
Published as a conference paper at ICLR 2023

TURNING THE CURSE OF HETEROGENEITY IN FED-
ERATED LEARNING INTO A BLESSING FOR OUT-OF-
DISTRIBUTION DETECTION

Shuyang Yu1, Junyuan Hong1, Haotao Wang2, Zhangyang Wang2 and Jiayu Zhou1
1Department of Computer Science and Engineering, Michigan State University
2Department of Electrical and Computer Engineering, University of Texas at Austin
{yushuyan,hongju12,jiayuz}@msu.edu, {htwang,atlaswang}@utexas.edu

ABSTRACT

Deep neural networks have witnessed huge successes in many challenging pre-
diction tasks and yet they often suffer from out-of-distribution (OoD) samples,
misclassifying them with high confidence. Recent advances show promising OoD
detection performance for centralized training, and however, OoD detection in
federated learning (FL) is largely overlooked, even though many security sensitive
applications such as autonomous driving and voice recognition authorization are
commonly trained using FL for data privacy concerns. The main challenge that
prevents previous state-of-the-art OoD detection methods from being incorporated
to FL is that they require large amount of real OoD samples. However, in real-world
scenarios, such large-scale OoD training data can be costly or even infeasible to
obtain, especially for resource-limited local devices. On the other hand, a notorious
challenge in FL is data heterogeneity where each client collects non-identically
and independently distributed (non-iid) data. We propose to take advantage of
such heterogeneity and turn the curse into a blessing that facilitates OoD detection
in FL. The key is that for each client, non-iid data from other clients (unseen
external classes) can serve as an alternative to real OoD samples. Specifically,
we propose a novel Federated Out-of-Distribution Synthesizer (FOSTER), which
learns a class-conditional generator to synthesize virtual external-class OoD sam-
ples, and maintains data confidentiality and communication efficiency required by
FL. Experimental results show that our method outperforms the state-of-the-art
for OoD tasks by 2.49%, 2.88%, 1.42% AUROC, and 0.01%, 0.89%, 1.74% ID
accuracy, on CIFAR-10, CIFAR-100, and STL10, respectively. Codes are available:
https://github.com/illidanlab/FOSTER.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated exciting predictive performance in many challeng-
ing machine learning tasks and have transformed various industries through their powerful prediction
capability. However, it is well-known that DNNs tend to make overconfident predictions about what
they do not know. Given an out-of-distribution (OoD) test sample that does not belong to any training
classes, DNNs may predict it as one of the training classes with high confidence, which is doomed to
be wrong (Hendrycks & Gimpel, 2016; Hendrycks et al., 2018; Hein et al., 2019).

To alleviate the overconfidence issue, various approaches are proposed to learn OoD awareness which
facilitates the test-time detection of such OoD samples during training. Recent approaches are mostly
achieved by regularizing the learning process via OoD samples. Depending on the sources of such
samples, the approaches can be classified into two categories: 1) the real-data approaches rely on a
large volume of real outliers for model regularization (Hendrycks et al., 2018; Mohseni et al., 2020;
Zhang et al., 2021); 2) the synthetic approaches use ID data to synthesize OoD samples, in which a
representative approach is the virtual outlier synthesis (VOS) (Du et al., 2022).

While both approaches are shown effective in centralized training, they cannot be easily incorporated
into federated learning, where multiple local clients cooperatively train a high-quality centralized
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model without sharing their raw data (Konečnỳ et al., 2016), as shown by our experimental results in
Section 5.2. On the one hand, the real-data approaches require substantial real outliers, which can be
costly or even infeasible to obtain, given the limited resources of local clients. On the other hand,
the limited amount of data available in local devices is usually far from being sufficient for synthetic
approaches to generate effective virtual OoD samples.

Practical federated learning approaches often suffer from the curse of heterogeneous data in clients,
where non-iid (Li et al., 2020b) collaborators cause a huge pain in both the learning process and
model performance in FL (Li et al., 2020a). Our key intuition is to turn the curse of data heterogeneity
into a blessing for OoD detection: The heterogeneous training data distribution in FL may provide
a unique opportunity for the clients to communicate knowledge outside their training distributions
and learn OoD awareness. A major obstacle to achieving this goal, however, is the stringent privacy
requirement of FL. FL clients cannot directly share their data with collaborators. This motivates the
key research question: How to learn OoD awareness from non-iid federated collaborators while
maintaining the data confidentiality requirements in federated learning?

In this paper, we tackle this challenge and propose Federated Out-of-distribution SynThesizER
(FOSTER) to facilitate OoD learning in FL. The proposed approach leverages non-iid data from
clients to synthesize virtual OoD samples in a privacy-preserving manner. Specifically, we consider
the common learning setting of class non-iid (Li et al., 2020b), and each client extracts the external
class knowledge from other non-iid clients. The server first learns a virtual OoD sample synthesizer
utilizing the global classifier, which is then broadcast to local clients to generate their own virtual OoD
samples. The proposed FOSTER promotes diversity of the generated OoD samples by incorporating
Gaussian noise, and ensures their hardness by sampling from the low-likelihood region of the
class-conditional distribution estimated. Extensive empirical results show that by extracting only
external-class knowledge, FOSTER outperforms the state-of-out for OoD benchmark detection tasks.

The main contributions of our work can be summarized as follows:

• We propose a novel federated OoD synthesizer to take advantage of data heterogeneity to facilitate
OoD detection in FL, allowing a client to learn external class knowledge from other non-iid
federated collaborators in a privacy-aware manner. Our work bridges a critical research gap
since OoD detection for FL is currently not yet well-studied in literature. To our knowledge, the
proposed FOSTER is the first OoD learning method for FL that does not require real OoD samples.

• The proposed FOSTER achieves the state-of-art performance using only limited ID data stored
in each local device, as compared to existing approaches that demand a large volume of OoD
samples.

• The design of FOSTER considers both the diversity and hardness of virtual OoD samples, making
them closely resemble real OoD samples from other non-iid collaborators.

• As a general OoD detection framework for FL, the proposed FOSTER remains effective in more
challenging FL settings, where the entire parameter sharing process is prohibited due to privacy or
communication concerns. This is because that FOSTER only used the classifier head for extracting
external data knowledge.

2 RELATED WORK

OoD detection. Existing OoD detection methods are mainly from two complementary perspectives.
The first perspective focused on post hoc. Specifically, Hendrycks & Gimpel (2016) first introduced
a baseline utilizing maximum softmax distribution probabilities (MSP). Based in this work, many
improvements have been made by follow-up works in recent years, such as the calibrated softmax
score (ODIN) (Liang et al., 2017), Mahalanobis distance (Lee et al., 2018), energy score (Liu et al.,
2020), Likelihood Regret (Xiao et al., 2020), Confusion Log Probability (CLP) score (Winkens et al.,
2020), adjusted energy score Lin et al. (2021), k-th nearest neighbor (KNN) (Sun et al., 2022), and
Virtual-logit Matching (ViM) (Wang et al., 2022). Compared with post hoc methods, FOSTER can
dynamically shape the uncertainty surface between ID and OoD samples. Different post hoc methods
are also applied in our experiment section as baselines.

Another perspective tends to detect OoD samples by regularization during training, in which OoD
samples are essential. The OoD samples used for regularization can be either real OoD samples or
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virtual synthetic OoD samples. Real OoD samples are usually natural auxiliary datasets (Hendrycks
et al., 2018; Mohseni et al., 2020; Zhang et al., 2021). However, real OoD samples are usually
costly to collect or infeasible to obtain, especially for terminals with limited sources. Regularization
method utilizing virtual synthetic OoD samples do not rely on real outliers. Grcić et al. (2020) trained
a generative model to obtain the synthetic OoD samples. Jung et al. (2021) detect samples with
different distributions by standardizing the max logits without utilizing any external datasets. Tack
et al. (2020); Sehwag et al. (2021) proposed contrastive learning methods that also does not rely
on real OoD samples. Du et al. (2022) proposed VOS to synthesize virtual OoD samples based
on the low-likelihood region of the class-conditional Gaussian distribution. Current state-of-the-art
virtual OoD methods are usually thirsty for ID data, which is not sufficient enough for local clients.
Compared with these existing methods, the proposed FOSTER can detect OoD samples with limited
ID data stored in each local device, without relying on any auxiliary OoD datasets.

Federated Learning. Federated learning (FL) is an effective machine learning setting that enables
multiple local clients to cooperatively train a high-quality centralized mode (Konečnỳ et al., 2016).
FedAvg (McMahan et al., 2017), as a classical FL model, performs model averaging of distributed
local models for each client. It shows an excellent effect on reducing the communication cost.
Based on FedAvg, many variants (Wang & Joshi, 2018; Basu et al., 2019) have been proposed to
solve the problems arising in FedAvg, such as convergence analysis (Kairouz et al., 2021; Qu et al.,
2020), heterogeneity (Li et al., 2020a; Hsu et al., 2019; Karimireddy et al., 2020; Zhu et al., 2021),
communication efficiency (Reddi et al., 2020). Among these problems, although heterogeneity of
data will make the performance of ID data worse, it will give us a great chance to learn from the
external data from other non-iid collaborators. Even though FOSTER is used the FedAvg framework,
as a general OoD detection method for FL, FOSTER can also be applied to other variants of FedAvg.

3 PROBLEM FORMULATION

In this paper, we consider classification tasks in heterogeneous FL settings, where non-iid clients
have their own label set for training and testing samples. Our goal is to achieve OOD-awareness on
each client in this setting.

OoD training. The OoD detection problem roots in general supervised learning, where we learn a
classifier mapping from the instance space X to the label space Y . Formally, we define a learning
task by the composition of a data distribution D ⇢ X and a ground-truth labeling oracle c⇤ : X ! Y .
Then any x ⇠ D is denoted as in-distribution (ID) data, and otherwise, x ⇠ Q ⇢ X\D as out-
of-distribution data. Hence, an ideal OoD detection oracle can be formulated as a binary classifier
q
⇤(x) = I(x ⇠ D), where I is an indication function yielding 1 for ID samples and �1 for OoD
samples. With these notations, we define the OoD learning task as T := hD,Q, c

⇤i.
To parameterize the labeling and OoD oracles, we use a neural network consisting of two stacked
components: a feature extractor f : X ! Z governed by ✓f , and a classifier h : Z ! Y governed
by ✓h, where Z is the latent feature space. For the ease of notation, let hi(z) denote the predicted
logit for class i = 1, . . . , c on extracted feature z ⇠ Z . We unify the parameters of the classifier as
✓ = (✓f

,✓h). We then formulate the OoD training as minimizing the following loss on the task T :

JT (✓) := Ex⇠D

h
`CE

⇣
h(f(x;✓f );✓h), c⇤(x)

⌘i
+ � Ex0⇠Q

h
`OE

⇣
f(x0;✓f );✓h

⌘i
,

where `CE is the cross-entropy loss for supervised learning and `OE is for OoD regularization. We
use E[·] to denote the expectation estimated by the empirical average on samples in practice. The
non-negative hyper-parameter � trade off the OoD sensitivity in training. We follow the classic OoD
training method, Outlier Exposure (Hendrycks et al., 2018), to define the OoD regularization for
classification problem as

`OE(z
0;✓h) := E(z0;✓h)�

Xc

i=1
hi(z

0;✓h), (1)

where E(z0;✓h) = �T log
P

c

i
e
hi(z

0;✓h)/T is the energy function, given the temperature parameter
T > 0. At test time, we approximate the OoD oracle q⇤ by the MSP score (Hendrycks & Gimpel,
2016).

Heterogeneous federated learning (FL) is a distributed learning framework involving multiple
clients with non-iid data. There are different non-iid settings (Li et al., 2020b; 2021), and in this paper,

3



Published as a conference paper at ICLR 2023

we follow a popular setting that the non-iid property is only concerned with the classes (Li et al.,
2020b). GivenK clients, we define the corresponding set of tasks {Tk}Kk=1 where Tk = hDk,Qk, c

⇤
k
i

and c⇤
k
: X ! Yk are non-identical for different k resulting non-identical Dk. Each Yk is a subset of

the global label set Y . Since the heterogeneity is known to harm the convergence and performance of
FL (Yu et al., 2020), we adopt a simple personalized FL solution to mitigate the negative impact, where
each client uses a personalized classifier head hk upon a global feature extractor f (Arivazhagan et al.,
2019). This gives the general objective of FL: min✓

1
K

P
K

k=1 JTk
(✓). The optimization problem

can be solved alternatively by two steps: 1) local minimization of the objective on local data and 2)
aggregation by averaging client models. In this paper, we assume that each client only learns classes
they see locally during training, because updating classifier parameters for unseen classes has no
data support and doing so will almost certainly harm the performance of FL. To see this, Diao et al.
showed that masking out unseen classes in the cross-entropy loss can merit the FL training (Diao
et al., 2020).

Challenges. When we formulate the OoD training in FL, the major challenge is defining the OoD
dataset Qk, which does not come for free. The centralized OoD detection of VOS assumes Qk is
at the tail of an estimated Gaussian distribution of Dk (Du et al., 2022), which requires enormous
examples from Dk for an accurate estimation of parameters. However, such a requirement is usually
not feasible for a client per se, and the construction of Qk remains a challenging question.

4 METHOD

In this section, we first introduce the intuition of our proposed FOSTER, then elaborate on how to
synthesize virtual external class data and avoid the hardness fading of the virtual OoD samples. The
proposed framework is illustrated in Fig. 1.

Figure 1: The framework of FOSTER. In step 1, to extract external class knowledge from local clients,
the server first trains a generator utilizing the global classifier based on a cross-entropy objective
function J(w) (Eq. (2)). In step 2, each local client utilizes the generator received to generate their
own external class data z. To preserve the hardness of the virtual OoD samples, we also sample
virtual outliers vk from the low-likelihood region of the class-conditional distribution estimated for
the generated OoD samples. The virtual OoD samples vk are used for regularization of local client
objective J(✓k) (Eq. (5)).

4.1 NATURAL OOD DATA IN NON-IID FL

Recent advances show promising OoD detection performance by incorporating OoD samples during
the training phase, and however, OoD detection in FL is largely overlooked. In FL, each client does
not have access to a large volume of real OoD samples because it can be costly or even infeasible
to obtain such data for resource-constrained devices. As such, an OoD training method for FL that
relies on few or even no real OoD examples is strongly desired. Novel to this work, we notice that
data from classes out of the local class set, namely external-class data, are natural OoD samples
w.r.t. the local data and can serve as OoD surrogate samples in OoD training. As shown in Fig. 2,
training w/ external-class data achieves better OoD detection performance than normal training and
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VOS, since the score of ID and real OoD data is well separated. Besides, compared to the real OoD
dataset adopted in prior arts, external-class samples are likely to be nearer to the ID data, since they
are sampled from similar feature distributions (refer to (a) and (b) in Fig. 2 ).

(a) Normal training. (b) Training w/ VOS. (c) Training w/ external-class data.
Figure 2: The density of negative energy score for OoD detection evaluation using dataset Textures.
We use 5 ID classes, and 5 external classes of CIFAR-10.

4.2 SYNTHESIZING EXTERNAL-CLASS DATA FROM GLOBAL CLASSIFIER

Though using external-class data as an OoD surrogate is attractive and intuitive, it is not feasible in FL
to directly collect them from other non-iid clients, due to privacy concerns and high communication
costs on data sharing.

We thereby propose to generate samples from the desired classes leveraging the encoded class
information in the global classifier head. Given the global classifier H : Z ! Y parameterized by
✓h

g
, we utilize a w-governed conditional generative network Gw : Y ! Z to generate samples from

specified classes on clients’ demand. As such, we solve the following optimization problem:

min
w

J(w) := Ey⇠p(y)Ez⇠Gw(z|y,✏)

h
`OE(H(z;✓h

g
), y)

i
, (2)

where p(y) is the ground-truth prior which is assumed to be a uniform distribution here. We follow
the common practice of the generative networks (Zhu et al., 2021) to let y be a one-hot encoding
vector, where the target class entry is 1 and others are 0. To encourage the diversity of the generator
outputs G(z|y), we use a Gaussian noise vector ✏ ⇠ N (0, I) to reparameterize the one-hot encoding
vector during the generating process, following the prior practice (Kingma & Welling, 2013). Thus,
Gw(z|y) ⌘ Gw(y, ✏|✏ ⇠ N (0, I)) given y ⇠ Y , where Y is the global label set. The generator
training process can refer to Fig. 1 Step 1. Then for local training (see Fig. 1 Step 2), by downloading
the global generator as a substitute of Qk, each local client indexed by k can generate virtual OoD
samples given an arbitrary external class set Ȳk = Y\Yk. In the feature space, we denote the virtual
samples as z ⇠ Gw(z|y, ✏) given y ⇠ Ȳk.

4.3 FILTERING VIRTUAL EXTERNAL-CLASS SAMPLES

Although synthesized features are intuitively conditioned on external class, the quality of generated
OoD samples may vary by iterations likely because of the lack of two properties: (1) Diversity.
Like traditional generative models (Srivastava et al., 2017; Thanh-Tung & Tran, 2020), the trained
conditional generator may suffer from mode collapse (Mao et al., 2019) in a class, where generator
can only produce a small subsets of distribution. As a result, the effective synthesized OoD samples
will be mostly unchanged and OoD training will suffer from the lack of diverse samples. (2) Hardness.
For a client, its internal and external classes may co-exist with another client, which will enlarge the
between-class margins gradually. As the FL training proceeds, the class-conditioned synthesis OoD
samples will become increasingly easier to be memorized, namely, overfit by the model. In other
words, the hardness of OoD examples declines over time.

(1) Encourage OoD diversity by tail sampling. As mode collapse happens in the high-density area of
a class, samples that approximate the class but have larger variance are preferred for higher diversity.
For this purpose, we seek to find samples of low but non-zero probability from the distribution
of the external classes. Specifically, for each client, we first assume that the set of virtual OoD
representations {zki ⇠ G(z|yi, ✏)|yi ⇠ Ȳk

, ✏ ⇠ N (0, I)}Nk

i=1 forms a class-conditional multivariate
Gaussian distribution p(zk|yk = c) = N (µc

k
,⌃c

k
), where µc

k
is the Gaussian mean of samples from
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the external class set Ȳk for client k, and ⌃c

k
is the tied covariance matrix. The parameters of the

class-conditional Gaussian can be estimated using the empirical mean and variance of the virtual
external class samples:

µ̂c

k
=

1

N
c

k

X

i:yi=c

zki, ⌃̂k =
1

Nk

X

c

X

i:yi=c

(zki � µ̂c

k
) (zki � µ̂c

k
)T , (3)

where Nk is the number of samples, and N
c

k
is the number of samples of class c in the virtual OoD

set. Then, we select the virtual outliers falling into the ✏-likelihood region as:

Vc

k
= {vc

k
|"0 <

exp
⇣
� 1

2 (v
c

k
� µ̂c

k
)T ⌃̂

�1

k
(vc

k
� µ̂c

k
)
⌘

(2⇡)d/2|⌃̂k|1/2
< ",vc

k
⇠ G(·|y = c, ✏)}, (4)

where "0 ensures the sample is not totally random, a small " pushes the generated vc

k
away from the

mean of the external class in favor of the sampling diversity.

Algorithm 1 Federated Out-of-Distribution Synthesizer (FOSTER)

1: Input: Tasks {Tk}Kk=1;
Global parameters ✓g , local parameters {✓k}Kk=1;
Global generator parameter w;
Learning rate ↵, �, local steps T , ID batch size B, OE batch size BOE .

2: repeat
3: Server selects active clients A uniformly at random, then broadcast ✓, w to A.
4: for all user k 2 A in parallel do
5: Initialize local parameters ✓k  ✓
6: for t = 1, . . . , T do
7: {(xi, yi)}Bi=1 ⇠ Dk, ZOE = {zki ⇠ G(z|yi, ✏)|yi ⇠ Ȳk, ✏ ⇠ N (0, I)}BOE

i=1 .
8: Estimate the multivariate Gaussian distributions based on ZOE by Eq. (3).
9: Filter virtual external class samples according to Eq. (4).

10: ✓k  ✓k � �r✓k
J(✓k). . Optimize Eq. (5)

11: end for
12: Client k sends ✓k back to the server.
13: end for
14: Server updates ✓g  1

|A|
P

k2A ✓k.
15: for t = 1, . . . , T do
16: w  w � ↵rwJ(w). . Optimize Eq. (2)
17: end for
18: until training stop

(2) Increase the hardness by soft labels. To defend the enlarged margin between internal and
external classes, we control the condition inputs to the generator such that generated samples are
closer to the internal classes. Given an one-hot encoding label vector y of class c, we assign 1� � to
the c-th entry, and a random value within (0, �) to the rest of the positions, where � 2 (0, 0.5).

In summary, given an observable D̂k, we formulate the local optimization of FOSTER as:

min
✓k

J(✓k) :=
1

|D̂k|

X

xi2D̂k

"
`CE(hk(f(xi;✓

f

k
);✓h

k
), c⇤(xi)) + �

1

|Vk|
X

vk2Vk

`OE(vk)

#
, (5)

and the overall framework of our algorithm is summarized in Algorithm 1. The major difference
from FedAvg is that we introduce a generator for OoD outlier synthesis. Since the generator is
trained on the server, the computation overhead for the client is marginal, with only the inference
of low-dimensional vectors. As compared to VOS, the samples generated from external classes are
more likely to approximate the features from real images due to the supervision of real external class
prototypes from the classifier head.

5 EXPERIMENTS

In this section, we first introduce the experiment setup and then show empirical results demonstrating
the effectiveness of the proposed FOSTER.
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ID Datasets for training. We use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), STL10 (Coates
et al., 2011), and DomainNet (Peng et al., 2019) as ID datasets. Both CIFAR-10 and CIFAR-
100 are large datasets containing 50, 000 training images and 10, 000 test images. Compared
with CIFAR, STL10 is a small dataset consisting of only 5,000 training images and 8,000
test images. DomainNet are consist of images from 6 different domains. We use Domain-
Net to explore how FOSTER performs in the case of feature non-iid among different clients.

(a) CIFAR-10. (b) CIFAR-100.
Figure 3: Visualization of generated external class samples
and ID samples.

OoD Datasets for evaluation. We
use Textures (Cimpoi et al., 2014),
Places365 (Zhou et al., 2017), LSUN-
C (Yu et al., 2015), LSUN-Resize (Yu
et al., 2015) and iSUN (Xu et al.,
2015) as the OoD datasets for eval-
uation. When ID dataset is CIFAR-
10, we also evaluate on CIFAR-100
to check near-OoD detection perfor-
mance, since CIFAR-10 and CIFAR-
100 datasets have similarities, al-
though their classes are disjoint.

Baselines. We compare the proposed FOSTER with both Post hoc and Virtual synthetic OoD detection
methods that have been mentioned in Section 2: a) Post hoc OoD detection methods: Energy score
(Liu et al., 2020), MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 2017). b) Synthetic OoD
detection method: VOS (Du et al., 2022). For a fair comparison, the training method of FL for all
of the above approaches including the proposed FOSTER is FedAvg (McMahan et al., 2017) with a
personalized classifier head, and we note that our framework can be extended to other FL variants.
All the approaches only use ID data without any auxiliary OoD dataset for training.

Metrics for OoD detection and classification. To evaluate the classification performance on ID
samples, we report the test accuracy (Acc) for each client’s individual test sets, whose classes match
their training sets. For OoD detection performance, we report the area under the receiver operating
characteristic curve (AUROC), and the area under the PR curve (AUPR) for ID and OoD classification.
In FL setting, all three metrics are the mean results of all the clients.

Heterogeneous federated learning. For CIFAR-10 and CIFAR-100, the total client number is 100,
for STL10, the total client number is 50. For DomainNet, the total client number is 12 (2 for each
domain). To model class non-iid data of the training datasets, we follow a uniform partition mode
and assign partial classes to each client. We distribute 3 classes per client for CIFAR-10 and STL10,
5 classes for DomainNet, and 10 classes for CIFAR-100, unless otherwise mentioned.

5.1 VISUALIZATION OF GENERATED EXTERNAL CLASS SAMPLES

In Fig. 3, we visualize the generated external class samples and ID samples of a client using TSNE for
both CIFAR-10 and CIFAR-100. Without accessing the raw external-class data from the other users,
our generator, trained merely from the shared classifier head, yields samples that are strictly out of
the local distribution without any overlap. We also obtain a consistent conclusion from CIFAR-100,
which has as many as 90 external classes. The enormous external classes diversify the OoD set and
therefore we observe a larger gain of OoD detection accuracy (a 2.9% AUROC increase versus the
best baseline) compared to other benchmarks in Table 1. The observation also motivates our design
of the tail sampling to encourage diversity.

5.2 BENCHMARK RESULTS

FOSTER outperforms existing methods. We compare FOSTER with other competitive baselines
in Table 1. The proposed FOSTER shows stronger OoD detection performance on all three training
sets, while preserving a high test accuracy. VOS is another regularization method using virtual OoD
samples, which even shows worse results than post hoc methods. The virtual OoD data synthesized
by VOS is based on a large amount of ID samples. For the FL setting, when data stored in each
device is limited, these synthesized OoD samples based on ID data will no longer be effective, which
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deteriorates the OoD detection performance. For FOSTER, the virtual OoD samples are based on the
external class knowledge extracted from other clients, which are close to real OoD samples. Thus,
they are effective in improving the OoD detection performance while preserving the test accuracy.

ID dataset Method Acc " AUROC " AUPR "

CIFAR-10

Energy 0.9431 0.7810 0.9262
MSP 0.9431 0.8829 0.9691
ODIN 0.9431 0.8842 0.9689
VOS 0.9426 0.7970 0.9342

FOSTER 0.9432 0.9091 0.9785

CIFAR-100

Energy 0.8129 0.8056 0.9575
MSP 0.8129 0.8606 0.9782
ODIN 0.8129 0.8657 0.9789
VOS 0.8063 0.8372 0.9666

FOSTER 0.8218 0.8945 0.9838

STL10

Energy 0.8236 0.7529 0.9228
MSP 0.8236 0.7410 0.9309
ODIN 0.8236 0.7418 0.9306
VOS 0.8264 0.7370 0.9126

FOSTER 0.8410 0.7671 0.9425

Table 1: Our FOSTER outperforms competitive baselines. " indicates larger value is better. Bold
numbers are best performers.

Near OoD detection. We evaluate the model training with CIFAR10 datasets on both near OoD (CI-
FAR100) and far OoD datasets. The results are shown in Table 2, and the best results are highlighted.
The proposed FOSTER outperforms baselines for all of the evaluation OoD datasets, especially the
near OoD dataset CIFAR100. By synthesizing virtual external class samples, FOSTER has access to
virtual near OoD samples during training, which is also an advantage of FOSTER over other baselines.

Datasets Textures Places365 LSUN-C LSUN-Resize iSUN CIFAR-100
AUROC AUPR AUROCAUPR AUROCAUPR AUROCAUPR AUROCAUPR AUROCAUPR

Energy 0.7080 0.8868 0.8221 0.9411 0.7009 0.9065 0.8376 0.9519 0.8289 0.9462 0.7883 0.9248
MSP 0.8107 0.9375 0.8964 0.9754 0.9043 0.9774 0.9154 0.9825 0.9103 0.9805 0.8604 0.9615
ODIN 0.8124 0.9367 0.8976 0.9752 0.9062 0.9773 0.9166 0.9825 0.9114 0.9805 0.8614 0.9613
VOS 0.7346 0.8993 0.8267 0.9447 0.7270 0.9196 0.8451 0.9541 0.8397 0.9499 0.8086 0.9379
FOSTER 0.8458 0.9544 0.9253 0.9842 0.9332 0.9863 0.9316 0.9870 0.9238 0.9849 0.8952 0.9742

Table 2: Near and far OoD detection for CIFAR10. The proposed FOSTER outperforms baselines for
all of the evaluation OoD datasets, especially near OoD dataset CIFAR100.

Method Acc " AUROC " AUPR "
Energy 0.7237 0.6745 0.8953
MSP 0.7237 0.6871 0.9048
ODIN 0.7237 0.6871 0.9047
VOS 0.7340 0.6796 0.8988

FOSTER 0.7348 0.6960 0.9075

Table 3: Our FOSTER outperforms competi-
tive baselines under feature non-iid setting.

OoD detection for feature non-iid clients. We explore
whether our FOSTER can still work well when feature
non-iid also exists among different clients on Domain-
Net. Under this problem setting, different clients not
only have different classes, but may also come from
different domains. According to the results shown in
Table 3, although the results are not that significant
compared with feature iid settings, FOSTER still out-
performs the baselines. For feature non-iid settings, the
external class knowledge extracted from clients from
different domains is not so consistent compared with feature iid cases. However, our experimental re-
sults also show that in this case, there is still some invariant external class information across different
domains that can be extracted by our FOSTER to help improve the OoD detection performance.

5.3 QUALITATIVE STUDIES

Effects of active client number. We investigate the effects of active client number on CIFAR-10. The
number of clients is fixed to be 100, while the number of active clients is set to be 20, 50 and 100, re-
spectively. According to the results in Table 4, FOSTER shows better OoD detection performance than
baselines in all cases of active users. With the increase of active clients, the OoD performance of FOS-
TER remains stable, which means our proposed FOSTER is not sensitive to the number of active users.
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Active
num

Method Acc " AUROC " AUPR "

20

Energy 0.9399 0.7760 0.9363
MSP 0.9399 0.8560 0.9674
ODIN 0.9399 0.8562 0.9674
VOS 0.9410 0.7545 0.9173
FOSTER 0.9401 0.9011 0.9776

50

Energy 0.9432 0.7592 0.9185
MSP 0.9432 0.8869 0.9728
ODIN 0.9432 0.8879 0.9727
VOS 0.9430 0.7946 0.9311
FOSTER 0.9429 0.8947 0.9750

100

Energy 0.9431 0.7810 0.9262
MSP 0.9431 0.8829 0.9691
ODIN 0.9431 0.8842 0.9689
VOS 0.9426 0.7970 0.9342
FOSTER 0.9432 0.9091 0.9785

Table 4: Ablation study on the number of active
clients:FOSTER is not sensitive to the number of
active users.

Classes /
client

Method Acc " AUROC " AUPR "

10

Energy 0.8129 0.8056 0.9575
MSP 0.8129 0.8606 0.9782
ODIN 0.8129 0.8657 0.9789
VOS 0.8063 0.8372 0.9666
FOSTER 0.8218 0.8945 0.9838

5

Energy 0.8976 0.7735 0.9157
MSP 0.8976 0.8776 0.9704
ODIN 0.8976 0.8831 0.9714
VOS 0.8974 0.7927 0.9289
FOSTER 0.8981 0.9081 0.9778

3

Energy 0.9383 0.7215 0.8684
MSP 0.9383 0.8682 0.9586
ODIN 0.9383 0.8723 0.9592
VOS 0.9393 0.7636 0.8990
FOSTER 0.9397 0.8865 0.9697

Table 5: Ablation study on ID class number: the
advantage of the proposed FOSTER over other
baselines is not affected by the number of ID
class number.

Effects of ID class number. We investigate the effects of ID class number on CIFAR-100. We set the
classes distributed per client (classes / client) to be 10, 5 and 3, respectively. According to the results
in Table 5, the advantage of the proposed FOSTER over other competitive baselines is not affected
by the number of ID classes. When the number of ID classes decreases, for FOSTER the maximum
changes in AUROC and AUPR are 2.16% and 0.81%, respectively. VOS, as another virtual synthetic
OoD detection method, with the decrease of ID classes, AUROC and AUPR drop by 7.36% and
6.76%, respectively, which is a much larger variation compared with our method. Thus, the ID class
number has a large impact on VOS, while almost has no effect on FOSTER.
Effects of the p.d.f. filter. We report the effects of the p.d.f. filter as mentioned in Section 4.3
on CIFAR-10 in Table 6. The generator without a p.d.f. filter is outperformed by baselines. The
phenomenon occurs because not all generated external class samples are of high quality, and some
of them may even deteriorate OoD detection performance. Since we add Gaussian noise during the
process, some randomly generated external class samples might overlap with ID samples. Thus, we
build a class-condition Gaussian distribution for external classes, and adopt a p.d.f. filter to select
diverse virtual OoD samples which do not overlap with the ID clusters. According to this table, filter-
ing out low-quality OoD samples improves AUROC and AUPR by 4.44% and 1.18%, respectively.

Method Acc " AUROC " AUPR "
Energy 0.9431 0.7810 0.9262
MSP 0.9431 0.8829 0.9691
ODIN 0.9431 0.8842 0.9689
VOS 0.9426 0.7970 0.9342

FOSTER w/o pdf filter 0.9425 0.8647 0.9667
FOSTER w/ pdf filter 0.9432 0.9091 0.9785

Table 6: Ablation study on pdf filter: pdf filter
plays an effective role in selecting diverse, high-
quality virtual OoD samples.

Method Acc " AUROC " AUPR "
FOSTER 0.8410 0.7671 0.9425

FOSTER w/ soft label 0.8294 0.7872 0.9501

Table 7: Ablation study on random soft labels:
soft label strategy increase the hardness of gen-
erated virtual OoD samples.

Effects of the random soft label strategy. We study the effects of the random soft label strategy
on STL10, and set � = 0.2. As shown in Table 7, after replacing the one-hot label with the random
soft label as the input for the generator, we improve AUROC and AUPR by 2.01% and 0.75%
respectively, while preserving a similar ID classification test accuracy. That is because soft label
contains knowledge from ID classes make the generated external class samples closer to ID samples.

6 CONCLUSION

In this paper, we study a largely overlooked problem: OoD detection in FL. To turn the curse of
heterogeneity in FL into a blessing that facilitates OoD detection, we propose a novel OoD synthesizer
without relying on any real external samples, allowing a client to learn external class knowledge from
other non-iid federated collaborators in a privacy-preserving manner. Empirical results showed that
the proposed approach achieves state-of-the-art performance in non-iid FL.
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