

putational requirements. Section III presents three use cases
that are supported by the ANACIN-X environment and the
lessons that can be learned from them. Section IV provides
a short overview of related work, and Section V presents our
conclusions.

II. COURSE MODULE OUTLINE

A. Course Module Structure and Prerequisites

Our course module has three levels of complexity: beginner,
intermediate, and advanced. The course module is problem-
driven: topics at each level are addressed through use cases
in which we define one or multiple problems and students
implement their solutions. Each level explains different topics,
targets different objectives, and has different prerequisites. Ta-
ble I shows the learning objectives at each level of complexity.

Students should have the prior knowledge for each level of
difficulty presented in Table II before using this module:

In addition to the listed prerequisites, students must know
or learn terminology relevant to the course. Throughout the
course, we use the terms event graph, kernel, and root source

of non-determinism. An event graph refers to a graph model
of the MPI communication pattern of a given application.
Nodes of an event graph correspond to MPI function calls
and edges correspond to on-process or inter-process commu-
nication. Figure 1 displays a visualization of what an event
graph can look like. Event graphs encode time by treating
on-process communication as logically ordered (i.e., logical
time). A kernel function (also called the graph kernal) is a
similarity function that can be selected from many possible
graph kernel functions. Formally, a graph kernel is an inner
product function across the embeddings of two graphs in a
Reproducing Kernel Hilbert Space [14]. Students should be
taught that the kernel functions as a scalar-valued measure
of the similarity between two graphs. For more details on
graph kernels in general, see the recent survey [15]. In this
module, we apply the kernel distance to event graphs, which
is calculated directly from a kernel and measures the difference
between the graphs. Because event graphs correspond to the
communication pattern of an application, the kernel distance
corresponds to the calculated difference between two runs of
that application, and thus serves as a proxy metric for non-
determinism. A root source of non-determinism refers to a
function or set of functions in the source code of an application
that can cause non-deterministic executions.

B. Software and Platform

We use the ANACIN-X software package to generate use
cases and their visualizations; we leverage the use cases
to teach concepts in the course. ANACIN-X is a modular
framework for automated analysis of non-deterministic MPI
applications. ANACIN-X provides the following features that
make it useful to the course module:

1) Generation of event graph models communication pat-
terns.

2) Measurement of the amount of non-determinism within
an application at varying settings.

3) Automatic identification of root causes of non-
determinism.

4) Visualization of communication patterns, amounts of
non-determinism, and non-determinism sources.

ANACIN-X measures non-determinism in executions through
a proxy metric such as the kernel distance between two
event graphs representing two distinct executions. For a full
description of the software and its settings and configurations,
see the software GitHub page [16] and research work of the
authors [10], [11].

Instructors can use the course module on their local clusters
or on one of two open-access, free of charge platforms:
Code Ocean [17] and Jetstream [18]. The GitHub version of
ANACIN-X [16] contains all the software and information to
install it on local clusters. A version of the ANACIN-X envi-
ronment is installed and made available to the community on
both platforms. Code Ocean is a platform for reproducibility
of software via version control of software and pre-built cloud
workstation environments. We created a training environment
that can be directly accessed through the Code Ocean online
portal [17]. Jetstream is a cloud-based computing environment
on which users can generate virtual machines to develop and
run software. We created a training image containing all of the
dependencies for ANACIN-X that can be directly searched via
the tag ANACIN-X once one logs into the XSEDE platform.

Instructors can use these features of ANACIN-X on all three
platforms:

• Number of MPI processes: Determines how many MPI
processes a communication pattern is generated across.
This feature is used for learning levels A, B, and C.

• Percentage of non-determinism: Determines how non-
deterministic a communication pattern is as a percentage
from 0% up to 100%. This feature is used for learning
levels A, B, and C.

• Number of compute nodes: Determines the number of
separate compute nodes a communication pattern is gen-
erated across. This feature is used for learning levels A,
B, and C.

• Number of communication pattern iterations: Determines
how many times a communication pattern appears during
an execution. This feature is used for learning levels B
and C.

The current version of ANACIN-X on Code Ocean and
Jetstream does not support multiple compute nodes because
of the platform constraints and the image setting respectively.
Multiple MPI processes can still be used on either system.

ANACIN-X comes packaged with three MPI-based mini-
applications with different communication patterns: (a) mes-
sage race, (b) Algebraic Multigrid (AMG) 2013 [19], and (c)
Unstructured Mesh [20]. A detailed understanding of these
communication patterns is not needed prior to starting the
course. Instructors should emphasize to their students how
the three mini-applications each have varying complexity in

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 16,2023 at 16:52:38 UTC from IEEE Xplore. Restrictions apply.

A. Beginner level
•Goal A.1: Introduce parallelism using the message passing paradigm
•Goal A.2: Define non-determinism associated to message passing

B. Intermediate level
•Goal B.1: Study effects of number of processes on non-determinism in applications
•Goal B.2: Study non-determinism across multiple iterations of the same code during the same application execution

C. Advanced level
•Goal C.1: Quantify the level of non-determinism in application’s executions
•Goal C.1: Identify root sources of non-determinism in applications

TABLE I: An outline of the learning objectives for each level of difficulty in this course module.

A. Beginner level
•A basic knowledge of MPI, in particular point-to-point MPI communication calls.
•A basic knowledge of graph theory, but not necessarily an in-depth understanding.

B. Intermediate level
•An understanding of non-determinism from the topics described by the beginner level.
•The ability to interpret violin plots.

C. Advanced level
•An understanding of what external factors impact the amount of non-determinism in an application from the intermediate level.
•The ability to understand C++ source code to identify functions causing non-determinism.

TABLE II: An outline of the prerequisite knowledge for each level of difficulty in this course module.

Fig. 1: An example of an event graph representation of an MPI communication pattern between three MPI processes. Nodes
of the graph represent MPI events (i.e., MPI Send() and MPI Recv()). Edges within a process represent logical precedence of
MPI events. Edges between processes represent point-to-point MPI messages.

their source code and represent well-known communication
patters in real applications [21]. Specifically, a message race
is when multiple messages are being sent to the same pro-
cess, and the order they will arrive in is unknown. It is
the simplest communication pattern of the three. AMG 2013
expands on the message race pattern by allowing each process
to send a message to all other processes. Each process in
an AMG 2013 pattern does this twice. Unstructured Mesh
expands further by randomizing which processes are allowed
to communicate with each other. Students can run tests on each
mini-application to compare how the application’s complexity
affects the amount of non-determinism and to identify code
functions that act as root sources of non-determinism (i.e.,
call-paths of MPI functions). See the research work of the
authors [11] for more details about each of the three commu-
nication patterns.

ANACIN-X provides users with these tools for visualiza-
tion:

• Event graph visualization: Displays the event graph which
corresponds to the communication pattern being exe-
cuted.

• Kernel distance visualization: A violin plot of the sample
of kernel distances calculated for the input MPI applica-
tion.

• Callstack visualization: A bar plot of the relative fre-

quency of call-paths of MPI functions during periods of
highly non-deterministic execution across the logical time
of an event graph.

The kernel distance visualization and the callstack visualiza-
tion can also be generated via a Jupyter Notebook packaged
with the software in the ANACIN-X GitHub.

C. Computational Requirements

The ANACIN-X software in GitHub is public under Apache
License 2.0. Students and instructors using Code Ocean for the
training need to create an account on the platform. Accounts
are free and should provide enough computational units to run
the ANACIN-X environment. Similarly, students and instruc-
tors using Jetstream must have an XSEDE account. Instructors
must acquire an educational allocation for the Jetstream cloud.
Once logged into Jetstream, students and instructors should
use the image that can be searched with the tag ANACIN-X.

When the training takes place on local HPC resources, there
are several requirements:

• The ability to clone the GitHub repository with the
software package, compile it, and run it on the local
cluster.

• Access to a computer with multiple processes. The largest
use cases referenced in this paper ran on a 32-process
cluster, but smaller clusters can generate similar results.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 16,2023 at 16:52:38 UTC from IEEE Xplore. Restrictions apply.

• Access to a computer with at least two compute nodes.

III. USE CASES TO UNDERSTAND NON-DETERMINISM

A. Use Case 1: Distributed Computing and Non-determinism

Students first gain an understanding of both message passing
and communication non-determinism. Specifically, students
at a beginner level should be able to answer the following
questions once they have completed Use Case 1:

• What is message passing in the context of an execution
(Goal A.1)

• What is non-determinism in the context of an execution
(Goal A.2)

When introducing the concepts of distributed computing and
non-determinism, it is very helpful to visualize the communi-
cation patterns of small applications. By doing so, students can
see what message passing and non-deterministic executions
look like.

1) Goal A.1: Introduce parallelism using the message pass-

ing paradigm: For students to satisfy Goal A.1, they must
understand two key concepts: (1) any process in an execution
can send a message to another process and (2) processes can
exchange messages using different communication patterns.
To develop the understanding of the first concept, students are
presented with multiple event graph visualizations correspond-
ing to different scenarios. For example, in Figure 2, multiple
processes send independent messages to a single receiving
process; in Figure 3, one process sends one message to another
process while receiving a second message from the other
process asynchronously. Each figure is generated by ANACIN-
X. In the figures, each row corresponds to a different MPI
rank (process). Green circles correspond to the start or end of
a process. Blue circles correspond to sending a message, and
red circles correspond to receiving a message. The students
are asked to describe the scenarios in each figure.

To develop the understanding of the second concept, stu-
dents are presented with the same set of figures but the em-
phasis is put on the different communication patterns. Figure 2,
for example, has three MPI processes, each sending a message
to the fourth process. This is an event graph visualization
of a message race communication pattern. Figure 3, on the
other hand, has two MPI processes each send a message to
the other. Afterward, each process sends a message back asyn-
chronously. This is a small-scale replication of the AMG 2013
communication pattern. The students are asked to reproduce
the scenarios in the two figures and further expand the type and
number of scenarios by running ANACIN-X with any number
of processes and selecting among the different communication
patterns supported by ANACIN-X.

2) Goal A.2: Define non-determinism associated to message

passing: To satisfy Goal A.2, students must be able to under-
stand that non-determinism is defined by inconsistent type and
order of messages exchanged between MPI processes across
runs of the same application execution. Therefore students are
first shown scenarios depicted in figures such as Figure 4a
and Figure 4b and then are asked to generate new scenarios

Fig. 2: Event graph visualization of a message race communi-
cation pattern on four MPI processes. Each row corresponds
to a different MPI rank (process). Green circles correspond
to the start or end of a process; blue circles correspond to
sending a message; and red circles correspond to receiving a
message.

Fig. 3: Event graph visualization of AMG 2013 communica-
tion pattern on 2 MPI processes. Each row corresponds to a
different MPI rank (process). Green circles correspond to the
start or end of a process; blue circles correspond to sending a
message; and red circles correspond to receiving a message.

using ANACIN-X. Both Figures 4a and Figure 4b are event
graphs like those in Figures 2 and 3. They both correspond
to the message race communication pattern. Instructors should
stress that both Figure 4a and Figure 4b are generated using
the same code with the same inputs but are the result of two
independent runs.

Students can observe that, despite being executed using
the same code and the same inputs, the runs from Figure 4a
and Figure 4b have different communication patterns. Specif-
ically, the messages sent by Process 1 and Process 2 do
not arrive at Process 0 in the same order. Students use this
example and other examples generated by ANACIN-X to
understand that non-determinism is when multiple executions
of the same code, run in the same way, produce different
communication patterns. The differences in communication
patterns are possible because the ANACIN-X environment is
set to mimic delays in individual messages due to network and
I/O congestion, or CPU contention, for example. Students can
define an average degree of delay by setting the environment’s
percentage of non-determinism. Figure 4a and Figure 4b were
generated by running ANACIN-X with four processes and
100% non-determinism. Tests to reproduce scenarios such as
those in Figures 4a and 4b should be run across multiple
compute nodes to increase the likelihood that runs are non-

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 16,2023 at 16:52:38 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Fig. 4: Two event graph visualizations run on the same
configuration of the message race communication pattern.
Different graphs correspond to two different non-deterministic
executions. Each row corresponds to a different MPI rank
(process). Green circles correspond to the start or end of a
process; blue circles correspond to sending a message; and
red circles correspond to receiving a message.

deterministic.

B. Use Case 2: Factors that Impact Non-determinism

Non-determinism can be difficult to reproduce [22]. In such
situations, developers and scientists need to know what factors
impact the amount of non-determinism present to make the
non-determinism more or less significant. For this reason,
intermediate students should be able to identify the factors.
Specifically, they should be able to answer the following
questions:

• What is the effect of increasing the number of MPI
processes used during execution? (Goal B.1)

• What is the effect of increasing the number of commu-
nication pattern iterations? (Goal B.2)

ANACIN-X provides the tools to explore these topics. Specif-
ically, students can take the following steps to investigate the
effects of different settings:

• Run the ANACIN-X software on the mini-applications
provided with the software to gather data on a setting.

• Adjust the simulation settings to change either the num-
ber of MPI processes or the number of communication
pattern iterations.

• Run the same application many times to collect a sample
of non-deterministic executions.

• Visualize the amount of non-determinism across the exe-
cutions to compare the amount of non-determinism across
the different settings.

We demonstrate how using ANACIN-X with these steps
teaches students about the factors that impact non-
determinism.

1) Goal B.1: Study Effects of Number of Processes: To
satisfy Goal B.1, students must know that the number of MPI
processes in a simulation is directly related with the amount
of non-determinism in the simulation: increasing the number
of processes will increase the amount of non-determinism,
and vice versa. To this end, students are shown figures of
the same type as Figure 5a and Figure 5b. Each figure is a
violin plot across 20 data points that displays the measured
amount of non-determinism within the communication pattern
at the setting along the X-axis. We use the Unstructured Mesh
communication pattern for these two figures, but other patterns
are available in ANACIN-X. The simulation used to generate
Figure 5a was run on 32 MPI processes; the simulation used
in Figure 5b was generated in the same way as Figure 5a but
by changing the number of MPI processes to 16.

(a) 32 MPI Processes (b) 16 MPI Processes

Fig. 5: Kernel distances for 20 executions of the Unstructured
Mesh mini-application. The executions in (a) are performed
on 32 MPI processes; and the executions in (b) are performed
on 16 MPI processes. The kernel distance is a proxy for
non-determinism: the higher, the more non-deterministic the
execution.

Students will use Figures like Figure 5 to observe that
the number of processes and the amount of non-determinism
are directly related in the Unstructured Mesh simulation.
ANACIN-X should be run with 100% non-determinism to
reproduce these results. Similar results can be produced using
the other two communication pattern benchmarks packaged
with ANACIN-X. As an assignment, students should run
ANACIN-X with similar settings on the other benchmarks
to gain more familiarity with this concept. By understanding
this concept, the student will know to increase the number of
processes in their simulations to help reveal non-determinism
when it is difficult to reproduce.

2) Goal B.2: Study Non-determinism across Iterations:

Scientific applications often consist of the iterative execution
of the same software code. These iterations during the same
application execution exhibit non-determinism that is easy to

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 16,2023 at 16:52:38 UTC from IEEE Xplore. Restrictions apply.

identify. To satisfy Goal B.2, students should be able to link the
iterations of an application execution to the amount of non-
determinism in the application. Students are shown a set of
figures of the same type as Figures 6a and 6b, which capture
this property. The Unstructured Mesh benchmark application
is used to generate the data from both of these two figures.
The applications used to generate the data in each figure
were run on 16 MPI processes. Figure 6a was generated
by executing the same Unstructured Mesh pattern with two
iterations across those 16 processes, whereas Figure 6b was
generated by only executing the Unstructured Mesh pattern
with one iteration across the processes. We generate 20 data
points (i.e., application runs) for each figure to improve the
statistical significance of the results. Students can use figures

(a) 2 Iterations (b) 1 Iteration

Fig. 6: Kernel distances for 20 executions of the Unstructured
Mesh mini-application. The executions in (a) are performed
with two iterations of the core application code; and the
executions in (b) are performed with single iterations of the
core application code. The kernel distance is a proxy for
non-determinism: the higher, the more non-deterministic the
execution.

such as Figure 6 to discover if there is a link between iterations
and amount of non-determinism in their application. For this
test, ANACIN-X should be run with 100% non-determinism
to produce results with significant non-determinism across
iterations. These tests enable students to understand how, in
applications exhibiting non-determinism, by increasing the
number of iterations in their application, they may accumulate
substantial differences in the numerical results and ultimately
different scientific findings, as shown in [3] .

C. Use Case 3: Root Sources of Non-determinism

Last, a course on non-determinism should train students
to identify potential root sources of non-determinism in their
code: functions within code that can produce non-deterministic
communication patterns. To this end, advanced students should
be able to answer the following questions at an advanced level
of understanding in non-determinism:

• How do root sources of non-determinism impact the
amount of non-determinism? (Goal C.1)

• How can ANACIN-X be used to identify root sources of
non-determinism? (Goal C.2)

For each of the advanced level goals, we show approaches to
answer the questions by using the AMG2013 mini-application
and its communication patterns. Students should continue their

exploration of the topics by demonstrating their understanding
of each educational objective on the other mini-application
communication patterns packaged with ANACIN-X and fur-
ther extend the approach for other applications.

1) Goal C.1: Quantify Amount of Non-determinism in Exe-

cutions: Root sources of non-determinism are embedded in an
application’s code. The access to an application’s code is not
always guaranteed; when available, the code may be very com-
plex to parse and understand. To demonstrate understanding of
Goal C.1, students should be able to explain that root sources
of non-determinism can be used to directly control the amount
of non-determinism in an application. Figure 7 is an example
of results from running the AMG 2013 non-deterministic mini-
application in the ANACIN-X environment, without parsing
the code. The X-axis corresponds to the actual percentage
of non-determinism present within the application. The Y-
axis corresponds to the measured (un-normalized) amount of
non-determinism. The actual percentage of non-determinism
is defined during communication pattern generation as the
percentage of messages that can suffer from congestion or con-
tention delays and thus exhibit a non-deterministic arrival pat-
tern. For the benchmark patterns packaged within ANACIN-
X, the ability to set the percentage of non-determinism is
provided as an option to users through the inputs of ANACIN-
X. The measured amount of non-determinism corresponds to
the kernel distance across executions. We collect 20 data points
(i.e., application runs) for each percentage of non-determinism
to improve the statistical significance of the measurements.
Using figures such as Figure 7, students can quantify the
amount of non-determinism within one execution and demon-
strate whether such an amount is directly related to the actual
percentage of non-determinism for a given application. That
is, by changing the percentage of non-determinism present
in the usage of the code’s functions (i.e., the root source
of non-determinism), one can directly control the amount of
non-determinism present in the execution of the code. The
results in Figure 7 were generated using 32 MPI processes
and percentages of non-determinism ranging from 0% up to
100% at intervals of 10%. In addition, only one compute node
and one communication pattern iteration were used to generate
the results.

2) Goal C.2: Use ANACIN-X to Identify Root Sources of

Non-determinism: It is not straightforward to control the
amount of non-determinism within an application when the
root source of that non-determinism is not already known and
is embedded in the called system functions. For this reason,
students should learn how to identify likely root sources
of non-determinism in their code. We propose an example
in which we use ANACIN-X to identify non-determinism
root sources within executions such as the AMG2013 mini-
application in Figure 8. The ANACIN-X environment iden-
tifies the callstacks in the application and measures their
frequency. In the figure, the X-axis corresponds to the list
of callstacks in the application’s run that were identified as
taking place during high periods of non-determinism. The Y-
axis corresponds to the normalized relative frequency of the

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 16,2023 at 16:52:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Kernel distance visualization of the AMG2013 mini-application and its communication pattern on 32 MPI processes.
We vary the percentage of non-determinism from 0% up to 100% at increments of 10%. Simulation is made using 1 compute
node, 1 communication pattern iteration, and message sizes of 1 byte.

identified callstacks as they appear in an execution’s event
graph. Students use the figure to observe which MPI functions
were identified in regions of high amounts of non-determinism.
These functions are likely root sources of non-determinism
because MPI functions that take place during periods of high
non-determinism are likely related to the non-determinism.
Students can extend the ANACIN-X environment to support
their own application: to determine where in their code they
should look to manage their non-determinism by locating the
callstack functions associated to the high non-determinism.
Using the skills gained by identifying root sources of non-
determinism, students can understand the non-determinism
within their own codes.

IV. RELATED WORK

A recent report [2] highlights the need for developers
and scientists to gain understanding and control of non-
determinism when identifying non-deterministic bugs in HPC
software. One debugging case study [22] reported more than
10,000 hours of compute time spent manually locating a
non-deterministic bug in version 2.10.1 of the HYPRE linear
algebra package [23]. Another study on replicability of results
in computational science [3] demonstrates inconsistent results
across multiple runs of the Enzo astrophysics software [6] due
to non-determinism.

In addition to ANACIN-X, some other tools have been
developed to help developers understand and control non-
determinism. Record and replay tools [7] like ReMPI [24] sup-
press non-determinism to temporarily improve reproducibil-
ity of results. Tools for crash detection like PopMine [9]
identify causes of software crashes, including those in non-
deterministic applications, but it is ineffective when the non-
deterministic bug does not cause a software crash. Tools for

motif detection like SABALAN [8] learn a model of commu-
nication pattern motifs that produce non-determinism. Here,
we use the tools within ANACIN-X because it can evaluate
root sources of non-determinism in non-crashing applications
without being limited by motifs and because it can visualize
multiple aspects of non-determinism.

V. CONCLUSION

The ANACIN-X software package is used to design a
research-based course module on three levels of understand-
ing in non-determinism: (1) what non-determinism is; (2)
what factors impact the amount of non-determinism in an
application; and (3) how to identify the root causes of non-
determinism. We select ANACIN-X as the software to teach
these topics because it can produce visualizations of commu-
nication pattern event graphs, measurements of the amount of
non-determinism in an application, and functions within code
that likely have an impact on the amount of non-determinism.
ANACIN-X can be used to teach undergraduate and graduate
students in computer science, software developers of HPC
codes, and scientists working in HPC; the course module can
be used as part of a parallel computing course or as a half-
day tutorial. We will extend ANACIN-X in future work to
support communication patterns beyond the one-to-one MPI
communication calls currently supported, including collective
MPI operations.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grant 1900888 and Grant 1900765. The au-
thors acknowledge IBM through a Shared University Research
Award. Results generated in part with support of the Tellico

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 16,2023 at 16:52:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Callstack visualization for the AMG2013 mini-application and its communication pattern. The settings are the same as
in Figure 7

cluster computer and the XSEDE computational resources
Stampede2 cluster computer and Jetstream cloud computer.

REFERENCES

[1] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and
N. Sultana, “A Large-scale Study of MPI Usage in Open-source HPC
Applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–14.

[2] G. Gopalakrishnan, P. D. Hovland, C. Iancu, S. Krishnamoorthy, I. La-
guna, R. A. Lethin, K. Sen, S. F. Siegel, and A. Solar-Lezama, “Report
of the HPC Correctness Summit, Jan 25–26, 2017, Washington, DC,”
arXiv preprint arXiv:1705.07478, 2017.

[3] V. Stodden and M. S. Krafczyk, “Assessing Reproducibility: An Astro-
physical Example of Computational Uncertainty in the HPC Context,”
in Proceedings of the 1st Workshop on Reproducible, Customizable and
Portable Workflows for HPC at SC’18, 2018.

[4] D. Chapp, T. Johnston, and M. Taufer, “On the Need for Reproducible
Numerical Accuracy through Intelligent Runtime Selection of Reduction
Algorithms at the Extreme Scale,” in Proceedings of the 2015 IEEE
International Conference on Cluster Computing (CLUSTER). Chicago,
IL, USA: IEEE Computer Society, September 8 – 11 2015, pp. 166–175.

[5] M. Taufer, O. Padron, P. Saponaro, and S. Patel, “Improving Numerical
Reproducibility and Stability in Large-Scale Numerical Simulations on
GPUs,” in Proceedings of the 24th IEEE International Symposium on
Parallel and Distributed Processing (IPDPS). Atlanta, Georgia, USA:
IEEE Computer Society, 19-23 April 2010, pp. 1–9.

[6] G. L. Bryan, M. L. Norman, B. W. O’Shea, T. Abel, J. H. Wise, M. J.
Turk, D. R. Reynolds, D. C. Collins, P. Wang, S. W. Skillman et al.,
“Enzo: An Adaptive Mesh Refinement Code For astrophysics,” The
Astrophysical Journal Supplement Series, vol. 211, no. 2, p. 19, 2014.

[7] D. Chapp, K. Sato, D. H. Ahn, and M. Taufer, “Record-and-Replay
Techniques for HPC Systems: A Survey,” Supercomput. Front. Innov.:
Int. J., vol. 5, no. 1, p. 11–30, mar 2018. [Online]. Available:
https://doi.org/10.14529/jsfi180102

[8] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Inferring Hierarchical
Motifs from Execution Traces,” in Proceedings of the 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 776–787.

[9] E. Seo, M. M. H. Khan, P. Mohapatra, J. Han, and T. F. Abdelzaher,
“Exposing Complex Bug-Triggering Conditions in Distributed Systems
via Graph Mining,” in Proceedings of the International Conference on
Parallel Processing, ICPP 2011, Taipei, Taiwan, September 13-16, 2011,
2011, pp. 186–195.

[10] P. Bell, K. Suarez, D. Chapp, N. Tan, S. Bhowmick,
and M. Taufer, “ANACIN-X: A Software Framework for
Studying Non-determinism in MPI Applications,” Software
Impacts, vol. 10, p. 100151, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2665963821000634

[11] D. Chapp, N. Tan, S. Bhowmick, and M. Taufer, “Identifying Degree and
Sources of Non-Determinism in MPI Applications Via Graph Kernels,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 12,
pp. 2936–2952, 2021.

[12] C. T. Vaughan and R. F. Barrett, “Enabling Tractable Exploration of the
Performance of Adaptive Mesh Refinement,” in Proceedings of 2015
IEEE International Conference on Cluster Computing. IEEE, 2015,
pp. 746–752.

[13] N. Gentile and B. Miller, “Monte Carlo Benchmark (MCB),”
https://computing.llnl.gov/projects/co-design/mcb, LLNL-CODE-
507091.

[14] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph Kernels,” Journal of Machine Learning Research,
vol. 11, no. Apr, pp. 1201–1242, 2010.

[15] N. M. Kriege, F. D. Johansson, and C. Morris, “A Survey on Graph
Kernels,” Applied Network Science, vol. 5, no. 1, pp. 1–42, 2020.

[16] D. Chapp, P. Bell, K. Suarez, S. Bhowmick, and M. Taufer, “ANACIN-
X: Analysis and Modeling of Nondeterminism and Associated Costs
in eXtreme Scale Applications,” https://github.com/TauferLab/ANACIN-
X,.

[17] P. Bell, D. Chapp, K. Suarez, N. Tan, S. Bhowmick, and
M. Taufer, “ANACIN-X: Analysis and modeling of Nondeter-
minism and Associated Costs in eXtreme scale applications,”
https://codeocean.com/capsule/0309009/tree/v4.

[18] N. Tan, P. Bell, S. Bhowmick, and M. Taufer, “Ubuntu20.04 Anacin-X,”
https://use.jetstream-cloud.org/application/images/1056.

[19] J. Park, M. Smelyanskiy, U. M. Yang, D. Mudigere, and P. Dubey,
“High-performance Algebraic Multigrid Solver Optimized for Multi-
core based Distributed Parallel Systems,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1–12.

[20] N. Jain and A. Bhatele, “Chatterbug Communication Proxy Applications
Suite,” https://github.com/LLNL/chatterbug, LLNL-CODE-756471.

[21] F. Cappello, A. Guermouche, and M. Snir, “On Communication Deter-
minism in Parallel HPC Applications,” in Proceedings of 19th Interna-
tional Conference on Computer Communications and Networks 2010.
IEEE, 2010, pp. 1–8.

[22] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, M. Schulz, and C. M. Cham-
breau, “Noise Injection Techniques to Expose Subtle and Unintended
Message Races,” in Proceedings of the 22Nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2017, pp. 89–101.

[23] R. D. Falgout and U. M. Yang, “HYPRE: A library of high performance
preconditioners,” in Proceedings of the International Conference on
Computational Science. Springer, 2002, pp. 632–641.

[24] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, and M. Schulz, “Clock Delta
Compression for Scalable Order-replay of Non-deterministic Parallel
Applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015, pp.
1–12.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 16,2023 at 16:52:38 UTC from IEEE Xplore. Restrictions apply.

