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Abstract

Uncertainty quantification is essential for the reliable deployment of machine
learning models to high-stakes application domains. Uncertainty quantification is
all the more challenging when training distribution and test distribution are different,
even if the distribution shifts are mild. Despite the ubiquity of distribution shifts
in real-world applications, existing uncertainty quantification approaches mainly
study the in-distribution setting where the train and test distributions are the same.
In this paper, we develop a systematic calibration model to handle distribution shifts
by leveraging data from multiple domains. Our proposed method—multi-domain
temperature scaling—uses the heterogeneity in the domains to improve calibration
robustness under distribution shift. Through experiments on three benchmark data
sets, we find our proposed method outperforms existing methods as measured on
both in-distribution and out-of-distribution test sets.

1 Introduction

To make learning systems reliable and fault-tolerant, predictions must be accompanied by uncertainty
estimates. A significant challenge to accurately codifying uncertainty is the distribution shift that
typically arises over the course of a system’s deployment [Quifionero-Candela et al., 2008]. For
example, suppose health providers from 20 different hospitals employ a model to make diagnostic
predictions from fMRI data. The distributions across hospitals could be quite different as a result of
differing patient populations, machine conditions, and so on. In such a setting, it is critical to provide
uncertainty quantification that is valid for every hospital—not just on average across all hospitals.
Going even further, our uncertainty quantification should be informative when a new 21st hospital
goes online, even if the distribution shifts from those already encountered. As another example, a
centralized model is trained on training data from existing clients in federated learning. It is important
for the central server to provide uncertainty quantification for every client. Similar to the fMRI
example, the centralized model should still produce valid uncertainty quantification for unseen new
clients. Another example is applying animal recognition models on images in wildlife monitoring,
where one set of camera traps corresponds to one domain, and the model will be deployed under
distribution shift, i.e., new camera traps. In this work, we study calibration in the multi-domain
setting. We find that by requiring accurate calibration across all observed domains, our method
provides more accurate uncertainty quantification on unseen domains.

Calibration is a core topic in learning [Platt et al., 1999; Naeini et al., 2015; Gal and Ghahramani,
2016; Lakshminarayanan et al., 2017; Guo et al., 2017; Bates et al., 2021], but most techniques are
targeted at settings with no distribution shift. To see this, we consider a simple experiment on the
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Figure 1: Reliability diagrams and expected calibration error histograms for temperature scaling
with a ResNet-50 on ImageNet-C. We use temperature scaling to obtain adjusted confidences for the
ResNet-50 model. (a) Reliability diagram evaluated on the pooled data of ImageNet-C. (b) Reliability
diagram evaluated on data from one domain (Gaussian corruption with severity 5) in ImageNet-C. (c)
Calibration evaluated on every domain in ImageNet-C as well as the pooled ImageNet-C (measured
in ECE, lower is better).

ImageNet-C [Hendrycks and Dietterich, 2019] dataset, which consists of 76 domains. Here, each
domain corresponds to one type of data corruption applied with a certain severity. We apply the
temperature scaling technique [Guo et al., 2017] on the pooled data from all domains. In Figure 1(a)
and 1(b), we display the reliability diagrams for the pooled data and for one individual domain. We
find that even under a relatively mild distribution shift—i.e., subpopulation shift from the mixture
of all domains to the single domain—temperature scaling does not produce calibrated confidence
estimates on the stand-alone domain. This behavior is pervasive; in Figure 1(c), we see that the
calibration on individual domains is much worse than the the reliability diagram from the pooled data
would suggest.

To address this issue, we develop a new algorithm, multi-domain temperature scaling, that leverages
multi-domain structure in the data. Our algorithm takes a base model and learns a calibration function
that maps each input to a different temperature parameter that is used for adjusting confidence in the
base model. Empirically, we find our algorithm significantly outperforms temperature scaling on
three real-world multi-domain datasets. In particular, in contrast to temperature scaling, our proposed
algorithm is able to provide well-calibrated confidence on each domain. Moreover, our algorithm
largely improves robustness of calibration under distribution shifts. This is expected, because if the
calibration method performs well on every domain, it is likely to have learned some structure that
generalizes to unseen domains. Theoretically, we analyze the multi-domain calibration problem in
the regression setting, providing guidance about the conditions under which robust calibration is
possible.

Contributions. The main contributions of our work are as follows: Algorithmically, we develop a
new calibration method that generalizes the widely used temperature scaling concept from single-
domain to multi-domain. The proposed new method exploits multi-domain structure in the data
distribution, which enables model calibration on every domain. We conduct detailed experiments on
three real-world multi-domain datasets and demonstrate that our method significantly outperforms
existing calibration methods on both in-distribution domains and unseen out-of-distribution domains.
Theoretically, we study multi-domain calibration in the regression setting and develop a theoretical
understanding of robust calibration in this setting.

Related Work

Calibration methods. There is a large literature on calibrating the well-trained machine learning
models, including histogram binning [Zadrozny and Elkan, 2001], isotonic regression [Zadrozny
and Elkan, 2002], conformal prediction Vovk et al. [2005], Platt scaling [Platt et al., 1999], and
temperature scaling [Guo et al., 2017]. These calibration methods apply a validation set and post-
process the model outputs. As shown in Guo et al. [2017], temperature scaling, a simple method that
uses a single (temperature) parameter for rescaling the logits, performs surprisingly well on calibrating
confidences for deep neural networks. We focus on this approach in our work. More broadly, there has
been much recent work develop methods to improve calibration for deep learning models, including



augmentation-based training [Thulasidasan et al., 2019; Hendrycks et al., 2019b], calibration for
neural machine translation [Kumar and Sarawagi, 2019], neural stochastic differential equation [Kong
et al., 2020], self-supervised learning [Hendrycks et al., 2019a], ensembling [Lakshminarayanan
et al., 2017], and Bayesian neural networks [Gal and Ghahramani, 2016; Gal et al., 2017], as well as
statistical guarantees for calibration with black-box models Angelopoulos et al. [2021].

Calibration under distribution shifts. Ovadia et al. [2019] conduct an empirical study on model
calibration under distribution shifts and find that models are much less calibrated under distribution
shifts. Minderer et al. [2021] revisit calibration of recent state-of-the-art image classification models
under distribution shifts and study the relationship between calibration and accuracy. Wald et al.
[2021] study model calibration and out-of-distribution generalization. Other works consider providing
uncertainty estimates under structured distribution shifts, such as covariate shift [Tibshirani et al.,
2019; Park et al., 2021], label shift [Podkopaev and Ramdas, 2021], and f-divergence balls [Cauchois
et al., 2020]. Another line of work studies calibration in the domain adaptation setting [Wang et al.,
2020; Park et al., 2020], which require unlabeled samples from the target domain.

2 Problem setup

Notation. We denote the input space and the label setby X € R®and Y = {1,..., J}. We let [z];
denote the i-th element of vector z. We use P(X) to denote the marginal feature distribution on input
space X, P(Y|X) to denote the conditional distribution, and P(X,Y") to denote the joint distribution.
For the multiple domains scenario, we let P, (X ) and P, (Y |X) denote the feature distribution and
conditional distribution for the k-th domain. We let f : X — R” denote the base model, e.g., a deep
neural network, where J is the total number of classes. We assume f returns an (unnormalized) vector
of logits. Throughout the paper, the base model is trained with training data and will not be modified.
The class prediction of model f on input z € X' is denoted by § = argmax;c(y . sy [f(2;0)];. We
use 1{-} to represent the indicator function. We use h(+; f, ) : X — [0, 1] to denote a calibration
map (parameterized by () that takes an input z € X and returns a confidence score—this is a
post-processing of the base model f. We let @ = h(x; f, ) € [0, 1] denote the confidence estimate

for sample  when using model f. For instance, if we have 100 predictions {{1, ..., %100} With
confidence 1, = --- = 7199 = 0.7, then the accuracy of f is expected to be 70% on these 100
samples (if the confidence estimate is well calibrated). Data from the domains P, ..., Pk are used

for learning the calibration models, and we call the in-distribution (InD) domains. We use P to denote
the unseen out-of-distribution (OOD) domain which is not used for calibrating~the base model. Our
goal is to learn a calibration map A that is well calibrated on the OOD domain P. To do this, we will
learn a calibration map that does well on all InD domains simultaneously.

To measure calibration, we first review the definition of approximate expected calibration error.
Definition 2.1 (ECE). For a set of samples D = {(x;,y;)}_y with (z;,y;) S P(X,Y), the
(empirical) expected calibration error (ECE) with M bins evaluated on D is defined as

o |Bul
ECE(D, M) =) T’” |Acc(B,,,) — Conf(B,,)| (1)
m=1

and B,,, acc(By,), conf(B,,) are defined as
B, ={ie[n]:7 € (m—-1)/M,m/M]},
Acc(Bpn) = (1/|1Bml) Y W@ =i}, Conf(Bn) = (1/|Bul) D i,
i€By, i€Bm,
where 7t; and j; are the confidence and predicted label of sample x;.
The empirical ECE defined in Eq. (1) approximates the expected calibration error (ECE) E[|p—P(§ =
y|& = p)|] with bin size equal to M Naeini et al. [2015]; Guo et al. [2017]; see Lee et al. [2022]

for statistical results about about the empirical ECE as an estimator. The perfect calibrated map
corresponds to the case when P(4§ = y|& = p) = p holds for all p € [0, 1].

Multi-domain calibration. Although the standard ECE measurement in Eq. (1) provides informative
evaluations for various calibration methods in the single-domain scenario, it does not provide fine-
grained evaluations when the dataset consists of multiple domains, P, ..., Pg. It is possible that the



ECE evaluated on the pooled data D‘I’(OO] = D; U---UDg is small while the ECE evaluated on one
of the domains is large. For example, as shown in Figure 1(c), there may exist a domain, k € [K],
such that the ECE evaluated on domain % is much higher than the ECE evaluated on the pooled
dataset, i.e., ECE(Dy,) > ECE(D%OOI). In the fMRI application mentioned in Section 1, producing
well-calibrated confidence on data from every hospital is a more desirable property compared to only
being calibrated on the pooled data from all hospitals. Therefore, it is natural to consider the ECE
evaluated on every domain, which we refer to as “per-domain ECE.” Next, we introduce the notion of
Multi-domain ECE to formalize per-domain calibration.

Definition 2.2 (Multi-domain ECE). For a dataset Dp001 D1 U---UDg consisting of samples

from K domains, where Dy, = {(z; 1, yir)}ir, and (z; 1, Yi x) llvd Pr(X,Y), the (empirical)
multi-domain expected calibration error (Multi- domam ECE) with M bins evaluated on ZD%OOI is
defined as MDECE(D%°") = L S ECE(Dy).

Remark 2.3. In Definition 2.2, we weight each domain equally to balance across domains, which
could better reflect how the calibration method performs on each individual domain. Furthermore,
in our experiments, we also visualize the ECE measured on each domain to provide additional
information on model performance on every domain.

Compared with the standard ECE evaluated on the pooled dataset, multi-domain ECE provides
information about per-domain model calibration. In the multi-domain setting, we aim to learn a
calibration map h that can produce calibrated confidence estimates on every InD domain. Intuitively,
if the unseen OOD domain D is similar to one or multiple InD domains, h can still provide reliable
confidence estimates on the new domain. We formally study the connection between “well-calibrated
on each InD domain” and “robust calibration on the OOD domain” in Section 5.

Temperature scaling. Next, we review a simple and effective calibration method, named temperature
scaling (TS) [Platt et al., 1999; Guo et al., 2017], that is widely used in single-domain model
calibration. Temperature scaling applies a single parameter 7' > 0 and produces the confidence
prediction for the base model f as

Wi f.T) = max | [Softmax(f(x)/T)];

where [Softmax(z)]; = exp([z];)/ Z _, €xp([2];). The parameter T is the so-called temperature,
with larger temperature yielding more diffuse probability estimates. To learn the temperature
parameter T" from dataset D = {(x;,y;)} 1, Guo et al. [2017] propose to find 7" by solving the
following convex optimization problem

min Lrs(T S 1= ) - loa(Softmax(£ ()T, @

=1 j=1
which optimizes the temperature parameter such that the negative log likelihood is minimized. We use
TS-Alg to denote the temperature scaling learning algorithm; given inputs dataset D and base model
/> TS-Alg outputs the learned temeperature parameter by solving Eq. (2), e.g., T = TS-Alg(D, f).

3 Multi-domain temperature scaling

We propose our algorithm—multi-domain temperature scaling—that aims to improve the calibration
on each domain. One key observation is that if we apply temperature scaling to each domain
separately, then TS is able to produce calibrated confidence on every domain. Therefore, the question
becomes how to “aggregate” these temperature scaling models and learn one calibration model,
denoted by h, that has similar performance to the k-th calibration model hy, evaluated on domain k
for every k € [K].

At a high level, we propose to learn a calibration model that maps samples from the input space X to

the temperature space R,.. To start with, we learn the temperature parameter T}, for the base model
on every domain k by applying temperature scaling on Dy. Next, we apply the base deep model to
compute feature embeddings of samples from different domains,' and label feature embeddings from

"We use the penultimate layer outputs of model f as the feature embeddings by default.



the k-th domain with Tk. In particular, we construct K new datasets, @1, e D K, Where each dataset

contains feature embeddings and temperature labels from one domain, i.e., D), = {(¥(2ir), Tk)}?i1
Finally, we apply linear regression on these labeled datasets. In detail, our algorithm is as follows:

1. Learn temperature scaling model for each domain. For every domain k, we
learn temperature T by applying temperature scaling on validation data D), =
{(@ik, yi k) }1*, from k-th domain, i.e., Ty, = TS-Alg(Dy, f) and TS-Alg denotes
the TS algorlthm

2. Learn linear regression of temperatures. Extract the feature embeddings of
the base deep model f on each domain. Use ¥(z; ;) € RP to denote the feature

embedding of the ¢-th sample from k-th domain. Then we learn 0 by solving the
following optimization problem,

3. Predict temperature on unseen test samples. Given an unseen test sample z,
we first compute the predicted temperature 7" using the learned linear model 7' =
(¥ (), 0). Then we output the confidence estimate for sample Z as

T = it [Softmax(f(f)/f)]j.

We denote our proposed method by MD-TS (Mult-Domain Temperature Scaling). A presentation of
the algorithm in pseudocode can be found in Algorithm 1, Appendix A.

We pause to consider the basic concept in more detail. The goal of our proposed algorithm is to
predict the best temperature for samples from different several domains. In an ideal setting where
the learned linear model  results in good calibration on every InD domain, we can expect that 6
will continue to yield good calibration on the OOD domain P when P is close to one or several InD
domains. For example, P will work well if P is a mixture of the K domains, i.e., P = Zk 1 P
and o € AK~1, Regarding the algorithmic design, linear regression is one of the simplest models
for solving the regression problem. It is computationally fast to learn such linear models as well as

make predictions on new samples, making it attractive. We test alternative, more flexible, regression
algorithms in Section 4 but do not observe significant gains over linear regression.

To illustrate how our proposed algorithm MD-TS per-

forms differently from standard TS, we return to the g - y=x OOO///
ImageNet-C dataset. We compare the predicted tem- el //
perature of our algorithm on new samples from domain o

k with the temperature that results from running TS i

on domain k alone. The results are summarized in Se%
Figure 2, where each circle corresponds to the mean @/O
predicted temperature on one InD domain. For each &
domain, we also visualize the standard deviation of the

predicted temperatures for samples from that domain 1 /ﬁ

(the horizontal bar around each point). We find that our o > T s s
algorithm predicts the temperature quite well. Note that Predicted temperature T on domain k

it does not have access to the domain index information
of the fresh samples. By contrast, TS always uses the
same temperature, regardless of the input point.

Temperature ﬁ( on domain k

Figure 2: Compare the predicted temperature to
the learned temperature 7} on the k-th domain.

4 Experiments
In this section, we present experimental results evaluating our proposed method, demonstrating

its effectiveness on both in-distribution and out-of-distribution calibration. We focus on three real-
world datasets, including ImageNet-C [Hendrycks and Dietterich, 2019]—a widely used robustness



Table 1: Per-domain ECE (%) comparison on three datasets. We evaluate the per-domain ECE on
InD and OOD domains. We report the mean and standard error of per-domain ECE on one dataset.
Lower ECE means better performance.

Datasets Architectures InD-domains 0OOD-domains
MSP TS MD-TS MSP TS MD-TS
ResNet-50 7.361+0.28 5.80+0.10  3.844+0.05 6.874+0.16  5.70+0.06  4.551+0.04
Efficientnet-bl ~ 6.784+0.07 6.12+0.15  3.994+0.07 6.54+0.06  4.87+0.05 4.05+0.03
BiT-M-R50 6.931+0.27 6.99+0.25 3.864+0.06 6.324+0.16  6.50+0.16 4.301+0.04
ViT-Base 47740.16  4.34+0.12 3.76+0.07 4.09+0.06 4.01+0.05 3.86+0.04

ImageNet-C

ResNet-50 26224038  9.83£0.57 2.85+0.17 26.22+0.38 13.78+£0.43 5.25+0.11
WILDS-RxRx1 ResNext-50  25.30+£0.76  9.39+0.58  3.13£0.19 20.71+0.30 11.80+0.37 5.07+0.09
DenseNet-121  32.37+0.91  8.91+0.60 2.94+0.18 24.49+0.35 13.084+0.41 5.38+0.13

ResNet-50 12.56+0.08 11.61+0.09 9.90+£0.06 11.36+£0.15 10.754+0.14 9.7610.12
GLDv2 BiT-M-R50 14.86+0.12 11.31+0.07 9.78+£0.06 13.91£0.21 9.83+0.11  9.16+0.10
ViT-Small 12.44+0.11  11.124+0.07 9.754+0.05 11.00+£0.18  9.65+0.11  9.01+0.10

benchmark image classification dataset, WILDS-RxRx1 [Koh et al., 2021]—an image of cells (by
fluorescent microscopy) dataset in the domain generalization benchmark, and GLDv2 [Weyand et al.,
2020]—a landmark recognition dataset in federated learning. Additional experimental results and
implementation details can be found in Appendix C. Our code is available at https://github.
com/yaodongyu/MDTS.

Datasets. We evaluate different calibration methods on three datasets, ImageNet-C, WILDS-RxRx1,
and GLDv2. ImageNet-C contains 15 types of common corruptions where each corruption includes
five severity levels. Each corruption with one severity is one domain, and there are 76 domains in
total (including the standard ImageNet validation dataset). We partition the 76 domains into disjoint
in-distribution domains and out-of-distribution by severity level or corruption type. WILDS-RxRx1 is
a domain generalization dataset, and we treat each experimental domain as one domain. We adopt the
default val/test split in Koh et al. [2021]: use the four validation domains as in-distribution domains
and the 14 test domains as the out-of-distribution domains. We also provide experimental results of
other random splits in Appendix C. For GLDvV2, each client corresponds to one domain, and there
are 823 domains in total. We randomly select 500 domains for training the model, and then use
the remaining 323 domains for evaluation denoted by validation domains. We further screen the
validation domains by removing the domains with less than 300 data points. There are 44 domains
after screening, and we use 30 domains as in-distribution domains and the remaining 14 domains as
out-of-distribution domains. For all datasets, we randomly sample half of the data from in-distribution
domains for calibrating models and use the remaining samples for InD ECE evaluation. We use all
the samples from OOD domains for ECE evaluation.

Models and training setup. We consider multiple network architectures for evaluation, including
ResNet-50 [He et al., 2016], ResNext-50 [Xie et al., 2017], DenseNet-121 [Huang et al., 2017], BiT-
M-50 [Kolesnikov et al., 2020], Efficientnet-b1 [Tan and Le, 2019], ViT-Small, and ViT-Base [Doso-
vitskiy et al., 2020]. To evaluate on ImageNet-C, we directly evaluate models that are pre-trained on
ImageNet [Deng et al., 2009]. For WILDS-RxRx1 and GLDv2, we use the ImageNet pre-trained
models as initialization and apply SGD optimizer to training the models on training datasets.

Evaluation metrics. We use the Expected Calibration Error (ECE) as the main evaluation metric.
We set the bin size as 100 for ImageNet-C, and set bin size as 20 for WILDS-RxRx1 and GLDv?2.
We evaluate ECE on both InD domains and OOD domains. Specifically, we evaluate the ECE of
each InD/OOD domain. Meanwhile, we also evaluate the ECE of the pooled InD/OOD domains, i.e.,
the ECE evaluated on all samples from InD/OOD domains. We use unseen samples from the InD
domain to measure the per-domain ECE. We also measure the averaged per-domain ECE results (i.e.,
per-domain ECE averaged across domains).

4.1 Main results

We summarize the ECE results of different methods on three datasets in Table 1 and Figure 3. We use
TS to denote temperature scaling [Guo et al., 2017], and use MSP to denote applying the maximum
softmax probability [Hendrycks and Gimpel, 2016] of the model output (i.e., without calibration).
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Figure 3: Per-domain ECE of MD-TS and TS on both in-distribution domains and out-of-distribution
domains. Each plot is shown with ECE of TS (X-axis) and ECE of MD-TS (Y -axis). Top: per-
domain ECE evaluated on InD domains. Bottom: per-domain ECE evaluated on OOD domains.
Lower ECE is better.

In Table 1, we use the ImageNet validation dataset and ImageNet-C datasets with severity level
s € {1,5} as the InD domains and use the remaining datasets as OOD domains. We present the
averaged per-domain ECE results in Table 1, and visualize the ECE of each domain in Figure 3. As
shown in Table 1 and Figure 3(a)-3(c), we find that our proposed approach achieves much better InD
per-domain calibration compared with baselines. Also, TS does not significantly improve over MSP
on ImageNet-C InD domains in Table 1, but our proposed method largely improve the ECE compared
with MSP and TS. For instance, the ECE results of MSP and TS on Efficientnet-b1 are 6.93 and 6.99,
and our method achieves 3.84. Intuitively, when there are a diverse set of domains in the calibration
dataset, a single temperature cannot provide well-calibrated confidences. In contrast, our proposed
method is able to produce much better InD confidence estimates by leveraging the multi-domain
structure of the data.

Next we study the performance of different methods on out-of-distribution domains. From Table 1,
we find that MD-TS achieves the best performance on OOD domains arcoss all the settings. On
ImageNet-C with BiT-M-R50, MD-TS improves the ECE from 6.54 (MSP) to 4.05, while the
performance of TS is similar to MSP. Moreover, MD-TS significantly outperforms MSP and TS on
WILDS-RxRx1, where MD-TS improves over TS by around 5.00 measured in ECE. Figure 3(d)-3(f)
display the per-domain ECE performance on out-of-distribution domains. MD-TS improves over TS
on more than half of the domains in all three datasets. For the remaining domains, MD-TS performs
slightly worse than TS. Furthermore, on those domains that TS performs poorly (ECE > 8), MD-TS
largely improves over TS by large margins. Further comparisons in Appendix C.6 show that these
improvements continue to hold when relative to two other calibration techniques: MC dropout [Gal
and Ghahramani, 2016] and deep ensembles [Lakshminarayanan et al., 2017].

4.2 Predicting generalization

Suppose a model can produce calibrated confidences on unseen samples, in which case we could
leverage the calibrated confidence to predict the model performance. Specifically, based on the
definition of ECE in Eq. (1), when the model is well-calibrated, the average of the calibrated
confidence is close to the average accuracy, i.e., Conf(D) ~ Acc(D).2 Meanwhile, predicting model

2Conf(D) denotes the average (calibrated) confidence on dataset D, and Acc(D) denotes the average
accuracy on dataset D.



Table 2: Model performance prediction comparison results of different methods on three datasets.
Lower MAE indicates better performance.

Datasets Architectures  InD-domains MAE OOD-domains MAE
MSP TS MD-TS MSP TS MD-TS
ResNet-50 588 474 1.28 515  3.96 1.70
ImageNet-C .
BiT-M-R50 6.08 6.16 1.33 497 5.23 1.66
WILDS-RxRx] ResNet-50 33.65 9.61 1.61 2620 13.66 4.76
TEEL ResNext-50 2532 855 139 2072 12.88 478
ResNet-50 9.60 9.17 7.11 972  9.40 8.08
GLDv2 .
BiT-M-R50 12.67 17.18 4.64 1230  7.34 6.37
Accuracy prediction performance on OOD domain§ Accuracy prediction performance on OOD domain:f Accuracy prediction performance on OOD domam§
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Figure 4: Predicting accuracy performance of MD-TS and TS on both out-of-distribution domains.
Each plot is shown with predicted accuracy (X -axis) and accuracy (Y -axis). Each points corresponds
to one domain. The network architecture is ResNet-50 for three datasets. Point closer to the Y = X
dashed line means better prediction performance.

performance accurately is an essential ingredient in developing reliable machine learning systems,
especially under distributional shifts [Guillory et al., 2021]. As shown in Table 1, we find that our
proposed method produces well-calibrated confidence values on both InD and OOD domains. We now
measure its performance on predicting model performance and compare with existing methods. We

measure the performance using mean absolute error (MAE), MAE = (1/K) - Zszl |Conf(Dy,) —
Acc(Dy,)| where Sy, is the dataset from the k-th domain.

We show the predicting model accuracy results in Table 2. MD-TS significantly improves over existing
methods on predicting model performance across all three datasets. For example, on ImageNet-C,
calibrated confidence of MD-TS produces fairly accurate predictions on both InD and OOD domains
(Iess than 2% measured in MAE), which largely outperforms MSP and TS. In Figure 4, we compared
the prediction performance of TS and MD-TS on every OOD domain. We find that MD-TS achieves
better prediction performance compared to TS on most of the domains. Refer to Appendix C.1 for
more results in which other architectures are tested.

4.3 MD-TS ablations

To learn a calibration model that performs well per-domain, we apply linear regression on feature
representations ® () such that (®(x),0) ~ T}, where . is from domain k and T}, is the tem-
perature parameter for domain k. We investigate other methods for learning the map from feature
representations to temperatures in a regression framework. Specifically, beside the ordinary least
squares (OLS) used in Algorithm 1, we consider ridge regression (Ridge), robust regression with
Huber loss (Huber), kernel ridge regression (KRR), and K -nearest neighbors regression (KNN). The
implementations are mainly based on scikit-learn [Pedregosa et al., 2011]. We use grid search
(on InD domains) to select hyperparameters for Ridge, Huber, KRR, and KNN.

We summarize the comparative results for different regression algorithms in Table 3. Compared to
OLS, other regression algorithms do not achieve significant improvement. Specifically, KRR achieves
slightly better performance on OOD domains, while other algorithms have similar performance
compared to OLS. Moreover, there are no hyperparameter in OLS, which makes it more practical in



Table 3: Per-domain ECE (%) results of MD-TS ablations on WILDS-RxRx1. We evaluate the
per-domain ECE on InD and OOD domains, and report the mean and standard error of per-domain
ECE. Lower ECE means better performance.

Architectures InD-domains OOD-domains
OLS Ridge Huber KRR KNN OLS Ridge Huber KRR KNN
ResNet-50 2.85 288 2.90 285 3.00 525 526 5.29 499 544

ResNext-50  3.13  3.14 3.11 3.07 3.03 507 5.06 502 494 536
DenseNet-121 294  3.03 292 290 3.04 538 542 536 520 547

real-world problems. Meanwhile, the results suggest that our proposed MD-TS is stable to the choice
of specific regression algorithms.

5 Theoretical analysis

In this section, we provide theoretical analysis to support our understanding of our proposed algorithm
in the presence of distribution shifts. We use hj(-) = h(:; f, 55) : X — [0, 1] to denote the best
calibration map for the base model f on the k-th domain; this map minimizes the expected calibration
error (ECE) E[|p — P(§ = y|# = p)|] over distribution P;. We also call h} a hypothesis in the

hypothesis class H. Next, given the fixed base model f, we aim to learn il() = h( f, B) such
that e(h, Py x) = Ex~ep, x [|h5(X) — h(X)|] is small for every domain k, where e, () denotes the
risk of i w.r.t. the the best calibration map h;; under domain Py. In addition, we are interested in
generalizing to new domains: suppose there is an unseen OOD domain P and its marginal feature
distribution is different from existing domains, i.e., Py # Py x for k € [K].

Our goal is to understand the conditions under which h can have similar calibration on OOD domains
as the InD domains. For example, if the OOD domain is similar to the mixture distribution of InD
domains, we would expect h performs similarly on InD and OOD domains. Previous work [Krueger
et al., 2021] consider a similar multiple training domains setting in the context of out-of-distribution
generalization, where they show that minimizing the differences in training risks (w.r.t. different
domains) can lead to good OOD performance. To quantify the distance between two distributions,
we first introduce the J{-divergence [Ben-David et al., 2010] to measure the distance between two
distributions:

Definition 5.1 (H-divergence). Given an input space X and two probability distributions P x and
P’y on X, let H be a hypothesis class on X, and denote by A the collection of subsets of X which
are the support of hypothesis h € K, i.e., Agc = {h=1(1) | h € H}. The distance between Px and
P’y is defined as
dg-c(?x, fP/X) = Ssup |PI‘§pX (A) — PI‘g)IX (A)| .
AceAqg

The H-divergence reduces to the standard total variation (TV) distance when J{ contains all mea-
surable functions on X, which implies that the J{-divergence is upper bounded by the TV-distance,
ie., dyc(Px,P%) < dtv(Px,P). On the other hand, when the hypothesis class H has a finite VC
dimension or pseudo-dimension, the H-divergence can be estimated using finite samples from P x
and Py [Ben-David et al., 2010]. Next, we define the mixture distribution of the K in-distribution
domains P y on input space X as follows:

K K
Kx = g o Pi, x, where E ar =1 and oy, > 0.
k=1 k=1

Given multiple domains {P1, ..., Pk}, we can optimize the combination parameters « such that
P% x minimizes the J{-divergence between P y and Px. More specifically, we define & as

N . 1 o D a D a D * o * D
& = argmin{ S dse (Pix, Px) + APkx Px) o APiex, Px) = o0, D)+, Px), - (3)

aEA



where h* := argming, ¢4 {e(h, P ) +e(h, Px)} and H is defined as H := {sign(|h(z)—h'(x)| -
t)|h,h' € H,0 <t < 1}. We now give an upper bound on the risk on the unseen OOD domain.
This result follows very closely those of Blitzer et al. [2007]; Zhao et al. [2018], instantiated in our
calibration setup. Details can be found in Appendix D.

Theorem 5.2. Let H be a hypothesis class that contains functions h : X — [0, 1] with pseudo-
dimension Pdim(H) = d. Let {Dy x}_, denote the empirical distributions generated from
{Ps, X}le, where Dy, x contains n i.i.d. samples from the marginal feature distribution Py, x of
domain k. Then for § € (0, 1), with probability at least 1 — §, we have

h, P 3 ; 1 5 =\, ~ (Pdim(H)
h,Px) <Y ap-éh,Dipx)+ =di(P% v, Px) + AMPE . Px)+0 [ ——=2 ),
e(h,Px) ;ak €(h, Dy, x) 2 7t (Px x5 Px) + A(P% x Px) ( oY ) 4)

where & and )\(ﬂ’% X P x ) are defined in Eq. (3), UNJX denotes the marginal distribution of the
00D domain, Pdim(H) is the pseudo-dimension of the hypothesis class H, and &(h, Dy, x ) is the
empirical risk of the hypothesis honD X+

Remark 5.3. As shown in Theorem 5.2, even if the OOD domain is very different from the in-
distribution domains, the Eq. (4) still implies that we could decrease the risk upper bound on the
OOD domain if we perform multi-domain calibration. More specifically, if we could achieve good
calibration performance on each individual domain by using multi-domain calibration (which that
the first term in the RHS of Eq. (4) is small), then the term $d5¢(P% x,Px) + A(P% x, Px) is

always smaller or equal to 5dz (P, fF]v’X) + AP, fT’X), where P’ is the pooled distribution or any
individual domain distribution.

Remark 5.4. As suggested by Eq. (4) of Theorem 5.2, larger risks on in-distribution domains will
lead to a larger upper bound for the risk evaluated on the OOD domain. On the other hand, as shown
in Figure 1, a universal temperature is not sufficient to achieve good calibration performance on each
individual in-distribution domain. Therefore, even in the mixture of in-distribution domain setting, a
universal temperature is suboptimal and applying multi-domain temperature scaling could be better
than using a universal temperature.

This result means that if we can learn a hypothesis h that achieves small empirical risk é(fz, Dy, x)
on every domain, then h is able to achieve good performance on the OOD domain if distribution of
the OOD domain is similar to the mixture distribution of InD domains measured by J{-divergence.
In this case, if the learned calibration map h is well-calibrated on every domain Py, then his likely
to provide calibrated confidence for the OOD domain P. Recall from Section 4, we proposed an
algorithm that performs well across InD domains. The upper bound in Eq. (4) provides insight into
understanding why this algorithm is effective.

6 Discussion

We have developed an algorithm for robust calibration that exploits multi-domain structure in datasets.
Experiments on real-world domains indicate that multi-domain calibration is an effective way to
improve the robustness of calibration under distribution shifts. Our proposed algorithm still needs
validation domains to achieve strong calibration performance on OOD domains, one interesting
direction for future work would be to extend our algorithm to a scenario where no domain information
is available. We hope the multi-domain calibration perspective in this paper can motivate further
work to close the gap between in-distribution and out-of-distribution calibration.
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Appendix

A Additional Details

Pseudocode for MD-TS. We first provide additional details on our proposed algorithm, MD-
TS (Mult-Domain Temperature Scaling), in Algorithm 1.

Algorithm 1 MD-TS

Input: Data from k-th domain Dy, = {(z; k, ¥i k) 1"y, k € [K], base model f, feature embedding
map of base model ¥, and the test sample .
fork=1,...,K do
Ty, = TS-Alg(Dy, f)
end for

R N2
Learn the linear model, § = argmin Y5, 77", ((\Il(xzk), ) — Tk> :
0

Rl e

5: Predict temperature T the test sample  using the learned linear model, T' = (¥(z; ), 0)
6: Compute the confidence estimate for sample  as ™ = max; [Softmax( f(z)T )] .
j

Output: Confidence estimate 7 for the test sample z.

Experimental details (checklist). We provide additional details about the training and compute.
Details about data splits and hyperparameters for training can be found in Section 4 and Appendix C.
We use NVIDIA 2080Ti and A100 GPUs, and our experiments required around 100 hours of GPU
time.

B Societal Impact

In this paper, we aim to improve the trustworthiness of machine learning systems by first, explicitly
accounting for uncertainty, and second, do this in a way that is robust to distribution shifts. As
uncertainty quantification is an increasingly important component of real-world machine learning
systems, including health care and autonomous driving, we believe our work could potentially benefit
a wide range of societal activities. Moreover, our method explicitly takes into account subgroups
of the data, trying to achieve good performance across all data. It is known that this is an important
aspect of performance when deploying models in high-consequence settings [Barocas et al., 2019].
We hope our work could offer a new perspective on uncertainty quantification under distributional
shifts. We do not anticipate the negative social impact of this work.
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C Additional Experimental Results

In this section, we provide additional implementation details and experimental results.

Details about dataset and pre-trained model.

For ImageNet, we consider a 200 classes subset

of ImageNet. Details can be found in Hendrycks et al. [2021]. The Efficientnet-bl is trained by

AdvProp and AutoAugment data augmentation [Xie et al., 2020].

C.1 Additional experimental results of predicting model accuracy

We provide additional results (other network architectures) of the prediction performance of TS and
MD-TS on every OOD domain in Figure 5.
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Figure 5: (Evaluated on more network architectures) Predicting accuracy performance of MD-TS and
TS on both out-of-distribution domains. Each plot is shown with predicted accuracy (X -axis) and
accuracy (Y -axis). Each point corresponds to one domain. The network architecture is ResNet-50 for
three datasets. Point closer to the Y = X dashed line means better prediction performance.
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C.2 Additional experimental results of WILDS-RxRx1

We provide additional MDECE results of TS and MD-TS on WILDS-RxRx1 (evaluated on other
InD/OOD splits) in Figure 6. For every InD/OOD split, we randomly sample 4 domains as the InD
domains and set the remaining domains as OOD domains.
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(d) (OOD, seed-1) WILDS-RxRx1. (e) (OOD, seed-2) WILDS-RxRx1. (f) (OOD, seed-3) WILDS-RxRx1.

Figure 6: (Evaluated on WILDS-RxRx1 with other InD/OOD splits.) Per-domain ECE of MD-TS
and TS on both in-distribution domains and out-of-distribution domains. Each plot is shown with
ECE of TS (X-axis) and ECE of MD-TS (Y -axis). Top: per-domain ECE evaluated on InD domains.
Bottom: per-domain ECE evaluated on OOD domains. Lower ECE is better.

C.3 Experimental results of overall ECE

We provide the overall ECE results, evaluated on the pooled InD/OOD data, of different methods on
three datasets in Table 4.

Table 4: ECE (%) comparison on three datasets. We evaluate the ECE on pooled InD and OOD
domains. We report the mean and standard error of ECE on one dataset. Lower ECE means better
performance.

Datasets Architectures InD-domains OOD-domains
MSP TS MD-TS MSP TS MD-TS
ResNet-50 5.404+0.03 1.09+0.03 1.06+0.02 4.86+£0.04 2.27+0.06 1.89+0.03
Efficientnet-bl ~ 2.88+0.03  1.23+0.04 1.52+0.06 5.2140.03 1.56+0.05  1.43+0.03
BiT-M-R50 0.904+0.02 0.89+0.02 1.18+0.05 2.04+£0.04  2.534+0.07 1.52+0.04
ViT-Base 2.314£0.03  1.404+0.02 1.904+0.04 2.04+0.02 1.91+0.02  2.09+0.03

ImageNet-C

ResNet-50 33.57+0.07 5.77£0.11 2.01£0.07 26.18+0.00 13.51+0.07 3.67+0.08
WILDS-RxRx1 ResNext-50  25.26+0.08 5.90+0.11 2.27+0.07 20.71+£0.00 11.62+0.07 2.77+0.08
DenseNet-121  32.27+0.09 5.05+£0.13  1.87£0.09 24.48+£0.00 12.83+£0.08 2.95+0.09

ResNet-50 9.02+0.08  6.87+0.07 5.93+0.06 8.90£0.16  7.10£0.25  6.14+0.21
GLDv2 BiT-M-R50 12.20£0.10  3.65+£0.05 2.99+0.05 12.25+0.21 4.18+0.20  3.53+0.15
ViT-Small 7.79£0.09  3.09+0.05 2.61+£0.04 7.79+£0.20  3.89+0.16  3.41+0.12
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C.4 Experimental results of other calibration methods

We provide the MDECE results of other calibration methods, including histogram binning (Hist-
Bin) [Zadrozny and Elkan, 2001], isotonic regression (Isotonic) [Zadrozny and Elkan, 2002], and
Bayesian Binning into Quantiles (BBQ) [Naeini et al., 2015], on three datasets in Table 5. By
comparing the results in Table 5 and Table 1, we find that our algorithm largely outperforms these
methods on three datasets.

Table 5: Per-domain ECE (%) comparison of histogram binning (HistBin), isotonic regression
(Isotonic), and Bayesian Binning into Quantiles (BBQ) on three datasets. We evaluate the per-domain
ECE on InD and OOD domains. We report the mean and standard error of per-domain ECE on one
dataset. Lower ECE means better performance.

Datasets Architectures InD-domains OOD-domains
HistBin Isotonic BBQ HistBin Isotonic BBQ
ResNet-50 9.50+0.25  5.17£0.12  13.87£0.03 9.1740.17  5.23+£0.07 11.63£0.16
Efficientnet-bl ~ 7.10£0.22  5.30£0.06  13.39£0.15 5.56+0.10  4.94+0.04 11.88+0.13
BiT-M-R50 7314027  6.44+0.16 12954021 6.05+0.16  6.79+0.09  12.00+0.15
ViT-Base 6.85+0.26  4.304+0.03  12.26+0.12 5.35+0.10  3.97+0.02 10.74+0.06

ImageNet-C

ResNet-50 11.64+0.23 11.67+042 6.56+0.44 11.894+0.22 8.99+0.28 11.3140.36
WILDS-RxRx1 ResNext-50 10.10£0.17  11.39£0.30  6.70+0.59  11.25+£0.16  9.544+0.23  11.79+0.41
DenseNet-121  11.95+0.24 11.97+0.13  6.87+0.54  12.04+0.19 8.72+£0.24 11.934+0.06

ResNet-50 14.77£0.16  11.43£0.07 15.32£0.20 10.72£0.08 16.96+0.17 10.04£0.10
GLDv2 BiT-M-R50 15.24+0.12 10.93+£0.07 16.10£0.15 12.93+0.11 20.86+0.21 12.154+0.14
ViT-Small 15.47+0.13 10.86+0.08 16.20+0.15 12.124+0.10 19.894+0.20 11.6140.14

C.5 Additional experimental results of ImageNet-C

We consider a different InD/OOD partition from the ones in Section 4. Specifically, we use the
ImageNet validation dataset and ImageNet-C datasets with severity level s € {1, 2, 3,4} as the InD
domains and use the remaining datasets as OOD domains. The results are summarized in Table 6.
This is a more challenging setting since it requires calibration methods to extrapolate to a higher
severity level. As shown in Table 6, our method still achieves the best performance in all settings,
except for Efficientnet-bl (OOD-domains). This is possibly because the Efficientnet-bl model is
pre-trained with AdvProp and AutoAugment data, it achieves better performance on corruptions with
high severity levels than standard pre-trained models.

Table 6: Per-domain ECE (%) comparison on ImageNet-C datasets (with InD/OOD split mentioned
in Section C.5). We evaluate the per-domain ECE on InD and OOD domains. We report the mean
and standard error of per-domain ECE on one dataset. Lower ECE means better performance.

Datasets Architectures InD-domains 0OOD-domains
MSP TS MD-TS MSP TS MD-TS
ResNet-50 5.994+0.14 5.1140.07 4.1740.03 11.45+0.36 7.974+0.25 5.89+0.20
ImageNet-C

Efficientnet-bl  6.71£0.05 4.41£0.09 3.97£0.05 6.37+£0.16 10.45+0.37 8.314+0.25
BiT-M-R50 5.96+0.12 5.2140.16 3.984+0.04 9.05£0.50 11.01+£0.61 7.71+0.25
ViT-Base 3.724£0.05 3.784+0.06 3.62+0.05 7.02+0.23  7.33+0.25  6.161+0.13
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C.6 Compare to additional existing methods

We compare our proposed method with Ensembles [Lakshminarayanan et al., 2017] and Dropout [Gal
and Ghahramani, 2016] , and the results are summarized in Table 7,

Table 7: Per-domain ECE (%) comparison on two datasets. We evaluate the per-domain ECE on InD
and OOD domains. We report the mean and standard error of per-domain ECE on one dataset. Lower
ECE means better performance. We use Ensembles to denote the deep ensembles method proposed in
Lakshminarayanan et al. [2017], and Dropout to denote the Monte-Carlo Dropout method proposed
in Gal and Ghahramani [2016].

Datasets Architectures InD-domains OOD-domains
Ensembles Dropout MD-TS Ensembles Dropout MD-TS
WILDS-RxRx1 ResNet-50 14.73+0.67 18.594+0.58 2.85+0.17 8.80+0.25 11.72+0.44 5.25+0.11

GLDv2 ResNet-50 10.85+£0.08 11.73£0.13  9.90£0.06 9.98+0.12 10.43+0.20 9.76+0.12

We also study the performance of applying a 2-layer MLP, which has been used in Kumar and
Sarawagi [2019], instead of the linear model in our proposed approach for predicting the temperature.
We do not find that using 2-layer MLP lead to better performance compared to the linear model
approach. For example, on WILDS-RxRx1 with ResNet-50, the per-domain ECE of the 2-layer MLP
is 5.62% whereas per-domain ECE of the linear model is 5.25%.

C.7 Additional experimental results on the NLP dataset

We study the performance of our proposed method on WILDS-Amazon, and we present the results in
Table 8 and Figure 7.

Table 8: Per-domain ECE (%) comparison on WILDS-Amazon [Koh et al., 2021]. We evaluate the
per-domain ECE on InD and OOD domains. We report the mean and standard error of per-domain
ECE on one dataset. Lower ECE means better performance.

Datasets Architectures InD-domains OOD-domains
MSP TS MD-TS MSP TS MD-TS
WILDS-Amazon  DistilBERT 31.88+0.22 10.16+0.22 9.83+0.20 29.89+0.18 7.77+0.16  7.59+0.14
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(2) (InD) WILDS-Amazon. (b) (OOD) WILDS-Amazon.

Figure 7: (Evaluated on WILDS-Amazon.) Per-domain ECE of MD-TS and TS on both in-distribution
domains and out-of-distribution domains. Each plot is shown with ECE of TS (X-axis) and ECE
of MD-TS (Y -axis). Top: per-domain ECE evaluated on InD domains. Bottom: per-domain ECE
evaluated on OOD domains. Lower ECE is better.
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C.8 Additional results on efficiency of MD-TS

Efficiency. We study the efficiency of our proposed method by measuring running time on
three datasets (seconds). We consider the ResNet50 for all datasets. By using the standard
sklearn.linear_model, it takes 39.8s/3.2s/4.1s on ImageNet-C/WILDS-RxRx1/GLDv?2 for solv-
ing the linear regression problem of MD-TS, and the overall running time of MD-TS is 49.7s/4.6s/6.6s
on ImageNet-C/WILDS-RxRx1/GLDv2. standard TS takes 7.8s/1.2s/3.6s on ImageNet-C/WILDS-
RxRx1/GLDv2. We summarize the comparison results in Table 9, Appendix C.8.

Table 9: Compare the running time of MD-TS and TS on three datasets.

Datasets Architectures RunTime (OLS of MD-TS) Overall RunTime (MD-TS) Overall RunTime (TS [Guo et al., 2017])
ImageNet-C ResNet-50 39.8s 49.7s 7.8s
WILDS-RxRx1 ResNet-50 3.2s 4.6s 1.2s
GLDv2 ResNet-50 4.1s 6.6s 3.6s

C.9 Additional experimental results on Brier Score

Table 10: Per-domain Brier Score [Brier et al., 1950] comparison on three datasets. We evaluate
the per-domain Brier Score on InD and OOD domains. We report the mean and standard error of

per-domain Brier Score on one dataset. Lower Brier Score means better performance.

Datasets Architectures InD-domains 0OOD-domains
MSP TS MD-TS MSP TS MD-TS
ResNet-50  0.533+0018 0.527+0.017 052240017 0.53140.030 0.528+0.029 0.525+0.029
Efficientnet-bl 043040016 0.42040.016 042340016 0.393+0.026 0389+0.026  0.386-0.026
TmageNet-C pim\LRSO  0.475+0.017 047540017 0.46520.016 0447+ 0.030 044840029  0.44140.029
ViT-Base 032740014 032740014 032440014 0268+0.019 0268+0019  0.267-0.019
ResNet:50  1.053+0.019 0.908+0.009 0.890+0.010 0.904-0.010 0.841+0.005 0.813+0.007
WILDS-RxRx]  ResNext-50  0.985+0.017 0.901+0.010 0.886-0.011 0.865+0.009 0.828+0.006 0.810+0.007
DenseNet-121  1.04140.020 09040010 0.887-0.011 0.877+0.010 0.822+0.006 0.798+0.007
ResNet-50  0.78840.003 0.787+0.002 0.782+0.003 0.792+0.005 0.792+0.004 0.791-0.004
GLDV2 BIT-M-R50  0.680-£0.004 0.663+0.003 0.659+0.003 0.684-0.006 0.666+£0.005 0.665 +0.004
ViT-Small  0.670+0.004 0.665+£0.003 0.650+0.003 0.673+£0.005 0.667+0.004 0.666--0.004
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D Missing Proofs

In this section, we present the proof for Theorem 5.2.

Theorem D.1 (Restatement of Theorem 5.2). Let H be a hypothesis class that contains functions
h @ X — [0,1] with pseudo-dimension Pdim(H) = d. Let {Dy x}}_, denote the empirical
distributions generated from {Py, X}i(zp where Dy, x contains n i.i.d. samples from the marginal
feature distribution Py, x of domain k. Then for § € (0, 1), with probability at least 1 — 6, we have

K

s(i},ﬂ?X)g A (h Di.x) + d%(?KX,TX)+A(?KX,ﬂ>X)+O<

> Pdlm(ﬂf)) |

VnK

where & and \(PS. X0 P x ) are defined in Eq. (3), 3~9X denotes the marginal distribution of the

00D domain, Pdim(XH) is the pseudo-dimension of the hypothesis class 3, and é(lAz, Dy x) is the
empirical risk of the hypothesis honD B X-

Above, we use O (-) to mean O(-) with some additional poly-logarithmic factors.

Proof. To start with, we use e(h, ', Px) to denote e(h, b/, Px) = Ex o [[h(X) — I (X)|].
Let s(h Px) denote (h, h*, Py ), where h* minimizes the risk under Px. We can upper bound
e(h, h*,Px) by
e(h,h*,Px) <e(h*,h*,Px) +e(h,h*,Px),
by the triangle inequality (see Lemma 3 of Zhao et al. [2018]). Above, h* is defined as
h* = argming, c4c{e(h, (P?‘QX) + e(h, fT’X)}
Next, we have
( ) +e(h,h*, Px)
= e(h*,h*, Px) + e(h, h*, Px) — e(h, h*, P% x) + e(h, h*, P% )
(h*,ﬁ*,fPX) + |a(h h* fPX) —e(h, h*, P x )| +e(h, W, PR x)
( )+ dJ{(?KX7TX)+E(h R, P x)s
where the last step is using the Lemma 1 in Zhao et al. [2018]. Therefore, we have
€(ha TL*v ﬁsX)
~ =~ 1
Sé‘(h*,h*,ﬂjx)-l-idﬂ( %(,X,fpx)—F&(h h*, Py )
-~ -~ 1 ~
< E(h*a h*7 :PX) + idﬂ(?%(,Xa :PX) + €(h7 h;(,av ?(,X) + €(h*, ;(,av %(,X) o)

* 107 1 (87 D (63 D
=e(h, ik o, P x) + §di{( x> Px)+ AMP% x»Px) )
—_— ——
i=e(h* b, Px)+e(h* i o P% x)

where we apply the triangle inequality in second step and hJ, , minimizes the risk under P% 7, x - Next,
by Theorem 10.6 in Mohri et al. [2018], Theorem 1,2 and Lemma 2 in Zhao et al. [2018], we have
for 6 € (0, 1), with probability at least 1 — 4,

Pdim(K)
e(hy W 0, PE ) < E(hy I s +O(>. 6
( K, K,X) ( K, ) \/W ( )
Meanwhile, based on its definition, £(h, h; ,, P% x) can be rewritten as
K
E(h, Wi s Pl x) = D ag - E(h, by, Pr x). (7)
k=1
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Putting Eq. (5), (6), and (7) together, we have for 6 € (0, 1), with probability at least 1 — 4,

K

_ ) 1 _ ~  /Pdim(%)
h,Px) < -&(h,D —dg (P «, P % x> P —_—
6( ) X)—;O‘k 6( ) k,X)+2 ?C( K,X> X)+/\( K,X» X)+O( m >

hold for any a € A and h € H. Thus, we complete our proof.
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