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Abstract
Graph neural architecture search has shown great

potentials for automatically designing graph neu-

ral network (GNN) architectures for graph classifi-

cation tasks. However, when there is a distribution

shift between training and test graphs, the exist-

ing approaches fail to deal with the problem of

adapting to unknown test graph structures since

they only search for a fixed architecture for all

graphs. To solve this problem, we propose a novel

Graph neuRal Architecture Customization with

disEntangled Self-supervised learning (GRACES)

model which is able to generalize under distribu-

tion shifts through tailoring a customized GNN

architecture suitable for each graph instance with

unknown distribution. Specifically, we design

a self-supervised disentangled graph encoder to

characterize invariant factors hidden in diverse

graph structures. Then, we propose a proto-

type based architecture self-customization strat-

egy to generate the most suitable GNN architec-

ture weights in a continuous space for each graph

instance. We further propose a customized super-

network to share weights among different archi-

tectures for the sake of efficient training. Exten-

sive experiments on both synthetic and real-world

datasets demonstrate that our proposed GRACES

model can adapt to diverse graph structures and

achieve state-of-the-art performance for graph

classification tasks under distribution shifts.

1. Introduction
Graph-structured data has attracted lots of attention in re-

cent years for its flexible representation ability in various

domains. Graph neural networks (GNNs) models such as

GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018),
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and GIN (Xu et al., 2019) have been proposed and achieved

great successes in many graph tasks. Generally, GNNs learn

node representations by a recursive message passing scheme

where nodes aggregate information from their neighbors it-

eratively. Then for the graph classification task, GNNs

use pooling methods to derive graph-level representations.

Different GNN architectures mainly differ in their message-

passing mechanism, i.e., how to exchange information, to

adapt to the demands of different graph scenarios.

To save human efforts on designing GNN architectures

for different tasks and automatically design more power-

ful GNNs, graph neural architecture search (GraphNAS) (Li

et al., 2020; Gao et al., 2020; Wei et al., 2021) has been uti-

lized to search for an optimal GNN architecture. These auto-

matically designed architectures have achieved competitive

or better performances compared with manually designed

GNNs on datasets with the same distributions under the in-

dependently and identically distributed (I.I.D.) assumption,

i.e., the training and test graphs are independently sampled

from the identical distribution.

Nevertheless, distribution shifts are ubiquitous and in-

evitable in real-world graph applications where there exist a

large number of unforeseen and uncontrollable hidden fac-

tors. Taking drug discovery as an example, there exists only

a limited amount of training data that can be obtained for

experiments, and the interaction mechanism varies greatly

for different molecules due to their complex chemical prop-

erties (Ji et al., 2022). That being the case, the GNN models

designed for drug discovery frequently have to be tested on

data with distribution shifts.

The existing GraphNAS approaches under the I.I.D. assump-

tion only search a single fixed GNN architecture based on

the training set before directly applying the selected architec-

ture on the test set, failing to deal with varying distribution

shifts under the out-of-distribution setting. Because the sin-

gle GNN architecture discovered by existing methods may

overfit the distributions of the training graph data, it may

fail to make accurate predictions on test data with various

distributions different from the training data.

To solve this problem, in this paper we are the first to

study graph neural architecture search for graph classifi-

cation under distribution shifts, to the best of our knowledge.

We propose Graph neuRal Architecture Customization with
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disEntangled Self-supervised learning (GRACES), which

is able to capture key information on graphs with widely

varying distributions under the out-of-distribution settings

through tailoring a unique GNN architecture for each graph

instance. Specifically, we first design a self-supervised dis-
entangled graph encoder which projects graphs into a disen-

tangled latent space, where each disentangled factor in the

space is trained by the supervised task and corresponding

self-supervised learning task simultaneously. This design

is able to capture the key information hidden in graphs in a

more controllable manner via the self-supervised disentan-

gled graph representation, thus improving the ability of the

representations to generalize under distribution shifts. We

then propose architecture self-customization with prototype
to tailor specialized GNN architectures for graphs based

on the similarities of their representations with prototypes
vectors in the latent space, where each prototype vector cor-

responds to one different operation. We further design the

customized super-network with differentiable weights on the

mixture of different operations, which has great flexibility

to ensemble different combinations of operations and enable

the proposed GRACES model to be easily optimized in an

end-to-end fashion through gradient based methods. We re-

mark that our designs of disentangled graph representations

and learnable prototype-operation mapping together are able

to enhance the generalization ability of our proposed model

under distribution shifts. Extensive experiments on both syn-

thetic and real-world datasets validate the superiority of our

proposed GRACES model over existing baselines. Detailed

ablation studies further verify the designs of GRACES. 1

Our contributions are summarized as follows.

• We are the first to study graph neural architecture

search for graph classification under distribution shifts by

proposing the Graph neuRal Architecture Customization

with disEntangled Self-supervised learning (GRACES)

model, to the best of our knowledge.

• We design three cascaded modules, i.e., self-supervised

disentangled graph encoder, architecture self-

customization with prototype strategy, and customized

super-network, to tailor a unique GNN architecture for

each graph instance, thus enabling the ability of our

proposed GRACES model in dealing with generalization

under distribution shifts with non-I.I.D. settings.

• Extensive experimental results demonstrate that our pro-

posed GRACES model is able to significantly outperform

state-of-the-art baselines in terms of graph classification

accuracy on both synthetic and real-world datasets.

The rest of the paper is organized as follows. In Section

2, we introduce the problem formulation and preliminaries.

1Our code will be released at https://github.com/
THUMNLab/AutoGL

We present our proposed method in Section 3 and report

experimental results in Section 4. We review related works

in Section 5. In Section 6, we conclude the paper.

2. Problem Formulation and Preliminaries
Denote the graph space as G and the label space as Y . We

consider a training graph dataset Gtr = {gi}Ntr
i=1, gi ∈ G

and the corresponding label set Ytr = {yi}Ntr
i=1, yi ∈ Y .

The test graph dataset is denoted as Gte = {gi}Nte
i=1 and

Yte = {yi}Nte
i=1. The goal of generalization under distribu-

tion shifts is to design a model F : G → Y using Gtr and

Ytr which works well on Gte and Yte under the assumption

that P (Gtr, Ytr) �= P (Gte, Yte), i.e.,

argmin
F

EG,Y∼P (Gte,Yte) [� (F (G), Y ) |Gtr, Ytr] , (1)

where � : Y × Y → R is a loss function. In this paper, we

consider a common yet challenging setting that neither Yte

nor unlabeled Gte is available in the training phase (Wang

et al., 2021a). Besides, we mainly focus on F being GNNs,

which are state-of-the-art models for graph machine learn-

ing. A typical GNN consists of two parts: an architecture

α ∈ A and learnable weights w ∈ W , where A and W
denotes the architecture space and the weight space, re-

spectively. Therefore, we denote GNNs as the following

mapping function Fα,w : G → Y .

For searching GNN architectures, we mostly focus on differ-

ent GNN layers, i.e., message-passing functions. Therefore,

we consider a search space of standard layer-by-layer archi-

tectures without sophisticated connections such as residual

or jumping connections, though our proposed method can

be easily generalized. We choose five widely used GNN lay-

ers as our operation candidate set O, including GCN (Kipf

& Welling, 2017), GAT (Veličković et al., 2018), GIN (Xu

et al., 2019), SAGE (Hamilton et al., 2017), and Graph-

Conv (Morris et al., 2019). Besides, we also adopt MLP,

which does not consider graph structures. We fix the pool-

ing layer at the end of the GNN architecture as the standard

global mean pooling.

3. The Proposed Method
In this section, we present our proposed method. First, we

introduce our framework in Section 3.1. In Section 3.2,

we present the self-supervised disentangled graph encoder

to capture diverse graph structures. Then, we propose the

architecture self-customization with prototype strategy in

Section 3.3, which maps the learned graph representation

into a tailored GNN architecture. In Section 3.4, we intro-

duce the customized super-network which enables efficient

training by weight sharing. We show the optimization pro-

cedure in Section 3.5. We analyze the complexity of our

method in Section 3.6. Finally, we give some discussion
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Figure 1. An overview of our proposed GRACES model. The self-supervised disentangled graph encoder captures diverse graph structures

by a self-supervised and a supervised loss. Then, the architecture self-customization with prototype module tailors the most suitable GNN

architecture based on the learned graph representation. Finally, the customized super-network enables efficient training by weight sharing.

about our model in Section 3.7.

3.1. Framework

In our proposed method, instead of using a fixed GNN

architecture for all graphs as in the existing methods, we

customize a GNN architecture for each graph. In this way,

our proposed method is more flexible and can better handle

test graphs under distribution shift since it is known that

different GNN architectures suit different graphs (Corso

et al., 2020; Xu et al., 2021). To achieve this goal, we aim

to learn an architecture mapping function ΦA : G → A
and a weight mapping function Φw : G × A → W so

that these functions can automatically generate the optimal

GNN for different graphs, including the architecture and its

weights. Since the architecture only depends on the graph

in our settings, we can further simplify the weight mapping

function as Φw : G → W . Therefore, we transform Eq. (1)

into the following objective function:

min
ΦA,Φw

γ

Ntr∑
i=1

�
(
FΦ1(gi),Φ2(gi) (gi) , yi

)
+(1−γ)Lreg, (2)

where Lreg is the regularizer and γ is a hyper-parameter.

In the following sections, we will introduce in details how

to properly design ΦA,Φw, and Lreg so that our proposed

method can generalize under distribution shifts.

3.2. Self-supervised disentangled graph Encoder

Graphs from different distributions can have diverse graph

structures. To capture such diverse graph structures, we

use a self-supervised disentangled graph encoder to learn

low-dimensional representations of graphs. Specifically, we

adopt K GNNs and learn K-chunk graph representations:

H(l) =
K

‖
k=1

GNN(H
(l−1)
k ,A), (3)

where H
(l)
k is the k-th chunk of the node representation at

the l-th layer, A is the adjacent matrix of the graph, and ‖
represents concatenation. Using these disentangled GNN

layers, we can capture different latent factors of the graphs.

Then, we adopt a readout layer to aggregate node-level

representations into a graph-level representation:

h = Readout(H(L)). (4)

To learn the parameters of the self-supervised disentangled

graph encoder, we use both graph supervised learning and

self-supervised learning tasks.

Supervised learning. The downstream target graph task

naturally provides supervision signals for learning the self-

supervised disentangled graph encoder. Therefore, We place

a classification layer after the obtained graph representation

to get the prediction for the graph classification task. De-

note the graph representation for gi as hi. The supervised

learning loss is as follows:

Lsup =

Ntr∑
i=1

� (C (hi) , yi) (5)

where C(·) is the classification layer.

Self-supervised learning (SSL). Graph SSL aims to learn

informative graph representation through pretext tasks,
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which has shown several advantages including reducing

label reliance, enhancing robustness, and model generaliza-

tion ability (Liu et al., 2021; Yehudai et al., 2021). There-

fore, we propose to use graph SSL to complement the super-

vised learning task. Specifically, we set the SSL auxiliary

task by generating pseudo labels from graphs structures and

using the pseudo labels as extra supervision signals. Be-

sides, we adopt different pseudo labels for different chunks

of the disentangled GNN so that our disentangled encoder

can capture different factors of the graph structure. In this

paper, we focus on the degree distribution of graphs as a

representative and explainable structural feature, while it

is straightforward to generalize to other graph structures.

Specifically, for the k-th GNN chunk, we generate pseudo

labels by calculating the ratio of nodes that exactly have

degree k. We formulate the SSL objective function as:

Lssl =

Ntr∑
i=1

K−1∑
k=1

�ssl
(
ŷssli,k , y

ssl
i,k

)
, (6)

where yssli,k is the pseudo-label and ŷssli,k is obtained by adopt-

ing a regression function, i.e., a linear layer followed by

an activation function, on the k-th chunk of the graph rep-

resentation hi. Notice that we also leave the last chunk

without SSL tasks to allow more flexibility in learning the

disentangled graph representations.

3.3. Architecture Self-customization with prototype

After obtaining the graph representation h, we propose the

architecture self-customization with prototype strategy to

map the representation into a tailored GNN architecture.

Specifically, denote the probability of choosing an operation

o in the i-th layer of the searched architecture as pio, where

i ∈ {1, 2, ..., N}, N is the number of layers, and o ∈ O.

We calculate the probability as follows:

p̂io = h · qi
o

‖qi
o‖2

, pio =
exp

(
p̂io
)

∑
o′∈O exp

(
p̂io′

) , (7)

where qi
o is a learnable prototype vector representation of

the operation o. We adopt the l2-normalization on q to en-

sure numerical stability and fair competition among differ-

ent operations. Intuitively, in Eq. (7), we learn a prototype

vector for each candidate operation and select operations

based on the preferences of the graph, i.e., if the graph rep-

resentation has a large projection on a prototype vector, its

corresponding operation is more likely to be selected. Be-

sides, by using the exponential function, the length of h can

decide the shape of pio i.e., the larger ‖h‖2, the more likely

that pio are dominated by a few values, indicating that the

graph requires specific operations.

Besides, to avoid the mode collapse problem, i.e., vectors

of different operations are similar and therefore become

indistinguishable, we adopt the following regularizer based

on cosine distances between vectors to keep the diversity of

operations:

Lcos =
∑
i

∑
o,o′∈O,o �=o′

qi
o · qi

o′

‖qi
o‖2

∥∥.qi
o′
∥∥
2

(8)

Using the architecture self-customization with prototype,

we can tailor the most suitable GNN architectures based on

the graph representation.

3.4. Weight Generation using customized super-network

Besides GNN architectures, we also need the weights of the

architectures. Following the NAS literature (Liu et al., 2019;

Pham et al., 2018), we adopt a super-network to obtain the

weights of architectures. Specifically, in the super-network,

all possible operations are jointly considered by mixing

different operations into a continuous space as follows:

f i(x) =
∑
o∈O

pioo(x) (9)

where x is the input of layer and f i(x) is the output. Then,

we can optimize all the weights using gradient descend meth-

ods. Besides, since weights of different architectures are

shared, the training will be much more efficient compared

to training weights for different architectures separately.

A caveat to notice is that in most NAS literature, the ar-

chitecture is discretized at the end of the search phase by

choosing the operation with the largest pio for all the layers.

Then, the weights of the selected architecture are retrained.

However, retraining is infeasible in our framework since

test graphs can be tailored with different architectures from

those for training graphs. Therefore, we directly use the

weights of the super-network as the weights in the searched

architecture. Besides, we also keep the continuous archi-

tecture without the discretization step, enhancing flexibility

on architecture customization and simplifying the optimiza-

tion strategy. Moreover, the intuition is that the customized

super-network serves as a strong ensemble model with pio
being the ensemble weights, which is also known to benefit

out-of-distribution generalization (Shen et al., 2021).

3.5. Optimization Procedure

We have introduced three additional loss functions as the

regularizer in Eq. (2), i.e., Lsup and Lssl for the self-

supervised disentangled graph encoder and Lcos for the

self-customization module. Therefore, we have:

L = γLmain + (1− γ)Lreg

Lreg = Lsup + β1Lssl + β2Lcos,
(10)

where Lmain is the supervision loss of the tailored architec-

tures in Eq. (2), β1 and β2 are hyper-parameters.
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Algorithm 1 The Algorithm Framework of Our Proposed

Method

Input: Training Dataset Gtr and Ytr, Hyper-parameters

γ0, Δγ, β1, β2

Initialize all leanable parameters and set γ = γ0
while Not Converge do

Calculate graph representations h using Eqs. (3) (4)

Calculate Lsup and Lssl using Eq. (5) and Eq. (6)

Calculate architecture probability pio using Eq. (7)

Calculate Lcos using Eq. (8)

Get the parameters from the super-network

Calculate the overall loss in Eq. (2)

Update parameters using gradient descends

Update γ = γ −Δγ
end while

For the overall optimization, we have two groups of loss

functions: the classification loss and the regularizer. At an

early stage of the training procedure, the self-supervised dis-

entangled graph encoder may have not been properly trained

and the learned graph representation is also not informative,

leading to unstable architecture customization. Therefore,

we set larger weights for the regularizer, i.e., a smaller initial

γ in Eq. (2), to force the self-supervised disentangled graph

encoder to learn through its supervised learning and SSL

tasks. As the training procedure continues, we can gradually

focus more on training the self-customization module and

the super-network by increasing γ as:

γt = γ0 + tΔγ, (11)

where γt is the hyper-parameter value at the t-th epoch,

Δγ is a small constant. The overall algorithm is shown in

Algorithm 1. In the evaluation phase, we directly generate

the most suitable GNN architecture with its parameters for

the test graphs without retraining.

3.6. Complexity Analysis

Denote |V |, |E| as the number of nodes and edges in the

graph, respectively, and d as the dimensionality of hidden

representations. We use de and ds to denote the dimen-

sionality of the self-supervised disentangled graph encoder

and the customized super-network, respectively. Notice

that de is the overall dimensionality of K-chunks, i.e., the

dimensionality of each chunk is de/K.

Time complexity. The time complexity of most message-

passing GNNs is O(|E|d+|V |d2). Therefore, the time com-

plexity of our self-supervised disentangled graph encoder

is O(|E|de + |V |d2e). The time complexity of the architec-

ture self-customization with prototype is O(|O|2de), since

the most time-consuming step is calculating Lcos in Eq (8).

The time complexity of the customized super-network is

O(|O|(|E|ds+ |V |d2s)). The overall time complexity of our

method is O(|E|(de+ |O|ds)+ |V |(d2e+ |O|d2s)+ |O|2de).
Number of learnable parameters. The number of learn-

able parameters of a typical message-passing GNN is

O(d2). In our framework, the self-supervised disentan-

gled graph encoder has O(d2e) parameters, the architec-

ture self-customization module has O(|O|de) parameters,

and the customized super-network has O(|O|d2s) param-

eters. Thus the total number of learnable parameters is

O(d2e + |O|de + |O|d2s)).
The above analyses show that our proposed method has a

linear time complexity with respect to the number of nodes

and edges, and the number of learnable parameters is con-

stant, on par with previous GNNs and graph NAS methods.

Besides, in practice, |O| is a small constant (e.g., |O| = 6
in our search space) and we find that usually de � ds.

Therefore, the time complexity and the number of learnable

parameters mainly depend on ds. To ensure a fair compari-

son with GNN baselines, we set a relatively small ds for our

method so that all methods have a comparable number of

parameters, i.e., |O|d2s ≈ d2.

3.7. Discussion

In this part, we provide some intuitive explanation of our

model. The continuous architectures can be regarded as a

type of ensemble model (Deng et al., 2020), like dropout

or multi-head attention. Different submodels in the archi-

tecture learn different knowledge from the data. These

submodels also affect each other during the training phase,

which is de facto a type of regularization. Furthermore,

our model can be seen as a variant of the attention mecha-

nism. Traditional attention mechanism can be represented

as follows:

Attnq→k = Sim(q,k), (12)

out = Attnq→kv, (13)

where k, q, and v indicate key, query, and value. Attn is

the attention score calculated by a similarity function. In out

framework, the key is the operation prototype vectors, the

query is graph representations, and the value is candidate

GNNs in the search space. Our architecture customization

strategy calculate the attention scores of keys (operations)

on of a certain query (graph) by Equation (7), then the

scores is applied on the values (operations) by Equation (9).

Different graphs can attend on different operations to use

a customized neural network to learn. We empirically find

this mechanism can help out-of-distribution generalization.

4. Experiments
In this section, we report experimental results to verify the

effectiveness of our model. We also conduct detailed abla-
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Table 1. Dataset Statistics.

Dataset #Graphs Split(%) Avg. |V | Avg. |E| #Tasks #Classes Metric

Spurious-Motif 18,000 50/16.7/33.3 26.1 36.3 1 3 Accuracy
OGBG-MolHIV 41,127 80/10/10 25.5 27.5 1 2 ROC-AUC
OGBG-MolSIDER 1,427 80/10/10 33.6 35.4 27 2 ROC-AUC
OGBG-MolBACE 1,513 80/10/10 34.1 36.9 1 2 ROC-AUC

tion studies to analyze each of our model components.

4.1. Experiment Setting

Datasets. We adopt both synthetic and real-world datasets

for graph-level tasks with distribution shifts.

• Spurious-Motif (Wu et al., 2022; Ying et al., 2019) is a

synthetic dataset where each graph is composed of one

base shape (tree, ladder, and wheel denoted by S =
0, 1, 2), and one motif shape (cycle, house, and crane
denoted by C = 0, 1, 2). The base shape is usually

larger than the motif shape but the ground-truth label is

determined by the motif shape solely. In the distribution

shift setting, a manual bias b is added to the distribution

between the base and the motif shape in the training set:

P (S) =

{
b if S = C,
1−b
2 otherwise.

(14)

In the test set, all base and motif shapes are indepen-

dent with equal probabilities. Thus, we can control the

distribution shift by varying b.

• OGBG-Mol* (Hu et al., 2020; Wu et al., 2018) is a set

of molecular property prediction datasets. Graphs rep-

resent molecules and labels are chemical properties of

molecules. The datasets are split by the scaffold value,

which attempts to separate molecules with different struc-

tural frameworks, providing great challenge to graph

property prediction.

The statistics of all datasets are shown in Table 1.

Baselines. We compare our model with 10 baselines from

the following two different categories.

• Manually design GNNs: we include the GNNs in our

search space as our baselines, i.e., GCN, GAT, GIN,

SAGE, and GraphConv. Global mean pooling is used

in these GNNs to generate the graph-level representa-

tion. We also include MLP and two recent methods:

ASAP (Ranjan et al., 2020) and DIR (Wu et al., 2022).

• Graph Neural Architecture Search: we consider two

classic NAS baselines, random search and DARTS (Liu

Table 2. The test accuracy of all the methods on the synthetic

dataset Spurious-Motif. Numbers after the ± signs represent stan-

dard deviations. The best results are in bold.

bias b = 0.7 b = 0.8 b = 0.9

GCN 48.39±1.69 41.55±3.88 39.13±1.76

GAT 50.75±4.89 42.48±2.46 40.10±5.19

GIN 36.83±5.49 34.83±3.10 37.45±3.59

SAGE 46.66±2.51 44.50±5.79 44.79±4.83

GraphConv 47.29±1.95 44.67±5.88 44.82±4.84

MLP 48.27±1.27 46.73±3.48 46.41±2.34

ASAP 54.07±13.85 48.32±12.72 43.52±8.41

DIR 50.08±3.46 48.22±6.27 43.11±5.43

random 45.92±4.29 51.72±5.38 45.89±5.09

DARTS 50.63±8.90 45.41±7.71 44.44±4.42

GNAS 55.18±18.62 51.64±19.22 37.56±5.43

PAS 52.15±4.35 43.12±5.95 39.84±1.67

GRACES 65.72±17.47 59.57±17.37 50.94±8.14

et al., 2019). We also consider two GraphNAS base-

lines, GNAS (Gao et al., 2020), an reinforcement learn-

ing based method, and PAS (Wei et al., 2021), a recent

GraphNAS method specifically designed for graph clas-

sification tasks.

More experimental details including the hyper-parameter

settings are provided in Appendix B.

4.2. Results on Synthetic Datasets

Experimental Setting We select three different bias values

b for Spurious-Motif, i.e., 0.7, 0.8, and 0.9. We run all

experiments 10 times with different random seeds and report

the average results with standard deviations.

Qualitative Results We summarize the experimental results

in Table 2. The table shows that our model outperforms all

baselines in all three settings by a large margin. Specifi-

cally, we find that all GNNs perform poorly, indicating that

they are easily affected by spurious correlations and cannot

handle the distribution shift. Moreover, we find that NAS

methods achieve slightly better results than manually de-

signed GNNs in most cases, demonstrating the importance

of automating architecture. Nevertheless, these methods

also suffer from distribution shifts. In contrast, GRACES

shows much better results by customizing architectures for

different graphs and capturing the ground-truth predictive
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Figure 2. The validation and test accuracy of

GRACES and self-supervised disentangled

graph encoder (SDGE) on Spurious-Motif.

Figure 3. The visualization of graph rep-

resentations for the test dataset on

Spurious-Motif.

Figure 4. The validation and the test accuracy

of GRACES and self-supervised disentangled

graph encoder (SDGE) on OGBG-MolHIV.

(a) Tree-based graphs (b) Ladder-based graphs (c) Wheel-based graphs

Figure 5. Visualizations of operation probabilities for graphs with different base shapes on Spurious-Motif.

patterns under distribution shifts.

Analysis To better understand the mechanism of our model,

we conduct some analyses. First, since the self-supervised

disentangled graph encoder in our model is also trained

with the supervised task, one may wonder whether the dis-

entangled encoder per se can achieve satisfactory general-

ization under distribution shifts. We report the results of

Spurious-Motif for b = 0.8 in Figure 2. The results show

that the self-supervised disentangled graph encoder does not

achieve satisfactory generalization performance, indicating

that using a disentangled GNN alone cannot well handle

distribution shifts. Nevertheless, we can observe that the

test accuracy of GRACES and the validation accuracy of the

encoder improve simultaneously, i.e., around the 8-th epoch.

The results indicate that training the disentangled encoder

can help to improve the performance and generalization abil-

ity of the full GRACES model. A plausible reason is that

the self-supervised disentangled graph encoder captures the

shortcut structure features in the training set, i.e., the base

shape in Spurious-Motif. As a result, graphs with similar

base shapes will have similar representations and thus have

similar customized GNN architectures. Therefore, individ-

ual GNN architecture in the super-network only needs to

deal with graphs with similar base shapes, i.e., without the

spurious correlation, which leads to a good generalization

ability.

Besides, we visualize the learned graph representation in a

2-D plane using PCA to reduce dimensionality. The results

of the test graphs when b = 0.8 are shown in Figure 3.

We can observe that our learned graph representation can

separate ground-truth base shapes well into different parts,

showing that the self-supervised disentangled graph encoder

can capture structure information.

Moreover, for graphs with different base shapes, we show

the operation probabilities pio in expectation in Figure 5.

We observe that graphs with different base shapes prefer

different architectures, e.g., tree-based graphs prefer GAT

and MLP in the third layer, while these two operations are

seldomly chosen in the other two types of graphs. The oper-

ation distributions are similar for ladder-based and wheel-
based graphs in the first layer, but differ in other layers.

The results revalidate our analysis above that different base

shapes prefer different architectures.

4.3. Results on Real-world Datasets

We further conduct experiments on three molecular graph

classification benchmarks in OGBG-Mol*: HIV, SIDER,

and BACE. We report the results in Table 3. The results

show that our proposed GRACES model again outperforms

all the baselines on the three datasets, demonstrating that

our model is able to capture the complex distribution shifts

in some cases. Two existing graph NAS methods, DARTS

and PAS, fail to outperform manually designed GNNs on
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Table 3. The test ROC-AUC of all the methods on the real-world

datasets OGBG-Mol*. Numbers after the ± signs represent stan-

dard deviations. The best results are in bold.

dataset hiv sider bace

GCN 75.99±1.19 59.84±1.54 68.93±6.95

GAT 76.80±0.58 57.40±2.01 75.34±2.36

GIN 77.07±1.49 57.57±1.56 73.46±5.24

SAGE 75.58±1.40 56.36±1.32 74.85±2.74

GraphConv 74.46±0.86 56.09±1.06 78.87±1.74

MLP 70.88±0.83 58.16±1.41 71.60±2.30

ASAP 73.81±1.17 55.77±1.18 71.55±2.74

DIR 77.05±0.57 57.34±0.36 76.03±2.20

DARTS 74.04±1.75 60.64±1.37 76.71±1.83

PAS 71.19±2.28 59.31±1.48 76.59±1.87

GRACES 77.31±1.00 61.85±2.56 79.46±3.04

real-world graphs.

Analysis To better analyze our proposed method on real-

world graphs, we also plot the validation and test results of

GRACES and the results of our self-supervised disentangled

graph encoder on OGBG-MolHIV. The results are shown in

Figure 4. We can see that GRACES report better results than

the encoder in both the validation and the test set, indicating

that both the encoder and customized super-network are

indispensable for GRACES.

4.4. Ablation Study

In this section, we evaluate the effectiveness of each mod-

ule of our framework by conducting ablation studies. We

compare the following variants of our model as follows:

• GRACES-MIX: we remove architecture customization

so that all operations have an equal weight pio.

• GRACES-GCN: we replace the self-supervised disen-

tangled graph encoder with a vanilla GCN.

• GRACES-FC: we replace the architecture self-

customization with prototype with a fully-connected

layer.

• GRACES-NO-COS: we remove the cosine distance

loss.

• GRACES-DISCRETE: we let the architecture self-

customization strategy to output discrete architectures,

i.e., constraining {pio|o ∈ O} to be one-hot.

We also compare with the best manually designed GNNs,

denoted as “manual”. We examine these variants on the

synthetic dataset Spurious-Motif. The results are presented

in Table 4. We have the following observations.

Table 4. The test accuracy of different variants of GRACES on the

synthetic dataset Spurious-Motif.

bias b = 0.7 b = 0.8 b = 0.9

manual 50.75±4.89 46.73±3.48 46.41±2.34

MIX 52.80±10.57 49.24±5.42 43.11±1.86

GCN 58.86±13.39 51.62±13.23 47.85±9.57

FC 63.76±14.68 57.11±20.38 47.39±10.28

NO-COS 55.80±18.13 51.65±14.12 44.95±9.41

DISCRETE 42.84±7.84 39.81±6.62 40.80±5.74

GRACES 65.72±17.47 59.57±17.37 50.94±8.14

Table 5. Empirical search time on Spurious-Motif and OGBG-

Mol* (NVIDIA GeForce RTX 3090).

DATASET SPURIOUS-MOTIF HIV SIDER BACE

GRACES 972S 2325S 115S 114S

DARTS 872S 2049S 111S 108S

Overall, our proposed full GRACES model outperforms all

the variants under all three settings, demonstrating that each

component of our method is indispensable to achieve satis-

factory generalization performance under distribution shifts.

GRACES-MIX, which simply mixes all candidate opera-

tions without architecture customization achieves slightly

better performances than the manually designed GNNs in

the search space generally. Since we have ensured that the

number of learnable parameters in our proposed method

equals to manually designed GNNs (see Section 3.6), the

results indicate that mixing different message-passing layers

can be beneficial. Our proposed GRACES can naturally uti-

lize this advantage, thanks to our customized super-network.

In contrast, architecture discretization leads to poor perfor-

mance, indicating that this technique, which is widely used

in the NAS literature, does not suit our problem.

In addition, if we adopt a normal GCN as the encoder, the

accuracy will drop severely, indicating the importance of

capturing diverse graph structures using our proposed self-

supervised disentangled graph encoder. As for the architec-

ture self-customization with prototype, either replacing it

with a fully-connected layer or removing the consine dis-

tance loss causes performance degradation, demonstrating

that our strategy can better customize the architectures.

4.5. Search Time

We also measure the search time of DARTS and our pro-

posed method and show the results in Table 5. Our model

takes comparable running time as DARTS, indicating our

model design does not bring much burden more than

DARTS on architecture searching phase. The results also

confirms our theoretical complexity analysis in Section 3.6,

demonstrate that our model has not only high effectiveness
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but also high efficiency.

5. Related Works
5.1. Graph neural network

Message-passing GNNs (Kipf & Welling, 2017; Veličković

et al., 2018; Xu et al., 2019; Hamilton et al., 2017) have been

proposed as an effective framework for graph machine learn-

ing following the neighborhood aggregation scheme. At

each layer, nodes learn representations by aggregating their

neighbors’ representations. After K such layers, the vector

representation of each node captures both the structural and

the semantic information within the k-hop neighborhood

region of the node. Then, the representation of the whole

graph is learned by pooling all node representations (Kipf

& Welling, 2017; Xu et al., 2019). Disentanglement tech-

nique (Wang et al., 2021b; 2022a; Chen et al., 2021) is also

applied on GNNs (Ma et al., 2019; Li et al., 2021), which

helps to generate more representative features with different

factors for graphs.

Distribution shifts is inevitable in real-world data (Zhu et al.,

2015). However, most existing GNNs ignore the problem of

out-of-distribution generalization and suffer from severe per-

formance deterioration when there exist distribution shifts

between training and test graphs (Hu et al., 2020; Koh et al.,

2021; Wu et al., 2018; Zhang et al., 2022). Some pioneer

works start to study the distribution shift problems of GNNs

such as size generalization (Knyazev et al., 2019; Yehudai

et al., 2021; Bevilacqua et al., 2021), node-level tasks (Fan

et al., 2022; Zhu et al., 2021), or invariant learning (Wu

et al., 2022). However, they do not consider the architec-

ture perspective. Xu et al. (2021) theoretically show that

GNN architectures can affect the generalization ability, but

they do not consider how to obtain the optimal architec-

ture given a graph dataset. Another line of GNN works

focus on treating different graph data instances differently.

Policy-GNN (Lai et al., 2020) determines the number of ag-

gregation layers for each node using reinforcement learning.

Customized-GNN (Wang et al., 2021d) generates different

GNN parameters for different graph instances. Neverthe-

less, these works do not explore searching GNN architecture

under distribution shifts.

5.2. Neural architecture search

Recent years have witnessed a surge of research interests on

NAS methods, which aim at designing neural architectures

automatically for given tasks. Since the architecture search

space is discrete, reinforcement learning (Zoph & Le, 2017;

Pham et al., 2018; Qin et al., 2021a) and evolution algo-

rithm (Xie & Yuille, 2017; Liu et al., 2018) are often used in

NAS methods. Besides, another strategy is transferring the

discrete architecture search space into a differentiable space,

e.g., DARTS (Liu et al., 2019) and SNAS (Xie et al., 2019)

construct a super-network where all candidate operations

are mixed and make it possible to update the architecture

as well as the weights simultaneously through the classical

gradient descent method.

Recently, instance-aware NAS searches for a mapping func-

tion from an image to an architecture so that different in-

stances can have different architectures in the test phase.

InstaNAS (Cheng et al., 2020) uses a controller to capture

the representations of images and assign them to different

discrete CNN architectures. However, this framework is

not differentiable and hard to optimize. DDW (Yuan et al.,

2021) uses global spatial information of images to generate

wiring patterns among different layers but does not consider

operation selection. Besides, NAS-OoD (Bai et al., 2021)

aims to search for an architecture that can generalize to out-

of-distribution data. Nevertheless, all the above works focus

on computer vision and cannot be easily applied to GNNs.

Automated graph machine learning is gaining an increasing

number of attentions from the research community. (Zhang

et al., 2021; Wang et al., 2022b), including hyper-parameter

optimization on graphs (Tu et al., 2019; Wang et al., 2021c)

and graph neural architecture search (GraphNAS) (Li et al.,

2020; Gao et al., 2020; Zhou et al., 2019; Guan et al., 2021;

Qin et al., 2021b; Cai et al., 2022). Existing GraphNAS on

graph classification tasks (Jiang & Balaprakash, 2020; Peng

et al., 2020; Wei et al., 2021; Zhili Wang, 2021; Cai et al.,

2021) are all based on the I.I.D. assumption and ignore the

distribution shift problem.

6. Conclusion
In this paper, we propose a novel GRACES method to im-

prove the generalization ability of GNAS under distribution

shifts. Our core idea is tailoring a customized GNN archi-

tecture suitable for each graph instance with unknown dis-

tribution by designing a self-supervised disentangled graph

encoder, the architecture self-customization with prototype

strategy, and the customized super-network. Extensive ex-

periments on both synthetic and real-world datasets demon-

strate that our proposed model can adapt to diverse graph

structures and achieve state-of-the-art performance for the

graph classification task under distribution shifts. Detailed

ablation studies further verify the designs of our proposed.
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A. Notations

Table 6. Meanings of notations.

Notation Meaning

G The graph space

Y The label space

W The weight space

A The architecture space

O The operation search space

G, Y A graph dataset and its corresponding labels

g, y A graph and its corresponding label

F A model mapping G → Y
� A loss function

K The number of chunks

H(l) The node representation at the i-th layer

h The graph representation

qi
o The prototype vector of operation o at the i-th layer

pio The weight of operation o at the i-th layer

Lsup The supervision loss of the encoder

Lssl The self-supervision loss of the encoder

Lcos The cosine distance loss of the prototype vectors

Lmain The supervision loss of the final prediction given by the super-network

Lreg The sum of all regularizer losses

γ The hyper-parameter to control the contribution of regularizer

β1 The hyper-parameter to control the contribution of Lssl

β2 The hyper-parameter to control the contribution of Lcos

de The dimension of the encoder

ds The dimension of the super-network

B. Hyper-parameter Settings
We use different learning rate for the three parts of our model. Typically, the learning rate of the self-supervised disentangled

encoder is 1.5e-4. The learning rate of the architecture self-customization strategy is 1e-4. Besides, the training procedure

of these two parts are consine annealing scheduled. The learning rate of the customized super-network is 2e-3. We initial

γ as 0.07 and increase it to 0.5 linearly. In addition, we set β1 = 0.05 and β2 = 0.002. For our method and all baselines,

we set the number of layers as 2 in OGBG-MolHIV and 3 in the other datasets, For all methods, we use edge features in

OGBG datasets and virtual node mechanism in OGBG-MolHIV and OGBG-MolSIDER. For all methods, we fix the first

layer as GIN in Spurious-Motif since some of them cannot deal with constant node features. The hidden dimension in

Spurious-Motif is 64 for all baselines and 26 for our method. In OGBG-Mol* datasets, the hidden dimension is 300 for

baselines and 128 for our method.


