Learning to Generalize Provably in Learning to Optimize

Junjie Yang* Tianlong Chen* Mingkang Zhu* Fengxiang He
The Ohio State University UT Austin UT Austin JD Explore Academy
Dacheng Tao Yingbin Liang Zhangyang Wang
JD Explore Academy The Ohio State University UT Austin
Abstract code is available at: https://github.com/

Learning to optimize (L20) has gained increas-
ing popularity, which automates the design of
optimizers by data-driven approaches. However,
current L20 methods often suffer from poor
generalization performance in at least two
folds: (i) applying the L20O-learned optimizer
to unseen optimizees, in terms of lowering their
loss function values (optimizer generalization,
or “generalizable learning of optimizers”); and
(47) the test performance of an optimizee (itself
as a machine learning model), trained by the
optimizer, in terms of the accuracy over unseen
data (optimizee generalization, or “learning to
generalize”). While the optimizer generaliza-
tion has been recently studied, the optimizee
generalization (or learning to generalize) has
not been rigorously studied in the L20O context,
which is the aim of this paper. We first theoret-
ically establish an implicit connection between
the local entropy and the Hessian, and hence
unify their roles in the handcrafted design of
generalizable optimizers as equivalent metrics
of the landscape flatness of loss functions. We
then propose to incorporate these two metrics
as flatness-aware regularizers into the L20
framework in order to meta-train optimizers
to learn to generalize, and theoretically show
that such generalization ability can be learned
during the L20 meta-training process and then
transformed to the optimizee loss function.
Extensive experiments consistently validate the
effectiveness of our proposals with substantially
improved generalization on multiple sophisti-
cated L20 models and diverse optimizees. Our

Proceedings of the 26" International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

VITA-Group/Open-L20/tree/main/
Model_Free_L20/L20-Entropy.

1 Introduction

One cornerstone of deep learning’s success is the stochastic
gradient-based optimization methods, such as SGD (Rob-
bins and Monro, 1951), Adam (Kingma and Ba, 2014),
AdaGrad (Duchi et al., 2011), RProp (Riedmiller and
Braun, 1993), and RMSProp (Tieleman and Hinton, 2012).
The performance of deep neural networks (DNNs) hinges
on the choice of optimization methods and the correspond-
ing parameter settings. Thus, intensive human labor is
often required to empirically select the best optimization
method and its parameters for each specific problem.

A promising data-driven approach, learning to optimize
(L20), arises from the meta-learning community to alle-
viate this issue (Chen et al., 2022). It aims to replace tra-
ditional optimization algorithms (i.e., optimizers) tuned by
humans, with optimizers parameterized by neural networks
that can be trained to learn update rules from data. Existing
works have demonstrated that such learned optimizers are
able to decrease the objective function faster while tremen-
dously reducing the required human labor. Andrychow-
icz et al. (2016a) first proposed to parameterize the up-
date rules using a long short-term memory (LSTM) net-
work. The LSTM optimizer tries to simulate the behav-
ior of iterative methods by unrolling. By aggregating a set
of loss functions (i.e., optimizees) to be optimized at each
time step, it aims to minimize the overall loss along the
optimization path. Wichrowska et al. (2017) enlarged the
optimizer model to a hierarchical recurrent neural network
(RNN) to improve its capability on larger or unseen opti-
mization problems. Li and Malik (2016) also proposed a
reinforcement learning based L20 approach.

All existing L20 methods so far aim at the goal of “learn-

“The first three authors have made equal contributions.

Learning to Generalize Provably in Learning to Optimize

ing to optimize”, i.e., a meta-learned optimizer can mini-
mize a given optimizee loss function successfully. How-
ever, the generalization abilities, one of the core problems
in machine learning, have not been explored thoroughly
for current L20 methods. Specifically, there exist two dif-
ferent generalization concepts in the L20 context: opti-
mizer generalization (or “generalizable learning of op-
timizers”) and optimizee generalization (or “learning to
generalize”) (see Figure 1 for the difference between the
two). Optimizer generalization characterizes how an op-
timizer trained by a certain set of given optimizees gen-
eralizes to unseen optimizees in terms of the unseen opti-
mizee’s training loss. On the other hand, optimizee gener-
alization characterizes how an optimizee solution such as a
classifier (trained by an optimizer) generalizes over the op-
timizee’s unseen testing data. While the optimizer general-
ization has been recently studied in Almeida et al. (2021),
the optimizee generalization has not been rigorously stud-
ied in the L20 context, which is the aim of this paper.

1.1 Main Contributions

This paper first examines the existing hand-crafted opti-
mizer designs and provides an unified understanding of
the two core metrics used for facilitating the generalization
ability. We then propose the “learn to generalize” design,
so that L20 can meta-train optimizers to have such gener-
alization ability when they are applied to optimizees.

In the traditional design of generalizable optimizers, the
metrics of Hessian (Keskar et al., 2017) and local en-
tropy (Chaudhari et al., 2017) are often adopted to directly
design optimizee loss functions in order to achieve good
generalization. While Hessian directly measures the flat-
ness of the loss landscape and facilitates the solution to a
flat basin, the connection of local entropy to the loss geom-
etry is rather implicit and has not been well understood.

e The first contribution of the paper lies in establish-
ing the implicit connection of local entropy to Hes-
sian. Our theory explains that the existing Hessian
and local entropy-based approaches are rooted in the
same reason to improve the generalization perfor-
mance. Specifically, we show theoretically that Hes-
sian is upper bounded by a monotonically increasing
function of the negative local entropy, and hence, large
local entropy necessarily implies small Hessian. This
explains that the Entropy-SGD algorithm (Chaudhari
et al., 2017), by minimizing the negative local entropy-
based loss function, facilitates a model solution with
small Hessian and hence a flat landscape.

We then focus on the L20 problem and design a meta-
training method for optimizers to “learn to generalize”.

e The second contribution of the paper lies in proposing
to use the flatness-aware regularizers based on Hes-

sian and local entropy in the training of L20 optimiz-
ers. We show theoretically that such flatness-aware
regularizers in L20 can meta-train optimizers to have
good generalization abilities, i.e., such trained opti-
mizers will favor the convergence to flat landscape of
the loss functions and hence enhance the generaliza-
tion ability of their trained optimizees, even when the
optimizees do not have a generalization-based design.
Our theory shows that the generalization ability can
be learned during the meta-training process and trans-
formed to the optimizee.

o We further provide comprehensive experiments over
various tasks to demonstrate that our methods signifi-
cantly improve the optimizee generalization ability of
existing L20 methods, enabling them to outperform
current state-of-the-art by a large margin. Our results
also demonstrate that Hessian and local entropy yield
very different practical performances. Local entropy
is preferred when we adopt L20 to train large neural
networks because it captures neighborhood landscape
information which exhibits advantages in large neural
networks. Instead, Hessian is preferred in small neural
networks because it requires less time to compute.

2 Related Work

Learning to Optimize (L20) As a special case of learn-
ing to learn, L20 has been widely investigated in vari-
ous machine learning problems (Chen et al., 2017; Cao
et al., 2019; Shen et al., 2021; Li et al., 2020; Chen et al.,
2020b; Jiang et al., 2018; Xiong and Hsieh, 2020; You
et al., 2020; Chen et al., 2020c; Metz et al., 2020; Mer-
chant et al., 2021). The first L20 framework dates back
to Andrychowicz et al. (2016b), in which the gradients
and update rules of optimizee are formulated as the input
features and outputs for an RNN optimizer, respectively.
Later on, Li and Malik (2016) proposes an alternative re-
inforcement learning framework for L20, leveraging gra-
dient history and objective values as observations and step
vectors as actions. Recently, more advanced variants arise
to power up the generalization ability of L20. For exam-
ple, (¢) regularizers such as random scaling, objective con-
vexifying (Lv et al., 2017), and Jacobian regularization (Li
et al., 2020), (¢7z) enhanced L20 model such as hierarchi-
cal RNN architecture (Wichrowska et al., 2017), and (z:7)
improved training techniques such as curriculum learning
and imitation learning (Chen et al., 2020a). Moreover,
Metz et al. (2021) introduces randomly initialized optimiz-
ers to form a positive feedback loop for effective training.
Metz et al. (2019) proposes a training scheme that dynam-
ically weights two unbiased gradient estimators for a vari-
ational loss, and overcomes the strongly bias and explod-
ing norm restrictions in L20. Differently from the previous
optimizee regularizer design, our proposed flatness-aware
regularizers are adopted to meta-train optimizers with good

J. Yang™, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, Z. Wang

| e—— Learned Unseen
Training Unseen Optimizer Optimizees
Optimizees Optimizees A
~ /4
A - Training Data /«——»/ Testing Data

(J

(a) Optimizer Generalization

(b) Optimizee Generalization

Figure 1: (a) Optimizer generalization characterizes the performance gap (training loss) between seen optimizees (during meta-training)
and unseen optimizees (during meta-testing) by the same optimizer. (b) Optimizee generalization characterizes the performance gap
between seen training data and unseen testing data, of the same unseen optimizee trained by an optimizer.

generalization abilities, even when the optimizees do not
have generalization-based design.

Flatness on Generalization of Neural Networks Gener-
alization analysis of neural networks has been widely stud-
ied by various methods, including VC-dimension (Bartlett
et al., 2019), covering number (Bartlett et al., 2017), sta-
bility (Hardt et al., 2016; Zhou et al., 2018a), Rademacher
complexity (Golowich et al., 2018; Ji and Liang, 2018; Ji
et al., 2021; Arora et al., 2018, 2019), etc. In particular, the
landscape flatness has been known to be associated with
better generalization. Dinh et al. (2017) showed theoreti-
cally that sharp minimum can also generalize well for deep
neural networks, but such a result does not contradict the
fact that flat minima generalize well, which has strong evi-
dence (He et al., 2019; Keskar et al., 2017). On the empir-
ical side, Keskar et al. (2017) and He et al. (2019) showed
that minima in wide valleys with small Hessian often gen-
eralize better than those in sharp basins with large Hessian.
Further, Wilson et al. (2017) and Keskar and Socher (2017)
showed empirically that SGD favors better generalization
solutions than Adam. On the theory side, Zhou et al. (2020)
showed that SGD is more unstable at sharp minima than
Adam and Zou et al. (2021) explained that the inferior gen-
eralization performance of Adam is connected to noncon-
vex loss landscape. To improve the generalization perfor-
mance, Entropy-SGD was introduced in Chaudhari et al.
(2017) which was shown to outperform SGD in terms of
the generalization error and the training time. Meanwhile,
spectral norm regularization has been proposed in Yoshida
and Miyato (2017) to improve the generalization ability of
neural networks empirically. Further, Foret et al. (2021)
proposed the SAM method, which minimizes the loss value
and the loss sharpness simultaneously. In this paper, we
further explain the good generalization of Entropy-SGD by
connecting the local entropy to the Hessian. We then fur-
ther show that both Hessian and local entropy can serve as
good regularizers to train L20 optimizers, which can yield
optimizees with good generalization.

Learning to Generalize Learning to generalize usu-
ally refers to domain generalization and domain adapta-

tion (Csurka, 2017). Specifically, the goal of domain gen-
eralization is to learn a model which can generalize to un-
seen distributions and perform uniformly well across dif-
ferent data distributions (Carlucci et al., 2019; Dou et al.,
2019; Li et al., 2018). Instead, this paper considers learn-
ing to generalize in the L20 context, which refers to the
test performance of an optimizee and we call it optimizee
generalization. Another related but different generalization
notation in L20 is optimizer generalization or “generaliz-
able learning of optimizers”, which was recently studied in
Almeida et al. (2021). Such optimizer generalization char-
acterizes the training loss of unseen optimizees when we
apply the L20-learned optimizer.

3 Local Entropy and Generalization of
Entropy-SGD

The local entropy was introduced in Chaudhari et al. (2017)
as the performance metric of the landscape of the loss func-
tion. Specifically, let L(6) be a loss function, and define the
local entropy function of it as

G(0;7) = log/ exp (—L(e') ~ Lo - 9'||2) de'.
9/ 2

Due to the exponential decay with respect to || — 0’|, the
integral mainly captures the value of the loss function L(6’)
over the neighborhood of . The local entropy has been ap-
plied in Chaudhari et al. (2017) to design Entropy-SGD,
and the authors of Chaudhari et al. (2017) demonstrated
that Entropy-SGD enjoys better Lipschitz and smoothness
conditions while favoring better generalization solutions
empirically. However, it is still not well understood what
type of geometry the local entropy measures and why it fa-
cilitates improving the generalization performance.

Our following theorem establishes the implicit connection
between the local entropy and Hessian and thus explains
that the local entropy also measures the flatness of the loss
function. In this way, minimization of the local entropy
yields models in the flat landscape and hence with good
generalization performance.

Learning to Generalize Provably in Learning to Optimize

Theorem 1 (Connection between local entropy and Hes-
sian). Consider a non-negative convex loss function L(6),
where 6 € RP, and suppose Assumption 1 in Appendix B.1
holds. Then,

IV2L(0)|| < D~ (~G(6;7)),

where D™1(x) is a monotonically increasing function, de-
fined as the inverse function of D(x) = log(z+~)+L(0)+
(p — 1)logy — mM — §log(2m) — §pm? —C(y,p.m),
C(v,p,m) = log fgl;‘|9/,g”>m exp(—3[|6 —0'[[*)ab’, 0 €
RP, m, M and p are constants.

It can be easily observed that the function D(z) defined in
Theorem 1 is monotonically increasing w.r.t. z, as deter-
mined by the only z-dependent term log(z +), and hence
its inverse D! (x) is also monotonically increasing.

Theorem 1 shows that small negative local entropy
—G(0;~) implies small Hessian |[V2L(0)|. This explains
that the Entropy-SGD algorithm, by minimizing a negative
local entropy based loss function, facilitates a model solu-
tion with small Hessian and hence a flat landscape.

Note that Chaudhari et al. (2017) proposed the Entropy-
SGD method based on local entropy, and showed that
the local entropy loss function enjoys better Lipschitz and
smoothness conditions and hence favors better generaliza-
tion solutions. As a comparison, we here establish the con-
nection of local entropy to Hessian, and hence explain its
better generalization via its landscape flatness.

4 Learning to Generalize in L20

In this section, we provide basic notations and our design
of “learning to generalize” in L20.

4.1 Preliminary

We define I;,.(0;) as the non-negative meta-training func-
tions, where § € RP? is the optimizee parameter, and £ de-
notes training data samples. Suppose there are N training
data samples £ € {&,7 = (1,...,N)}. Then we define
the empirical meta-training function and its corresponding
population risk function as follows:

N
L®) = 5 Y166, Lin(6) =Bl (6:6). (1)
=1

An L20 algorithm aims to learn an update rule for opti-
mizee § based on the meta-training function. An update
rule can be expressed as 057 () = 6%,.(p) + m(zL,; ¢),
where t = 0,1,...,T — 1 denotes the iteration index over
one epoch, the variable z captures the information (e.g.,
loss values, gradients) that we collect on the optimization
path, and the optimizer function m(z; ¢) is parameterized

by ¢ and captures how the update of the optimizee parame-
ter # depends on the loss landscape information included in
z. In order to find a desirable optimizer parameter ¢, L20
solves the following meta-training problem:

min{L (07,(6))}
00,7 (0) = 01, (0) + (213 0). ()

A popular L20 meta-training algorithm applies the gradi-
ent descent method, which updates ¢ based on the gradient
of the objective function Ly, (#7.(¢)) with respect to ¢. As
suggested by eq. (2), each update of ¢ requires 7' iterations
of the optimizee parameter 69, (¢) to obtain 07.(¢).

where

4.2 L20 Training via Flatness-aware Regularizers

In order to train optimizers with generalization ability,
we propose to incorporate flatness-aware regularizers into
L20 meta-training, so that such trained optimizers can
learn to land the optimizee into a flat region, even if there is
no generalization design for optimizee loss functions. We
note that such an idea is fundamentally different from the
existing handcrafted approaches, which directly design the
optimizee loss function to feature flat landscapes. Rather,
here we aim to let L20 auto-train optimizers to have gen-
eralization ability during meta-training, so that such opti-
mizers will likely yield generalizable solutions when they
are applied to optimizee loss functions, even when the opti-
mizee function does not feature any flatness-aware design.
We will show theoretically, such a “learning to general-
ize” design will guarantee the transformation of general-
ization performance from meta-training to optimizee loss
functions. Our result will also characterize the impact of
the similarity between training and testing tasks as well as
the difference between the training and testing losses on the
generalization performance.

The first regularizer we introduce is based on the spectral
norm of the Hessian, smaller values of which correspond
to a flatter landscape. Thus, the new L20 meta-training
objective is given by:

m;n{itr(f)g«(sb)) + AIVaLer (07 (6)1}

where 0571 (6) = 0!,.(6) +m(z,50), (3)

where)\ is the regularizer hyperparameter. Note that the
Hessian regularizer is adopted for training the optimizer
parameter ¢, and its impact on the update rule m(z{.; ¢) is
only through ¢, i.e., the information in 2* does not include
such regularization. Due to the computational intractability
of directly penalizing V2 L,,.(6%.(¢)), we investigate three
approximation variants in the implementation. The details
can be found in Section 5.3.

The second flatness-aware regularizer we incorporate to
L20 is based on the local entropy function defined

J. Yang™, T. Chen”

, M. Zhu", F. He, D. Tao, Y. Liang, Z. Wang

in Section 3. Specifically, consider the loss function
L (0). Tts local entropy is given by Gi.(6;7v) =
log [, exp (—ﬁtr(ﬁ’) — 2110 — 9’”2) d¢’. Due to Theo-

rem 1, the value of G;,.(6;~) measures the flatness of the
local area around 6. Thus, the L20 meta-training objective
with the local entropy regularizer is given by:

ngn{itrwﬁw)) — MG (0F5.(6);7)}
05,71 (9) = 0,.(8) + m(zf,50). (4

In order to implement the gradient descent algorithm for
meta-training, the gradient —V ,G',.(6 tT(qS) ~y) can be cal-
culated by the entropy gradient —VyGy,(6;~) and the
chainrule. In particular, as given in Chaudhari et al. (2017),
the entropy gradient takes the following form

V(0 — E[6":€)), ©)

where ¢ € {&,i = (1,...,N)} are training sam-
ples and the distribution of 6’ is given by P(6’;0,7)

exp |~ Lo (0') = 310 - ')

where

—VoGir(0;7) =

4.3 Generalization Guarantee for Regularized L20

To analyze the optimizee generalization abilities, we first
define l;5(0; () as the non-negative meta-testing function,
where 6 € RP is the optimizee parameter, and denotes
testing data samples. Suppose there are M testing data
samples ¢ € {¢;,4 = (1,...,M)}. Then we define the
empirical meta-testing function and its corresponding pop-
ulation risk function as follows:

ths 6 CJ

In meta-testing, we apply the output ¢ of meta-training
and its corresponding optimizer to update the optimizee as
617 (6) = 61,(6) + m(zLyi #)(t = 0, 1,..., T — 1). Note
that we differentiate the optimizee updates in training and
testing by subscripts ¢r and ts, respectively.

Lis(0) = Lis(0) = Ecles(0;€). (6)

Furthermore, we let ¢* be the optimal optimizer parameter
for Hessian-regularized L20, which can be written as

¢ = arg;nin{ﬁtr(ﬂ(@) + N|V5Ler (05 (9)11}-

Motivated by optimization theory, we note that the regu-
larized optimization problem in eq. (7) is equivalent to the
following constrained optimization

07,(6))} where 07 (¢) = 07,.(6) +m(z,: ¢)

SubjeCt to ||vgitr(oz;(¢))” < BHessian()‘)v (8)

mgn{ﬁtr(

where Byessian(A) is the constraint bound on the Hessian
determined by A. Thus, the optimizer parameter ¢* learned

by the Hessian-regularized L20 meta-training in eq. (7) is
also a solution to eq. (8), i.e., its Hessian satisfies the con-
straint. Then we let 67, (¢*) denote the optimizee param-
eters trained by optimizer ¢* in meta-testing, and 6}, de-
note the optimal point of the population meta-testing func-
tion L;s(-). We then characterize the generalization error
as L5 (0L (6*)) — Lys(07,), which captures how well the
optimizer ¢* performs on a testing task with respect to the
best possible testing loss value.

The following theorem characterizes the generalization
performance of the optimizee trained with Hessian regu-
larized optimizer as defined above.

Theorem 2 (Generalization Error of Hessian-Regularized
L20). Suppose Assumptions 1, 2, 3, 4 in Appendix B.1
and C.1 hold. We let N > max{4Cplog N/n?,Cplogp}
where C = Comax{cy,1,log(;f)}, n? =
min{ < 72, U 2} and Cy is a universal constant.

747 o2

Then, with probability at least 1 — 20, we have

Lus(0/5(67)) — Lus(67,)
<i(ay+a5+ 0w

")+ 0[S
T’>+0<\/@>),

where Ay = [[0F(67) — 0.7l Aj = 167, — 07,1
Ay = V3 Lis(07) = V3Lu (07|l A7 _pA b pAL+

ANt w = §+Z T’ is the minimum gradient descent itera-

tions for 01 (GD) to enter into the local basin of 6T.(¢*)
and GD refers to Gradient Descent.

(BHessian(A) + AT + O(U)T7

Theorem 2 characterizes the impact of the Hessian regu-
larizer on the generalization error by the term Bpegsian (A)-
Clearly, by choosing the regularization hyperparameter A,
we control the value of Byegsian (A) and further the general-
ization error. Specifically, larger A corresponds to smaller
Bpyessian(A) and hence yields a smaller generalization er-
ror. This also explains that flatter landscape (i.e., smaller
Bhessian(A) on Hessian) yields better generalization perfor-
mance (i.e., smaller generalization error).

The generalization error in Theorem 2 also contains other
terms which we explain as follows: (a) A} = pA%L.+pAj+
A%, captures the similarities between the training and test-
ing tasks: more similar tasks yield better generalization.
These errors are owing to transformations of the general-
ization design in meta-training to optimizee training and
testing; (b) O(wT*T') captures the exponential decay rate
of the optimizee’s iteration due to the strong convexity, and

vanishes for large 7'; and (c) O(%) arises due to
the differences between the empirical and population loss

functions, and vanishes as the sample size N gets large.

We next analyze the generalization error of the Entropy reg-
ularizer on the optimizee generalization ability. Similarly

Learning to Generalize Provably in Learning to Optimize

Conv-Large-MNIST

Conv-MNIST Conv-CIFAR MLP-ReLU
3.0 — 3.0 3.0
—— SGD
25 ADAM 25 25
L —— L20-DM-CL
") L20-DM-CL + Hessian Trace
8% —— L20-DM-CL + Entropy 20 20
o \l
£ 15 15
£
© Y 'y
= o \ 1.0 10
0.5 0.5

e
o

W

0s h

0 2000 4000 6000 8000
Training lterations

10000 0 2000 4000 6000 8000

Training Iterations

10000

[2000 4000 6000 8000
Training Iterations

10000 0 2000 4000 6000 8000

Training Iterations

10000

1.0

0.5

ao.s
e
o} 0.4
[9)
O 06 3
<
=) 03 /
C
'ﬁ 0.4 — SGD
) —— ADAM
a —— 120-DM-CL 02
02 L20-DM-CL + Hessian Trace
—— L20-DM-CL + Entropy 01

0.8
0.8

0.6
0.6

0.4 04

0.2

0.2
0.0

0 2000 4000 6000 8000
Training lterations

10000 0 2000 4000 6000 8000

Training Iterations

10000

[2000 4000 6000 8000
Training lterations

10000 [2000 4000 6000 8000

Training Iterations

10000

Figure 2: Comparison of the training loss/testing accuracy of optimizees trained using analytical optimizers and L20-DM-CL (Chen
et al., 2020a) with/without the proposed Hessian/Entropy regularization.

to the Hessian regularizer, we let ¢* be the optimal opti-
mizer parameter, which can be written as :

¢*:a%;mﬂiww50®)*Awa5@%7H~ ©9)

Meanwhile, the regularized optimization problem in eq. (9)
is equivalent to the following constrained optimization:

min{Ly, (05,(¢)) where 0 = 0, + m(z}:0)

subject to — Gy (0F.(¢);7) < Bentropy(A), (10)

where Benopy (A) is the constraint on the Entropy deter-
mined by . Thus, the optimizer ¢* learned by the Entropy-
regularized L20 meta-training in eq. (9) is also a solution
to eq. (10), i.e., the local entropy satisfies the constraint.

Corollary 1 (Generalization Error of Entropy-Regularized
L20). Suppose the same conditions of Theorem 2 hold.
Then the generalization error of L20 with Entropy regu-
larizer takes the bound in Theorem 2 with Bpeggian(\) being
replaced by D™ (Bnropy(N)).

Corollary 1 shows that the bound D~ (Bgnuopy (1)) serves
the same role as the Hessian bound in the generalization
performance. Thus, by controlling the hyperparameter A
to be large enough in the L20 training, Bguropy () as well
as D™ (Bgnopy(A)) and Hessian can be controlled to be
sufficiently small. In this way, the optimizee will be landed
into a flat basin to enjoy better generalization.

S Experiments

We consider two L20 algorithms: L20-DM-CL" (Chen
et al., 2020a) and L20-Scale (Wichrowska et al., 2017).
For training L.20-Scale, we use a three-layer convolutional
neural network (CNN) which has one fully-connected
layer, and two convolutional layers with eight 3x3 and 5x5
kernels respectively. For training L20-DM, we adopt the
same meta training optimizee from (Andrychowicz et al.,
2016b), which is a simple Multi-Layer Perceptron (MLP)
with one hidden layer of 20 dimensions and the sigmoid
activation. MNIST is used for all meta-training.

Meta Testing Optimizees. We select four distinct and
representative meta testing optimizees from (Andrychow-
icz et al., 2016b) and (Chen et al., 2020a) to evaluate the
generalization ability of the learned optimizer. Specifically,
® MLP-ReLU: a single layer MLP with 20 neurons and the
ReLU activation function on MNIST. @ Conv-MNIST: a
CNN has one fully-connected layer, and two convolutional
layers with 16 3 x 3 and 32 5 x 5 kernels on MNIST.
® Conv-Large-MNIST: a large CNN has one fully-
connected layer, and four convolutional layers with two 32
3x3 and two 32 5x5 kernels on MNIST. ® Conv-CIFAR:
a CNN has one fully-connected layer, and two convolu-
tional layers with 16 3 x 3 and 32 5 x 5 kernels on CIFAR-
10 (Krizhevsky and Hinton, 2009). Optimizees @, @, and
® are for evaluating the generalization of L20 across net-
work architectures. Then, @ evaluates the generalization of

"It is an enhanced version of the L20-DM introduced by
DeepMind Andrychowicz et al. (2016b). We choose it as a
stronger baseline with improved generalization.

J. Yang™, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, Z. Wang

=
o

1.0

1.0

0 Conv-MNIST 30 Conv-CIFAR 30 MLP-ReLU 0 Conv-Large-MNIST
— SGD
2.5 e 2.5 25 2.5
— —— L20-Scale

[| L20-Scale + Hessian Trace \—\\\‘NW \\
@201 | 2.0 2.0 201\
o \
- \
= \
c 15 15 15 15
£ \
S \
'_

0.5 0.5

0.0 0.0

0.5 0.5

0 2000 4000 6000 8000 10000 0
Training lterations

2000 4000 6000 8000
Training Iterations

10000

0.0 0.0
0 2000 4000 6000 8000 10000 [

Training lterations

2000 4000 6000 8000
Training lterations

10000

Testing Accuracy

0.3
0.4
— SGD
—— ADAM 0.2
0.2 —— L20-Scale
— L20-Scale + Hessian Trace

1.0

0.8
0.8

|

0.6 0.6

02 02

0 2000 4000 6000 8000
Training lterations

10000 0 2000 4000 6000 8000

Training Iterations

Figure 3:

10000

0 2000 4000 6000 8000
Training Iterations

10000 [2000 4000 6000 8000

Training lterations

10000

Comparison of the training loss/testing accuracy of optimizees trained using analytical optimizers and L20-

Scale (Wichrowska et al., 2017) with/without the proposed Hessian regularization.

L20 across both network architectures and datasets.

Training and Evaluation details. During the meta-
training stage of L20, L20-Scale is trained with 5 epochs,
where the number of each epoch’s iteration is drawn from a
heavy-tailed distribution (Wichrowska et al., 2017). L20-
DM-CL is trained with a curriculum schedule of training
epochs and iterations, following the default setup in Chen
et al. (2020a). RMSprop with the learning rate 1 x 1076 is
used to update L20s. For the {Hessian, Entropy} regular-
ization coefficients { Ahessian; AEntropy, ¥}, We perform a grid
search and choose {5 x 107°,--}/{1 x 107101 x 1076,1 x
10~*} for L20-Scale/L.20-DM-CL.

In the meta-testing stage of L20, we compare our methods
with classical optimizers like SGD and Adam, and state-
of-the-art (SOTA) L20s such as L20-Scale and L20-DM-
CL. Hyperparameters of both classical optimizers and L20
baselines are carefully tuned by the grid search and all other
irrelevant variables are strictly controlled for a fair compar-
ison. We run 10, 000 iterations for the meta-testing, and the
corresponding training loss and test accuracy on all unseen
optimizees are collected to evaluate the optimizer and op-
timizee generalization. We conduct ten independent repli-
cates with different random seeds and all experiments are
conducted on NVIDIA GeForce GTX 1080Ti GPUs.

5.1 Learning to Generalize with Hessian
Regularization

In this section, we conduct extensive evaluations of our pro-
posed Hessian regularization on previous state-of-the-art
L20 methods, i.e., L20-Scale (Wichrowska et al., 2017)
and L20-DM-CL (Chen et al., 2020a). Achieved training

loss and testing accuracy are collected in Figure 3 and 2
which also include comparisons with representative analyt-
ical optimizers like SGD (Ruder, 2016) and Adam (Kingma
and Ba, 2014). Note that the training loss corresponds to
Ly, and test accuracy corresponds to L;s. Several consis-
tent observations can be drawn from our results:

©® Hessian Trace regularizer consistently enhances the
generalization abilities of learned L20s and trained opti-
mizees. Specifically, L20s with Hessian Trace enable fast
training loss decay and much lower final loss on all four
unseen meta-testing optimizees, showing the improved op-
timizer generalization ability, which is great byproduct
of our regularizer. Furthermore, all unseen optimizees
trained by Hessian regularized L20Os enjoy substantial test-
ing accuracy which boosts up to 31%, demonstrating the
enhanced optimizee generalization ability. Such impres-
sive performance gains effective evidence of our proposal,
which again suggests that Hessian regularization enables
optimizers to learn to generalize.

® Adopting vanilla L20-DM-CL to train meta-testing op-
timizees (e.g., Conv-MNIST and Conv-CIFAR) suffers
from instability as shown in Figure 2, and it can be signifi-
cantly mitigated by introducing our flatness-aware regular-
ization. Conv-Large-MNIST is an exception, where the
L20-DM-CL fails to train this optimizee and ends up with
random-guess accuracies, i.e., 10%. Although plugging
Hessian Trace into L20-DM-CL greatly improves its test
accuracy from 10% to 95%-+, it still undergoes an unsatis-
factory training loss. Reasons may lie in the rough model
architecture and limited input features of L20-DM-CL, co-

Learning to Generalize Provably in Learning to Optimize

Conv-MNIST Conv-CIFAR

MLP-ReLU Conv-Large-MNIST

=
o

—— = 0.5
r‘/‘? 0.4
— SGD 0.3
—— ADAM
—— L20-DM-CL

L20-DM-CL + Hessian EV

——— L20-DM-CL + Jacobian Trace
== L20-DM-CL + Hessian Trace | g1

o
®

—

Testing Accuracy
° o

o
N

1.0

0.8
0.8

0.6 0.6

0.4 //
0.4

0.2

:

e TN\

0.2
0.0

0 2000 4000 6000 8000
Training Iterations

10000 0 2000 4000 6000 8000

Training Iterations

10000

0 2000 4000 6000 8000
Training Iterations

10000 0 2000 4000 6000 8000

Training lterations

10000

0.7

=
)

T e
- ~ 0.6
Qs /—
§ 05 /
S os
< 0.4
g‘ — SGD
5 g4] L——— ADAM 03
(V] —— L20-Scale
= L20-Scale + Hessian EV 0.2

o
N

L20-Scale + Jacobian Trace
L20-Scale + Hessian Trace | 3

1.0

0.8

0.8

i\

0.6 7

\

0.6

0.4

o

0.2 0.2

0 2000 4000 6000 8000
Training Iterations

10000 0 2000 4000 6000 8000

Training Iterations

10000

0 2000 4000 6000 8000
Training lterations

10000 0 2000 4000 6000 8000

Training lterations

10000

Figure 4: Comparison of the testing accuracy of optimizees trained using analytical optimizers and SOTA L20 with/without different

Hessian regularization, Hessian EV, Hessian Trace, and Jacobian Trace.

inciding with the findings in (Chen et al., 2020a). We will
investigate this interesting phenomenon in the future.

® For advanced L20-Scale, Hessian Trace regularization
facilitates it to converge to significantly lower minima and
to obtain considerable accuracy improvements. It enlarges
the advantages of L20 methods compared to analytical op-
timizers, SGD and Adam, unleashing the power of param-
eterized optimizers.

5.2 Learning to Generalize with Entropy
Regularization

We investigate the generalization improvements from the
Entropy regularization. Generally, it boosts optimizee gen-
eralization of L20 in most cases, as shown in Figure 2.

Hessian v.s. Entropy Regularization. We compare our
two kinds of flatness-aware regularizers from both compu-
tational cost and performance benefits perspectives.

©® In order to calculate the local entropy’s gradient
in eq. (5), it involves gradients from multiple unroll steps
for the estimation (Chaudhari et al., 2017), leading to ex-
tra memory and computing outlays. Compared to Hessian
augmented L20, it costs ~ 2.6x memory and ~ 3x running
time for L20-DM-CL experiments*. Meanwhile, Hessian
augmented L20 requires around 10% more memory cost
compared with vanilla L20 since we approximate Hessian
in practice. However, the wall clock comparison included

"We conduct entropy-related experiments on light-weight
L20-DM-CL rather heavy L20-Scale models, since RTX TITAN
with 24G memory is the largest GPU we can access and afford.

in Appendix A.2 shows that these two regularizers share
the same inference time which requires only ~ 1.5x time
than analytical optimizers. In comparison, another flatness-
aware optimizer SAM (Foret et al., 2021), which incorpo-
rates loss landscape in the loss function, takes longer train-
ing time (1.5x ~ 2x SGD).

® As for generalization gains, Entropy regularizer per-
forms slightly better on Conv-MNIST and Conv-CIFAR,
while behaves marginally worse on MLP-ReLU and
Conv-Large-MNIST compared to Hessian regular-
izer. We would like to draw the reader’s attention
to Conv-Large-MNIST, in which Entropy regularized
L20-DM-CL is capable of decaying the training loss and
finding a much lower minimum than Adam. Note that on
this optimizee, both L20-DM-CL and its Hessian variant
can not decrease the training loss. The possible reason is
that multi-layer convolutional neural networks without BN
cannot be stably trained on MNIST. However, our L20-
DM-CL+Entropy is more stable in training and improves
testing accuracy compared with L20-DM-CL. This indi-
cates that L20-DM-CL + Entropy may also produce a more
trainable loss surface for optimizees.

Based on the above experiments as well as those in Ap-
pendix A.1, we observe that L2O+Entropy is preferred
when we adopt L20 to train large neural networks, where
L20+Entropy yields better optimizer and optimizee gen-
eralization abilities. Meanwhile, L20+Hessain optimizer
requires less time per iteration to train and achieves
lower training loss as well as higher test accuracy than

J. Yang™, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, Z. Wang

L20+Entropy in small MLPs. The possible reason is that
Entropy takes account of the landscape over a large range
of loss to measure the flatness, and can hence capture com-
plex landscape information in large neural networks. On
the other hand, the Hessian regularizer captures the flat-
ness information only for the individual point, but in a more
accurate manner, and thus is more suitable to smaller neu-
ral networks with a relatively simple landscape. We also
compare our proposed methods with Entropy-SGD and
SGD with Hessian regularization in Appendix A.3 which
demonstrates meta-training’s advantages.

5.3 Ablation and Visualization

In this section, we carefully examine the effect of Hes-
sian regularization’s different approximation variants, in-
cluding @ Hessian EV: the eigenvalue of largest module of
Hessian matrix, computed by power iteration (Yao et al.,
2020); @ Hessian Trace: the trace of Hessian matrix, cal-
culated via Hutchinson method (Yao et al., 2020); @ Jaco-
bian Trace: the trace of Hessian’s Jacobian approximation
VoL (0T (6)TVoLy, (6T.(4)). Note that such Hessian
approximation methods do not involve computing Hessian
explicitly which helps to reduce the memory and computa-
tional cost and we adopt 10 iterations for Hessian norms’
approximation. Results are presented in Figure 4. We find
that the Hessian Trace regularizer achieves the most stable
and substantial performance boosts across all optimizees.
Jacobian Trace performs the worst which is within expec-
tation since it provides the roughest estimation of Hessian.

6 Conclusion

In this paper, we first establish an implicit connection be-
tween the local entropy and the Hessian. Then we propose
flatness-aware regularizers to incorporate these two met-
rics into the L20 framework for meta-training optimizers
to learn to generalize. We further establish the theoretical
guarantee to show that such generalization ability during
L20 meta-training can be transformed to improve the op-
timizee’s generalization over testing data. Our empirical
results validate the effectiveness of our proposal, taking a
further step for L20 usage in real-world scenarios.

Acknowledgements

The work of Y. Liang was supported in part by the U.S. Na-
tional Science Foundation under the grant ECCS-2113860.
The work of Z. Wang was supported in part by the U.S. Na-
tional Science Foundation under the grant ECCS-2113904.

References

Almeida, D., Winter, C., Tang, J., and Zaremba, W. (2021).
A generalizable approach to learning optimizers. arXiv
preprint arXiv:2106.00958.

Andrychowicz, M., Denil, M., Gémez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and de Freitas, N.
(2016a). Learning to learn by gradient descent by gra-
dient descent. In Lee, D., Sugiyama, M., Luxburg, U.,
Guyon, 1., and Garnett, R., editors, Advances in Neural
Information Processing Systems (NeurIPS), volume 29.
Curran Associates, Inc.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W,
Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N.
(2016b). Learning to learn by gradient descent by gradi-
ent descent. In Advances in neural information process-
ing systems (NeurIPS).

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. (2019).
Fine-grained analysis of optimization and generalization
for overparameterized two-layer neural networks. In In-
ternational Conference on Machine Learning (ICML).

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. (2018).
Stronger generalization bounds for deep nets via a com-
pression approach. In International Conference on Ma-
chine Learning (ICML).

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. (2017).
Spectrally-normalized margin bounds for neural net-
works. In Advances in Neural Information Processing
Systems (NeurlPS).

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
(2019). Nearly-tight VC-dimension and pseudodimen-
sion bounds for piecewise linear neural networks. The
Journal of Machine Learning Research (JMLR).

Cao, Y., Chen, T., Wang, Z., and Shen, Y. (2019). Learning
to optimize in swarms. In Advances in Neural Informa-
tion Processing Systems (NeurlPS), pages 15018—15028.

Carlucci, F. M., D’Innocente, A., Bucci, S., Caputo, B.,
and Tommasi, T. (2019). Domain generalization by solv-
ing jigsaw puzzles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR).

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y.,
Baldassi, C., Borgs, C., Chayes, J., Sagun, L., and
Zecchina, R. (2017). Entropy-SGD: Biasing gradient de-
scent into wide valleys. In International Conference on
Learning Representations (ICLR).

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang, Z.,
and Yin, W. (2022). Learning to optimize: A primer and
a benchmark. Journal of Machine Learning Research,
23(189):1-59.

Chen, T., Zhang, W., Zhou, J., Chang, S., Liu, S., Amini,
L., and Wang, Z. (2020a). Training stronger baselines for
learning to optimize. arXiv preprint arXiv:2010.09089.

Chen, W., Yu, Z., Wang, Z., and Anandkumar, A. (2020b).
Automated synthetic-to-real generalization. In Interna-
tional Conference on Machine Learning (ICML), pages
1746-1756.

Learning to Generalize Provably in Learning to Optimize

Chen, X., Chen, W., Chen, T., Yuan, Y., Gong, C., Chen,
K., and Wang, Z. (2020c). Self-pu: Self boosted and
calibrated positive-unlabeled training. In International
Conference on Machine Learning (ICML), pages 1510—
1519.

Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M.,
Lillicrap, T. P., Botvinick, M., and De Freitas, N. (2017).
Learning to learn without gradient descent by gradient
descent. In International Conference on Machine Learn-
ing (ICML), pages 748-756.

Csurka, G. (2017). Domain adaptation in computer vision
applications. Springer.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. (2017).
Sharp minima can generalize for deep nets. In Interna-
tional Conference on Machine Learning (ICML).

Dou, Q., Coelho de Castro, D., Kamnitsas, K., and Glocker,
B. (2019). Domain generalization via model-agnostic
learning of semantic features. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 32.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2019).
Gradient descent provably optimizes over-parameterized
neural networks. In International Conference on Learn-
ing Representations (ICLR).

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research
(JMLR).

Foret, P, Kleiner, A., Mobahi, H., and Neyshabur, B.
(2021). Sharpness-aware minimization for efficiently
improving generalization. In International Conference
on Learning Representations (ICLR).

Golowich, N., Rakhlin, A., and Shamir, O. (2018). Size-
independent sample complexity of neural networks. In
Conference On Learning Theory (COLT).

Hardt, M., Recht, B., and Singer, Y. (2016). Train faster,
generalize better: Stability of stochastic gradient de-
scent. In International Conference on Machine Learning
(ICML).

He, H., Huang, G., and Yuan, Y. (2019). Asymmetric val-
leys: Beyond sharp and flat local minima. In Advances in
Neural Information Processing Systems (NeurlPS), vol-
ume 32.

Ji, K. and Liang, Y. (2018). Minimax estimation of neural
net distance. In Advances in Neural Information Pro-
cessing Systems (NeurlPS).

Ji, K., Zhou, Y., and Liang, Y. (2021). Understanding esti-
mation and generalization error of generative adversarial
networks. IEEE Transactions on Information Theory.

Jiang, H., Chen, Z., Shi, Y., Dai, B., and Zhao, T. (2018).

Learning to defense by learning to attack. arXiv preprint
arXiv:1811.01213.

Keskar, N. S., Nocedal, J., Tang, P. T. P, Mudigere, D.,
and Smelyanskiy, M. (2017). On large-batch training for
deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations

(ICLR).

Keskar, N. S. and Socher, R. (2017). Improving general-
ization performance by switching from Adam to SGD.
arXiv preprint arXiv:1712.07628.

Kingma, D. P. and Ba, J. (2014).
method for stochastic optimization.
arXiv:1412.6980.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple
layers of features from tiny images. Master’s thesis, De-
partment of Computer Science, University of Toronto.

Li, C., Chen, T., You, H., Wang, Z., and Lin, Y. (2020).
Halo: Hardware-aware learning to optimize. In Eu-
ropean Conference on Computer Vision (ECCV), pages
500-518. Springer.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M.
(2018). Learning to generalize: Meta-learning for do-
main generalization. In Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI).

Li, K. and Malik, J. (2016). Learning to optimize. arXiv
preprint arXiv:1606.01885.

Li, Y. and Yuan, Y. (2017). Convergence analysis of two-
layer neural networks with ReLU activation. Advances
in Neural Information Processing Systems (NeurlIPS).

Lv, K., Jiang, S., and Li, J. (2017). Learning gradient
descent: Better generalization and longer horizons. In
International Conference on Machine Learning (ICML),
pages 2247-2255.

Mei, S., Bai, Y., and Montanari, A. (2018). The landscape
of empirical risk for nonconvex losses. The Annals of
Statistics.

Merchant, A., Metz, L., Schoenholz, S. S., and Cubuk,
E.D. (2021). Learn2hop: Learned optimization on rough
landscapes. In International Conference on Machine
Learning (ICML), pages 7643-7653.

Metz, L., Freeman, C. D., Maheswaranathan, N., and Sohl-
Dickstein, J. (2021). Training learned optimizers with
randomly initialized learned optimizers. arXiv preprint
arXiv:2101.07367.

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D.,
and Sohl-Dickstein, J. (2019). Understanding and cor-
recting pathologies in the training of learned optimiz-
ers. In International Conference on Machine Learning
(ICML), pages 4556-4565.

Metz, L., Maheswaranathan, N., Sun, R., Freeman, C. D.,
Poole, B., and Sohl-Dickstein, J. (2020). Using a thou-
sand optimization tasks to learn hyperparameter search
strategies. arXiv preprint arXiv:2002.11887.

Adam: A
arXiv preprint

J. Yang™, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, Z. Wang

Milne, T. (2019). Piecewise strong convexity of neural net-
works. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32.

Riedmiller, M. and Braun, H. (1993). A direct adaptive
method for faster backpropagation learning: the rprop
algorithm. In IEEFE International Conference on Neural
Networks.

Robbins, H. and Monro, S. (1951). A stochastic approxi-
mation method. The Annals of Mathematical Statistics,
22(3):400-407.

Ruder, S. (2016). An overview of gradient descent opti-
mization algorithms. arXiv preprint arXiv:1609.04747.

Safran, I. and Shamir, O. (2016). On the quality of the
initial basin in overspecified neural networks. In Inter-
national Conference on Machine Learning (ICML).

Shen, J., Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W,,
and Wang, Z. (2021). Learning a minimax optimizer:
A pilot study. In International Conference on Learning
Representations (ICLR).

Tieleman, T. and Hinton, G. (2012). Lecture 6.5—
RmsProp: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks
for Machine Learning.

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W.,
Colmenarejo, S. G., Denil, M., de Freitas, N., and Sohl-
Dickstein, J. (2017). Learned optimizers that scale and

generalize. In International Conference on Machine
Learning (ICML).

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and
Recht, B. (2017). The marginal value of adaptive gradi-
ent methods in machine learning. In Advances in Neural
Information Processing Systems (NeurlPS).

Xiong, Y. and Hsieh, C.-J. (2020). Improved adversarial
training via learned optimizer.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W.
(2020). Pyhessian: Neural networks through the lens of
the Hessian. In 2020 IEEE International Conference on
Big Data (Big Data), pages 581-590. IEEE.

Yoshida, Y. and Miyato, T. (2017). Spectral norm regular-
ization for improving the generalizability of deep learn-
ing. arXiv preprint arXiv:1705.10941.

You, Y., Chen, T., Wang, Z., and Shen, Y. (2020). L2-gcn:
Layer-wise and learned efficient training of graph con-
volutional networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2127-2135.

Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S. C. H,
et al. (2020). Towards theoretically understanding why
SGD generalizes better than Adam in deep learning.

In Advances in Neural Information Processing Systems
(NeurIPS), volume 33.

Zhou, Y., Liang, Y., and Zhang, H. (2018a). Gen-
eralization error bounds with probabilistic guarantee
for SGD in nonconvex optimization. arXiv preprint
arXiv:1802.06903.

Zhou, Y., Yang, J., Zhang, H., Liang, Y., and Tarokh, V.
(2018b). SGD converges to global minimum in deep
learning via star-convex path. In International Confer-
ence on Learning Representations (ICLR).

Zou, D., Cao, Y., Li, Y., and Gu, Q. (2021). Under-
standing the generalization of Adam in learning neu-
ral networks with proper regularization. arXiv preprint
arXiv:2108.11371.

Learning to Generalize Provably in Learning to Optimize

Supplementary Materials

A Additional Experimental Results

A.1 ResNet20 Experiments

In this section, we evaluate the performance of our trained optimizers on larger neural networks ResNet-20 on CIFAR-10
dataset. The training loss and testing accuracy are plotted in Figure 5. We can see that the Entropy regularizer is able
to outperform other methods in both training loss and testing accuracy, demonstrating its generalization ability on large
unseen models. Further note that although the Hessian regularizer may not be preferred in large neural networks, it does
perform better than the Entropy regularizer in small networks as we have shown in Figure 2.

ResNet-20-CIFAR ResNet-20-CIFAR

= [20-DM-CL
—— L20-DM-CL + Hessian Trace
—— L20-DM-CL + Entropy

3.0

0.8

N
n

©

N

N
o
o
o

I
IS

Training Loss
= =
9 w

Testing Accuracy

= L20-DM-CL
—— L20-DM-CL + Hessian Trace
——— L20-DM-CL + Entropy

o
w

0.5

l

0.2
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Training Iterations Training Iterations

0.0

Figure 5: Comparison of the training loss/testing accuracy of ResNet-20 trained using L20-DM-CL (Chen et al., 2020a) with/without
the proposed Hessian/Entropy regularization.

A.2 Wall Clock Comparison between different algorithms

We further conduct an optimizee training time comparison between our methods, analytical optimizers and L20-DM-CL
in Table 1. Note that L20-DM-CL+Hessian and L20-DM-CL+Entropy share the same time to train optimizee as L20-
DM-CL. From Table 1, we can see that trained L20-DM-CL requires only ~ 1.5x time than analytical optimizers in terms
of inference time, which is thus time efficient for practical usage.

Table 1: Empirical Time Cost Comparison per Iteration
| Methods | SGD ADAM L20 (L2O+Hessian, L20+Entropy) |

| Time (secs) [0.045 0.045 0.067 \

A.3 Accuracy Comparison between different algorithms

We also compare the testing accuracy (%) of our proposed methods with Entropy-SGD (Chaudhari et al., 2017) and SGD
with Hessian regularization. The Conv-MNIST results shown in Table 2 are evaluated on L20-DM-CL and the Conv-
CIFAR results shown in Table 3 are evaluated on L20-Scale. We adopt the same experimental setting as in Section 5 for
the Conv-MNIST experiment. We also use same experimental setting for Conv-CIFAR except that the running epochs are
set to 100 to investigate whether the performance of trained optimizers would persist in long term.

From these comparisons, we can see that our proposed optimizers (L20+Hessian, L20O+Entropy) achieve the best per-
formance compared with regularized analytical optimizers. Specifically, in Conv-CIFAR setting as shown in Table 3, our
algorithm L20O+Hessian outperforms SGD+Hessian and Entropy-SGD. In Conv-MNIST setting as shown in Table 2, the
performances of top three algorithms, i.e. L20O+Entropy, Entropy-SGD and L20+Hessian, are similar and much better than

J. Yang™, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, Z. Wang

Table 2: Additional Testing Accuracy Comparison on Conv-MNIST
| Methods | L20 L20+Hessian L20+Entropy SGD Entropy-SGD SGD+Hessian |

‘ Testing Accuracy ‘ 92.74 97.34 97.87 80.73 97.54 95.37 ‘

Table 3: Additional Testing Accuracy Comparison on Conv-CIFAR
| Methods | L20+Hessian Entropy-SGD SGD SGD+Hessian |

| Testing Accuracy | 59.57 57.73 54.69 5141 |

the performances of L20 and SGD+Hessian. Among the top three algorithms, the iteration running time for Entropy-SGD
is 0.958 secs while L20+Hessian and L20O+Entropy only take 0.067 secs as shown in Table 1. Such wall clock comparison
shows that L20+Hessian and L20O+Entropy are more time efficient than Entropy-SGD while achieving the high accuracy,
which are preferred for practical usage.

A4 Accuracy Comparison between different learning rates
We further present the SGD and ADAM results within different learning rates as below:

Table 4: Testing Accuracy Comparison of different SGD learning rates on Conv-MNIST
| SGD LearningRate | 0. 0.01 0.001 0.0001 0.00001 |

‘ Testing Accuracy ‘ 981 78.01 80.84 11.09 10.82 ‘

Table 5: Testing Accuracy Comparison of different ADAM learning rates on Conv-MNIST
| SGD LearningRate | 0.1 0.01 0.001 0.0001 0.00001 |

‘Testing Accuracy ‘9.80 995 7244 55.89 64.84 ‘

Based on the Table 4 and table 5, we know that both SGD and Adam are finetuned in terms of learning rates.

B Proof of Theorem 1

B.1 Assumptions

Assumption 1. Lipschitz properties are assumed on functions Ly, (0) and L:s(0).
a) Ly (9) function is M-Lipschitz, i.e., for any 01 and 0o, ||Ly-(61) — Ly (02) || < M||61 — 62]).
b) VoL (0) and VgLys(0) are L-Lipschitz, i.e., for any 61 and 05, |V L;(61) — VoL;(02)|| < L||61 — 62| (3 = tr, ts).

¢) V3L (0) and V3 Lis(0) are p-Lipschitz, i.e., for any 61 and 0s, | V3L;(01) — V3L (02)|| < p|l61 — 02]|(i = tr, ts).
This assumption also holds for stochastic V3L, (0) and V3 Lys(6).

The above Lipschitz properties also hold for L(0), Vo L(0) and V3 L(0) in Theorem 1.

B.2 Proof of Supporting Lemma

Lemma 1. Based on Assumption 1 and assuming that function L(0) is non-negative and convex, in terms of entropy
regularizer G(0;), we have

1 .
—G(6;7) + mM + g log(2) + §pm‘3 + C(v, p,m) >log(det(VZL(0) +~I)) + L(6),

where m is a constant, C(~y,p, m) = log f@’:HO’—9H>m exp (—2[|6 — ¢'||?) d¢’ and 6 € RP.

Learning to Generalize Provably in Learning to Optimize

Proof. We firstly split the integral area 8’ € RP into two parts: {6 : ||/ — 6|| < m} and {¢’ : ||¢' — 6| > m}. Based on
the definition of G(0;v), we have

G(0;7)
—tog [exp (~L(6) - J10~01*) @’

—1og | exp (~L(0") ~ o —0|?) a0
0:10'—0]| <m 2

+ log/ exp (~L(0") ~ L]0 —|?) v
07:16"— || >m 2

(%)
< log/ exp (~ L) - 210~ 0')7) a0’
0r:)16'—6]| <m

g 2 ’
+log/ exp (—=||0 — 6'||*) df
0':]16"—0|| >m (2)

Dog [exp (L) = 210 = 02) 40’ + C (. p,m)
0':1|0’—0||<m 2

it 1

@ 10g / exp (—L(0) — (0 — O)TVL(O) — (0 — O)TV2LO")(0' —)
07:[|67]| <m 2

= 110 012)08" + Crpm)
where (i) follows from the fact that L(6') is non-negative, (ii) follows from the fact that 6 € R? and the definiton of
C(v,p,m), (#i7) follows from Taylor expansion. Note that §” satisfies ||0"” — 0]| < ||§ — ¢'|| and ||6" — 0’| < ||0 — &'|.
Based on Assumption 1, —(0' — 6)TVL(#) < m|VL(0)|| < mM. Then, we obtain
G(0;7)

§—L(9)+mM+log/ exp<—
2167 —=6]|<m

@ = TP~ 0) - 110~ 017)00’ + Crpm)
0

N~ N~

:—L(H)erMJrlog/ exp<
0':(16" 6] <m

+log /0’:|0/—0|§m exp (- %(9’ — 9T (v%(e”) — V2L(0) + V2L(0) + 71) o — 0)>d9’

O —0)T(V2L(0") +~I) (0 — 9)) dé’ 4+ C (v, p,m)

(@) 1
< = L(0) + mM + C(y,p,m) + 5pm’

+ log/ exp (- 1(9' —0)" (V2L(0) +~I) (0 — 9))d9'
0310’0 <m 2

(i1) 1 1
< = L(0) +mM + Spm? + log/ exp (=50 =) (V2L(O) + 1) (0" — 9>)d9’ +C(y,p,m),
0(

where (i) follows from Assumption 1 and the fact that ||6” — 0| < ||6 — 6’| and (i7) follows because exp(—
)T (V2L(0) +11)(0' — 0)) = 0.

o -

Since L(#) is convex, we have the fact that (V2L(0) + 1) is a symmetric and positive-definite matrix. Hence, we obtain
1
G(6;7) < ~L(8) — log(det(V2L(8) + 1)) + C(y,p,m) +mM + Zpm® + £ log(2m).
We rearrange the terms and get

—G(0;7) > L(0) + log(det(V2L(0) +~I)) — C(vy,p,m) — mM — glog(%r) — %pm?’.

J. Yang™, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, Z. Wang

B.3 Proof of Theorem 1
Based on Lemma 1, we have

1
—G(0;v) + mM + g log(27) + ipm3 + C(v,p,m) >log(det(V2L(0) +~I)) + L(0).

Since V2L () + 71 is positive definite and \;(V2L(#) +~I) > ~ forany i = 1,...,p. Then, based on the definition of
Matrix norm ||[V2L(0) + YI|| = Amax(VZL(0) + vI), we have

IV2L(0) + I = det(V2L(0) +41)) = "~ [[V2L(0) + 7.
Note that we use \; (H) to denote the i-th eigenvalue of matrix H. Then,

log(det(V2L(0) + 1)) =(p — 1) logy +log [|[VZL(0) + 71 ||

=(p — 1) logy +log(| VZL(O)]| +).
Then, we can obtain
—G(0;v)+mM + glog(%r) + %pm?’ +C(y,p,m) > L(0) + (p—1)log~y
+1log(||V2L(O)]| +).
Hence, we can get a new function D(z) that
IV2L(6)|| < D™H(=G(6;7)),

where D(z) = L(0) + (p — 1) log y — mM — Elog(2m) — 1 pm?® — C (v, p, m) +log(x + 7). Then, the proof is complete.

C Proof of Theorem 2

C.1 Assumptions

We first define the local basin of § with the radius d as D4(0) = {6 : ||§ — 6’| < d}. As have been observed widely in
training a variety of machine learning objectives, the convergent point enters into a local neighborhood where the strong
convexity (or similar properties such as gradient dominance condition, reguarity condition, etc) holds (Du et al., 2019; Li
and Yuan, 2017; Zhou et al., 2018b; Safran and Shamir, 2016; Milne, 2019). We thus make the following assumption on
the geometry of the meta-training function.

Assumption 2. We assume that there exist a a local basin DY0L(4))(d > 0) of the convergence point 0L.(¢) that in
such local basin, Ly,.(0) and Ly, (0) are p-strongly convex w.r.t. 6. Futhermore, there exist a unique optimal point 0}, of
function Ly, (0) and a optimal point 0. of function Ly,.(0) in local basin DY(0L.(¢*)).

We further adopt the following assumptions introduced in Mei et al. (2018), in order to guarantee the similarity between
the landscape of the empirical and population objective functions.

Assumption 3. Similarly as in Mei et al. (2018), we assume the loss gradient V1, (0;€) is T2-sub-Gaussian, i.e., for any
0 € RP, and 0 € D"(0) where D™(0) = {0 € R?, |02 < r},

E{exp((0, Vi (8;€) — E[Vie(6;€)]))} < exp (TQ;’”Q) _

Meanwhile, we assume the loss Hessian is T*-sub-exponential, i.e., for any o € D'(0), and 6 € D" (0),

59,9 = <Q7V2ltr(9;f)g>a E{ €xXp (7_1259,0 - E&gﬁ') } <2,

and there exists a constant cj, such that L < 12p°, p < 73p°r,
Assumption 4. We assume functions Ly, (0) is (e,n)-strongly Morse in D" (0), i.e., if ||V Ly (6)||2 > € for ||0]|2 = r and,
forany 0 € R?, ||0||2 < r, the following holds:

VL ()2 < €= Helﬁ INi(V2Le(0))] > 1,
i€lp

where \;(V2L,.(0)) denotes the i-th eigenvalue of V> Ly, (0). We further make the assumption that the local basins
DY(OT (¢*))(i = tr,ts) of convergence points 0T (¢*)(i = tr,ts) are in D"(0).

Learning to Generalize Provably in Learning to Optimize

C.2 Proof of Supporting Lemmas

Lemma 2 (Restatement of Theorem 1(b) in Mei et al. (2018)). We assume 0 corresponding to 0* in local basin. Based on
Assumptions 1 and 3, there exists a universal constant Cy, and we let C = Cymax{cp,log(r7/8),1}. If N > Cplogp,

then we have
R Cplog N
sup [|[V2L(0) — V2L(O)|| < 724/ 2280
0cDP(r) N

Lemma 3 (Restatement of Theorem 2 in Mei et al. (2018)). Based on Assumptions 1, 3 and 4, we set C as in Lemma 2,
assume that 0* is corresponding to 0%, and let N > 4Cplog N/n? where n? = min{(e?/72), (n?/74), (n*/(L*72))}.
Then, for each corresponding 0* and 6*, we have

with probability at least 1 — 6.

Cplog N

0*0*<—
R e

with probability at least 1 — §.
Lemma 4. Suppose Assumptions 1 and 2 hold. Then, we have

N L/L— T-T'
I05(6%) ~ 03 < ﬁ B ACIR AL an

where T' is the minimum that after T' gradient descent updates, the updated optimizee parameter 95 (GD) locates into
the local basin of 1. (¢*) and GD refers to Gradient Descent.

Proof. Since the local basin is p-strongly convex and GAZT is the optimal point of smooth function Ly, (#) in local basin.
Then, we have

L (07(6") = Lur(8,) = S165.(67) = 07,

Furthermore, we rearrange the terms and obtain

162.(67) — 67| <\/2(ﬁtr(95(¢*)) — Lu(97,)

“\/ 2 (L (05 (GD)) - L (67)

(i1) .
<\/||9T<GD> 0 1?
<\ 210 D)~ |
(iid) L—u\™ 7 A
ZF D) — §*
SR (L) e -,

where (¢) follows because ¢* = arg m1n¢ L (6T (¢)) and 6T (G D) locates in the local basin of 7., (ii) follows from As-
sumption 1 which implies L¢,(0) < Ly (0%)4 (Vo Ler (07.), 0—07)+ L 516 — 0 ||2 and the fact that 67, = arg min, Ly,.(0)

which implies Vg Ly, (05,) = 0, and (iii) follows if we set step size of GD as + — 7. O

Lemma 5. Based on Assumptions] 2, 3 and 4, we let N > max{Cplogp,4Cplog N/n?} where C' =
4

Comax{cp,1,log(%F)}, n? = min{ < Tz , "—4, p;’TZ Y, Cy is an universal constant. Then, with probability at least 1 — 26

we have

J. Yang™, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, Z. Wang

. 2T CplogN / e
V5 Lis (67 <p< VT~ \/ L+u ||9tT7- (GD) _0t7'||>
[Cplog N
+ AF{ + 7—2 % + BHessiun()‘)v

where Ny, = ||[V3Lis(07,) — V2L (07.)|, T is defined in Lemma 4 and GD refers to Gradient Descent.

Proof. Firstly, we bound || V2L (6;,)]| as following:

+ IV Ler(07,) — V5L (65011 + [IV5 Ler (07,) — Vo Ler (67.(6%)) |
+ IV Ler (0L,

where 6}, is corresponding to é;‘; in the same local basin of 07.(¢*).

Based on the constrained problem formulation in eq. (8), the optimal optimizer parameter ¢* is equivalent to the following:

¢* = argmin Ly, (0T (¢)) subject to V2L, (01.(¢)) < Bhessian(A)-
¢

Thus, we obtain [|VZL:(05.(¢*))]] < Beessian(A). Furthermore, if we let N > Cplogp where C =

Co max{cp, 1,log("5)} and Cj is an universal constant, based on Lemmas 2, 3 and 4, and Assumptions 1, we have

L L—,u T-T'
V3061, §p<||0;; ||+\f AR ||>
[Cplog N
+ A*H + T2 % + BHessian(A)y

Furthermore, if we assume N > max{4Cplog N/n?,Cplogp} where n? = min{ 52 y I, psz }, based on Lemma 3, we
have

with probability at least 1 — 4.

. or [CplogN |L (L—pu\T7 T -
[Cplog N
+ BHessian()\) + A*H + 7'2 %a

with probability at least 1 — 2J. O

Lemma 6. Based on Assumptions 2, 1, 3, and 4, we let N > 4Cplog N/ 773 where C and nf are defined in Lemma 3.
Then, with probability at least 1 — §, we have

. L(L-—p\"" . CplogN .
I667) ~ 050 < A+ = (F4) 1T (GD) Ol + 2T\ LREY

where A} = ||07. — 03,], A% = ||0L (¢*) — 0L.(¢*)|| , T" is defined in Lemma 4 and GD refers to Gradient Descent.

Learning to Generalize Provably in Learning to Optimize

Proof. Based on triangle inequality, we obtain

167 (") — 05l
< 167.(0") = 05 () + 165:(6") = 5[l + 107 — 07,1l + 1167, — O]

< N+ 105.(6%) — O30+ 105 — 65,1 + 165, — 0|

(i) L(L-—u\"7 . . .
Sap 2 (T5E) 10K ED) = Gl 16 - 03+ A

where (%) follows from definition of A%., (i¢) follows from Lemma 4 and definition of Aj. Based on Lemma 3, if we let
N > 4Cplog N/n?. Then, with probability at least 1 — &, we have

* * * L(L—p - . Cplog N .
||93;<¢>9ts||<AT+\[(L+M) 05 (@D) -+ 20\ LR

y Clog N
=Af + A5 + O T) + O =),

_ L—p
where w = TTu O

C.3 Proof of Theorem 2

Generalization loss is defined as below:
Lts (93; (¢>*)) - Lts (9:3)

2 (0L (6") — 07,) Vo Lua(65,) + %(QZQ(W) = 07) Vi Les(0')(0/s(97) — 075)

i) 1 ! * ‘
D L0167 - 01T L 0L () -)

1
)

1 * * * *
< S105(67) = 0L IP(IVELes (0) = VELes (071 + V5 Les (0,)1)

(VLZ) 1 * 1 * * *
< 2PH9 (67) = 5P + SIVELes (OEN05(@7) — 0512

(91,61;(¢*) - 6:5)T<V§Lt8(el) - ngts(ers) + szt5<9:s))(eg;(¢*) - 0;:9)

where (i) follows from Taylor expansion and @’ follows from the conditions that ||0" — 0% (¢*)|| < |10}, — 0L (¢*)| and
0" — 07| < 1105, — 0L (¢*)|], (i7) follows because Vg Ly,(0;,) = 0, and (iii) follows from Assumption 1 and the fact that
16" = 07l < 1167, — O/s(&™)I-

Based on Lemmas 5 and 6, if we let N > max{4Cplog N/n?, Cplog p} where C and n? are defined in Lemma 5. Then,
with probability at least 1 — 24, we have

PlOZ(6") = 5l + 11 V5 Les (67

L(L—-p =1 / Cplog N N
<p(AT+f(L+) leen)- |+n\/T+A9>
Cplog N 2T CplogN
D) — 07 A% B
)[BT (\/ (752) 16 (GD) - 1) + i+ BOY
L (L . 4 Cplog N . .
=pA% 4 2py | = <L+Z> He (GD) — 6, ||+< 2T+T2>,/pNg+pA9+AH+BHem(A)

/ Clog N
:BHessian(/\) + pA? + pAZ + A}} —+ O(U)T_T) + (’)(\/?)’

J. Yang™, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, Z. Wang

where w = 775, Ay = V3 Les(67,) — VELer (05l Aj = 1165, — 071, A% = [10(6%) — 67.(0%).

Then, we have
Lts (93; (¢*)) - Ltsw:s)

1 * * * * *
S 1055(67) = 0,117 (o110, (67) = O 11 + 1 V5 Lus (B

IN

IN

2
1 , Clog N , Clog N
5 (A*T + A+ 0w 1)+ O(;’5)) <Bﬁessian(A) + AT+ 0wt 1) +0(?\f))

with probability at least 1 — 20 where AT = pAT 4 pAj + A%, Then, the proof is complete.

