bagging-based model ensemble

can be found in the Supplements.

Table 7. Ablation results on number of subgroups.

Methods Error (%) DEO

LBG-ResNet18 with K = 1 17.59 0.5427

LBG-ResNet18 with K = 2 17.02 0.0596

LBG-ResNet18 with K = 3 16.88 0.0541

LBG-ResNet18 with K = 4 16.85 0.0533

Ablation on different domain adaptation techniques:
In this study, we aim to investigate the efficacy of different

distance measuring approaches, namely Maximum Mean

Discrepancy (MMD), Correlation Alignment (CORAL),

Kullback-Leibler (KL) divergence, and Contrastive Domain

Discrepancy (CDD), by incorporating them into our frame-

work. We conduct our experiments on DARTS with a similar

experimental setup to Table 1. The results, presented in Ta-

ble 8, indicate that MMD loss is the most effective approach

in achieving both high accuracy and fairness compared to

the other three methods. The superior performance of MMD

in our framework can be attributed to its non-parametric na-

ture and ability to capture non-linear relationships due to

its kernel-based approach. In contrast, KL divergence relies

on the assumption that both distributions are well-defined

probability distributions and, along with CDD, may struggle

to capture non-linear relationships in the data. Furthermore,

while CORAL aligns the second-order statistics (i.e., covari-

ance matrices) of the feature distributions, MMD maps the

data into a Reproducing Kernel Hilbert Space (RKHS) using

kernel functions. This capability enables MMD to capture

more intricate relationships between data points, potentially

resulting in improved performance within our framework.

However, it is worth noting that the effectiveness of a do-

main adaptation technique may vary depending on the spe-

cific task and the degree of domain shift between the source

and target domains. Thus, the choice of an appropriate tech-

nique should be based on the unique characteristics of the

data and the task at hand.

Table 8. Ablation results on different domain adaptation tech-
niques.

Methods Error (%) DEO

DALBG-DARTS-MMD 15.22 0.0891
DALBG-DARTS-CORAL 15.71 0.1137

DALBG-DARTS-KL 15.36 0.0945

DALBG-DARTS-CDD 15.80 0.1142

5. Conclusions and Discussion
In this paper, we propose a novel MLO approach, called

Learning by Grouping (LBG), drawing from humans’

grouping-driven methodology of solving problems. Our

approach learns to group a diverse set of problems into dis-

tinct subgroups where problems in the same subgroups are

similar; a group-specific solution is developed to solve prob-

lems in the same subgroups. We formulate our LBG as a

multi-level optimization problem which is solved end-to-

end. An efficient gradient-based optimization algorithm is

developed to solve the LBG problem. We further incorpo-

rate domain adaptation in our framework to reduce the risk

of overfitting. In our experiments on various datasets, we

demonstrate that the proposed framework not only helps to

mitigate overfitting and improve fairness, but also consis-

tently outperforms baseline methods. The main limitation

of LBG is that it cannot be applied to non-differentiable

NAS approaches up to a point. In our future works, we will

extend learning by grouping to reinforcement learning and

evolutionary algorithms.
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A. Optimization Algorithm
We develop an efficient optimization algorithm to solve our proposed LBG problem. Notations are given in Table 9. We

define group jn such that jn = argmaxk Cnk, and let Gn = Cnjn be the ground truth assignments of the sample xn to

group jn. Let ĵn = argmaxk fk(xn;T ), and let En = fĵn(xn;T ) be the confidence of the GAM in assigning xn to the

group ĵn.

Table 9. Notations used in LBG
Notation Meaning

Ak Architecture of the Group-Specific Classification Model (GSCM) of group k (Only in NAS applications)

Sk Network weights of the Group-Specific Classification Models f(x;Sk) of group k
T Network weights of the Group Assignment Model (GAM) f(x;T )
C Learnable ‘ground-truth’ categorization matrix

Dn Training data

Di Validation data

We approximate T ∗(C) using one step gradient descent w.r.t
∑N

n=1 −Gn(C) log fjn(xn;T ):

T ∗(C) ≈ T ′ = T − ηt∇T

N∑
n=1

−Gn(C) log fjn(xn;T ) (11)

Then we plug T ′ into
∑N

n=1 En (xn;T
∗(C)) �(f(xn;Sĵn

(Aĵn
), yn) and get an approximated objective. And we approxi-

mate S∗
ĵn
(T ∗(C)) using one step gradient descent w.r.t the approximated objective:

S∗
ĵn
(T ∗(C)) ≈ S′

ĵn
= Sĵn

− ηs∇Sĵn

N∑
n=1

En (xn;T
′(C)) �(f(xn;Sĵn

(Aĵn
)), yn) (12)

Finally, we plug T ′ and S′
ĵn

into
∑M

i=1 �
(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)
and get an approximated objective.

Then we update A by gradient descent:

C ← C − ηc∇C

M∑
i=1

�
(
Eĵi

(xi;T
′(C)) f

(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)
, (13)

where by applying chain rule it yields:

∇C

M∑
i=1

�
(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)
=

∂T ′

∂C

M∑
i=1

∂S′
ĵi

∂T ′ ∇S′
ĵi

�
(
Eĵi

(
xi;T

′(C)
)
f
(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)
+ (14)

∂T ′

∂C
∇T ′

M∑
i=1

�
(
Eĵi

(
xi;T

′(C)
)
f
(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)

and ∂T ′
∂C and

∂S′
ĵi

∂T ′ are computed as follows:

∂T ′

∂C
= −ηt∇2

C,T

N∑
n=1

−Gn(C) log fjn(xn;T ) (15)

∂S′
ĵi

∂T ′ = −ηs∇2
T ′,Sĵi

N∑
n=1

En (xn;T
′(C)) �(f(xn;Sĵn

(Aĵn
)), yn) (16)
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For the NAS applications we also update architectures Aĵi
, where ĵi ∈ K:

A ← A− ηa∇A

M∑
i=1

�
(
Eĵi

(xi;T
′(C)) f

(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)
, (17)

similar to group updating in Eq. 14, we apply chain rule as follows:

∇A

M∑
i=1

�
(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)
= (18)

M∑
i=1

∂S′
ĵi

∂Aĵi

∇S′
ĵi

�
(
Eĵi

(
xi;T

′(C)
)
f
(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)

and
∂S′

ĵi

∂Aĵi

can be computed using the following equation:

∂S′
ĵi

∂Aĵi

= −ηs∇2
A

ĵi
,S

ĵi

N∑
n=1

En

(
xn;T

′(C)
)
�(f(xn;Sĵn

(Aĵn
)), yn) (19)

This algorithm is summarized in Algorithm 1.

Algorithm 1 Optimization algorithm for Learning by Grouping

0: while not converged do
0: 1. Update the group assignment model’s weights T
0: using Eq. 11.

0: 2. Update the group-specific classification models’

0: weights {Sk}Kk=1 using Eq. 12.

0: if NAS application then
0: 3. Update the group-assignment matrix C and

0: the group-specific classification models’

0: architectures {Ak}Kk=1 using Eq. 13 and Eq. 17.

0: else
0: 3. Only update the group-assignment matrix C
0: using Eq. 13.

0: end if
0: end while=0

B. Additional Experiments
B.1. Comparison with Bagging-based Model Ensemble

In this section we compare our proposed method (LBG) with bagging-based model ensemble, which uses three models (the

same as our method). Table 10 demonstrates the results. Our method works better than model ensemble because it uses

a divide-and-conquer strategy. It divides data examples into groups where examples in the same group are similar; then

for each group, an expert model is learned. Divide-and-conquer makes model training easier, because it is easier to train a

highly-performant model for a group of similar examples than for a mixture of dissimilar examples from different groups.

In ensemble learning, each model is trained on a mixture of dissimilar examples from different groups, which is a harder

problem to solve. Additionally, in our method, the expert for each group can capture the unique data patterns in that group.

Capturing group-specific data patterns can help to make more accurate predictions. In contrast, each model in ensemble

learning is trained on all examples from different groups, which does not take group-specific data patterns into account.

B.2. Language Tasks

In this section, we apply LBG with fixed human-designed architectures to language understanding tasks.
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Table 10. Comparison of our work with existing bagging-based model ensemble on CIFAR-100.

Methods Test error (%)
Ensemble+DARTS-2nd 19.66±0.34

LBG-DARTS-2nd (ours) 18.02±0.36

Ensemble+P-DARTS 17.32±0.27

LBG-PDARTS (ours) 16.46±0.54

B.2.1. DATASETS

We conducted experiments on the various tasks of the General Language Understanding Evaluation (GLUE) benchmark

(Wang et al., 2018). GLUE contains nine tasks, which are two single-sentence tasks (CoLA and SST-2), three similarity and

paraphrase tasks (MRPC, STS-B, and QQP), and four inference tasks (MNLI, QNLI, RTE, WNLI). We test the performance

of LBG in language understanding by submitting our inference results to the GLUE evaluation server. GLUE offers training

and development data splits, that are used as training and validation data. For the test dataset, and GLUE organisers provide

a submission server that reports the performance on the private held out test dataset.

Table 11. Comparison of BERT-based and RoBERTa-based experiments on GLUE sets. LBG-BERT and LBG-RoBERTa results on the

set are the medians of 5 runs.

Corpus BERT LBG-BERT RoBERTa LBG-RoBERTa
CoLA (Matthews Corr.) 60.5 62.8 68.0 69.5
SST-2 (Accuracy) 94.9 96.5 96.4 96.8
MRPC (Accuracy/F1) 85.4/89.3 86.2/89.5 90.9/92.3 90.2/92.4
STS-B (Pearson/Spearman Corr.) 87.6/86.5 88.4/87.9 92.4/92.0 92.5/92.3
QQP (Accuracy/F1) 89.3/72.1 89.6/72.3 92.2/- 92.6/77.0
MNLI (Matched/Mismatched Accuracy) 86.7/85.9 86.5/85.9 90.2/90.2 91.1/91.1
QNLI (Accuracy) 92.7 93.5 94.7 94.9
RTE (Accuracy) 70.1 72.4 86.6 86.7
WNLI (Accuracy) 65.1 66.3 91.3 86.3

B.2.2. EXPERIMENTAL SETTINGS

We examine our proposed method by conducting varied experiments on several different tasks and datasets. We compare

LBG on language understanding tasks with fixed architectures using BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,

2019). BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) initialize the Transformer encoder with pre-trained BERT

and RoBERTa, respectively, with the intentions of masked language modeling and next sentence prediction. Then, they

utilize the pre-trained encoder and a classification head to build a text classification model. This text classification model

latter will be fine-tuned on a target classification task.

To examine our method in language understanding, we employ BERT and RoBERTa as the group-specific sub-models

with K = 4 latent subgroups on the GLUE tasks. LBG-BERT and LBG-RoBERTa are optimized using Adam optimizer

(Paszke et al., 2017). The maximum length of text was set to 512 tokens. Our hyperparameter settings for BERT and

RoBERTa experiments are the same as in (Gururangan et al., 2020). Each GLUE task has a different batch size, learning

rate, and number of epochs, where they are within the batch sizes ∈ {16, 32}, learning rates ∈ {1e−5, 2e−5, 3e−5, 4e−5},

and number of epochs ∈ {3, 4, 5, 6, 10}.

B.2.3. RESULTS

Table 11 demonstrates the comparison of our methods with BERT and RoBERTa methods on nine different GLUE tasks.

It is shown in this table that LBG can efficiently enhance the performance of existing base models in various language

understanding tasks. In most of the tasks, LBG-BERT and LBG-RoBERTa outperform BERT and RoBERTa, respectively.

In MNLI and MRPC, the results of our methods are on par with the baselines, while RoBERTa achieves a slightly better
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result than our methods on the WNLI task.
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