
Performance-Aware Mutual Knowledge Distillation for Improving Neural
Architecture Search

Pengtao Xie
University of California, San Diego

La Jolla, CA, United States
p1xie@eng.ucsd.edu

Xuefeng Du
University of Wisconsin-Madison

Madison, WI, United States
xuefengdu1@gmail.com

Abstract

Knowledge distillation has shown great effectiveness
for improving neural architecture search (NAS). Mutual
knowledge distillation (MKD), where a group of mod-
els mutually generate knowledge to train each other, has
achieved promising results in many applications. In existing
MKD methods, mutual knowledge distillation is performed
between models without scrutiny: a worse-performing
model is allowed to generate knowledge to train a better-
performing model, which may lead to collective failures.
To address this problem, we propose a performance-aware
MKD (PAMKD) approach for NAS, where knowledge gen-
erated by model A is allowed to train model B only if the
performance of A is better than B. We propose a three-level
optimization framework to formulate PAMKD, where three
learning stages are performed end-to-end: 1) each model
trains an initial model independently; 2) the initial mod-
els are evaluated on a validation set and better-performing
models generate knowledge to train worse-performing mod-
els; 3) architectures are updated by minimizing a validation
loss. Experimental results on a variety of datasets demon-
strate that our method is effective.

1. Introduction

Neural architecture search (NAS) [34, 45, 64], which

aims to automatically search for high-performance neu-

ral architectures, has attracted much research attention re-

cently. Many NAS works [17, 26, 29, 35, 49, 57] propose to

leverage knowledge distillation (KD) [3, 21, 52] to improve

the quality of searched architectures, by transferring knowl-

edge from human-designed architectures to auto-searched

architectures [29, 35, 57], enabling multi-fidelity evaluation

of architectures [49], alleviating model capacity gap [26],

etc. In KD, a teacher model generates knowledge such

as pseudo-labels [21] and a student model is trained using

these knowledge. Among various studies on KD, mutual

KD [1, 4, 27, 28, 37, 51, 55, 62], where a group of models

mutually perform KD (i.e., each model generates pseudo-

labels to train other models), has shown promising results.

Mutual KD can help models converge to a more robust min-

ima [62], can achieve better generalization to test data [28],

can learn multi-scale representations to boost prediction ac-

curacy [55], etc.

In existing mutual KD works, knowledge distillation is

performed between any pair of models without scrutiny,

which may lead to collective failure. If a model A is

not performing well, its generated knowledge is not accu-

rate. Trained using these low-quality knowledge, the perfor-

mance of the rest models is degraded, which renders their

knowledge L to have low-quality as well. Updated using

L, model A becomes worse, which further worsens the rest

models. This vicious circle renders all models to fail col-

lectively (empirical justification is in Fig. 1).

In this paper, we aim to address this problem, by propos-

ing a performance-aware mutual KD approach, for improv-

ing NAS. In our method, performance scrutiny is performed

before transferring knowledge: a learner A is allowed to

generate knowledge to train another learner B only if the

performance of A is better than B. By doing this, the risk

of collective failure can be greatly reduced (empirical justi-

fication is in Fig. 1), because a poorly-performing learner is

prohibited from generating knowledge.

Existing mutual KD methods [1, 4, 27, 28, 37, 51, 55, 62]

are not amenable for performance scrutiny. In these meth-

ods, the same model weights are used for measuring per-

formance and are trained at the same time, which will lead

to a degenerated solution: all models have the same perfor-

mance and no KD will be conducted (empirical justification

is in Table 6). To address this problem, we propose to learn

two sets of model weights sequentially for each learner, use

one set of them for measuring performance and generat-

ing knowledge, and then train the other set using gener-

ated knowledge. The two sets of weights are learned se-

quentially at different stages instead of simultaneously at

the same stage, which can avoid the degenerated solution of

11922



existing methods (empirical justification is in Table 6).

Our method is formulated as a three-level optimization

problem, consisting of three learning stages performed end-

to-end. In the first stage, each learner k independently trains

a predictive model Vk. In the second stage, for each pair

of learners k and j, their models Vk and Vj are evaluated

on a validation dataset. If the performance of Vk is bet-

ter than Vj , then Vk generates knowledge which is used to

train another model Wj of learner j. In the third stage,

models trained in the second stage are further validated

and their architectures are updated by minimizing valida-

tion losses. Chen et al. [4] learn attentional weights to con-

trol how much knowledge is allowed to transfer from one

model to another. Attentional weights and model param-

eters are learned jointly on a training dataset, which may

lead to overfitting. In contrast, our method measures perfor-

mance (during scrutiny) on a validation set and trains mod-

els on a training set, which can greatly reduce the risk of

overfitting.

Another problem of existing KD methods [1, 4, 27, 28,

37, 51, 55, 58, 62] is that they mutually transfer knowledge

on individual examples [1, 4, 27, 28, 51, 55, 62] or on low-

order triplets [58], without considering the higher-order

(e.g. ≥ 4) relationship between examples, which there-

fore may not be able to capture complex structure of the en-

tire dataset (empirical justification is in Fig. 2). To address

this problem, we propose a new group-wise relative sim-

ilarity (GRS) based approach to transfer knowledge from

model j to k, where learner j uses its model to determine

which group of data instances have larger mutual similar-

ities, and learner k trains its model by fitting these GRS

relationships. These relationships capture high-order (≥ 4)

nonlinear manifold structure [46] in the dataset, which can

facilitate more effective knowledge transfer between learn-

ers (empirical justification is in Fig. 2).

The major contributions of this paper are:

• We propose a performance-aware mutual knowledge dis-

tillation (PAMKD) method for improving neural architec-

ture search. In PAMKD, a model A is allowed to generate

knowledge to train another model B only if the perfor-

mance of A is better than B, which can address the col-

lective failure problem of existing MKD methods. Our

framework consists of three learning stages which are

performed end-to-end: 1) each learner trains a prelimi-

nary model; 2) learners conduct performance-aware mu-

tual knowledge distillation; 3) architectures are updated

by minimizing validation losses.

• We propose a group-wise relative similarity based knowl-

edge transfer approach which can capture high-order re-

lationships among data instances.

• Experiments on several datasets show the effectiveness of

our method.

2. Related works
Neural architecture search (NAS). NAS [15, 34, 39, 45,

64] aims to automatically identify highly-performing ar-

chitectures of deep neural networks instead of manually

designing them. Various approaches have been proposed

for NAS, based on gradient algorithms [2, 34, 53], rein-

forcement learning [43, 50, 64, 65], and evolutionary algo-

rithms [33, 45]. Our proposed framework is orthogonal to

existing NAS approaches and can be applied to improve dif-

ferentiable ones. Zaidi et al. [59] proposed a neural en-

semble architecture search method where an architecture

is searched for each baseline classifier in an ensemble. In

evolutionary algorithm based NAS approaches [33, 45], a

population of architectures are evaluated. Related to these

methods, our work also searches for a collection of architec-

tures. Such et al. [47] proposed a meta-learning approach

to generate synthetic data for NAS. Related to [47], our

work also leverages a three-level optimization framework

for architecture search. Different from these works includ-

ing [33, 45, 47, 59], our work performs mutual KD among

architectures during the search process while these works

do not. Knowledge distillation for NAS has been broadly

explored [17, 26, 29, 49]. In these works, a trained teacher

network (with a fixed architecture) is leveraged to generate

pseudo-labels, which are used to search the architecture of

a student network. Different from these works, architec-

tures of all models in our method are searchable. Peng et

al. [41] perform mutual KD among subnetworks within a

single model. Different from this work, our method per-

forms mutual KD among an ensemble of models.

Knowledge distillation (KD). KD has broad applica-

tions in machine learning, such as model compression [21],

achieving adversarial robustness [3], and semi-supervised

learning [52], etc. Some KD works [3, 21, 42, 52] are unidi-

rectional: knowledge is distilled from a teacher model to a

student model while other works [1, 4, 27, 28, 37, 51, 55, 62]

are bi-directional: mutual KD is performed between a col-

lection of models. You et al. [58] distill knowledge from

multiple teachers to a student, but there is not mutual

KD between teachers. Jonghwan et al. [40] distill knowl-

edge from each base model to its corresponding specialized

model in multiple choice learning, but there is no mutual

KD between base models or between specialized models.

In [62], a group of models are trained together where each

model generates pseudo labels to train other models. In [4],

a group of models mutually transfer knowledge and the en-

semble of these models transfers knowledge to a final model

to be deployed. In [55], a group of sub-networks with differ-

ent widths and input resolutions are trained together to mu-

tually learn multi-scale representations. In [28], mutual KD

is performed in an implicit way: each model is trained us-

ing pseudo-labels generated by an ensemble of all models.

11923



In [11], an online knowledge distillation method is proposed

to mutually transfer the knowledge of feature maps among

multiple networks, based on adversarial training. In [18],

online knowledge distillation is performed via collabora-

tively transferring knowledge among multiple models. In

these works, pseudo-labeling is performed without scrutiny,

which may lead to collective failure. Our work focuses on

addressing this problem.

3. Methods
In this section, we propose a performance-aware mu-

tual knowledge distillation method for neural architecture

search, based on tri-level optimization. In our framework,

there are a set of K learners, all of which learn to solve the

same target task. Each learner k has an architecture Ak and

two sets of model weights Vk and Wk. Vk is used for mea-

suring performance and generating knowledge, and Wk is

trained on knowledge generated by other learners. We use

two sets of weights instead of one [1,4,27,28,51,55,62] to

prevent a degenerated solution where all learners have the

same performance and no mutual knowledge distillation is

conducted. All learners share the same training dataset D(tr)

and the same validation dataset D(val).

3.1. Three learning stages
The K learners perform learning in three stages. In the

first stage, each learner k trains Vk. In the second stage, Vk

is evaluated on a validation dataset. For any two learners k
and j, if Vk performs better than Vj , then learner k uses Vk

to generate knowledge, which is used to train Wj of learner

j. In the third stage, each learner k measures the validation

performance of its model Wk trained in the second stage

and updates its architecture to improve the validation per-

formance. We discuss the details in the sequel.

Stage I. In the first stage, each learner k trains its weights

Vk by minimizing a training loss defined on D(tr), with its

architecture Ak tentatively fixed:

V ∗
k (Ak) = minVk

L(Vk, Ak, D
(tr)). (1)

The loss function L is application specific. For example,

in image classification, L is a cross-entropy loss. The ar-

chitecture Ak is used to define the training loss. However,

Ak should not be optimized to minimize the training loss.

Otherwise, the trained model will overfit the training data

and have poor performance on unseen data. The optimally

trained weights V ∗
k (Ak) depends on Ak since V ∗

k (Ak) de-

pends on L(Vk, Ak, D
(tr)) and L(Vk, Ak, D

(tr)) is a func-

tion of Ak.

Stage II. In the second stage, we evaluate the models

{V ∗
k (Ak)}Kk=1 trained in the first stage. Given a vali-

dation set D(val), we apply V ∗
k (Ak) (optionally, together

with Ak) to make predictions on this dataset and ob-

tain a validation loss L(V ∗
k (Ak), Ak, D

(val)). A smaller

L(V ∗
k (Ak), Ak, D

(val)) indicates V ∗
k (Ak) has a better per-

formance. Then we perform performance-aware mutual

knowledge distillation. For each pair of learner k and j,

if L(V ∗
k (Ak), Ak, D

(val)) > L(V ∗
j (Aj), Aj , D

(val)), which

indicates that learner j performs better than learner k, then

we let learner j generate knowledge using V ∗
j (Aj) and

leverage this knowledge to train learner k. Different from

existing methods [51, 55, 58, 62] which conduct knowl-

edge transfer on individual data examples [51, 55, 62] or

lower-order triples [58] without considering the relationship

among examples, we propose a group-wise relative simi-

larity based knowledge distillation method which capture

high-order (≥ 4) relationship among data instances. Our

method transfers knowledge from learner j to k by let-

ting k fit the relative similarity relationship between two

groups of data examples, where the relationship is labeled

by j. Given two groups of data instances X = {xi}Ri=1 and

Y = {yi}Ri=1, each having R instances, we use V ∗
j (Aj)

to label which group has a relatively larger intra-group

instance-similarity. For a group X , its intra-group instance-

similarity s(X ;V ∗
j (Aj)) is defined as the smallest cosine

similarity between each pair of instances in X :

s(X ;V ∗
j (Aj)) =

min({c(e(x;V ∗
j (Aj)), e(x̂;V

∗
j (Aj)))|x, x̂ ∈ X}) (2)

where c(·, ·) denotes cosine similarity of two vectors,

e(x;V ∗
j (Aj)) denotes the embedding of x extracted by

V ∗
j (Aj), and min(·) denotes the minimum of a set. We

use minimum to measure the worst-case similarity. Let

X � Y|V ∗
j (Aj) denote s(X ;V ∗

j (Aj)) > s(Y;V ∗
j (Aj)).

Such a group-wise relative similarity (GRS) relationship

is labeled by V ∗
j (Aj). To transfer knowledge from j

to k, we use GRS relationships labeled by learner j
to guide the training of learner k. Let s(X ;Wk) =
min({c(e(x;Wk), e(x̂;Wk))|x, x̂ ∈ X}) denote the intra-

group instance similarity calculated using Wk, we add the

following constraint when training Wk:

∀X � Y|V ∗
j (Aj), s(X ;Wk) > s(Y;Wk). (3)

This constraint encourages Wk to learn representations that

are compatible with the GRS relationships specified by

learner j. Each GRS relationship involves 2R data instances

and the minimum value of R is 2. Therefore, the GRS-based

knowledge transfer approach can capture data relationships

with an order of at least 4. Overall, the second stage solves

the following optimization problem:

{W ∗
k (Ak, {V ∗

j (Aj), Aj}Kj �=k)}Kk=1 =

min{Wk}Kk=1

∑K
k=1

(
L(Wk, Ak, D

(tr))+

λ
∑K

j �=k −I(L(V ∗
k (Ak), Ak, D

(val)) > L(V ∗
j (Aj), Aj , D

(val)))∑
X�Y|V ∗

j (Aj)
I(s(X ;Wk) > s(Y;Wk))

)
,

(4)

11924



where I(·) is an indicator function. The first loss term

L(Wk, Ak, D
(tr)) is defined on a human-labeled dataset and

the second loss term represents knowledge distillation. λ is

a tradeoff parameter. X and Y are randomly sampled from

input data instances (removing labels) from D(val).

Eq.(4) further shows that two different sets of weights (V
and W ) are needed to conduct performance scrutiny. If the

same set of model weights are used for measuring validation

performance and are trained at the same time, Vk and Vj in

Eq.(4) would be replaced with Wk and Wj . A trivial way

to minimize this new loss is to make Wk and Wj to be the

same: if Wk = Wj , the indicator function I(·) is 0, and

the second loss term is 0. This is a degenerated solution

because no knowledge will be transferred among models.

Stage III. In the third stage, each learner validates its

W ∗
k (Ak, {V ∗

j (Aj), Aj}Kj �=k) on the validation set D(val).

The learners optimize their architectures by minimizing the

validation losses:

min{Ak}Kk=1

∑K
k=1 L(W

∗
k (Ak, {V ∗

j (Aj), Aj}Kj �=k), Ak, D
(val)).

(5)

Three-level optimization framework. To this end, we

formulate PAMKD as a three-level optimization problem:

min
{Ak}Kk=1

∑K
k=1 L(W

∗
k (Ak, {V ∗

j (Aj), Aj}Kj �=k), Ak, D
(val))

s.t. {W ∗
k (Ak, {V ∗

j (Aj), Aj}Kj �=k)}Kk=1 =

min{Wk}Kk=1

∑K
k=1

(
L(Wk, Ak, D

(tr))+

λ
∑K

j �=k −I(L(V ∗
k (Ak), Ak, D

(val)) > L(V ∗
j (Aj), Aj , D

(val)))∑
X�Y|V ∗

j (Aj)
I(s(X ;Wk) > s(Y;Wk))

{V ∗
k (Ak)}Kk=1 = min{Vk}Kk=1

∑K
k=1 L(Vk, Ak, D

(tr))

Continuous relaxation. The indicator functions are not

differentiable, which prohibits applying gradient-based op-

timization methods. To address this problem, we use

hinge losses to relax indicator functions. We relax

I(L(V ∗
k (Ak), Ak, D

(val)) > L(V ∗
j (Aj), Aj , D

(val))) as:

max(0, L(V ∗
k (Ak), Ak, D

(val))− L(V ∗
j (Aj), Aj , D

(val))), (6)

and relax
∑

X�Y|V ∗
j (Aj)

I(s(X ;Wk) > s(Y;Wk) as

∑
X�Y|V ∗

j (Aj)
max(0, ε− (s(X ;V ∗

j (Aj))− s(Y;V ∗
j (Aj)))

(s(X ;Wk)− s(Y;Wk))),
(7)

where ε is a small positive number. The hinge loss

max(0, dkj) where dkj = L(V ∗
k (Ak), Ak, D

(val)) −
L(V ∗

j (Aj), Aj , D
(val)) controls whether KD should be per-

formed from learner j to learner k. If dkj ≤ 0 which in-

dicates that j performs no better than k, the hinge loss is

zero and correspondingly the KD loss (second loss term in

Algorithm 1 Optimization algorithm for PAMKD

while not converged do
1. For learner 1, · · · ,K, update Vk

2. For learner 1, · · · ,K, update Wk

3. For learner 1, · · · ,K, update Ak

Eq.(3)) is zero. If dkj > 0, the hinge loss is dkj . The larger

this difference is, the more valuable it is to transfer knowl-

edge from j to k. Note that V in the hinge loss cannot be

replaced with W . Otherwise, a trivial solution in the second

step is to make dkj = 0, which in fact removes mutual KD.

Negative of the multiplication of the two indicator functions

is replaced with the multiplication of these two hinge losses.

Optimization algorithm. To solve the PAMKD problem,

we develop a gradient-based optimization algorithm, draw-

ing inspirations from [34]. First of all, we approximate

V ∗
k (Ak) using

V ′
k = Vk − ξV ∇Vk

L(Vk, Ak, D
(tr)), (8)

where ξV is a learning rate. Plugging {V ′
j }Kj=1

into the loss function at the second stage, we obtain

an approximated objective O. Then we approximate

W ∗
k (Ak, {V ∗

j (Aj), Aj}Kj �=k) using one-step gradient de-

scent update of Wk w.r.t the approximated objective:

W ′
k = Wk − ξW∇Wk

O. (9)

Finally, we plug {W ′
k}Kk=1 into the validation loss at the

third stage and get an approximated validation loss. Then

we update {Ak}Kk=1 by minimizing the approximated vali-

dation loss:

Ak ← Ak − ξA(∇Ak
L(W ′

k, Ak, D
(val))+

∑K
j �=k ∇Ak

L(W ′
j , Aj , D

(val))).
(10)

These steps iterate until convergence. The algorithm is sum-

marized in Algorithm 1.

Differentiable representations of architectures. Fol-

lowing [34], we represent architectures using continuous

variables which are multiplied to the outputs of candidate

building blocks. A larger variable value indicates the cor-

responding block is more important. Architecture search is

formulated as identifying optimal values of these variables

using gradient based methods.

4. Experiments
In this section, we present experimental results.

4.1. Datasets

We performed the experiments on three datasets:

CIFAR-100, CIFAR-10, and ImageNet [12]. CIFAR-100

11925



Method Error-C100 Error-C10 Param. Cost

*ResNet [20] 22.10 6.43 1.7 -
*DenseNet [25] 17.18 3.46 25.6 -

*PNAS [32] 19.53 3.41±0.09 3.2 150
*ENAS [43] 19.43 2.89 4.6 0.5
*AmoebaNet [45] 18.93 2.55±0.05 3.1 3150

*DARTS-2nd [34] 20.58±0.44 2.76±0.09 1.8 1.5
*GDAS [13] 18.38 2.93 3.4 0.2
*R-DARTS [61] 18.01±0.26 2.95±0.21 - 1.6

*DARTS− [9] 17.51±0.25 2.59±0.08 3.3 0.4
*DropNAS [22] 16.95±0.41 2.58±0.14 4.4 0.7
*DrNAS [7] - 2.54±0.03 4.0 0.4
*ISTA-NAS [56] - 2.54±0.05 3.3 0.1
*MiLeNAS [19] - 2.51±0.11 3.9 0.3
*GAEA [30] - 2.50±0.06 - 0.1
*PDARTS-ADV [6] - 2.48±0.02 3.4 1.1

†Darts1st [34] 20.52±0.31 3.00±0.14 1.8 0.4
Darts1st + MKD [62] 18.37±0.16 2.70±0.05 2.1 1.3
Darts1st + NES [59] 18.32±0.19 2.75±0.11 2.2 1.2
Darts1st + OKDDip [4] 18.69±0.21 2.83±0.09 2.1 1.5
Darts1st + KDCL [18] 18.33±0.10 2.68±0.06 2.3 1.7
Darts1st + AFD [11] 18.62±0.17 2.85±0.06 2.2 1.6
Darts1st + ONE [28] 18.93±0.11 2.68±0.07 2.3 1.4
Darts1st + Cream [41] 18.36±0.14 2.95±0.12 2.3 1.8
Darts1st + PAMKD (ours) 17.61±0.16 2.38±0.03 2.2 1.2

*Pdarts [8] 17.43±0.15 2.54±0.04 3.6 0.3
Pdarts + MKD [62] 16.55±0.13 2.50±0.02 3.7 2.1
Pdarts + NES [59] 16.48±0.16 2.75±0.08 3.6 2.2
Pdarts + OKDDip [4] 16.92±0.20 2.77±0.11 3.8 2.4
Pdarts + KDCL [18] 16.59±0.08 2.52±0.05 3.8 2.3
Pdarts + AFD [11] 16.79±0.15 2.51±0.03 3.7 2.4
Pdarts + ONE [28] 17.04±0.09 2.68±0.07 3.8 2.0
Pdarts + Cream [41] 16.38±0.14 2.65±0.04 3.5 2.5
Pdarts + PAMKD (ours) 15.82±0.11 2.42±0.06 3.6 2.1

†Pcdarts [54] 17.01±0.06 2.57±0.07 4.0 0.1
Pcdarts + MKD [62] 16.38±0.13 2.56±0.03 4.2 0.6
Pcdarts + NES [59] 16.36±0.11 2.69±0.06 4.2 0.7
Pcdarts + OKDDip [4] 16.59±0.14 2.72±0.09 4.4 0.8
Pcdarts + KDCL [18] 16.33±0.09 2.61±0.08 4.3 0.9
Pcdarts + AFD [11] 16.71±0.16 2.59±0.07 4.3 0.8
Pcdarts + ONE [28] 16.92±0.18 2.66±0.04 4.0 0.8
Pcdarts + Cream [41] 16.63±0.10 2.74±0.05 4.3 1.0
Pcdarts + PAMKD (ours) 15.89±0.07 2.46±0.05 4.1 0.6

†Prdarts [63] 16.48±0.06 2.37±0.03 3.4 0.2
Prdarts + MKD [62] 16.35±0.08 2.35±0.02 3.3 0.8
Prdarts + NES [59] 16.59±0.06 2.48±0.06 3.6 0.9
Prdarts + OKDDip [4] 16.83±0.04 2.51±0.07 3.5 1.0
Prdarts + KDCL [18] 16.39±0.07 2.42±0.05 3.6 0.8
Prdarts + AFD [11] 16.47±0.06 2.39±0.08 3.6 0.9
Prdarts + ONE [28] 17.03±0.09 2.48±0.09 3.4 1.1
Prdarts + Cream [41] 16.86±0.05 2.36±0.06 3.6 1.5
Prdarts + PAMKD (ours) 16.05±0.04 2.28±0.03 3.5 0.8

Table 1. Results on CIFAR-100 and CIFRA-10. * indicates that

the results are taken from DARTS− [9]. † indicates that the results

were obtained by re-running the methods for 10 times.

is split into a 25K training set, a 25K validation set, and

a 10K test set. So is CIFAR-10. The training and valida-

tion set is used as D(tr) and D(val) in PAMKD. ImageNet has

1.3M training images and 50K test images. CIFAR-100 and

CIFAR-10 have 10 classes and ImageNet has 1000 classes.

4.2. Experimental settings

Following [34], each experiment consists of an architec-

ture search phrase where an architecture A is learned and

an architecture evaluation where multiple copies of A are

composed into a larger network, which is then trained from

scratch and tested on the test set. For the search space

of A, we used the ones proposed in DARTS [34], 2) P-

Figure 1. Empirical evidence of cascaded failure.

DARTS [8], 3) PC-DARTS [54], and 4) PR-DARTS [63].

In PAMKD, we set the number of learners to 2. λ is set

to 0.1 for PCDARTS on CIFAR-100; 0.5 for PR-DARTS

on CIFAR-100/10, PCDARTS on CIFAR-10, DARTS1st on

CIFAR-10/100; 1 for PDARTS on CIFAR-100/10. ε is set

to 0.01. R is set to 5. When constructing GRS relation-

ships, instance groups are randomly sampled. For architec-

ture search on CIFAR-100 and CIFAR-10, each architec-

ture consists of a stack of 8 cells and each cell consists of 7

nodes.

For architecture search on ImageNet, following [54], we

randomly sample 10% images from the 1.3M training set as

D(tr) and 2.5% images as D(val) in PAMKD. In PC-DARTS,

architectures are directly searched on ImageNet. Search

was performed for 50 epochs. After searching, among the

K learners, the one achieving the smallest validation loss

is retained and its architecture is evaluated. The mean and

standard deviation of 10 random runs are reported.

We compare with the following baselines: 1) MKD [62]

without performance scrutiny, 2) neural ensemble search

(NES) [59], 3) online knowledge distillation with diverse

peers (OKDDip) [4], 4) knowledge distillation via collabo-

rative learning (KDCL) [18], 5) adversarial feature distilla-

tion (AFD) [11], 6) on-the-fly native ensemble (ONE) [28]

for knowledge distillation, and 7) distilling prioritized paths

for one-shot neural architecture search (Cream) [41]. We

adapted MKD, OKDDip, KDCL, AFD, and ONE to archi-

tecture search tasks.

4.3. Results and analysis on CIFAR-100 and
CIFAR-10

In Table 1, we compare different methods on CIFAR-

100 and CIFAR-10. In PAMKD, we count the number

of parameters in a single retained learner (the one yield-

ing the lowest validation loss). We observe the follow-

ing from this table. First, under different settings of

search spaces, including those from DARTS, P-DARTS,

PC-DARTS, and PR-DARTS, our method performs sig-

nificantly better than MKD, KDCL, AFD, and ONE. Our

method performs scrutiny when performing mutual KD: a

learner A is allowed to generate knowledge to train another

learner B only when performance of A is better than B.

11926



Data Space Darts [34] DartsES [60] Darts− [9] MKD [62] OKDDip [4] Ours

C10 S1 4.66±0.71 3.05±0.07 2.76±0.07 4.38±0.59 4.01±0.36 2.43±0.11
C10 S2 4.42±0.40 3.41±0.14 2.79±0.04 4.58±0.25 4.32±0.69 2.30±0.07
C10 S3 4.12±0.85 3.71±1.14 2.65±0.04 4.07±0.62 3.89±0.58 2.27±0.04
C10 S4 6.95±0.18 4.17±0.21 2.91±0.04 5.96±0.37 5.61±0.15 2.54±0.15

C100 S1 29.93±0.41 28.90±0.81 23.26±0.59 29.53±0.66 29.18±0.49 22.32±0.23
C100 S2 28.75±0.92 24.68±1.43 22.31±0.65 28.47±0.32 28.83±0.69 21.47±0.50
C100 S3 29.01±0.24 26.99±1.79 21.47±0.40 28.58±0.42 27.62±0.23 20.61±0.27
C100 S4 24.77±1.51 23.90±2.01 21.75±0.26 23.99±1.37 23.64±1.06 21.05±0.64

Table 2. Evaluation of robustness: errors on test sets of CIFAR-10 (C10) and CIFAR-100 (C100).

Figure 2. (Left) Comparison of knowledge transfer approaches. (Right) Nearest neighbors retrieved by GRS and PL.

With such a scrutiny mechanism, collective failure can be

prevented. In contrast, in MKD, KDCL, AFD, and ONE,

each learner is allowed to generate knowledge to train other

learners, even when this learner performs worse than oth-

ers, which incurs high risk of collective failure. Figure 1

provides some empirical evidence. We first train the initial

models of three learners independently. Then we train the

second set of models of these learners via MKD, KDCL,

AFD without scrutiny. As can be seen, after MKD, KDCL,

AFD training, performance of learner 1 and 3 are both de-

graded. This is because learner 2 performs worse than

learner 1 and 3. Knowledge generated by learner 2 has poor

quality. Trained using such low-quality knowledge, the per-

formance of learner 1 and 3 is degraded. Under PAMKD

which only allows KD when one learner outperforms an-

other, the performance of all three learners are improved.

Second, our method works better than OKDDip. While

OKDDip learns attentional weights to control how much

knowledge is allowed to transfer between one learner to

another, it trains these attentional weights together with

model parameters on a single training set, which is prone to

overfitting. In contrast, our method conducts performance-

scrutiny on a validation set and trains model parameters on

a training set, which is resilient to overfitting. Third, our

method achieves significantly lower test errors than vanilla

DARTS1st, PDARTS, PCDARTS, PR-DARTS, and NES.

These methods do not perform mutual knowledge distilla-

tion, which leads to inferior performance. In our method,

learners with different architectures collaboratively solve

the same task. With different architectures, these learn-

ers possess complementary advantages. Via collaboration,

each learner can transfer the knowledge in areas it is good

at to other learners. Collaboration enables different learners

to jointly improve. Fourth, parameter number and search

cost of our method is similar to those of other differentiable

methods, indicating that our method can search more ac-

curate architectures without incurring significant additional

costs in memory footprint and inference time.

4.4. Robustness

By dynamically transferring knowledge from better-

performing models to worse-performing models where the

knowledge is group-wise relative similarity relationships

generated by encoders of better-performing models, our

method can learn representations that are robust to per-

formance collapse. We empirically verify this by evaluat-

ing our method on four architecture search spaces designed

by [60]. These spaces are specifically crafted for assess-

ing robustness against performance collapse. Table 2 shows

our method achieves lower test errors on CIFAR-100/10 un-

der these four spaces, in comparison with baselines. This

demonstrates the capability of our method in avoiding per-

formance degeneration.

4.5. Comparison of knowledge transfer approaches

We compare our group-wise relative similarity based

knowledge transfer approach with the following: 1) pseudo-

labeling (PL) [62]; 2) triple-wise similarity (TS) [58]: a

better-performing model (BPM) annotates relative similar-

ity relations (e.g., the similarity between x and y is larger

than that between z and y) and a worse-performing model

(WPM) fits these relative similarities; 3) pairwise similarity

(PS) [5]: a BPM annotates whether two images are simi-

lar or dissimilar and a WPM fits these similarity labels; 4)
L2 regularization on encoder weights (L2W) [44]: encour-

aging model weights of different learners to have small L2

11927



distance; 5) L2 regularization on embeddings (L2E) [16]:

encouraging embeddings generated by two models to have

small L2 distance.

Figure 2(left) shows the results. Our method works bet-

ter than PL, L2E, and L2W. These baselines transfer knowl-

edge on individual data instances without considering the

relationship between instances, which cannot capture global

properties of an entire dataset. In contrast, our method takes

the group-wise relative similarity relationships among data

instances as input and transfers knowledge between learners

at the group level instead of individual instance level. Our

method works better than PS and TS. PS and TS are lim-

ited to capturing second-order and third-order relationships

among instances while our method can capture higher order

(≥ 4) relationships.

Figure 2(right) shows 4-nearest neighbors retrieved by

GRS and PL for some randomly sampled CIRAR-100 test

images. As can be seen, nearest neighbors under GRS are

more semantically similar to query images than PL. By en-

couraging different learners to be consistent on group-wise

similarities, GRS can more effectively group similar images

together, which is good for classification.

4.6. Results on ImageNet

In Table 3, we make a comparison of different meth-

ods on ImageNet, in terms of top-1 and top-5 classifica-

tion errors (%). PAMKD-pcdarts-ImageNet denotes the ar-

chitecture is searched on ImageNet by applying PAMKD

to Pcdarts. Similar meanings hold for other notations like

this. Observations made from this table are similar to those

in Table 1. Our method outperforms MKD, KDCL, AFD,

and ONE, which further demonstrates the effectiveness of

conducting performance scrutiny during mutual knowledge

transfer. Our method performs better than OKDDip, which

further shows the effectiveness of conducting performance

scrutiny on a separate validation set. Our method achieves

lower errors than NES and vanilla DARTS1st, P-DARTS,

PCDARTS, which again demonstrates the effectiveness of

performing mutual knowledge transfer.

4.7. Results on NAS-Bench-201

Table 4 shows the results on NAS-Bench-201. Our

method outperforms baselines. The analysis of reasons is

similar to that for results in Table 1.

4.8. Ablation studies

In the first ablation study, we further investigate the ef-

fectiveness of performance scrutiny in mutual knowledge

distillation. We experimented with the following ablation

settings: in our framework, replacing the objective func-

tion at the second stage in Eq.(4) with the objectives of

MKD and KDCL (denoted by 2nd-MKD and 2nd-KDCL

Method Top-1 Top-5

*Inception-v1 [48] 30.2 10.1
*ShuffleNet 2× (v2) [38] 25.1 7.6

*PNAS [32] 25.8 8.1
*AKDNet [36] 24.5 6.9
*AmoebaNet-C [45] 24.3 7.6

*DSNAS-ImageNet [23] 25.7 8.1
*SDARTS-ADV-CIFAR10 [6] 25.2 7.8
*PCDARTS-CIFAR10 [54] 25.1 7.8
*ProxylessNAS-ImageNet [2] 24.9 7.5
*FairDARTS-ImageNet [10] 24.4 7.4
*PR-DARTS [63] 24.1 7.3

*DARTS+-CIFAR100 [31] 23.7 7.2

*Darts2nd-cifar10 [34] 26.7 8.7
†Darts1st-cifar10 [34] 26.1 8.3
MKD-darts1st-cifar10 [62] 24.7 7.6
NES-darts1st-cifar10 [59] 24.8 7.7
OKDDip-darts1st-cifar10 [4] 25.0 8.0
KDCL-darts1st-cifar10 [18] 24.9 7.7
AFD-darts1st-cifar10 [11] 24.7 7.5
ONE-darts1st-cifar10 [28] 25.3 8.0
Cream-darts1st-cifar10 [41] 26.0 8.2
PAMKD-darts1st-cifar10 (ours) 24.3 7.2
*Pdarts-cifar10 [8] 24.4 7.4
MKD-pdarts-cifar10 [62] 24.4 7.3
NES-pdarts-cifar10 [59] 24.3 7.2
OKDDip-pdarts-cifar10 [4] 24.5 7.4
KDCL-pdarts-cifar10 [18] 24.4 7.4
AFD-pdarts-cifar10 [11] 24.5 7.6
ONE-pdarts-cifar100 [28] 24.4 7.4
Cream-pdarts-cifar10 [41] 24.3 7.3
PAMKD-pdarts-cifar10 (ours) 23.9 6.8
*Pdarts-cifar100 [8] 24.7 7.5
MKD-pdarts-cifar100 [62] 23.8 7.1
NES-pdarts-cifar100 [59] 24.0 7.3
OKDDip-pdarts-cifar100 [4] 24.3 7.5
KDCL-pdarts-cifar100 [18] 23.9 7.2
AFD-pdarts-cifar100 [11] 23.8 7.0
ONE-pdarts-cifar100 [28] 24.6 7.6
Cream-pdarts-cifar100 [41] 24.5 7.5
PAMKD-pdarts-cifar100 (ours) 23.2 6.7
*Pcdarts-ImageNet [54] 24.2 7.3
MKD-pcdarts-ImageNet [62] 23.2 6.8
NES-pcdarts-ImageNet [59] 23.4 7.0
OKDDip-pcdarts-ImageNet [4] 23.6 7.1
KDCL-pcdarts-ImageNet [18] 23.4 7.1
AFD-pcdarts-ImageNet [11] 23.2 6.9
ONE-pcdarts-ImageNet [28] 23.5 7.1
Cream-pcdarts-ImageNet [41] 23.9 7.2
PAMKD-pcdarts-ImageNet (ours) 22.8 6.4

Table 3. Top-1 and top-5 test errors on ImageNet. * indicates that

the results are taken from DARTS− [9], DrNAS [7], and AKD-

Net [36]. † denotes that the result is obtained from our run. The

rest notations are the same as those in Table 1.

respectively), where different models are allowed to mutu-

ally teach each other without performance scrutiny. Test

errors on CIFAR-100 and CIFAR-10 are shown in Table 5.

We can see that our method (which uses the performance

scrutiny objective function in Eq.(4)) outperforms these two

ablation settings. This further demonstrates the necessity of

conducting performance scrutiny during mutual knowledge

distillation.

Next, we perform an ablation study of “no first stage

(No-1st)”: the first learning stage is removed. Performance-

aware knowledge distillation is performed using the weights

W . λ is set to 1. We use the search space of P-DARTS,

DARTS1st, and PR-DARTS. Table 6 shows test errors. Re-

11928



CIFAR-10 CIFAR-100 ImageNet-16-120
Validation Test Validation Test Validation Test

DARTS2nd [34] 39.77±0.00 54.30±0.00 38.57±0.00 38.97±0.00 18.87±0.00 18.41±0.00
GDAS [14] 90.01±0.46 93.23±0.23 24.05±8.12 24.20±8.08 40.66±0.00 41.02±0.00
SNAS [53] 90.10±1.04 92.77±0.83 69.69±2.39 69.34±1.98 42.84±1.79 43.16±2.64
DSNAS [24] 89.66±0.29 93.08±0.13 30.87±16.40 31.01±16.38 40.61±0.09 41.07±0.09
PC-DARTS [54] 89.96±0.15 93.41±0.30 67.12±0.39 67.48±0.89 40.83±0.08 41.31±0.22

Drnas [7] 91.55±0.00 94.36±0.00 73.49±0.00 73.51±0.00 46.37±0.00 46.34±0.00
MKD+Drnas [62] 88.47±0.82 90.58±0.74 67.44±2.56 68.96±3.58 43.75±0.15 44.59±0.27
NES+Drnas [59] 90.91±0.68 87.55±0.42 65.38±3.72 70.48±3.52 46.27±0.33 45.72±0.13
OKDDip+Drnas [4] 91.04±0.73 89.72±0.44 68.71±1.08 70.73±4.88 44.69±1.36 38.64±0.52
KDCL+Drnas [18] 89.01±0.75 89.36±0.58 67.28±1.94 69.27±3.92 46.26±0.42 39.05±0.26
AFD+Drnas [11] 88.95±0.79 87.99±0.64 66.04±2.51 71.25±2.70 45.84±0.41 41.82±0.77
ONE+Drnas [28] 89.35±0.37 93.50±0.21 68.84±0.38 70.59±2.61 41.64±0.12 40.86±2.49
Cream+Drnas [41] 85.49±0.36 94.37±0.26 70.62±0.99 74.02±0.53 45.98±0.23 40.72±0.31
Ours+Drnas 92.64±0.11 94.83±0.07 74.58±0.10 74.25±0.07 47.73±0.15 47.59±0.09

Table 4. Validation and test accuracy on NAS-Bench-201.

Method Error-CIFAR100 Error-CIFAR10

2nd-MKD + Darts1st 18.25±0.10 2.66±0.07
2nd-KDCL + Darts1st 18.03±0.14 2.68±0.06
Ours + Darts1st 17.61±0.16 2.38±0.03

2nd-MKD + Pdarts 16.72±0.09 2.53±0.03
2nd-KDCL + Pdarts 16.51±0.06 2.50±0.06
Ours + Pdarts 15.82±0.11 2.42±0.06

Table 5. Test errors (%) on CIFAR-100 and CIFAR-10, in the

ablation study of performance scrutiny.

Method Error (%)

C100

PAMKD + Pdarts 15.82±0.11
No-1st + Pdarts 17.58±0.26
PAMKD + Prdarts 16.05±0.04
No-1st + Prdarts 16.89±0.06

C10

PAMKD + Darts1st 2.38±0.03
No-1st + Darts1st 2.65±0.07
PAMKD + Prdarts 2.28±0.03
No-1st + Prdarts 2.50±0.04

Table 6. Classification errors for “no first stage (No-1st)”, on test

sets of CIFAR-100 (C100) and C10.

moving the first stage renders the errors to increase on both

CIFAR-10 and CIFAR-100. The reason is that: in No-1st,

for each learner, the same model weights are evaluated and

trained simultaneously. To minimize the knowledge distil-

lation loss, a trivial solution is to make all learners have the

same validation performance, which makes the knowledge

distillation loss become 0. This is a degenerated solution

where all learners perform learning independently. In the

experiments, we observed that different learners in No-1st

reach the same validation loss around epoch 40 and stop

mutual KD. Our full method avoids this problem by using

two different sets of model weights to conduct performance-

aware MKD: one for measuring performance and the other

gets trained. In the experiments, we observed that different

learners in our method perform mutual KD throughout the

entire training process.

Figure 3(Left) shows how classification error of

PAMKD+Pdarts changes with the tradeoff parameter λ, on

5K held-out CIFAR-100 data. A λ in the middle ground

yields the optimal performance.

We investigate how classification error changes with

the number of learners K, in PAMKD+Darts1st. Fig-

Figure 3. How classification errors change with λ (left) and K
(right).

ure 3(Right) shows results on 5K held-out CIFAR-100 data.

When increasing K from 1 to 2, the error decreases. Under

K = 1, there is no collaboration. When K = 2, two learn-

ers collaboratively help each other to improve via PAMKD.

When K increases from 2 to 3, the performance does not

change significantly. This indicates that two learners are

sufficient for exploring the benefit of PAMKD.

5. Conclusions and discussions
We propose a tri-level optimization based performance-

aware mutual knowledge distillation (MKD) approach for

neural architecture search, to address the collective fail-

ure problem of previous MKD methods. Unlike previ-

ous methods where knowledge distillation can happen from

any two models, our method adds a scrutiny mechanism:

model A is allowed to generate knowledge to train model B
only if the performance of A is better than B. We formu-

late performance-aware MKD as a three-level optimization

problem, containing three stages performed end-to-end: 1)

each learner trains an initial model independently; 2) learn-

ers perform performance-aware MKD; and 3) each learner

updates its architecture by minimizing validation losses.

Experiments on a variety of datasets demonstrate the effec-

tiveness of our method.

Our method has the following limitations: it learns mul-

tiple models instead of one, which incurs more memory

consumption and computational cost. We present some

studies towards addressing this limitation in the supple-

ments. Our work has the following potential negative so-

cietal impact: the increased computational overhead due

to training multiple models consumes more power energy,

which leads to more greenhouse gas emissions.

11929



References
[1] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert

Ormándi, George E. Dahl, and Geoffrey E. Hinton. Large

scale distributed neural network training through online dis-

tillation. CoRR, abs/1804.03235, 2018. 1, 2, 3

[2] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 2, 7

[3] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pages 39–57. IEEE, 2017. 1, 2

[4] Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, and

Chun Chen. Online knowledge distillation with diverse

peers. CoRR, abs/1912.00350, 2019. 1, 2, 3, 5, 6, 7, 8

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020. 6

[6] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differen-

tiable architecture search via perturbation-based regulariza-

tion. CoRR, abs/2002.05283, 2020. 5, 7

[7] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xi-

aocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural

architecture search. CoRR, abs/2006.10355, 2020. 5, 7, 8

[8] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-

ferentiable architecture search: Bridging the depth gap be-

tween search and evaluation. In ICCV, 2019. 5, 7

[9] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-

aolin Wei, and Junchi Yan. DARTS-: robustly stepping

out of performance collapse without indicators. CoRR,

abs/2009.01027, 2020. 5, 6, 7

[10] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.

Fair DARTS: eliminating unfair advantages in differentiable

architecture search. CoRR, abs/1911.12126, 2019. 7

[11] Inseop Chung, SeongUk Park, Jangho Kim, and Nojun

Kwak. Feature-map-level online adversarial knowledge dis-

tillation. In International Conference on Machine Learning,

pages 2006–2015. PMLR, 2020. 3, 5, 7, 8

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 4

[13] Xuanyi Dong and Yi Yang. Searching for a robust neural

architecture in four GPU hours. In CVPR, 2019. 5

[14] Xuanyi Dong and Yi Yang. Searching for a robust neural

architecture in four gpu hours, 2019. 8

[15] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending

the scope of reproducible neural architecture search. arXiv
preprint arXiv:2001.00326, 2020. 2

[16] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018. 7

[17] Jindong Gu and Volker Tresp. Search for better students to

learn distilled knowledge. In ECAI, 2020. 1, 2

[18] Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu,

Ding Liang, Xiaolin Hu, and Ping Luo. Online knowl-

edge distillation via collaborative learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11020–11029, 2020. 3, 5, 7, 8

[19] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Mile-

nas: Efficient neural architecture search via mixed-level re-

formulation, 2020. 5

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 5

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1, 2

[22] Weijun Hong, Guilin Li, Weinan Zhang, Ruiming Tang,

Yunhe Wang, Zhenguo Li, and Yong Yu. Dropnas: Grouped

operation dropout for differentiable architecture search. In

IJCAI, 2020. 5

[23] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jian-

ping Shi, Xunying Liu, and Dahua Lin. DSNAS: direct

neural architecture search without parameter retraining. In

CVPR, 2020. 7

[24] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jian-

ping Shi, Xunying Liu, and Dahua Lin. Dsnas: Direct neural

architecture search without parameter retraining, 2020. 8

[25] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In CVPR, 2017. 5

[26] Minsoo Kang, Jonghwan Mun, and Bohyung Han. Towards

oracle knowledge distillation with neural architecture search,

2019. 1, 2

[27] Jangho Kim, Minsung Hyun, Inseop Chung, and Nojun

Kwak. Feature fusion for online mutual knowledge distil-

lation. CoRR, abs/1904.09058, 2019. 1, 2, 3

[28] Xu Lan, Xiatian Zhu, and Shaogang Gong. Knowl-

edge distillation by on-the-fly native ensemble. CoRR,

abs/1806.04606, 2018. 1, 2, 3, 5, 7, 8

[29] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,

Xiaodan Liang, Liang Lin, and Xiaojun Chang. Blockwisely

supervised neural architecture search with knowledge distil-

lation, 2020. 1, 2

[30] Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet

Talwalkar. Geometry-aware gradient algorithms for neural

architecture search, 2021. 5

[31] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,

Weiran Huang, Kechen Zhuang, and Zhenguo Li. DARTS+:

improved differentiable architecture search with early stop-

ping. CoRR, abs/1909.06035, 2019. 7

[32] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L. Yuille,

Jonathan Huang, and Kevin Murphy. Progressive neural ar-

chitecture search. In ECCV, 2018. 5, 7

[33] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical representa-

tions for efficient architecture search. In ICLR, 2018. 2

[34] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

differentiable architecture search. In ICLR, 2019. 1, 2, 4, 5,

6, 7, 8

[35] Yu Liu, Xuhui Jia, Mingxing Tan, Raviteja Vemulapalli,

Yukun Zhu, Bradley Green, and Xiaogang Wang. Search

to distill: Pearls are everywhere but not the eyes, 2020. 1

11930



[36] Yu Liu, Xuhui Jia, Mingxing Tan, Raviteja Vemulapalli,

Yukun Zhu, Bradley Green, and Xiaogang Wang. Search

to distill: Pearls are everywhere but not the eyes. In CVPR,

2020. 7

[37] Fan Ma, Deyu Meng, Xuanyi Dong, and Yi Yang. Self-paced

multi-view co-training. Journal of Machine Learning Re-
search, 21(57):1–38, 2020. 1, 2

[38] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet V2: practical guidelines for efficient CNN archi-

tecture design. In ECCV, 2018. 7

[39] Abhinav Mehrotra, Alberto Gil Ramos, Sourav Bhat-

tacharya, Łukasz Dudziak, Ravichander Vipperla, Thomas

Chau, Mohamed S Abdelfattah, Samin Ishtiaq, and

Nicholas D Lane. Nas-bench-asr: Reproducible neural ar-

chitecture search for speech recognition. In International
Conference on Learning Representations (ICLR), 2021. 2

[40] Jonghwan Mun, Kimin Lee, Jinwoo Shin, and Bohyung Han.

Learning to specialize with knowledge distillation for vi-

sual question answering. In S. Bengio, H. Wallach, H.

Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

editors, Advances in Neural Information Processing Systems,

volume 31. Curran Associates, Inc., 2018. 2

[41] Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao,

and Jianlong Fu. Cream of the crop: Distilling priori-

tized paths for one-shot neural architecture search. CoRR,

abs/2010.15821, 2020. 2, 5, 7, 8

[42] Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, and

Quoc V. Le. Meta pseudo labels, 2021. 2

[43] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. In ICML, 2018. 2, 5

[44] Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and

Sergey Levine. Meta-learning with implicit gradients. arXiv
preprint arXiv:1909.04630, 2019. 6

[45] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019. 1, 2, 5, 7

[46] Sam T Roweis and Lawrence K Saul. Nonlinear dimen-

sionality reduction by locally linear embedding. science,

290(5500):2323–2326, 2000. 2

[47] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Ken-

neth O. Stanley, and Jeff Clune. Generative teaching net-

works: Accelerating neural architecture search by learning

to generate synthetic training data. CoRR, abs/1912.07768,

2019. 2

[48] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 7

[49] Ilya Trofimov, Nikita Klyuchnikov, Mikhail Salnikov,

Alexander Filippov, and Evgeny Burnaev. Multi-fidelity neu-

ral architecture search with knowledge distillation, 2021. 1,

2

[50] Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, and

Chunhua Shen. NAS-FCOS: fast neural architecture search

for object detection. CoRR, abs/1906.04423, 2020. 2

[51] Runmin Wu, Mengyang Feng, Wenlong Guan, Dong Wang,

Huchuan Lu, and Errui Ding. A mutual learning method for

salient object detection with intertwined multi-supervision.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8150–8159, 2019. 1,

2, 3

[52] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V

Le. Self-training with noisy student improves imagenet clas-

sification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10687–

10698, 2020. 1, 2

[53] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

SNAS: stochastic neural architecture search. In ICLR, 2019.

2, 8

[54] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: partial chan-

nel connections for memory-efficient architecture search. In

ICLR, 2020. 5, 7, 8

[55] Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi

Zhang, and Andrew Willis. Mutualnet: Adaptive convnet

via mutual learning from network width and resolution. In

European Conference on Computer Vision, pages 299–315.

Springer, 2020. 1, 2, 3

[56] Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian,

and Zhouchen Lin. Ista-nas: Efficient and consistent neural

architecture search by sparse coding, 2020. 5

[57] Lewei Yao, Renjie Pi, Hang Xu, Wei Zhang, Zhenguo Li,

and Tong Zhang. Joint-detnas: Upgrade your detector with

nas, pruning and dynamic distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10175–10184, June 2021. 1

[58] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning

from multiple teacher networks. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’17, page 1285–1294, New

York, NY, USA, 2017. Association for Computing Machin-

ery. 2, 3, 6

[59] Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris Holmes,

Frank Hutter, and Yee Whye Teh. Neural ensemble

search for performant and calibrated predictions. CoRR,

abs/2006.08573, 2020. 2, 5, 7, 8

[60] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-

rakchi, Thomas Brox, and Frank Hutter. Understanding

and robustifying differentiable architecture search. arXiv
preprint arXiv:1909.09656, 2019. 6

[61] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-

rakchi, Thomas Brox, and Frank Hutter. Understanding

and robustifying differentiable architecture search. In ICLR,

2020. 5

[62] Ying Zhang, Tao Xiang, Timothy M Hospedales, and

Huchuan Lu. Deep mutual learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4320–4328, 2018. 1, 2, 3, 5, 6, 7, 8

[63] Pan Zhou, Caiming Xiong, Richard Socher, and Steven C. H.

Hoi. Theory-inspired path-regularized differential network

architecture search. CoRR, abs/2006.16537, 2020. 5, 7

[64] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. In ICLR, 2017. 1, 2

11931



[65] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018. 2

11932


