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Abstract
Caches are pervasively used in content delivery networks
(CDNs) to serve requests close to users and thus reduce
content access latency. However, designing latency-optimal
caches are challenging in the presence of delayed hits, which
occur in high-throughput systems when multiple requests for
the same content occur before the content is fetched from the
remote server. In this paper, we propose a novel timer-based
mechanism that provably optimizes the mean caching latency,
providing a theoretical basis for the understanding and design
of latency-aware (LA) caching that is fundamental to content
delivery in latency-sensitive systems. Our timer-based model
is able to derive a simple ranking function which quickly
informs us the priority of a content for our goal to minimize
latency. Based on that we propose a lightweight latency-aware
caching algorithm named LA-Cache. We have implemented
a prototype within Apache Traffic Server, a popular CDN
server. The latency achieved by our implementations agrees
closely with theoretical predictions of our model. Our experi-
mental results using production traces show that LA-Cache
consistently reduces latencies by 5%-15% compared to state-
of-the-art methods depending on the backend RTTs.

1 Introduction

Content delivery networks (CDNs) carry more than 50% of
today’s Internet traffic [17] by caching a variety of contents
such as videos, music, software downloads, etc. and delivering
thousands of millions of user requests each day. CDNs deploy
hundreds of thousands of servers across the world to serve
user requests. If the requested content is available in the server
near the user, a cache hit occurs and the user experiences a
quicker response with a lower latency. Otherwise, a cache
miss occurs and the requested content has to be fetched from
the remote server with a dramatically increased latency. As a
result, there has been a renewed focus on increasing cache hits
[11, 16, 31, 40], which can significantly improve the content
delivery of the Internet.

The recent trends of improving caching efficiency in terms
of maximizing caching hits mostly focus on designing dif-
ferent content caching algorithms, including but not limited
to GDSF [15], ARC [44], CAR [6], LHD [7], A-LRU [37],
AdaptSize [11], CACA [29], LRB [53], RL-Cache [35], RL-
Bélády [58], DeepCache [45] and LHR [59]. However, most
of these algorithms assume that the user-perceived latency
upon a cache hit is negligible (i.e., zero delay). Though this
assumption has been widely used in the caching literature,
some recent efforts start linking it to the potential perfor-
mance degradation when minimizing the end-user latency
in the presence of delayed hits [27, 55]. Notably, the latest
series of works [4, 42] reveals that a delayed hit can occur
in real-world systems, especially in high-throughput systems
when multiple requests to the same content occur before the
requested content is fetched from the remote server. As a
result, the aforementioned caching algorithms fail to minimiz-
ing user-perceived latency in the presence of delayed hit since
they are designed under the assumption that delayed hits does
not exist. See Section 2 for more detail.

Despite the insightful findings in [4, 42], there remains a
major gap between the delayed hits observation and the goal
of efficient online latency-aware caching algorithm design.
This is due to the fact that delayed hits were only identified
and overcome through a hard offline optimization problem
assuming that all contents are the same size, and the fetch-
ing latency from remote server upon a cache miss is uniform
across different contents. However, it is well-known that con-
tent sizes often vary widely in production CDNs from a few
bytes [46] to several gigabytes [31]. Additionally, the fetching
latencies upon cache misses in production systems may vary
over time due to the network conditions (e.g., bandwidth), and
differ across content sizes since large contents often require
longer fetching latencies (e.g., multiple RTTs). These facts
introduce an additional layer of complexity in the design of
online algorithms for minimizing latency in the presence of
delayed hits, which largely remain elusive in the literature.

This paper closes this gap by developing a novel and
lightweight timer-based mechanism to account for the impact
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of delayed hits for contents with variable sizes and different
fetching latencies that provably optimizes the mean caching
latency. This provides a theoretical basis for the understand-
ing and design of latency-aware caching that is fundamental
to content delivery in latency-sensitive systems. In this ap-
proach, each content is associated with a timer indicating the
fetching latency between the cache and remote server, which
can be variable across different contents and systems. Upon
a cache miss, all requests (i.e., delayed hits) arriving at the
cache during a certain time period dictated by its timer suffer
a corresponding latency before these requests are truly served.
This approach is able to explicitly characterize the expected
average latency of a caching system in the presence of de-
layed hits. This further enables us to derive a simple ranking
function which can quickly prioritize contents for the purpose
of minimizing latency.

This paper makes the following research contributions:

• To the best of our knowledge, our proposed timer-based
model is the first to provide a theoretical basis for under-
standing the impact of delayed hits in latency-sensitive
caching systems in an online manner. This enables us
to design a lightweight online latency-aware caching al-
gorithm which can capture the variable fetching latency
and different content sizes in real-world systems.

• Using this timer-based model, we explicitly character-
ize the mean latency of each content in the presence
of delayed hits and derive a simple ranking function to
prioritize contents so as to minimize the mean latency.
We then propose a lightweight latency-aware caching
algorithm named LA-Cache.

• We have implemented the LA-Cache prototype within
Apache Traffic Server, a popular CDN server, and eval-
uate the performance of LA-Cache using production
traces. Our empirical results are in close alignment with
our theoretical model predictions. Furthermore, we show
that LA-Cache consistently outperforms conventional
caching algorithms by reducing the latency by 5%-15%
depending on the backend RTTs.

The rest of the paper is organized as follows. We introduce
the motivations and opportunities in designing latency-aware
caching in Section 2. We present the model for delayed hits
and explicitly characterize the mean latency in Section 3. We
propose the latency-aware algorithm LA-Cache in Section 4,
and present its prototype design in Section 5. Evaluation
results are shown in Section 6. We discuss related work in
Section 7 and conclude the paper in Section 8. Additional
results are presented in the supplementary material.

2 Background and Motivation

We begin by motivating the existing of delayed hits in latency-
sensitive systems and showing the fundamental limitations of

Figure 1: A motivating example for latency-aware caching
where delayed hits occur. Suppose that the remote server
stores all three contents named A, B, and C, the cache size
is 1, and the miss latency (i.e., the Round-trip Time (RTT))
between the cache and the remote server is 2 ms. We also have
a request sequence of A,A,A,B,B,B, ... with a new request
arriving at the cache every 1 ms.

existing algorithms.

2.1 A Motivating Example
As a motivating example, we consider a basic delayed hit
scenario in real-world systems as shown in Figure 1. Upon
the first request to content ‘A’, a cache miss occurs and the
cache must fetch content ‘A’ from the remote server with a
latency of 2 ms. The next two requests to content ‘A’ can
be directly served from the cache and experience a latency
corresponding to a cache hit, which is assumed to be zero in
conventional caching algorithms. Similar process happens
for the requests to content ‘B’. Since it takes 2 ms to fetch
content ‘A’ from the remote server, how is it possible for the
second request to content ‘A’ that arrived just 1 ms after the
miss was served with a zero latency? Clearly, something is
wrong.

Contrast to the ideal assumption in conventional caching
algorithm design, the following actually happens. Upon the
first request to content ‘A’, a cache miss is claimed and a fetch
is triggered with a latency of 2 ms. Since the RTT is 2 ms,
content ‘A’ will only arrive in the cache at time t=2 ms. As
a result, the request at t=1 ms is queued behind the original
miss, and must wait (at least) 1 ms to be served. At time t=2
ms, content ‘A’ arrives at the cache and all queued requests
(including the one just arrived) are resolved. Similar process
happens for the requests to content ‘B’. These requests (e.g.,
requests to content ‘A’ at t=1 ms and to content ‘B’ at t= 4 ms)
are called delayed hits since they neither suffer the latency
of a cache miss1 nor that of a true cache hit (e.g., requests to

1We interchangeably use the terms of “miss latency”, “fetching latency”
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Figure 2: Conventional caching algorithms fail to minimize
latency: As the fetching latency (the value of L) increases,
conventional caching algorithms outperform the Bélády’s
offline MIN algorithm in term of mean latency on a 256GB
cache. For example, LRU-4 outperforms Bélády when L is
greater than 50 ms in the Bilibili trace.

content ‘A’ at t=2 ms and to content ‘B’ at t= 5 ms).
In general, delayed hits occur in high-throughput systems

when multiple requests to the same content occur before the
requested content is fetched from the remote server [4, 27,
42, 55]. This phenomenon has become increasing perceptible
due to the growing ratio between system throughputs and
latencies in a wide range of systems. For example, the wide-
area latency between a CDN forward proxy and a central data
center is only marginally improving, while newer technologies
boast order-of-magnitude throughput improvement with the
network links moving from 10 Gbps to 400 Gbps [24]. The
fundamental problem is that latencies are closer and closer
to limits imposed by the speed of light, while throughputs
keep growing unboundedly. Hence, minimizing the impact of
delayed hits is a key performance objective in latency-aware
caching systems.

2.2 Limitations of Existing Algorithms
The above example indicates that conventional caching algo-
rithms fail to capture the impact of delayed hits, which can
be significant especially in systems with high latency to the
remote server. One reason contributes to this failure is that
conventional caching algorithms are designed to maximize
cache hits under the assumption that all cache hits result in
zero delay, i.e., they equally treat delayed hits and true hits. To
that end, the latency measured by conventional caching algo-
rithms significantly underestimate true latency in the presence
of delayed hits. Some so-called “cache hits” will experience
latencies closer to the high latency of a cache miss than the
low latency of a true hit in practice.

As a consequence of this discrepancy, conventional caching
algorithms fail to minimize latency although some caches
were deployed for this purpose, which were actually treated
equivalently to maximize cache hits regardless of delayed hits.

and “RTT” in this paper.

Figure 3: The illustration of our proposed timer-based model
for a particular content i in the presence of delayed hits.

For example, the Bélády’s offline MIN algorithm2 [8] is the
well-known optimal algorithm in maximizing cache hits and
minimizing latency when all contents are of the same size
and delayed hits are treated as true hits. However, Bélády is
no longer optimal in minimizing latency in the presence of
delayed hits, as illustrated in Figure 2 (More details in Sec-
tion 6). Therefore, the goal of maximizing cache hits for most
conventional caching algorithms and the goal of minimizing
latency are not equivalent, in the presence of delayed hits3.
We need to design new online algorithms for latency-sensitive
caching systems.

3 Model for Latency Minimization

We consider the problem of minimizing latency for content
delivery given delayed hits in latency-sensitive systems. In
particular, we aim at designing a latency-aware caching policy
that minimizes the mean latency of all requests. For ease of
exposition, we denote the latency to fetch a particular content
i from the remote server as Li, which can vary across contents
and servers. Therefore, the latency is (a) Li upon a cache miss,
(b) between 0 and Li upon a delayed hit, and (c) 0 upon a true
cache hit.

3.1 Modeling Delayed Hits
Our key insight is to build a novel connection between de-
layed hits and the timer-based caching policy. Figure 3 shows
such a novel connection for a particular content i. More specif-
ically, each content i has a timer value Li which represents the
latency to retrieve the content from the remote server upon
a cache miss. In other words, upon a cache miss at time t,
a request is sent to the remote server and content i will be

2The Bélády’s offline MIN algorithm always evicts the content with the
furthest next request.

3It has been shown [42] that the latency objective is not antimonotone for
caching problems with delayed hits. In other words, a caching algorithm that
improves average caching latency under delayed hits might even lower the
true hit rate. Hence optimizing caching latency is fundamentally different
from optimizing cache hits.
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fetched and inserted into the cache after Li time slots, i.e., at
time t+Li. The timer counts down and until the timer expires,
any new requests for content i during [t, t + Li) are called
delayed hits. These requests are queued behind the original
cache miss occurred at time t, and resolved at time t +Li with
a corresponding latency of t +Li− t ′ for the request occurred
at time t ′. The request arrives at time t +Li is satisfied im-
mediately with a latency of 0, and hence is called the true
hit.

3.2 Mean Latency of All Requests

Suppose that the requests for content i arrive at the cache
according to a Poisson process4 with rate λi. Let Di be the
expected aggregated latency experienced by the arrival of
requests for content i (i.e., delayed hits) upon a cache miss.
The probability of not finding content i in the cache is the
cache miss probability mi, which satisfies mi =

1
1+λiLi

derived
in the context of timer-based caches [25].

Proposition 1. The expected latency experienced by the re-
quest arrival of content i is

(
1+ 1

1+λiLi

)
Li
2 .

Proof. We first compute the expected aggregated latency for
content i. Upon a cache miss, the request is sent to the remote
server and content i is fetched and inserted into the cache
after Li time slots. Thus, the latency of a cache miss is Li. A
delayed hit occurs for every arrival of content i during time
[t, t +Li) since the content i has not been inserted into the
cache yet, and the corresponding latency for request at time
t ′ ∈ [t, t + Li) is t + Li − t ′. Thus the expected aggregated
latency by all delayed hits in the interval of [t, t +Li) is

Di :=
∫ t+Li

t
λi(t +Li− x)dx =

λiL2
i

2
. (1)

Since the requests for content i follow a Poisson process,
the expected number of requests, i.e., the expected number
of delayed hits is λiLi. Hence, the expected latency for each

delayed hit is λiL2
i

2 /λiLi =
Li
2 . Then the mean latency experi-

enced by the requests of content i is a weighted sum of the
latency from the cache miss and the latency from delayed hits,
which satisfies

D̄i = miLi +(1−mi)
Li

2
=

(
1+

1
1+λiLi

)
Li

2
. (2)

4Poisson arrivals are widely used in the literature, e.g., [32, 36, 38, 41, 43].
However, our model holds for general stationary process [5] at the cost of
complicated notations [25, 26]. We relax the Poisson arrivals assumption for
our algorithm design, implementation and empirical evaluation.

Corollary 1. The mean latency experienced by all requests
to N distinct contents satisfies

D̄ :=
N

∑
i=1

λiD̄i =
N

∑
i=1

λiLi

2

(
1+

1
1+λiLi

)
. (3)

Remark 1. The main advantage of our proposed timer-
based model for delayed hits is that it can be easily de-
ployed in latency-sensitive systems to provide a precise and
theoretically-validated latency. Although real-world systems
do not have strict Poisson arrivals for any content (see Sec-
tion 6), we will show in Section 6 that our proposed theoretical
model with Poisson assumptions works well in practice.

Remark 2. Timer-based caches have been extensively stud-
ied in the community [9, 14, 23, 25, 26, 33, 48–50] which are
used to store frequently requested contents in computer sys-
tems. In a timer-based cache, a timer value is set when a
content is first cached and evict the content when the timer
expires. While our timer-based delayed hits model serves a
different purpose, some of the theoretical analysis of timer
caches directly apply (e.g., the decoupling nature of contents
in timer cache analysis). This novel connection between timer-
based delayed hits and traditional timer-based caches allows
us to bring to bear the analytical work done in the conven-
tional caching domain into latency-sensitive systems.

4 Latency-Aware Cache

Our novel and lightweight timer-based model for delayed hits
provides us an opportunity to design a latency-aware (LA)
caching policy that achieves optimal latency for any given
request sequence with variable content fetching latency from
remote server.

Having characterized the mean latency experienced by all
requests (see Corollary 1), we turn to derive a simple ranking
function that can quickly prioritize contents so as to minimize
latency5. Ranking function has been widely used in the design
of conventional caching algorithms. For example, the clas-
sic Least Recently Used (LRU) [18] (or its variants) which
are employed in major CDNs today, is based on a ranking
function of content request recency, while Least Frequency
Used (LFU) ranks contents by how frequently they have been

5We build a novel connection between delayed hits and timer-based
caches for the sake of characterizing the mean latency of each content in
the presence of delayed hits. See Remark 2. In particular, the fetching la-
tency upon a cache miss is analogous to a timer. Need to mention that
we are not considering the conventional timer-based caches, where each
content is decoupled by the timer. Instead, our timer-based model serves a
different purpose. For our latency-aware caching policy design, all contents
are coupled by the cache capacity constraint and hence a ranking function
(which is derived using the timer-based model, see equation (4)) is needed to
make caching decisions. We use the term “timer-based model” since we can
bring some analytical results from traditional timer-based cache domain into
latency-minimization analysis, such as the expression of mi.
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requested. However, all these ranking functions prioritize con-
tents for maximizing cache hits whereas we seek a ranking
function so as to minimizing latency.

Our ranking function is inspired by the theoretically-
sounded latency derived from the timer-based model for de-
layed hits, which in particular the following two intuitions.
First, we consider the metric of aggregated latency computed
in (1), which is the sum of latency due to a cache miss and
any delay hits in the next Li time slots which occur before the
corresponding content is fetched and inserted into the cache.
Intuitively, a content with a higher latency cost increases the
average latency more than a content with a lower latency cost,
and hence should be prioritized. Second, we consider the met-
ric of mean latency for each request of a content, which is
computed in (2). It is clear that a burst of requests to a content
can contribute more to the average latency than a sparse of re-
quests to a content. Following these two intuitions, we derive
a ranking function based on both the aggregated latency and
the mean latency for each content i as

f̃ (i) =
Aggregated latency

Mean latency for each request
=

Di

D̄i
=

λiLi(1+λiLi)

2+λiLi
.

(4)

Now we introduce the latency-aware policy based on the
above ranking function, abbreviated as LA-Cache. LA-Cache
always places in the cache the C contents with the largest
value of their corresponding ranking functions, i.e., if f̃ (1)≥
f̃ (2)≥ ·· · ≥ f̃ (N), then contents 1,2, · · · ,C are cached given
that the cache size is C.

Proposition 2. LA-Cache achieves the minimum mean la-
tency experienced by all requests compared to any other on-
line policies.

Proof. This is clear from the definition of LA-Cache policy
since both the ranking function (4) and the expected latency
for each content i in (2) (resp. (3)) are monotonically increas-
ing in λiLi.

Remark 3. Given (3) (resp. (2)), it can be easily shown that
D̄ (resp. D̄i) is increasing in λiLi, which can be interpreted
as the expected number of delayed hits upon a cache miss for
content i. Since our ranking function (4) is also increasing
in λiLi, it is clear that LA-Cache prioritizes caching bursty
contents (We will formally define and evaluate the burstiness
of a content using a burstiness measure [34] in Section 6).
Intuitively this is correct since a busty content usually refers to
a large number of requests in a shorter time period. This will
result in a larger aggregated latency for the content upon a
cache miss. As a result, prioritizing such a content can reduce
the latency.

4.1 From Theory to Practice
The above ranking function is defined under the assumption
that the content sizes in the system are equal. However, the

Figure 4: The architecture of our ATS prototype.

content sizes in production system usually vary significantly
from a few bytes [46] to several gigabytes [31]. To overcome
this drawback, we redefine the ranking function by incorpo-
rating the content size si, satisfying

f (i) =
f̃ (i)
si

=
λiLi(1+λiLi)

(2+λiLi)si
. (5)

For the notation abuse, we call the policy using this refined
ranking function as LA-Cache in the rest of the paper.

To compute the ranking function and obtain the ranking
function based policy LA-Cache, the content arrival rate λi is
needed6. This is straightforward for synthetic workload; how-
ever, the content arrival rate is usually unknown and varying
over time in real-world systems. To this end, we use esti-
mation techniques to approximate the request rates. For any
content i, let X i

j denote the random variable corresponding to
the inter-arrival times for the requests for content i, and X̄ i be
its mean. We can approximate the mean inter-arrival time as
ˆ̄X i = ∑

K
j=1 X i

j/K. It can be easily shown that ˆ̄X i is an unbiased
estimator of 1/λi. However, keep tracking of all X i

j’s for each
content j from the very beginning will increase the overhead.
As it is well-known that content request processes in pro-
duction systems are highly dynamic and non-stationary, we
further consider a sliding time window, and only use the X i

j’s

within the window to estimate ˆ̄X i. In Section 6, we will use
this estimator to compute the ranking function for evaluating
our algorithm.

5 Implementation

We implement the LA-Cache prototype within Apache Traffic
Server (ATS) [2], a popular CDN server. An LA-Cache cache
simulator has also been implemented for the sake of compari-
son with a wide range of state-of-the-art caching algorithms.
The two implementations are written in C++.

5.1 LA-Cache Prototype
ATS is a multi-threaded and event-based CDN caching server
with a space-efficient in-memory lookup data structure as

6Again, Li indicates the content retrieval latency upon a cache miss (re-
lated to RTTs of the system). In our experiments, we evaluate the impact of
its value on the system performance. See Section 6.
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Description
LRU Recency-based heuristic.
LRU-K Recency-based heuristic. Evict content with

the oldest K-th reference in the past.
LHD [7] Using a ranking function of the content ex-

pected hit density.
2Q [52] Manage caching decisions through a FIFO

queue and a LRU queue.
Delay An offline heuristic knows future request

latency caused by evicting a content from
cache now.

LRU-
MAD [4]

Calculate content average latency from his-
tory and then combine with LHD as a rank-
ing function.

LHD-
MAD [4]

Calculate content average latency from his-
tory and then combine with LRU as a rank-
ing function.

Table 1: Overview of state-of-the-art caching algorithms.

an index to the cache. A typical ATS configuration consists
of a disk/SSD cache and a memory cache. To achieve high
performance, ATS is accessed using asynchronous I/Os. The
overview of our LA-Cache prototype is presented in Figure 4.

Upon a new request, ATS implements the following steps.
Based on the URL, it looks up the local caches to check
whether the corresponding content is available. If the re-
quested content is already in the caches (i.e., a true hit), then
the request is immediately satisfied by replaying a response
back to the user. Otherwise, the request is sent to the kernel,
which mains the request history received from users, i.e., a
separate queue for each cache miss (see Section 1). If the
current request belongs to one queue, then it will be added
to the queue (i.e., a delayed hit). Otherwise, the kernel sets
up a new queue for the content (i.e., a miss), and the request
is forwarded to the original remote server. To deal with real
traces, the requests are sent to a proxy sever in the recorded
order (via the trace replayer). All users and the master sever
communicate with each other by the TCP protocol.

We implement LA-Cache on top of ATS. To do so, we
replace the lookup data structures for ATS cache with the
LA-Cache described in Section 4. The content admission7

and look-up processes can be implemented asynchronously.
These two processes are used to update parameters so as to
make eviction decision8. In particular, the eviction process
is run by scheduling cache admissions in a lock-free queue.
It implements eviction rule to select one eviction candidate
when the cache is full. But as for the flash abstraction layer
which is very important in production system (i.e., we have

7Content admission decides whether to cache the content upon a cache
miss.

8Eviction process determines which content to evict when the cache is
full.

Dataset CDN-A CDN-B Bilibili Wiki
Duration
(Hours)

24 9.9 18.7 0.1

Unique
contents

330,446 162,104 4,852 407,919

Total re-
quests
(Millions)

0.97 1 1 1

Mean con-
tent size
(MB)

25.5 68.4 563.5 69.8

Max con-
tent size
(MB)

7,790 38,392 565.8 3,840

Table 2: Key characteristics of the production traces used
throughout our evaluation spanning different CDNs.
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Figure 5: The production traces used in our evaluation comes
from different CDNs and thus exhibit different request pat-
terns.

no access, e.g., RIPQ [56]), we only emulate the workings
due to some difficulties, reading offsets randomly and writing
sequentially to the disk. Since the memory cache is usually
small which has little impact on hit probability [11], we keep
this part of ATS unchanged. In summary, we implement the
framework by only modifying about 100 lines of codes in
ATS. The LA-Cache framework library contains about 600
lines of codes.

5.2 LA-Cache Simulator

We implement an LA-Cache simulator that includes a wide
range of conventional caching algorithms. For ease of expo-
sition, we only report the results for the “best-performing”
algorithms as summarized in Table 1. Finally, our implemen-
tation benefits from existing caching simulators such as lib-
CacheSim [39] and LRB simulators [53].
Availability. The code for the prototype design, the cache
simulator as well as all evaluations in Section 6 are available
at https://github.com/GYan58/la-cache.
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Figure 7: Comparison between theoretical and empirical results of mean latency for production traces. The mean latency graph
for the Theory, the E-real and the E-synthetic is slightly offset for ease of visualization.

6 Evaluation

In this section, we evaluate our LA-Cache prototype. We also
conduct simulations to compare LA-Cache to a wide range
of state-of-the-art algorithms using production traces. Our
results address the following questions:
• How accurate is our timer-based model for delayed hits

given that real-world systems do not have strict Poisson ar-
rivals (Section 6.2)?
• What is the benefit of using our LA-Cache prototype

compared to existing CDN production systems in terms of
latency and implementation overhead (Section 6.3)?
•What is the performance of LA-Cache compared to state-

of-the-art algorithms on a wide range of production CDN
traces under various cache settings (e.g., different fetching
latency and cache sizes) (Section 6.4)?

6.1 Methodology
Traces. We consider production traces from four CDNs, two
of which chose to remain anonymous. (1) CDN-A collected
from several nodes in one continent serves a mixture of web
and video traffic; (2) CDN-B captures mobile video behaviors
collected from one live streaming system; (3) Bilibili [12,
29], collected from a Video-on-Demand (VoD) provider with
millions of HTTP requests; and (4) a Wikipedia (Wiki) trace
[53] collected on a west-coast node serving photos and other

media content. We summarize the trace characteristics in
Table 2 and present two key distributions of these traces in
Figure 5. The traces typically span several tens to hundreds of
thousands of requests, and tens of thousands of contents with
sizes varying from 10KB to 104MB. The total bytes requested
are on the order of TBs; however, the active bytes9 are on
average on the order of GBs. As a result, we choose the cache
size in the range of 128GB to 1,024GB for different traces in
our evaluation. For ease of readability, we only present results
using a 256GB cache and a 512GB cache for each trace in the
rest of this section. Similar observations hold for other cache
sizes and hence are omitted. Finally, the average inter-request
time is 6.5 ms for CDN-A, 9.1 ms for CDN-B, 1.1 ms for
Bilibili and 5.4 ms for Wikipedia.
Baselines. We compare LA-Cache with a wide range of state-
of-the-art algorithms. For ease of exposition, we only show
the few “best-performing” algorithms (see Table 1) in the
following figures.
Performance evaluation. We evaluate the performance of
these algorithms using four production workloads described
above with different fetching latencies and cache sizes. All
results are generated by running on Ubuntu 18.04 with an
Intel(R) Core(TM) i7-6700HQ processor and a 8GB RAM.

9A content is said to be active at time t in a trace if t lies between its first
and last requests. The total size of active contents at time t is defined as active
bytes [35].

USENIX Association 2022 USENIX Annual Technical Conference    795



CDN-A CDN-B Bilibili Wikipedia0

50

100

150

200

250

La
te

nc
y 

(m
s)

(a) Average Latency

CDN-A CDN-B Bilibili Wikipedia0

100

200

300

400

(b) P90 Latency

CDN-A CDN-B Bilibili Wikipedia0

100

200

300

400

500

(c) P99 Latency

LA-Cache Unmodified ATS

Figure 8: The latencies of LA-Cache and unmodified ATS using a 256GB cache.

CDN-A CDN-B Bilibili Wikipedia
Metric Experiment LA-Cache ATS LA-Cache ATS LA-Cache ATS LA-Cache ATS

Throughput (Gbps) max 8.64 8.28 11.16 10.73 11.93 11.88 9.98 9.36
Overall CPU (%) average 27.4 2.8 28.2 3.7 27.1 2.8 28.5 4.0
Peak Mem (GB) max 2.6 2.3 2.7 2.5 2.3 2.2 2.3 2.2
P90 Latency (ms) normal 234.2 235.6 378.8 381.6 390.7 403.7 239.0 247.3
P99 Latency (ms) normal 247.6 248.2 474.1 474.6 435.5 436.5 323.7 324.0

Overall Latency (ms) average 137.2 150.6 215.0 236.7 223.5 239.4 156.4 188.9

Table 3: Resource usage for LA-Cache and ATS in max (throughput-bound) and normal (production-speed) experiments.

6.2 Accuracy of Timer-based Model

We first show that our proposed timer-based model for delayed
hits (see Sections 3 and 4) is accurate.
Non-Poisson arrivals in production traces. We first show
that production traces do not have strict Poisson arrivals for
any content. To that end, we generate a synthetic trace based
on the real trace, where each content follows Poisson arrivals
with the same average arrival rate as in the corresponding
trace. We analyze the distribution of the inter-arrival times
for the corresponding contents from the real and synthetic
traces. It is clearly shown in Figure 6 that they are visibly
different. Similarly trends hold for other contents in all pro-
duction traces considered in this paper, i.e., production traces
do not have strict Poisson arrivals for any content.
Comparison between theoretical and empirical results.
We now show that despite the fact that production traces may
not be strictly Poisson, our proposed timer-based model with
Poisson assumption works well in practice. To this end, we
compare the theoretically computed average latency (calcu-
lated using Equation (3)) to the empirically computed latency.
In particular, we compare three results: (i) Theory: theoretical
latency for the trace; (ii) E-real: empirical latency for the
trace; and (iii) E-synthetic: empirical latency for the synthetic
Poisson trace with same content arrival rates as the trace as
described earlier. Figure 7 compares the curves for all three
cases in four production traces. We observe that the theoreti-
cal latency matches very well with the empirical latency for

the synthetic trace while the empirical latency for the real
trace only differs slightly with the other two.

6.3 Latency Reduction of LA-Cache Proto-
type

We first compare our LA-Cache prototype to the ATS produc-
tion systems in mean latency and implementation overhead as
shown in Figure 8 and Table 3. The average RTT is 200 ms.
Latencies. Figure 8 compares the mean latency, the 90-th
percentile latency (P90 latency) and the 99-th percentile la-
tency (P99 latency) of LA-Cache and unmodified ATS using
four production traces with a 256GB cache. LA-Cache con-
sistently reduces the latency compared to ATS by 5%-20%
on average10.
Implementation overhead. We then compare the implemen-
tation overhead of our LA-Cache prototype against unmod-
ified ATS. We measure the throughput, CPU and memory
utility under the “max” experiments, as shown in Table 3. We
see that LA-Cache has no measurable throughput overhead
but the peak CPU utilization increases to 27.4% from 2.8%
for ATS under CDN-A, 28.2% from 3.7% for ATS under

10P90 (resp. P99) latency is the value of top 10% (resp. 1%) latency.
Though P90 (resp. P99) latencies of LA-Cache are not significantly better
than ATS, it only means that the largest latency values are similar. More
importantly, it is obvious that the mean latency, a key metric for real system,
of LA-Cache significantly outperforms ATS, i.e., LA-Cache improves mean
latency greatly for most content requests.
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Figure 9: Comparison of mean latency improvement between LA-Cache and state-of-the-art algorithms relative to LRU using a
256GB cacahe.
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Figure 10: Comparison of mean latency improvement between LA-Cache and state-of-the-art algorithms relative to LRU using a
512GB cache.

CDN-B, 27.1% from 2.8% for ATS under Bilibili and 28.5%
from 4.0% under Wikipedia. However, we note that most pro-
duction servers, even at their busiest mode, have sufficient
CPU headroom.

We replay our traces using its original timestamps and mea-
sure the latencies corresponding to cache misses, delayed hits
and true hits. We call this “normal” experiments as shown in
Table 3. It is clear that LA-Cache leads to significant latency
reduction compared to ATS. More specifically, LA-Cache re-
duces the 90-th percentile latency (P90 latency) by 4%, the
99-th percentile latency (P99 latency) by 3%, and the overall
average latency by 10% compared to ATS.

Finally, we measure the peak memory overhead for all
traces and cache sizes, we observe that LA-Cache uses at
most 1.1% of the cache size to store metadata. As we will
show later, such a small loss in available caching space is
more than offset by LA-Cache’s significant latency reduction.

From our above experiments in ATS, we believe that
LA-Cache is a practical design for today’s CDNs and can
be easily implemented in existing production CDN servers
with modest resource overhead.

6.4 LA-Cache vs. State-of-the-art Algorithms

We further compare LA-Cache to a large number of state-of-
the-art caching algorithms using four production traces with

a wide range of fetching latencies and cache sizes.

Latency. Figures 9 and 10 compare the mean latency improve-
ment of LA-Cache and state-of-the-art caching algorithms
with respect to LRU with different fetching latencies using a
256GB and a 512GB cache, respectively. We choose LRU as
the baseline since major CDNs today still employ LRU or its
variants for content caching. The comparisons with respect to
the offline Bélády are relegated to the supplementary material
for ease of readability.

Our LA-Cache consistently outperforms the best state-of-
the-art algorithms, i.e., “the best-performing” algorithms in
Table 1. Overall, LA-Cache reduces the latency by 5%-15%
on average. Note that LA-Cache is robust across all traces
in latency reduction whereas no existing state-of-the-art al-
gorithms could robustly reduce the latency across all traces.
In particular, LA-Cache outperforms LHD-MAD and LRU-
MAD, two recently proposed latency-aware caching algo-
rithms [4]. Our interpretation is that our LA-Cache naturally
offers a variable fetching latency for different contents as
well as fully captures the varying content sizes whereas LHD-
MAD or LRU-MAD are designed under the assumption that
contents are of equal size, which is not the case in production
systems (see Figure 5).

Impact of cache size. We further characterize the impact of
cache size on the latency reduction of LA-Cache compared
to state-of-the-art algorithms. Based on the results above,
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Figure 11: Comparison of the mean latency improvement between LA-Cache and state-of-the-art algorithms relative to LRU as a
function of cache sizes.
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Figure 12: Improvement from the burstiness of content requests relative to LRU using a 256GB cache.

we only focus on the comparison with two latency-aware
algorithms LRU-MAD and LHD-MAD. We compute the
latency reduction compared to LRU for all traces while using
a fixed value of L=1 ms. From Figure 11, we observe that
LA-Cache’s improvement is between 4% and 30% compared
to the widely deployed LRU. Finally, we see that LA-Cache
outperforms LRU-MAD and LHD-MAD between 3% and
13% across different cache sizes.
Impact of burstiness. As motivated earlier in Section 2 as
well as the design of our LA-Cache in Section 4, it is clear that
a burst of requests to a content could contribute to the average
latency more than a sparse of requests to a content. Now we
turn to the question of whether our intuition of burstiness
indeed maps on the latency reduction of LA-Cache compared
to state-of-the-art algorithms?

To answer this question, we first need a measure to quantify
the burstiness of a trace. A widely used metric is called the
Goh-Barabasi score11 [28]. However, it does not capture the
impact of inter-arrival times, which play a significant role
in delayed hits. To this end, we use a new burstiness mea-
sure [34] that not only captures the mean, variance of request
sequences but also the inter-arrival times. The large the bursti-
ness value, the busty the requests are. We refer interested
readers to [34] for a detailed discussion12.

11The value of Goh-Barabasi score is between -1 to 1, with -1 being a
regular request sequence, 0 being a random request sequence and 1 being a
bursty request sequence.

12The Goh-Barabasi score is a statistical measure of burstiness in a se-

Using this measure, we show that CDN-A has the largest
burstiness value13, which means that the inter-arrival times
for most contents are completely random. On the other hand,
CDN-B has the smallest burstiness value. These observations
are consistently with the trace characteristics (e.g., the inter-
arrival time distribution) in Figure 5, where about 25%-30%
contents account for more than 80% requests in CDN-A,
while the requests in CDN-B are more uniform.

We characterize the burstiness of each content and the cor-
responding latency improvement of this content due to the
latency-aware caching algorithms in Figures 12 and 13, where
we consider the setting as above with a fixed value of L=1
ms. We observe that bursty contents (with a large burstiness
value) incur a lower latency compared to LRU in general. Fur-
thermore, we indeed observe that LA-Cache prioritizes more
bursty requests compared to other state-of-the-art algorithms,
which contributes to the latency reduction of LA-Cache. As
a result, the overall mean latency is reduced. For example,

quence of events and is defined as B = r−1
r+1 , where r = σ/µ is the coefficient

of variation, σ and µ denote the standard deviation and the mean of inter-
arrival times, respectively. However, the behavior of this score may not be
robust with respect to finite-size request sequence. [34] redefined the busti-
ness score as

√
n+1r−

√
n−1

(
√

n+1−2)r+
√

n−1
where n is the sample size (i.e., number of

requests in the sequence). This new score has been shown to quantify the
burstiness in the empirical dataset without finite-size effects.

13We compute a weighted average burstiness score over all requests in
the trace using the new burstiness measure [34], where the weight for each
content is proportional to the total number of requests for this content.
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Figure 13: Improvement from the burstiness of content requests relative to LRU using a 512GB cache.

for Wiki in Figure 12 (d), it is obvious that LA-Cache pri-
oritizes more bursty requests compared to LRU-MAD and
LHD-MAD. This leads to a latency improvement of 22%
for LA-Cache, while the improvements for LRU-MAD and
LHD-MAD are 2% and 9%, respectively, as shown in Fig-
ure 9 (L = 103µs). This phenomenon can also be observed
when compared with the offline Bélády (see supplementary
material). These observations further validate our intuitions
on designing a ranking function to prioritize bursty contents
so as to minimize latency (see Section 4).

7 Related Work

Caching algorithm design has been extensively studied over
years. However, most of the previous works have focused
on improving caching hit probabilities. We classify them by
admission or eviction. The widely used admission algorithms
include AdaptSize [11], TinyLFU [19] and SecondHit [40],
and among others where static features such as content sizes
are used for admission [1, 20]. A large number of works pro-
posed eviction algorithms from classic Least Recently Used
(LRU) [18], RANDOM, FIFO, to more sophisticated ones that
are more difficult to implement in practice, e.g., LRU-K [47],
LFU-DA [3, 51], GDSF [15], ARC [44], CAR [6] and among
others, where recency, frequency or their combinations are
usually used for eviction decision [7, 13, 30].

Recently, machine learning has been used for caching al-
gorithm design. On the one hand, some focus on learning
content popularities for content eviction via deep neural net-
works (DNNs), e.g., DeepCache [45], FNN-Cache [22], Pop-
Cache [54] and PA-Cache [21] or by approximating or imitat-
ing offline optimal Bélády for content eviction, e.g., LFO [10],
LRB [53]. On the other hand, some algorithms learn to de-
cide whether or not to admit a content upon a request (i.e.,
content admission) via reinforcement learning (RL), e.g., RL-
Cache [35], CACA [29], RL-Bélády [58] and among oth-
ers [57, 60]. Again, most of these designs are focusing on
improving cache hits rather than minimizing caching latency.

Closest to to our work is [4,42]. In particular, [42] provides
a lower bound on the performance of caching policies when

delayed hits exist. [4] characterizes the impact of delayed hits
and proposes an online approximation algorithm MAD based
on a hard offline optimization problem. However, MAD fails
to account for variable fetching latency and different content
sizes, which are the cases in production CDNs and are both
captured by our LA-Cache.

8 Conclusion

In this paper, we designed latency-aware caching in the pres-
ence of delayed hits, and proposed a novel timer-based mech-
anism to capture the impact of delayed hits which provably
optimizes the mean caching latency. Furthermore, our model
captured variable fetching latency and different content sizes,
providing a theoretical basis for the understanding and de-
sign of latency-aware caching for content delivery in latency-
sensitive systems. Using our timer-based model, we proposed
a lightweight latency-aware caching algorithm LA-Cache. We
implemented a LA-Cache prototype within Apache Traffic
Sever. Using production traces, we showed that LA-Cache
consistently outperformed state-of-the-art algorithms on la-
tency reduction with modest resource overhead.
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A Supplementary Material

A.1 Analysis of Real Request Traces
In this subsection, we provide the detailed analysis of four
production traces used in this paper, as discussed in Section 6.

The content popularity distribution (Figure 5(a)) shows that
most traces follow approximately a Zipf distribution with the
Zipf parameter α between 0.56 and 1.24.

The content inter-arrival time distribution (Figure 5(b)) -
the distribution of the time between two consecutive request
arrivals - further distinguishes these traces. It is clear that the
requested contents in CDN-A have the largest variations since
CDN-A contents have the smallest inter-arrival times, i.e.,
most contents are only requested over a shorter time period.
In contrast, CDN-B, Bilibili and Wikipedia serve millions
of different customers and hence exhibit largely independent
requests with random inter-request times, which is consistent
with the content popularity distribution.

A.2 Comparison with Offline Optimum
Bélády

We also compare the performance in term of latency reduc-
tion to the offline optimum Bélády. From Figures 14 and 15,
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Figure 14: Comparison of the mean latency improvement
between LA-Cache and state-of-the-art algorithms relative to
Bélády using a 256GB cache.
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Figure 15: Comparison of the mean latency improvement
between LA-Cache and state-of-the-art algorithms relative to
Bélády using a 512GB cache.

we observe again that LA-Cache outperforms other state-of-
the-art algorithms, and importantly LA-Cache can outper-
form Bélády as the fetching latency increases. For example,
LA-Cache outperforms Bélády when L is greater than 0.8 ms
in CDN-B, and when L is greater than 60 ms in Bilibili.

Finally, we characterize the impact of cache size when
compared with the offline optimum Bélády. From Figure 16,
we observe that LA-Cache consistently outperforms LRU-
MAD and LHD-MAD across a wide range of cache sizes.
More interestingly, LA-Cache outperforms Bélády.

Impact of burstiness. Complementary to the results pre-
sented in Figure 12, the burstiness of each content and the
corresponding latency improvement of this content due to the
latency-aware caching algorithms with respect to the offline
Bélády with 256GB and 512GB cache are presented in Fig-
ure 17 and Figure 18, respectively. Again, we observe that
LA-Cache prioritizes more bursty requests compared to other
state-of-the-art algorithms, which contributes to the latency
reduction of LA-Cache.
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Figure 16: Comparison of the mean latency improvement
between LA-Cache and state-of-the-art algorithms relative to
Bélády as a function of cache sizes.
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Figure 17: Improvement from the burstiness of content re-
quests relative to the offline Béládyusing a 256GB cache.
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Figure 18: Improvement from the burstiness of content re-
quests relative to the offline Bélády using a 512GB cache.

A.3 Hit Rate Comparison
Although we focus on designing latency-optimal caching in
the presence of delayed hits, in which the goal of maximizing
cache hits and the goal of minimizing latency are not equiva-
lent (see Section 2.2), we argue that the latency improvements
in turn also contribute to the cache hits performance. In most
of existing works, the user-perceived latency upon cache hits
is negligible, which is not true in the presence of “delayed
hits” due to network latency. As a result, a content request
results in three outcomes, i.e., miss, delayed hit, and true hit
(see Introduction and Fig. 1). We observe that LA-Cache im-
proves the true hit ratio up to 7% as shown in Figures 19
and 20, and “all hits” (true hit plus delayed hit) up to 9% as
shown in Figures 21 and 22.
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Figure 19: Comparison of true hits between LA-Cache and
state-of-the-art algorithms using a 256GB cache.
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Figure 20: Comparison of true hits between LA-Cache and
state-of-the-art algorithms using a 512GB cache.
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Figure 21: Comparison of all hits between LA-Cache and
state-of-the-art algorithms using a 256GB cache.
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Figure 22: Comparison of all hits between LA-Cache and
state-of-the-art algorithms using a 512GB cache.
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