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Abstract
Underdamped Langevin Monte Carlo (ULMC) is an algorithm used to sample from unnormalized
densities by leveraging the momentum of a particle moving in a potential well. We provide a novel
analysis of ULMC, motivated by two central questions: (1) Can we obtain improved sampling
guarantees beyond strong log-concavity? (2) Can we improve the condition number dependence in
sampling?

For (1), prior results for ULMC only hold under a log-Sobolev inequality together with a
restrictive Hessian smoothness condition. Here, we relax these assumptions by removing the Hessian
smoothness condition and by considering distributions satisfying a Poincaré inequality. Our analysis
achieves the state of art dimension dependence, and is also flexible enough to handle weakly smooth
potentials. As a byproduct, we also obtain the first KL divergence guarantees for ULMC without
Hessian smoothness under strong log-concavity, which is based on a new result on the log-Sobolev
constant along the underdamped Langevin diffusion.

For (2), the recent breakthrough of Cao, Lu, and Wang (2020) established the first accelerated
result for the underdamped Langevin diffusion in continuous time via PDE methods. Our dis-
cretization analysis translates their result into an algorithmic guarantee, which indeed enjoys better
condition number dependence than prior works on ULMC, although we leave open the question of
full acceleration in discrete time.

Both (1) and (2) necessitate Rényi discretization bounds, which are more challenging than
the typically used Wasserstein coupling arguments. We address this using a flexible discretization
analysis based on Girsanov’s theorem that easily extends to more general settings.
Keywords: Girsanov’s theorem, log-Sobolev inequality, Poincaré inequality, Rényi divergence,
underdamped Langevin Monte Carlo
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1. Introduction

The problem of sampling from a high-dimensional distribution ⇡ / exp(�U) on Rd, when the
normalizing constant is unknown and only the potential U is given, has increasing relevancy in a
number of application domains, including economics, physics, and scientific computing (Johannes
and Polson, 2010; Von Toussaint, 2011; Kobyzev et al., 2020). Recent progress on this problem has
been driven by a strong connection with the field of optimization, starting from the seminal work
of Jordan et al. (1998); see Chewi (2023) for an exposition.

Given the success of momentum-based algorithms for optimization (Nesterov, 1983), it is natural
to investigate momentum-based algorithms for sampling. The hope is that such methods can improve
the dependence of the convergence estimates on key problem parameters, such as the condition
number , the dimension d, and the error tolerance ". One such method is underdamped Langevin
Monte Carlo (ULMC), which is a discretization of the underdamped Langevin diffusion (ULD):

dxt = vt dt ,

dvt = ��vt dt�rU(xt) dt+
p
2� dBt ,

(ULD)

where {Bt}t�0 is the standard d-dimensional Brownian motion. The stationary distribution of ULD
is µ(x, v) / exp(�U(x) � kvk2/2), and in particular, the x-marginal of µ is the desired target
distribution ⇡. Therefore, by taking a small step size for the discretization and a large number of
iterations, ULMC will yield an approximate sample from ⇡.

We also note that in the limiting case where � = 0, ULMC closely resembles the Hamiltonian
Monte Carlo algorithm, which is known to achieve better condition number dependence and dis-
cretization error in some limited settings (Vishnoi, 2021; Apers et al., 2022; Bou-Rabee and Marsden,
2022; Wang and Wibisono, 2022).

While there is currently no analysis of ULMC that yields acceleration for sampling (i.e., square
root dependence on the condition number ), ULMC is known to improve the dependence on other
parameters such as the dimension d and the error tolerance " (Cheng et al., 2018a,b; Dalalyan and
Riou-Durand, 2020), at least for guarantees in the Wasserstein metric. However, compared to the
extensive literature on the simpler (overdamped) Langevin Monte Carlo (LMC) algorithm, existing
analyses of ULMC are not easily extended to stronger performance metrics such as the KL and Rényi
divergences. In turn, this limits the scope of the results for ULMC; see the discussion in Section 1.1.

In light of these shortcomings, in this work, we ask the following two questions:

1. Can we obtain sampling guarantees beyond the strongly log-concave case via ULMC?

2. Can we obtain better condition number dependence for sampling via ULMC?

1.1. Our Contributions

We address the two questions above by providing a new Girsanov discretization bound for ULMC.
Our bound holds in the strong Rényi divergence metric and applies under general assumptions (in
particular, it does not require strong log-concavity of the target ⇡, and it allows for weakly smooth
potentials). Consequently, it leads to the following new state-of-the-art results for ULMC:

• We obtain an "2-guarantee in KL divergence with iteration complexity eO(3/2d1/2"�1) for
strongly log-concave and log-smooth distributions, which removes the Lipschitz Hessian
assumption of Ma et al. (2021); here,  is the condition number of the distribution.
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• We obtain an "-guarantee in TV distance with iteration complexity eO(C3/2
LSI

L3/2d1/2"�1) under
a log-Sobolev inequality (LSI) and L-smooth potential, again without assuming a Lipschitz
Hessian. This is the state-of-the-art guarantee for this class of distributions with regards to
dimension dependence.

• We obtain "2-guarantees in the stronger Rényi divergence metric of any order in [1, 2) with
iteration complexity eO(C3/2

PI
L3/2 d2"�1) under a Poincaré inequality and a L-smooth potential,

which improves to eO(CPILd2"�1) under log-concavity. These are the first guarantees for
ULMC known in these settings, and they substantially improve upon the corresponding results
for LMC in these settings (Chewi et al., 2021).

• In the Poincaré case, we also consider weakly smooth potentials (i.e., Hölder continuous
gradients with coefficient s 2 (0, 1]), which more realistically reflect the delicate smoothness
properties of distributions satisfying a Poincaré inequality.

We now discuss our results in more detail in the context of the existing literature.

Guarantees under Weaker Assumptions. Prior works, Cheng et al. (2018b); Dalalyan and Riou-
Durand (2020); Ganesh and Talwar (2020), require strong log-concavity of the target. Whereas for
works which operate under isoperimetric assumptions, we are only aware of Ma et al. (2021), which
further assumes a restrictive Lipschitz Hessian condition for the potential. In contrast, we make no
such assumption on the Hessian of U , and we obtain results under a log-Sobolev inequality (LSI),
or under the even weaker assumption of a Poincaré inequality (PI), for which sampling analysis is
known to be challenging (Chewi et al., 2021).

As noted above, our result for sampling from distributions satisfying LSI and smoothness
assumptions are state-of-the-art with regards to the dimension dependence (d1/2); in contrast, the
previous best results had linear dependence on d (Chewi et al., 2021; Chen et al., 2022). Moreover,
in the Poincaré case, we can also consider weakly smooth potentials, which have not been previously
considered in the context of ULMC.

Guarantees in Stronger Metrics. Key to achieving these results is our discretization analysis in
the Rényi divergence metric. Indeed, the continuous-time convergence results for ULD under LSI
or PI hold in the KL or Rényi divergence metrics, and translating these guarantees to the ULMC
algorithm necessitates studying the discretization in Rényi. This is the main technical challenge, as
we can no longer rely on Wasserstein coupling arguments which are standard in the literature (Cheng
et al., 2018b; Dalalyan and Riou-Durand, 2020). Two notable exceptions are the Rényi discretization
argument of Ganesh and Talwar (2020), which incurs suboptimal dependence on ", and the KL
divergence argument of Ma et al. (2021), which requires stringent smoothness assumptions.

In this work, we provide the first KL divergence guarantee for sampling from strongly log-
concave and log-smooth distributions via ULMC without Hessian smoothness, based on a new LSI
along the trajectory (discussed further below).

Condition Number Dependence in Sampling. Our work is also motivated by the breakthrough
result of Cao et al. (2020), which achieves for the first time an accelerated convergence guarantee for
ULD in continuous time. Our discretization bound allows us to convert this result into an algorithmic
guarantee which indeed improves the dependence on the condition number 1 for ULMC: whereas

1. In the Poincaré case, the condition number is  := CPIL, which is consistent with the definition in the strongly
log-concave case.
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prior results incurred a dependence of at least 3/2, our dependence is linear in  in the log-concave
case. While this falls short of proving full acceleration for sampling (i.e., an improvement to 1/2),
our result is a significant step in improving the known condition number dependence in sampling.

A New Log-Sobolev Inequality along the ULD Trajectory. Finally, en route to proving the KL
divergence guarantee in the strongly log-concave case, we establish a new log-Sobolev inequality
along ULD (Proposition 10), which is of independent interest. While such a result was previously
known for the overdamped Langevin diffusion, to the best of our knowledge it is new for the
underdamped Langevin diffusion.

This result is then applied to our discretization analysis, which is done using Girsanov’s Theorem.
While such a technique has been seen before in sampling (Ganesh and Talwar, 2020; Chewi et al.,
2021), the application in the underdamped case is by no means straightforward. This requires
two technical novelties: (i) the aforementioned LSI for the iterates along the trajectory, and (ii) a
sub-Gaussian tail bound along the ULMC iterates, established via a matrix Grönwall inequality.

1.2. More Related Work

Langevin Monte Carlo. The study of non-asymptotic convergence guarantees for the standard
LMC algorithm has a long history (Dalalyan and Tsybakov, 2012; Durmus and Moulines, 2017;
Dalalyan, 2017). Guarantees in KL divergence under a log-Sobolev inequality were obtained by
Vempala and Wibisono (2019), which developed an appealing continuous-time framework for
analyzing LMC under functional inequalities. With some difficulty, this result was extended to Rényi
divergences by Ganesh and Talwar (2020); Erdogdu et al. (2022). At the same time, a body of
literature studied convergence in KL divergence under tail-growth conditions such as dissipativity
(Raginsky et al., 2017; Erdogdu and Hosseinzadeh, 2021; Mou et al., 2022), which usually imply
functional inequalities.

Most related to the current work, Chewi et al. (2021) extended the continuous-time approach from
Vempala and Wibisono (2019) to Rényi divergences, and moreover introduced a novel discretization
analysis using Girsanov’s theorem, which also holds for weakly smooth potentials. The present work
builds upon the Girsanov techniques introduced in Chewi et al. (2021) to study ULMC.

Underdamped Langevin Diffusion. ULMC is a discretization of the underdamped Langevin
diffusion (ULD). First studied by Kolmogorov (1934) and Hörmander (1967) in their pioneering
works on hypoellipticity, it was quickly understood that establishing quantitative convergence to
stationarity is technically challenging, let alone capturing any acceleration phenomenon. The seminal
work of Villani (2002, 2009) developed the hypocoercivity approach, providing the first convergence
guarantees under functional inequalities; see also (Hérau, 2006; Dolbeault et al., 2009, 2015; Roussel
and Stoltz, 2018). We also refer to Bernard et al. (2022) and references therein for a comprehensive
discussion of qualitative and quantitative convergence results for ULD.

As mentioned earlier, the most recent breakthrough by Cao et al. (2020) achieved acceleration
in continuous time in �2-divergence when the target distribution ⇡ is log-concave. This work was
built on an approach using the dual Sobolev space H�1 (Albritton et al., 2019). However, since
this method relies on the duality of the L2 space and its connections to the Poincaré inequality, it is
difficult to extend to Lp spaces or to other functional inequalities.

Other Discretizations. Many alternative discretization schemes have since been proposed in this
setting (Shen and Lee, 2019; Foster et al., 2021; Monmarché, 2021; Foster et al., 2022; Johnston
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et al., 2023), albeit all of the analyses up to this point were limited to W2 distance and did not
achieve acceleration in terms of the condition number . Other works which cover momentum-based
methods include Zou et al. (2019); Gao et al. (2022), although their regimes are quite different from
our own.

1.3. Organization

The remainder of this paper will be organized as follows. In Section 2, we will review the required
definitions and assumptions. In Section 3, we will state our main results and briefly sketch their
proofs. In Section 4, we highlight several implications of our theorems through some examples. In
Section 5, we briefly sketch the proofs of our main results, before concluding in Section 6 with a
discussion of future directions.

2. Background

2.1. Notation

Hereafter, we will use k·k to denote the 2-norm on vectors. In general, we will only work with
measures that admit densities on Rd, and we will abuse notation slightly to conflate a measure with
its density for convenience. The notation a = O(b) signifies that there exists an absolute constant
C > 0 such that a  Cb, and eO(·) hides logarithmic factors. Similarly we write a = ⇥(b) if
there exist constants c, C > 0 such that cb  a  Cb, and e⇥(·) hides logarithmic factors. The
stationary measure (in the position coordinate) is ⇡ / exp(�U), and U will be referred to as the
potential. We will use L2(⇡) to denote test functions f where E⇡ f2 < 1, and H1(⇡) to denote
weakly differentiable L2(⇡) functions where @xif 2 L2(⇡). Finally, the notations ., &, ⇣ represent
, �, = up to absolute constants. Further notations are introduced in subsequent sections.

2.2. Definitions and Assumptions

In this subsection, we will define the relevant processes, divergences, and isoperimetric inequalities.
Firstly, we define the ULMC algorithm by the following stochastic differential equation (SDE):

dxt = vt dt ,

dvt = ��vt dt+rU(xkh) dt+
p
2� dBt ,

(ULMC)

where t 2 [kh, (k + 1)h) for some step size h > 0. We note this formulation of ULMC can be
integrated in closed form (see Appendix A).

Next, we define a few measures of distance between two probability distributions µ and ⇡ on Rd.
We define the total variation distance as

kµ� ⇡kTV := sup |µ(A)� ⇡(A)| , (2.1)

where the sup is taken over Borel measurable sets A ⇢ Rd. We further define the KL divergence as

KL(µ k ⇡) :=
Z

dµ

d⇡
log

dµ

d⇡
d⇡ , (2.2)
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and KL(µ k ⇡) := +1 if µ is not absolutely continuous with respect to ⇡. Finally, we define the
Rényi divergence with order q > 1 as

Rq(µ k ⇡) := 1

q � 1
log

Z ���
dµ

d⇡

���
q

d⇡ ,

and similarly Rq(µ k⇡) := +1 if µ 6⌧ ⇡. The Rényi divergence upper bounds KL for all orders, i.e.,
KL(µ k ⇡)  Rq(µ k ⇡) for any order q > 1, and Rq is monotonic in q. In particular, when q = 2,
we also get �2 divergence, i.e., �2(µ k ⇡) = exp(R2(µ k ⇡))� 1.

Our primary results are provided under the following smoothness conditions.

Definition 1 (Smoothness) The potential U is (L, s)-weakly smooth if U is differentiable and rU
is s-Hölder continuous satisfying

krU(x)�rU(y)k  L kx� yks , (2.3)

for all x, y 2 Rd and some L � 0, s 2 (0, 1]. In the particular case where s = 1, we say that the
potential is L-smooth, or that rU is L-Lipschitz.

We conduct three lines of analysis. The first assumes strong convexity of the potential, i.e.:

Definition 2 (Strong Convexity) The potential U is m-strongly convex for some m � 0 if for all
x, y 2 Rd:

hrU(x)�rU(y), x� yi � m

2
kx� yk2 .

In the case m = 0 above, we say that U is convex. If a potential function U is (strongly) convex,
then we say the distribution ⇡ / exp(�U) is (strongly) log-concave.

A second, strictly more general assumption is the log-Sobolev inequality.

Definition 3 (Log-Sobolev Inequality) A measure ⇡ satisfies a log-Sobolev inequality (LSI) with
parameter CLSI > 0 if for all g 2 H1(⇡) :

ent⇡(g
2)  2CLSI E⇡[krgk2] , (LSI)

where ent⇡(g2) := E⇡[g2 log(g2/E⇡[g2])].

An m-strongly convex potential is known to satisfy (LSI) with constant m�1 (Bakry et al., 2014).
More generally, we can consider the following weaker isoperimetric inequality, which corresponds
to a linearization of (LSI).

Definition 4 (Poincaré Inequality) A measure ⇡ satisfies a Poincaré inequality with parameter
CPI > 0 if for all g 2 H1(⇡) :

var⇡(g)  CPI E⇡[krgk2] , (PI)

where var⇡(g) = E⇡[|g � E⇡[g]|2].
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Conditions (LSI) and (PI) are standard assumptions made on the stationary distribution in the theory
of Markov diffusions as well as sampling (Bakry et al., 2014; Vempala and Wibisono, 2019; Chewi
et al., 2021; Chewi, 2023). They are known to be satisfied by a broad class of targets such as
log-concave distributions or certain mixture distributions (Chen, 2021; Chen et al., 2021).

We define the condition number for an m-strongly log-concave target with (L, s)-weakly smooth
potential as  := L/m. In the case where instead of strong convexity, the target only satisfies (LSI)
(respectively (PI)), the condition number is instead  := CLSIL (respectively  := CPIL).

Finally, we collect several mild assumptions to simplify computing the bounds below, which
have also appeared in prior work; see in particular the discussion in Chewi et al. (2021, Appendix A).

Assumption 1 The expectation of the norm (in the position coordinate) is quantitatively bounded
by some constant, E⇡[k·k]  m = eO(d)2, for some constant m < 1. Furthermore, we assume that
rU(0) = 0 (without loss of generality), and that U(0)�minU = eO(d).

Remark On an intuitive level, Assumption 1 asks for bounds on the noncentral moment, whereas
isoperimetric inequalities only imply bounds on the central moments. For instance, one can construct
a sub-Gaussian target centered at some parameter ✓ with k✓k ⇣ d2, which would satisfy (LSI) but
not Assumption 1.

3. Main Theorems

In the sequel, we always take the initial distribution of the momentum ⇢0 to be equal to the stationary
distribution ⇢ / exp(�k·k2/2). Then, under Assumption 1 we can find an initial distribution ⇡0 for
the position which is a centered Gaussian with variance specified in Appendix D, such that ⇡0 has
some appropriately bounded initial divergence (e.g. KL,Rq) with respect to ⇡. Lastly, we initialize
ULMC by sampling from the distribution µ0(x, v) = ⇡0(x)⇥ ⇢0(v), i.e. with x and v independent.

3.1. Convergence in KL and TV

In order to state our results for ULMC in KL and TV, we leverage the following result in continuous-
time from Ma et al. (2021), which relies on an entropic hypocoercivity argument, after a time-change
of the coordinates (see Appendix B.1 for a proof).

Lemma 5 (Adapted from Ma et al. (2021, Proposition 1)) Define the Lyapunov functional

F(µ0 k µ) := KL(µ0 k µ) + Eµ0
⇥��M1/2r log

µ0

µ

��2⇤ , where M =

"
1
4L

1p
2L

1p
2L

4

#
⌦ Id . (3.1)

For targets ⇡ that are L-smooth and satisfy (LSI) with parameter CLSI, let � = 2
p
2L. Then the law

µt of ULD satisfies

@tF(µt k µ)  � 1

10CLSI

p
2L

F(µt k µ) .

We now proceed to state our main results more precisely. First, we obtain the following KL
divergence guarantee under strong log-concavity and smoothness.

2. This holds for instance when U(x) = kxk↵ for 1  ↵  2.
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Theorem 6 (Convergence in KL under Strong Log-Concavity) Let the potential U be m-strongly
convex and L-smooth, and additionally satisfy Assumption 1. Then, for

h = e⇥
⇣"m1/2

Ld1/2

⌘
and � ⇣

p
L,

the following holds for µ̂Nh, the law of the N -th iterate of ULMC initialized at a centered Gaussian
(with variance specified in Appendix D):

KL(µ̂Nh k µ)  "2 after N = e⇥
⇣3/2 d1/2

"

⌘
iterations .

Here, we justify the choice of error tolerance for KL to be "2. Based on Pinsker’s and Talagrand’s
transport inequalities, we know KL is on the order of TV2,W2

2 . Hence, this allows for a fair
comparison of convergence guarantees in terms of KL with TV and W2. Weakening the strong
convexity assumption to (LSI), we obtain a result in TV.

Theorem 7 (Convergence in TV under (LSI)) Let the potential be L-smooth, satisfy (LSI) with
constant CLSI, and satisfy Assumption 1. Then, for

h = e⇥
⇣ "

C1/2
LSI

Ld1/2

⌘
, and � ⇣

p
L,

the following holds for µ̂Nh, the law of the N -th iterate of ULMC initialized at a centered Gaussian
(with variance specified in Appendix D):

kµ̂Nh � µkTV  " after N = e⇥
⇣C3/2

LSI
L3/2 d1/2

"

⌘
iterations .

3.2. Convergence in Rq and Improving the Condition Number 

To state our convergence results in Rq, we additionally inherit the following technical assumption
from Cao et al. (2020).

Assumption 2 H1(µ) ,! L2(µ) is a compact embedding. Secondly, assume that U is twice
continuously differentiable, and that for all x 2 Rd, we have

kr2U(x)k  L (1 + krU(x)k) .

Remark Hooton (1981, Theorem 3.1) shows the first part of this assumption is always satisfied if
the potential has super-linear tail growth, i.e. U(x) / kxk↵ for ↵ > 1 and large kxk. In the case
where the tail is strictly linear, we can instead construct an arbitrarily close approximation with
super-linear tails; thus, it generically holds for all targets we consider in this work. As also remarked
in Cao et al. (2020), the above assumption is required solely due to technical reasons and is likely
not a necessary condition.

The second part of the assumption is satisfied under L-smoothness of the gradient with the same
constant. In the convex case or the case where r2U is lower bounded, the constant L does not show
up in the bounds. As a result, for weakly smooth potentials in this setting, we can approximate using
twice differentiable potentials to obtain a rate estimate.
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In the light of the above discussion, we emphasize that this additional assumption largely does
not hinder the applicability of our results. Under this assumption, Cao et al. (2020) established the
following guarantee on (ULD) in continuous time.

Lemma 8 (Rapid Convergence in L2; Adapted from Cao et al. (2020, Theorem 1))
Under Assumption 2, and if ⇡ additionally satisfies (PI) with constant CPI, then the following holds
for the law µt of ULD initialized at µ0, where C0 > 0 is an absolute constant:

�2(µt k µ)  C0 exp
�
�q(�) t

�
�2(µ0 k µ) ,

where the coefficient inside the exponent is

q(�) :=
C�1
PI
�

C0 (C
�1
PI

+R2 + �2)
, (3.2)

and the constant R is

R =

8
><

>:

0 if U convex ,p
K if infx2Rd r2U(x) ⌫ �KId ,

L
p
d if kr2U(x)kop  L (1 + krU(x)k) for all x 2 Rd .

Remark In the strongly log-concave case, Lemma 8 actually yields a better decay of order
p
m

than Lemma 5, which has dependence m/
p
L.

Our final result leverages the above accelerated convergence guarantees of ULD, and establishes
the first bound for ULMC in Rényi divergence with an improved condition number dependence.

Theorem 9 (Convergence in Rq under (PI)) Let the potential be (L, s)-weakly smooth, satisfy
(PI) with constant CPI, and satisfy Assumption 1. Let it also satisfy the additional technical condition
Assumption 2. Then, for ⇠ 2 (0, 1)

h = ⇥̃
⇣�1/(2s)"1/s⇠1/sq(�)1/(2s)

L1/sd1/2 (L _ d)1/(2s)

⌘
,

the following holds for µ̂Nh, the law of the N -th iterate of ULMC initialized at a centered Gaussian
(variance specified in Appendix D) for q = 2� ⇠ 2 [1, 2) and with q defined in (3.2):

Rq(µ̂Nh k µ)  "2 after N = ⇥̃
⇣ L1/s d1/2 (L _ d)1+1/(2s)

�1/(2s) "1/s ⇠1/s q(�)1+1/(2s)

⌘
iterations ,

Remark The optimal choice is to take � ⇣
q
C�1
PI

+R2. If the potential U is convex, then we set
� ⇣ q(1/

p
CPI) ⇣ 1/

p
CPI, which is known to be an optimal choice (Cao et al., 2020). As a result,

in the convex and smooth case, the iteration complexity has the condition number dependence ,
which improves upon the 2 dependence seen in Chewi et al. (2021). The dependence on dimension
d and error tolerance " are also improved.

These results are compared against the known upper bounds in Table 3.2. To summarize our
improvements on existing literature, we note that (i) our results in the strongly log-concave case
are in the ”stronger” divergence of

p
KL compared to the previous known guarantees in W2, (ii)

our results under LSI have better condition number dependence, and remove dependence on the
Frobenius Lipschitz constant of the Hessian (which scales like O(d)), (iii) the PI regime is a novel
result, which to our knowledge has not been seen before in previous works.
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Source Condition Metric Complexity

[Dalalyan and Riou-Durand ’20] Strongly Log-Concave W2 3/2d1/2/"

Theorem 6 Strongly Log-Concave
p
KL 3/2d1/2/"

[Ma et al. ’21] LSI
p
KL C2

LSI
L2LHd1/2/"

Theorem 7 LSI TV C3/2
LSI

L3/2d1/2/"

Theorem 8 PI
p
R3/2 CPILd1/2/"

Table 1: We compare our guarantees against existing results. The result of [Ma et al. ’21] contains
dependence on the Hessian Frobenius smoothness constant LH , which generally scales like
O(d). Our q-Rényi result also holds for q 2 [1, 2).

4. Examples

Example 1 We consider the potential U(x) =
p
1 + kxk2, which satisfies (PI) with constant

O(d) (Bobkov, 2003) and is (1, 1)-smooth. Assuming the compact embedding condition of Assump-
tion 2, Theorem 9 gives a complexity of eO(d3⇠�1"�1) for "2-guarantees in R2�⇠ after optimizing
for �, since in this case the potential is log-concave. In this case, the dimension dependence equates
to that of the proximal sampler with rejection sampling (Chen et al., 2022, Corollary 8), which is
eO(d3); it surpasses Chewi et al. (2021, Theorem 8), which can only obtain eO(d4"�2) for the same
guarantees. However, it is important to note that the latter two works obtain these for any order of
Rényi divergence and are not limited to order q = 2� ⇠ < 2, which cannot presently be obtained
using our results for ULMC.

Example 2 Consider an m-strongly log-concave and L-log-smooth distribution. Non-trivial ex-
amples of this can be found in Bayesian regression (see e.g., Dalalyan (2017, Section 6)); we will
examine the first one, where ⇡(x) / exp(�kx� ak2/2) + exp(�kx+ ak2/2) for some a 2 Rd :
kak = 1/3. Here, our Theorem 6 gives a complexity of N = eO(d1/2"�1) to obtain a "2-guarantee for
the KL divergence. In contrast, the Hessian is r2U(x) = Id�4aa> exp(2xTa)/(1+exp(2xTa))2,
which has LH ⇣ d, where LH is the Lipschitz constant of the Hessian in the Frobenius norm.
Consequently, Ma et al. (2021, Theorem 1) is stated as N = eO(d1/2LHm�2"�1), which in this case
gives N = eO(d3/2"�1) to obtain the same "2-accuracy guarantee. This is worse in the dimension-
dependence. Finally, it is possible to compare with the discretization bounds achieved in Ganesh and
Talwar (2020, Theorem 28), where in combination with our continuous time results (using the same
proof technique as Theorem 6) to yield N = eO(d1/2"�2) iterations, which is suboptimal in the order
of ", but has the same dimension dependence.

Example 3 We can analyze L-smooth distributions satisfying a log-Sobolev inequality with pa-
rameter CLSI. One such instance arises when considering any bounded perturbation of a strongly
convex potential. In this case, let Ua be the potential of the target in Example 2. Then consider a
target with modified potential Ua + f , with supx|f(x)| _ krf(x)k _ kr2f(x)kop  B for some
B < 1, and let r2f be O(d)-Frobenius Lipschitz. We can bound the log-Sobolev constant of
this potential using the Holley–Stroock Lemma (Holley and Stroock, 1987). Let this new potential
have condition number . We achieve "-accuracy in TV distance with N = eO(3/2d1/2"�1). For
comparison, the previous bound (Ma et al., 2021, Theorem 1) gives N = Õ(2d3/2"�1) to arrive at
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the same guarantee in TV, which is worse in the dimension. However, note that the guarantees in
Ma et al. (2021, Theorem 1) are in KL, which is stronger than TV. Finally, we note that Ganesh and
Talwar (2020) requires strong log-concavity, and hence cannot provide a guarantee in this setting.

Example 4 Consider a (1, s)-weakly log-smooth target that is log-concave and satisfies a Poincaré
inequality with CPI = O(d). Consequently, Theorem 9 yields N = Õ(d2+1/s⇠�1/s"�1/s) to
obtain "2-guarantees for R2�⇠. Chewi et al. (2021, Theorem 7) yields N = Õ(d3+2/s"�2/s)
for the same guarantees, which is worse in both parameters. On the other hand, take the spe-
cific case of a distribution with potential U(x) = kxk↵, which has CPI = O(d2/↵�1) (Bobkov,
2003), is log-convex and (1,↵ � 1)-weakly log-smooth. Consequently, Theorem 9 yields N =
Õ(d↵/(↵�1)⇠�1/(↵�1)"�1/(↵�1)) for "2-accuracy guarantees in R2�⇠ divergence. This is worse by
a factor of d than the rate estimate obtained in Chewi et al. (2021, Example 9), as they leverage a
stronger class of functional inequalities that interpolate between (PI) and (LSI), whereas our analysis
cannot capture this improvement. Our convergence guarantee is still better in terms of "-dependence.

5. Proof Sketches

5.1. Continuous Time Results

For results under both the Poincaré and log-Sobolev inequalities, we leverage the existing results as
stated in Cao et al. (2020); Ma et al. (2021), which we present in Lemmas 5 and 8. These allow us to
bound �2(µt k µ), KL(µt k µ) with exponentially decaying quantities.

With the additional assumption of strong convexity, we can obtain a contraction in an alternate
system of coordinates (�, ) := M(x, v) := (x, x + 2

�
v) (see Appendix B). This allows us to

consider the distributions of the continuous time iterates and the target in these alternate coordinates
µM
t , µM respectively. From this, we obtain the following proposition.

Proposition 10 (Log-Sobolev Inequality Along the Trajectory) Suppose U is m-strongly convex
and L-smooth. Let µM

t now denote the law of the continuous-time underdamped Langevin diffusion
with � = c

p
L for c �

p
2 in the (�, ) coordinates. Suppose the initial distribution µ0 has (LSI)

constant (in the altered coordinates) CLSI(µM
0 ), then {µM

t }t�0 satisfies (LSI) with constant that can
be uniformly upper bounded by

CLSI(µ
M
t )  exp

⇣
�m

r
2

L
t
⌘
CLSI(µ

M
0 ) +

2

m
.

The main idea behind the proof of this proposition is to analyze the discretization (ULMC) of the
underdamped Langevin diffusion in the coordinates (�, ). Note that this can be written in the
following form, for some matrix ⌃ 2 R2d⇥2d and function F̄ : Rd ⇥ Rd ! Rd ⇥ Rd,

(�(k+1)h, (k+1)h)
d
= F̄ (�kh, kh) +N (0,⌃) .

This is the composition of a deterministic function F̄ giving the mean of the next iterate of ULMC
started at (�, ), followed by addition with a Gaussian distribution giving the variance of the resulting
iterate. In particular, we show that for coordinates (�(x, v), (x, v)) := (x, x+ 2

�
v), we can find an

almost sure strict contraction under F̄ in the sense that

kF̄kLip  1� mp
2L

h+O(Lh2) ,

11
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where by abuse of notation F̄ : R2d ! R2d, and the seminorm kgkLip of a function g : R2d ! R2d

refers to the Lipschitz constant of the function.
Since F̄ is a contraction for small enough h, each push forward improves the log-Sobolev

constant by a multiplicative factor (Vempala and Wibisono, 2019, Lemma 19). At the same time,
a Gaussian convolution can only worsen the log-Sobolev constant by an additive constant (Chafai,
2004, Corollary 3.1). Subsequently, the log-Sobolev constant at each iterate forms a (truncated)
geometric sum, and therefore can be bounded by the infinite series. This incidentally can be used to
bound the log-Sobolev constant of the ULMC iterates. Taking an appropriate limit of h ! 0 while
keeping Nh = t, we arrive at the stated bound in the proposition. Consequently, considering the
decomposition of the KL, a simple application of Cauchy–Schwarz tells us that

KL(µ̂M
t k µM) =

Z
log

µ̂M
t

µM dµ̂M
t = KL(µ̂M

t k µM
t ) +

Z
log

µM
t

µM dµ̂M
t

 KL(µ̂M
t k µM

t ) + KL(µM
t k µM) +

s

�2(µ̂M
t

k µM
t
)⇥ var

µ
M
t

⇣
log

µM
t

µM

⌘
.

The log-Sobolev inequality for µM
t implies a Poincaré inequality, which allows us to bound the

variance term by the Fisher information FI(µM
t k µM) = E

µ
M
t
kr log(µM

t /µM)k2. This can be
bounded by the same entropic hypocoercivity argument from Ma et al. (2021) that is used to generate
our TV bounds, while the remaining two terms are handled respectively via the discretization analysis
and again the entropic hypocoercivity argument.

5.2. Discretization Analysis

The main result we use to control the discretization error can be found below.

Proposition 11 Let (µ̂t)t�0 denote the law of (ULMC) and let (µt)t�0 denote the law of the
continuous-time underdamped Langevin diffusion (ULD), both initialized at some µ0. Assume that
the potential U is (L, s)-weakly smooth. If the step size h satisfies

h = eOs

⇣ �1/(2s) "1/s

L1/s T 1/(2s) (d+ R2(µ0 k µ(a)))1/2

⌘
, (5.1)

where the notation eOs hides constants depending on s as well as polylogarithmic factors including
logN , and µ(a) is a modified target distribution (see Appendix C.3 for details), then

Rq(µ̂T k µT )  "2 .

Remark The condition on h is dependent on N only through logarithmic factors. Secondly, this is
shown under generic assumptions, and can be combined with continuous-time results in Rq in any
setting, such as the log-Sobolev or Latała–Oleszkiewicz inequalities seen in Chewi et al. (2021).

We outline the proof of this result below. Similar to the work of Chewi et al. (2021), we first
invoke the data processing inequality, allowing us to bound the Rényi between the time marginal
distributions of the iterates with Rényi between the path measures

Rq(µ̂T k µT )  Rq(PT kQT ) ,
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where PT , QT are probability measures of (ULMC), (ULD) respectively on the space of paths
C([0, T ],R2d). Subsequently, we invoke Girsanov’s theorem, which allows us to exactly bound the
pathwise divergence by the difference between the drifts of the two processes:

R2q(PT kQT ) . logE exp
⇣4q2

�

Z
T

0
krU(xt)�rU(xbt/hch)k2 dt

⌘
.

It remains to bound the term inside the expectation. We achieve this by conditioning on the event that
supt2[0,T ]kxt � xbt/hchk2 is bounded by a vanishing quantity as h ! 0, which we must demonstrate
occurs with sufficiently high probability. To show this, we begin with a single-step analysis, i.e.,
we bound the above for T  h. Compared to LMC, the main gain in this analysis is that the SDEs
(ULD) and (ULMC) match exactly in the position coordinate, while the difference between the drifts
manifests solely in the momentum. After integration of the momentum, the order of error is better in
the position coordinate (the dominant term is O(dh2) compared to O(dh) seen in Chewi et al. (2021,
Lemma 24)).

The technique for extending this analysis from a single step to the full time interval follows
closely that seen in Chewi et al. (2021). In particular, we obtain a dependence for kxtk on kxkhk
in the interval t 2 [kh, (k + 1)h). Controlling the latter is quite complicated when the potential
satisfies only a Poincaré inequality, since it is equivalent to showing sub-Gaussian tail bounds on
the iterates, while the target itself is not sub-Gaussian in the position coordinate. By comparing
against an auxiliary potential, we can show that for our choice of initialization, the iterates remain
sub-Gaussian for all iterations up to N (albeit with a growing constant). Finally, this allows us to
recover our discretization result in the proposition above.

6. Conclusion

This work provides state-of-the-art convergence guarantees for underdamped Langevin Monte Carlo
algorithm in several regimes. Our discretization analysis (Proposition 11) in particular is generic
and can be extended to any order of Rényi, under various conditions on the potential (Latała–
Oleszkiewicz, weak smoothness, etc.). Consequently, our results serve as a key step towards a
complete understanding of the ULMC algorithm. However, limitations of the current continuous-
time techniques do not permit us to obtain stronger iteration complexity results. More specifically, it
is not understood how to analyze Rényi divergence of order greater than 2, or if hypercontractive
decay is possible when the potential satisfies a log-Sobolev inequality. Secondly, our discretization
approach via Girsanov is currently suboptimal in the condition number (a fact noted in Chewi
et al. (2021)), and thus does not obtain the expected dependence of

p
 after discretization. An

improvement in the proof techniques would be necessary to sharpen this result. We believe the results
and techniques developed in this work will be of interest to stimulate future research.
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Appendix A. Explicit Form for the Underdamped Langevin Diffusion

Recall that we evolve (xt, vt) for time t 2 [kh, (k + 1)h) explicitly according to the SDE (ULMC),
which we repeat here for convenience:

dxt := vt dt , (A.1)

dvt := ��vt +rU(xkh) dt+
p
2� dBt . (A.2)

Consequently, since we fix the position xkh in the non-linear term, this permits an explicit solution

x(k+1)h = xkh + ��1 (1� exp(��h)) vkh � ��1 (h� ��1 (1� exp(��h)))rU(xkh) +W x

k
,

(A.3)

v(k+1)h = exp(��h) vkh � ��1 (1� exp(��h))rU(xkh) +W v

k
, (A.4)
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where (W x

k
,W v

k
)k2N is an independent sequence of pairs of variables, where each pair has the joint

distribution

W x

k

W v

k

�
⇠ N

✓
0,

"
2
�
(h� 2

�
(1� exp(��h)) + 1

2� (1� exp(�2�h))) ⇤
1
�
(1� 2 exp(��h) + exp(�2�h)) 1� exp(�2�h)

#◆
,

where ⇤ is identical to the bottom left entry.

Appendix B. Continuous-Time Results

B.1. Entropic Hypocoercivity

Our proof of Lemma 5 is based on adapting the argument on the decay of a Lyapunov function from
Ma et al. (2021) (based on entropic hypocoercivity, see Villani (2009)) and combining it with a time
change argument (Dalalyan and Riou-Durand, 2020, Lemma 1). We provide the details below for
completeness.
Proof of Lemma 5 First note that variables xt, vt with � = 2

p
2L following (ULMC) can be

changed into (x̃t, ṽt) = (x
t
p
⇠
, 1p

⇠
v
t
p
⇠
), which satisfies the process given by

dx̃t = ⇠ṽt dt ,

dṽt = �⇠�̃ṽt dt�rU(x̃t) dt+
p
2�̃ dBt ,

with �̃ = 2, ⇠ = 2L, which are the parameters satisfying Ma et al. (2021, Proposition 1). From that
Proposition, we know that the Lyapunov functional given by

F̃(µ̃0 k µ̃) = KL(µ̃0 k µ̃) + Eµ̃0
⇥��N1/2r log

µ̃0

µ̃

��2⇤ , where N =
1

L


1/4 1/2
1/2 2

�
⌦ Id ,

decays with @tF̃(µ̃t k µ̃)  � 1
10CLSI

F̃(µ̃t k µ̃). Here the LSI constant does not change under our
coordinate transform, but now µ̃t represents the joint law of (x̃t, ṽt), while the stationary measure
has the form µ̃(x̃, ṽ) / ⇡(x̃)⇥ exp(�⇠ kṽk2/2). The statement of our theorem immediately follows
by reversing our change of variables, which involves scaling up the gradients of the momenta by
⇠1/2, while the time is scaled down by ⇠1/2.

B.2. Contraction of ULMC

In this section, we prove a contraction result for ULMC and use this to deduce a log-Sobolev
inequality along the trajectory of the underdamped Langevin diffusion. The mean of the next iterate
of ULMC started at (x, v) is given by

F (x, v) :=
⇣
x+

1� exp(��h)
�

v � h� ��1 (1� exp(��h))
�

rU(x),

exp(��h) v � 1� exp(��h)
�

rU(x)
⌘
.

We will use the change of coordinates

(�, ) := M(x, v) :=
�
x, x+

2

�
v
�
.

18



ANALYSIS OF ULMC

In these new coordinates, the mean of the next iterate of ULMC started at (�, ) is F̄ (�, ), where
F̄ = M � F �M�1. Since M�1(�, ) = (�, �2 ( � �)), we can explicitly write

F̄ (�, ) =
⇣
�+

1� exp(��h)
2

( � �)� h� ��1 (1� exp(��h))
�

rU(�),

�+
1 + exp(��h)

2
( � �)� h+ ��1 (1� exp(��h))

�
rU(�)

⌘
.

Lemma 12 Consider the mapping F̄ : Rd ⇥ Rd ! Rd ⇥ Rd defined above. Assume that mId �
r2U � LId. Then, for h . 1 and � = c

p
L for some c �

p
2, F̄ is a contraction with parameter

kF̄kLip  1� mp
2L

h+O(Lh2) .

Proof We compute the partial derivatives

@�F̄ (�, )
�
=

1 + exp(��h)
2

Id �
h� ��1 (1� exp(��h))

�
r2U(�) ,

@�F̄ (�, )
 
=

1� exp(��h)
2

Id �
h+ ��1 (1� exp(��h))

�
r2U(�) ,

@ F̄ (�, )
�
=

1� exp(��h)
2

Id ,

@ F̄ (�, )
 
=

1 + exp(��h)
2

Id .

Let a := exp(��h) and b := 2
�
(h+ ��1 (1� exp(��h))). Since

h� ��1 (1� exp(��h))
�

= O(h2) ,

we have

krF̄ (�, )kop  1

2

���

(1 + a) Id (1� a) Id � br2U(�)
(1� a) Id (1 + a) Id

�

| {z }
=:A

���
op

+O(Lh2) .

Then,

AAT =

"
(1 + a)2 Id + ((1� a) Id � br2U(�))

2 ⇤
2 (1� a2) Id � (1 + a) br2U(�) {(1� a)2 + (1 + a)2} Id

#
,

where the upper right entry is determined by symmetry. Since 1� a = ⇥(�h) and b = O(h/�), one
can simplify this as follows:

���AAT � 2


(1 + a2) Id (1� a2) Id � br2U(�)

(1� a2) Id � br2U(�) (1 + a2) Id

�

| {z }
=:B

���
op

 O
�L2h2

�2
+ Lh2

�
.
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One can check that the eigenvalues of the matrix B are 1 + a2 ± (1� a2 � b�), where � ranges over
the eigenvalues of r2U(�). Hence, we can bound

kBkop  max{2a2 + Lb, 2� bm} .

We note that

2a2 + Lb = 2 exp(�2�h) +
2L (h+ ��1 (1� exp(��h)))

�

= 2
n
1� 2�h+

2Lh

�
+O(�2h2 + Lh2)

o
.

In order for this to be strictly smaller than 2, we must take � >
p
L. We choose � = c

p
L for

c �
p
2, in which case

kBkop  2max
n
1� c

p
Lh, 1�m

r
2

L
h
o
+O(Lh2)

= 2
⇣
1�m

r
2

L
h
⌘
+O(Lh2) .

We deduce that

kAATkop  4
⇣
1�m

r
2

L
h
⌘
+O(Lh2)

and therefore

krF̄ (�, )kop 

s

1�m

r
2

L
h+O(Lh2)  1� mp

2L
h+O(Lh2) .

The ULMC iterate is

(x(k+1)h, v(k+1)h)
d
= F (xkh, vkh) +N (0,⌃) ,

where ⌃ is the covariance of the Gaussian random vector in the LMC update. In the new coordinates,
this iteration can be written

(�(k+1)h, (k+1)h)
d
= F̄ (�kh, kh) +N (0,M⌃MT) .

Writing M⌃MT = ⌃̄⌦ Id, we can compute

⌃̄1,1 =
2h

�
� 3

�2
+

4 exp(��h)
�2

� exp(�2�h)

�2
= O(�h3) ,

⌃̄1,2 =
2h

�
� 1

�2
+

exp(�2�h)

�2
= O(h2) ,

⌃̄2,2 =
2h

�
+

5

�2
� 8 exp(��h)

�2
+

3 exp(�2�h)

�2
=

4h

�2
+O(h2) .
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We conclude that

k⌃̄kop  4h

�
+O(h2) .

Hence, CLSI(N (0,M⌃MT))  4h
�2

+O(h2).

Proposition 13 Let µ̂M
t

:= law(�t, t). Then, for all " > 0, for all sufficiently small h > 0
(depending on "), one has

CLSI(µ̂
M
Nh

) 
⇣
1�

�
m

r
2

L
� "

�
h
⌘
N

CLSI(µ̂
M
0 ) +

4

2m� "
p
2L

+O
�h

p
L

m

�
.

Proof The LSI constant evolves according to

CLSI(µ̂
M
(k+1)h)  kF̄k2opCLSI(µ̂

M
kh
) + CLSI

�
N (0,M⌃MT)

�


⇣
1�m

r
2

L
h+O(Lh2)

⌘
CLSI(µ̂

M
kh
) +

4h

�
+O(h2) .

For h sufficiently small, we have

CLSI(µ̂
M
(k+1)h) 

⇣
1�

�
m

r
2

L
� "

�
h
⌘
CLSI(µ̂

M
kh
) +

4h

�
+O(h2) .

Iterating,

CLSI(µ̂
M
Nh

) 
⇣
1�

�
m

r
2

L
� "

�
h
⌘
N

CLSI(µ̂
M
0 ) +

4

2m� "
p
2L

+O
�h

p
L

m

�
.

This completes the proof.

Corollary 14 Let µM
t now denote the law of the continuous-time underdamped Langevin diffusion

with � = c
p
L for c �

p
2 in the (�, ) coordinates. Then,

CLSI(µ
M
t )  exp

⇣
�m

r
2

L
t
⌘
CLSI(µ

M
0 ) +

2

m
.

Proof In the preceding proposition, let h & 0 while Nh ! t, and then let "& 0.

Appendix C. Discretization Analysis

We consider the discretization used in Ma et al. (2021), with the following differential form:

dx̂t = v̂t dt ,

dv̂t = ��v̂t dt�rU(x̂kh) dt+
p
2� dBt ,

and we define the variable ŵt as the tuple (x̂t, v̂t), for t 2 [kh, (k + 1)h].
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C.1. Technical Lemmas

Theorem 15 (Girsanov’s Theorem, Adapted from Oksendal (2013, Theorem 8.6.8)) Consider
stochastic processes (xt)t�0, (bPt )t�0, (bQ

t
)
t�0 adapted to the same filtration, and � 2 Rd⇥d any

constant, possibly degenerate, matrix. Let PT and QT be probability measures on the path space
C([0, T ];Rd) such that (wt)t�0 evolves according to

dwt = bPt dt+ � dBP

t under PT ,

dwt = bQ
t
dt+ � dBQ

t
under QT ,

where BP is a PT -Brownian motion and BQ is a QT -Brownian motion. Furthermore, suppose there
exists a process (ut)t�0 such that

� ut = bPt � bQ
t
,

and

EQT exp
⇣1
2

Z
T

0
kusk2 ds

⌘
< 1 ,

Consequently, if we define �† as the Moore–Penrose pseudo-inverse of �, then by the previous
supposition we have ut = �† (bPt � bQ

t
). Then,

dPT

dQT

= exp
⇣Z T

0
h�† (bPt � bQ

t
), dBQ

t
i � 1

2

Z
T

0
k�† (bPt � bQ

t
)k2 dt

⌘
.

In fact, we will only need the following corollary.

Corollary 16 For any event E and q � 1,

EQT
⇥� dPT

dQT

�
q

E
⇤


s

E
h
exp

⇣
2q2

Z
T

0
k�† (bP

t
� bQ

t
)k2 dt

⌘
E

i
.

Proof Using Cauchy–Schwarz, and then Itô’s Lemma, we find

EQT
⇥� dPT

dQT

�
q

E
⇤
= EQT

h
exp

⇣
q

Z
T

0
h�† (bPt � bQ

t
), dBQ

t
i � q

2

Z
T

0
k�† (bPt � bQ

t
)k2 dt

⌘
E

i



s

EQT

h
exp

⇣
(2q2 � q)

Z
T

0
k�† (bP

t
� bQ

t
)k2 dt

⌘
E

i

⇥

s

EQT

h
exp

⇣
2q

Z
T

0
h�† (bP

t
� bQ

t
), dBQ

t
i � 2q2

Z
T

0
k�† (bP

t
� bQ

t
)k2 dt

⌘
E

i

| {z }
=1



s

EQT

h
exp

⇣
2q2

Z
T

0
k�† (bP

t
� bQ

t
)k2 dt

⌘
E

i
.

Here, we used the fact that t 7! exp(
R
t

0 hu⌧ , dB⌧ i �
1
2

R
t

0ku⌧k
2 d⌧) is a local martingale.
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We can identify the following for the process (xt, vt):

� =


0 0
0

p
2� Id

�
, bPt =


vt

��vt �rU(xt)

�
, bQ

t
=


vt

��vt �rU(xbt/hch)

�
.

In this case, k�† (bPt � bQ
t
)k ⌘ 1p

2�
krU(xbt/hch)�rU(xt)k.

We also adapt the following Lemmas without proof from Chewi et al. (2021).

Lemma 17 (Change of Measure, from Chewi et al. (2021, Lemma 21)) Let µ, ⌫ be probability
measures and let E be any event. Then,

µ(E)  ⌫(E) +
p
�2(µ k ⌫) ⌫(E) .

In particular, if µ and ⌫ are probability measures on Rd and

⌫{k·k � R0 + ⌘}  C exp(�c⌘2) for all ⌘ � 0 ,

where C � 1, then

µ
n
k·k � R0 +

r
1

c
R2(µ k ⌫) + ⌘

o
 2C exp

�
�c⌘2

2

�
for all ⌘ � 0 .

Lemma 18 Let (Bt)t�0 be a standard Brownian motion in Rd. Then, if � � 0 and h  1/(4�),

E exp
�
� sup

t2[0,h]
kBtk2

�
 exp(6dh�) .

In particular, for all ⌘ � 0,

P
�
sup

t2[0,h]
kBtk � ⌘

 
 3 exp

�
� ⌘2

6dh

�
.

Lemma 19 (Ganesh and Talwar (2020, Lemma 14)) Let Y > 0 be a random variable. Assume
that for all 0 < � < 1/2 there exists an event E� with probability at least 1� � such that

E[Y 2 | E�] 
v

�⇠

for some ⇠ < 1. Then, EY  4
p
v.

Lemma 20 (Matrix Grönwall Inequality) Let x : R+ ! Rd, and c 2 Rd, A 2 Rd⇥d, where A
has non-negative entries. Suppose that the following inequality is satisfied componentwise:

x(t)  c+

Z
t

0
Ax(s) ds , for all t � 0 . (C.1)

Then, the following inequality holds, where Id 2 Rd⇥d is the d-dimensional identity matrix:

x(t)  (AA† eAt �AA† + Id) c , (C.2)

where A† is the Moore–Penrose pseudo-inverse of A (when A is invertible, this is equivalent to the
standard inverse).

Proof This is a special case of Chandra and Davis (1976, Main Theorem).
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C.2. Movement Bound for ULMC

We next prove a movement bound for the continuous-time Langevin diffusion. The following lemma
is a standard fact about the concentration of the norm of a Gaussian vector (see, e.g., Boucheron
et al., 2013, Theorem 5.5).

Lemma 21 (Concentration of the Norm) The following concentration holds: for all ⌘ � 0,

⇢(k·k �
p
d+ ⌘)  exp

⇣
�⌘

2

2

⌘
.

Note that kvt� v0k is of size O(
p
dt), due to the Brownian motion component of the momentum

variable v; this is the same order as the size of the increment of the overdamped Langevin diffusion.
However, if we consider the increment in the x-coordinate only, we obtain the following bound.

Lemma 22 Let (xt, vt)t�0 denote the continuous-time underdamped Langevin diffusion started
at (x0, v0), and assume that the gradient rU of the potential satisfies rU(0) = 0 and is Hölder
continuous (satisfies (2.3)). Also, assume that h . L�1/2 ^ ��1 and 0  � . 1

�sdsh3s . Then,

logE exp
�
� sup

t2[0,h]
kxt � x0k2s

�
.
�
L2sh4s (1 + kx0k2s

2
) + h2s kv0k2s + �sdsh3s

�
� .

Proof For the interpolant times, we will use Grönwall’s matrix inequality (Lemma 20), with the
following equation for x:

kxt � x0k 
���
Z

t

0
v⌧ d⌧

���  h kv0k+
���
Z

t

0
(v⌧ � v0) d⌧

���

 h kv0k+
���
Z

t

0

Z
⌧

0
�v⌧ 0 d⌧

0 d⌧
���+

���
Z

t

0

Z
⌧

0
rU(x⌧ 0) d⌧

0 d⌧
���

+
���
Z

t

0

Z
⌧

0

p
2� dB⌧ 0 d⌧

���

 h kv0k+ �h
⇣
h kv0k+

Z
t

0
kv⌧ � v0k d⌧

⌘
+ Lh2

+ Lh
⇣
h kx0ks +

Z
t

0
kx⌧ � x0k d⌧

⌘
+
p
2� h sup

t2[0,h]
kBtk .

Here we use the Hölder property of rU along with kxks  1 + kxk. Likewise for v:

kvt � v0k 
���
Z

t

0
�v⌧ d⌧

���+
���
Z

t

0
rU(x⌧ ) d⌧

���+
���
Z

t

0

p
2� dB⌧

���

 �
⇣
h kv0k+

Z
t

0
kv⌧ � v0k d⌧

⌘
+ Lh+ L

⇣
h kx0ks +

Z
t

0
kx⌧ � x0k d⌧

⌘

+
p
2� sup

t2[0,h]
kBtk .
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Consequently, we can use the matrix form of Grönwall’s inequality (Lemma 20). While applying
that Lemma, let c = c1 + c2 with c1, c2 to be given. First, for c1:

A =


Lh �h
L �

�
, c1 =


Lh2 kx0ks + �h2 kv0k+ Lh2 +

p
2� h supt2[0,h]kBtk

Lh kx0ks + �h kv0k+ Lh+
p
2� supt2[0,h]kBtk

�
.

Noting that c1 lies in the image space of A so that AA†c1 = c1, and similarly observing that
exp(At) c1 belongs to the image space of A (using the power series representation of the matrix
exponential), we obtain for this first component:

sup
t2[0,h]

kx0 � xtk

 h exp
�
(Lh+ �)h

� �
�h kv0k+ Lh kx0ks + Lh+

p
2� sup

t2[0,h]
kBtk

�
+ c2 term

 2h
�
�h kv0k+ Lh kx0ks + Lh+

p
2� sup

t2[0,h]
kBtk

�
+ c2 term ,

where in the second line we take h . 1p
L+�

. Now, taking

c2 =


h kv0k

0

�
,

we find the following (where v(1) denotes the first component of a vector v):

((AA† (eAh � I2d) + I2d) c2)(1) =
Lhe(Lh+�)h + �

Lh+ �
h kv0k.

Finally, for h . 1p
L+�

, this can be bounded by 2h kv0k. Using Lemma 18 and plugging this into the
expression completes the proof.

C.3. Sub-Gaussianity of the Iterates

Similarly to Chewi et al. (2021), we introduce a modified potential in order to prove sub-Gaussianity
of the iterates of ULMC. Firstly, we consider a modified distribution in the x-coordinate, with
parameter a := (�, S) for some S,� � 0:

⇡(a) / exp(�U (a)) , U (a)(x) := U(x) +
�

2
(kxk � S)2+ . (C.3)

The modified potential satisfies the following properties.

Lemma 23 (Properties of the Modified Potential, Chewi et al. (2021, Lemma 23))
Consider ⇡(a) and U (a) defined as in (C.3). Assume that rU(0) = 0 and that rU satisfies (2.3).
Then, the following assertions hold.

1. (sub-Gaussian tail bound) Assume that S is chosen so that ⇡(B(0, S)) � 1/2. Then, for all
⌘ � 0,

⇡(a){k·k � S + ⌘}  2 exp
�
��⌘

2

2

�
.
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2. (gradient growth) The gradient rU (a) satisfies

krU (a)(x)k  L+ (� + L) kxk .

Then, letting {(x(a)
t

, v(a)
t

)}t�0 be the solution to the underdamped Langevin diffusion with
potential U (a) and µ(a) := ⇡(a) ⌦ ⇢, the following lemma holds:

Lemma 24 Assume that h . (� +L)�1/2 ^ ��1 ^ d�1/2, and �  1. Then, for all � 2 (0, 1), with
probability at least 1� �,

sup
tNh

kx(a)
t

k � S . (� + L)Sh2 +

r
1

�
R2(µ

(a)
0 k µ(a)) +

s
1

�
log

16N

�
.

Proof We can use the change of measure lemma (Lemma 17) together with the sub-Gaussian tail
bounds in Lemmas 21, 23 to see that with probability at least 1 � �, the following events hold
simultaneously:

max
kN

kx(a)
kh

k  S +

r
2

�
R2(µ

(a)
0 k µ(a)) +

s
4

�
log

8N

�

max
kN

kv(a)
kh

k 
p
d+

q
2R2(µ

(a)
0 k µ(a)) +

r
4 log

4N

�
.

Here we use a union bound together with the monotonicity of t 7! R2(µ
(a)
t

k µ(a)) in t.
For the interpolant times, we will use Grönwall’s matrix inequality, with the following inequality

for x:

kx(a)
kh

� x(a)
kh+t

k  h kv(a)
kh

k+
���
Z

t

0

Z
⌧

0
�v(a)

kh+⌧ 0 d⌧
0 d⌧

���+
���
Z

t

0

Z
⌧

0
rU (a)(x(a)

kh+⌧ 0) d⌧
0 d⌧

���

+
���
Z

t

0

Z
⌧

0

p
2� dBkh+⌧ 0 d⌧

���

 h kv(a)
kh

k+ �h
⇣
h kv(a)

kh
k+

Z
t

0
kv(a)

kh+⌧ � v(a)
kh

k d⌧
⌘
+ Lh2

+ (� + L)h
⇣
h kx(a)

kh
k+

Z
t

0
kx(a)

kh+⌧ � x(a)
kh

k d⌧
⌘

+
p
2� h sup

⌧2[0,h]
kBkh+⌧ �Bkhk .

Likewise,

kv(a)
kh

� v(a)
kh+t

k 
���
Z

t

0
�v(a)

kh+⌧ d⌧
���+

���
Z

t

0
rU (a)(x(a)

kh+⌧ ) d⌧
���+

���
Z

t

0

p
2� dBkh+⌧

���

 �
⇣
h kv(a)

kh
k+

Z
t

0
kv(a)

kh+⌧ � v(a)
kh

k d⌧
⌘
+ Lh

+ (� + L)
⇣
h kx(a)

kh
k+

Z
t

0
kx(a)

kh+⌧ � x(a)
kh

k d⌧
⌘

+
p
2� sup

⌧2[0,h]
kBkh+⌧ �Bkhk .
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Consequently, we can apply the matrix Grönwall inequality analogously to how we did in
Lemma 20 with c = c1 + c2 denoting the following matrices:

A =


(� + L)h �h
(� + L) �

�
,

c1 =

"
(� + L)h2 kx(a)

kh
k+ �h2 kv(a)

kh
k+ Lh2 +

p
2� h supt2[0,h]kBkh+t �Bkhk

(� + L)h kx(a)
kh

k+ �h kv(a)
kh

k+ Lh+
p
2� supt2[0,h]kBkh+t �Bkhk

#
,

c2 =

"
h kv(a)

kh
k

0

#
.

Note that c1 here is again in the image space of A, so that (AA† � I2) c = 0. Finally, after
calculating the matrix exponential we find

sup
th

kx(a)
kh

� x(a)
kh+t

k  h exp
�
(� + L)h2 + �h

� ⇣
(� + L)h kx(a)

kh
k+ �h kv(a)

kh
k+ Lh

+
p
2� sup

th

kBkh+t �Bkhk
⌘

+ h
(� + L) exp

�
(� + L)h2 + �h

�
h+ �

(� + L)h+ �
kv(a)

kh
k

 2h
⇣
(� + L)h kx(a)

kh
k+ kv(a)

kh
k+ Lh+

p
2� sup

th

kBkh+t �Bkhk
⌘
,

where in the second line we take h . 1
(�+L)1/2

^ 1
�

. Note that this is also entirely analogous to the
calculation in Lemma 22.

Subsequently, we can take a union bound to obtain for any S1, S2,

P
n

sup
t2[0,Nh]

kx(a)
t

k � ⌘
o

 P
n

max
k=0,1,...N�1

kx(a)
kh

k � S1

o
+ P

n
max

k=0,1,...N�1
kv(a)

kh
k � S2

o

+
N�1X

k=0

P
n

sup
t2[0,h]

kx(a)
kh+t

� x(a)
kh

k � ⌘ � S1

o

 P
n

max
k=0,1,...N�1

kx(a)
kh

k � S1

o
+ P

n
max

k=0,1,...N�1
kv(a)

kh
k � S2

o

+
N�1X

k=0

P
n

sup
t2[0,h]

p
2� kBkh+t �Bkhk � ⌘ � S1

2h
� (� + L)S1h� S2 � Lh

o
.

Subsequently, taking respectively S1 = S +
q

2
�
R2(µ

(a)
0 k µ(a)) +

q
4
�
log 8N

�
, S2 =

p
d +

q
2R2(µ

(a)
0 k µ(a)) +

q
4 log 4N

�
, we use the Brownian motion tail bound (Lemma 18) to get with

probability 1� 2�:

sup
tNh

kx(a)
t

k � S1 . (� + L)S1h
2 + S2h+ Lh2 +

r
�dh3 log

3N

�
.
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If we assume that �  1 and h . 1p
d

, then we can further simplify this bound to yield

sup
tNh

kx(a)
t

k � S . (� + L)Sh2 +

r
1

�
R2(µ

(a)
0 k µ(a)) +

s
1

�
log

8N

�
.

This concludes the proof.

To transfer this sub-Gaussianity to the original underdamped Langevin process, we consider the
following bound on the chi-squared divergence between these two processes.

Proposition 25 Let QT , Q
(a)
T

represent respectively the laws on the path space of the original and
modified diffusions, under the same initialization µ0. Then, if � . �

T
^ L and h . (� + L)�1/2 ^

��1 ^ d�1/2, then

R2(QT kQ(a)
T

) . �2L2S2Th4

�
+
�T

�

�
R2(µ0 k µ(a)) + logN

�
.

Proof Conditioning on the event in Lemma 24, which we denote by E� for some �  1/2, then using
Girsanov’s theorem (Corollary 16) we get (for some sufficiently small h so that Novikov’s condition
is satisfied)

logE
h⇣ dQT

dQ(a)
T

⌘4
E�

i
 1

2
logE

h
exp

⇣16
�

Z
T

0
krU(x(a)

t
)�rU (a)(x(a)

t
)k2 dt

⌘
E�

i

 1

2
logE

h
exp

⇣16�2

�

Z
T

0

�
kx(a)

t
k � S

�2
+
dt
⌘

E�

i

. �2T

�

n
(� + L)2 S2h4 +

1

�
R2(µ0 k µ(a)) +

1

�
log

16N

�

o
.

If we take � . �/T and that L � �, we can use Lemma 19 to get

R2(QT kQ(a)
T

) = logE
h⇣ dQT

dQ(a)
T

⌘2i
. �2L2S2Th4

�
+
�T

�

�
R2(µ0 k µ(a)) + logN

�
.

This concludes the proof.

Proposition 26 Consider the continuous time diffusion (xt, vt)t�0 initialized at µ0. For h .
(� + L)�1/2 ^ ��1 ^ d�1/2, S ⇣ m, and � ⇣ �

T
, for � 2 (0, 1/2), the following holds with

probability 1� �:

max
k=0,...,N�1

kxkhk . m+

s
T

�

�
R2(µ0 k µ(a)) + log

N

�

�
,

max
k=0,...,N�1

kvkhk .
p
d+

r
R2(µ0 k µ(a)) + log

N

�
.
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Proof Recall from the proof of Lemma 24 that with probability 1� �,

max
k=0,...N�1

kx(a)
kh

k . S +

r
1

�
R2(µ0 k µ(a)) +

s
1

�
log

8N

�
.

In particular, this immediately implies that the following holds: for ⌘ � 0,

P
⇣

max
k=0,...N�1

kx(a)
kh

k & S +

r
1

�
R2(µ0 k µ(a)) +

s
1

�
log

8N

�
+ ⌘

⌘
. N exp(�c�⌘2) ,

for a universal constant c > 0.
Then, using the change of measure (Lemma 17) together with the bound in Proposition 25,

choosing S ⇣ m, we get with probability 1� �

max
k=0,...N�1

kxkhk . S +

r
1

�
R2(µ0 k µ(a)) +

r
1

�
R2(QT kQ(a)

T
) +

s
1

�
log

N

�

. m+

s
1

�

�
R2(µ0 k µ(a)) + log

N

�

�
+
�L2Th4m2

�
.

We choose � ⇣ �/T so that

max
k=0,...N�1

kxkhk . m+

s
T

�

�
R2(µ0 k µ(a)) + log

N

�

�
.

Finally, combining this with a union bound to control kvkhk from Lemma 21, we get the Proposition.

C.4. Completing the Discretization Proof

We proceed by following the proof of Chewi et al. (2021).

Proof [Proof of Proposition 11] Let {xt}t�0 follow the continuous-time process. Let PT , QT denote
the measures on the path space corresponding to the interpolated process and the continuous-time
diffusion respectively, with both being initialized at µ0 = ⇡0 ⌦N (0, Id). Then, define

Gt :=
1p
2�

Z
t

0
hrU(x⌧ )�rU(xb⌧/hch), dB⌧ i �

1

4�

Z
t

0
krU(x⌧ )�rU(xb⌧/hch)k2 d⌧.

From Girsanov’s theorem (Theorem 15), we obtain immediately using Itô’s formula

EQT

h⇣ dPT

dQT

⌘
q
i
� 1 = E exp(qGT )� 1

=
q (q � 1)

4�
E
Z

T

0
exp(qGt) krU(xt)�rU(xbt/hch)k2 dt

 q2

4�

Z
T

0

q
E[exp(2qGt)]E[krU(xt)�rU(xbt/hch)k4] dt .
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Bounding these terms individually, we first use Corollary 16 and (2.3) to get

E exp(2qGt) 

s

E exp
⇣4q2
�

Z
t

0
krU(xr)�rU(xbr/hch)k2 dr

⌘



s

E exp
⇣4L2q2

�

Z
t

0
kxr � xbr/hchk2s dr

⌘
.

Let us now condition on the event

E�,kh :=
n

max
j=0,1,...,k�1

kxkhk  Rx

�
, max
j=0,1,...,k�1

kvkhk  Rv

�

o
.

By Proposition 26, we can have P(E�,kh) � 1� � while choosing

Rx

�
. m+

r
�

T

�
R2(µ0 k µ(a)) + log

N

�

�
,

Rv

�
.

p
d+

r
R2(µ0 k µ(a)) + log

N

�
.

We proceed to bound our desired quantity through some careful steps.
One step error. Consider first the error on a single interval [0, h]. If we presume h .

(�1�s/(L2dsq2))1/(1+3s), Lemma 22 implies

logE exp
⇣8L2q2

�

Z
h

0
kxt � x0k2 dt

⌘
 logE exp

⇣8L2hq2

�
sup

t2[0,h]
kxt � x0k2

⌘

. L2+2sh1+4sq2

�
(1 + kx0k2s

2
) +

L2h1+2sq2

�
kv0k2s

+
L2dsh1+3sq2

�1�s
.

Iteration. If we let {Ft}t�0 denote the filtration, then writing Ht =
R
t

0kxr � xbr/hchk2 dr, we
can condition on F(N�1)h and iterate our one step bound.

logE
h
exp

⇣8L2q2

�
HNh

⌘
E�,Nh

i

 logE
h
exp

⇣8L2q2

�
H(N�1)h

+O
�L2+2sh1+4sq2

�
(1 + kx(N�1)hk2s

2
)

+
L2h1+2sq2

�
kv(N�1)hk2s +

L2dsh1+3sq2

�1�s

�⌘
E�,Nh

i

 logE
h
exp

⇣8L2q2

�
H(N�1)h

⌘
E�,(N�1)h

i

+O
⇣L2+2sh1+4sq2

�
(Rx

�
)2s

2
+

L2h1+2sq2

�
(Rv

�
)2s +

L2dsh1+3sq2

�1�s

⌘
.
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We now make additional simplifying assumptions to obtain more interpretable bounds: we assume
�/T  1 and h . 1

L
(1 ^ d

1/2

ms ). With these assumptions,

logE
h
exp

⇣8L2q2

�
HNh

⌘
E�,Nh

i

 logE
h
exp

⇣8L2q2

�
H(N�1)h

⌘
E�,(N�1)h

i

+O
⇣L2h1+2sq2

�

�
d+ R2(µ0 k µ(a)) + log

N

�

�
s
⌘
.

Completing this iteration yields

logE
h
exp

⇣8L2q2

�
HNh

⌘
E�,Nh

i
. L2Th2sq2

�

�
d+ R2(µ0 k µ(a)) + log

N

�

�
s
.

Finally, applying Lemma 19 when

h .s

�1/(2s)

L1/sT 1/(2s)q1/s
(C.4)

(where .s hides an s-dependent constant), we find

logE
h
exp

⇣4L2q2

�
HNh

⌘i
. 1 +

L2Th2sq2

�

�
d+ R2(µ0 k µ(a)) + logN

�
s
.

It remains to choose the appropriate step size h which makes this whole quantity . 1. In particular,
it suffices to choose

h . eOs

⇣ �1/(2s)

L1/sT 1/(2s)q1/s (d+ R2(µ0 k µ(a)))1/2

⌘
. (C.5)

Second term. It remains to bound the other term in our original expression. From Lemma 22,
we obtain

E[exp(� kxkh+t � xkhk2s) | wkh] . 1 ,

so long as � is chosen to be appropriately small, i.e.,

� ⇣ 1

�sdsh3s
^ 1

L2sh4s (1 + kxkhk)2s2
^ 1

h2s kvkhk2s
.

This immediately implies a tail bound: for ⌘ � 0,

P{kxkh+t � xkhk4s � ⌘ | wkh} . exp(��p⌘) .

Integrating, we get

p
E[krU(xt)�rU(xkh)k4]  L2

p
E[kxt � xkhk4s] . L2

r
E 1

�2

. L2�sdsh3s + L2+2sh4s
q
1 + E[kxkhk4s2 ] + L2h2s

p
E[kvkhk4s] .
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We can estimate the expectations by integration of our previous tail bound (Proposition 26):

p
E[krU(xt)�rU(xkh)k4] . L2�sdsh3s + L2+2sh4s

⇣
m+

T

�

�
R2(µ0 k µ(a)) + logN

�⌘2s2

+ L2h2s
�
d+ R2(µ0 k µ(a)) + logN

�
s

 eO
⇣
L2h2s

�
d+ R2(µ0 k µ(a))

�
s
⌘
,

provided that h  eO( 1
L
(d

1/2

ms ^ R2 (
�R2
T

)s/2)), where R2 = R2(µ0 k µ(a)). In our applications, this
condition is not dominant and can be disregarded.

Combining the bounds. Finally, we can combine each of these steps to find that, provided (C.5)
for the step size holds,

EQT

h⇣ dPT

dQT

⌘
q
i
� 1  eO

⇣Tq2

�
L2h2s

�
d+ R2(µ0 k µ(a))

�
s
⌘
.

Finally, the following step size condition suffices to bound the Rényi divergence by "2:

h . eOs

⇣ �1/(2s)"1/s

L1/sT 1/(2s)q1/s (d+ R2(µ0 k µ(a)))1/2

⌘
.

This completes the proof.

Appendix D. Proof of the Main Results

Firstly, we collect some results on feasible initializations from Chewi et al. (2021). Recall that ⇡(a)

is the modified distribution introduced in Appendix C.3. Let

⇡0 = N (0, &Id),

where & = (2L+ �)�1 is the variance of the Gaussian, and � ⇣ 1/T is the parameter appearing in
the modified potential. The choice of T will be assumption dependent, and we collect the conditions
below under our main assumptions:

T =

(
e⇥
�
L+d

q(�)

�
⇡ satisfies (PI)

e⇥(
p
LCLSI) ⇡ satisfies (LSI), or is strongly log-concave,

where q(�) is defined in (3.2).

Lemma 27 (Adapted from Chewi et al. (2021, Appendix A)) Suppose that ⇡ satisfies (PI) and
the Hölder continuity condition (2.3), as well as rU(0) = 0, U(0)�minU . d. Then the following
two properties hold for ⇡0 = N (0, (2L + �)�1Id), where � is the parameter appearing in the
modified potential:

Rq(⇡0 k ⇡)  eO(� + L+ d) ,

Rq(⇡0 k ⇡(a))  eO(� + L+ d) .
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Proof Apply either Chewi et al. (2021, Lemma 30) or Chewi et al. (2021, Lemma 31).

From our analysis we take � . L, and if moreover L . d then it is reasonable to expect that
Rq(⇡0 k⇡),Rq(⇡0 k⇡(a))  eO(d). Let µ0 = ⇡0⌦ ⇢, so that Rq(µ0 kµ) = Rq(⇡0 k⇡), and similarly
Rq(µ0 k µ(a)) = Rq(⇡0 k ⇡(a)).

The following lemma gives a bound on the value of the Fisher information at initialization.

Lemma 28 Under the conditions of the previous lemma, the initialization µ0 = ⇡0⌦⇢ also satisfies
FI(µ0 k µ) . Ld+ L1�sds.

Proof Note that as rU(0) = 0, kr log ⇡(x)k2 = krU(x)k2  L2 kxk2s. Secondly, ⇡0 satisfies
Ex⇠⇡0 [kxk2] . d/L. Hence,

FI(µ0 k µ) = E⇡0
h���r log

⇡0
⇡

���
2i

 Ex⇠⇡0 [krU(x)� (2L+ �)xk2]

. L2 Ex⇠µ0 [kxk2 + kxk2s] . Ld+ L1�sds ,

where we used Jensen’s inequality in the last step.

D.1. Poincaré Inequality

Proof [Proof of Theorem 9] The continuous-time result from Lemma 8 states that

T & 1

q(�)
log

�2(µ0 k µ)
"2

=) �2(µT k µ)  "2 .

Noting that there exists a feasible initialization such that log�2(µ0 k µ)  eO(L + d), then this
is satisfied if we choose T = eO( 1

q(�) (L + d + log 1
"
)). This also shows that R2(µT k µ) =

log(1 + �2(µT k µ)) . "2 for " . 1.
Note the following decomposition (weak triangle inequality) for the Rényi divergence (see, e.g.,

Mironov, 2017, Proposition 11):

Rq(P1 k P2) 
q � 1/c

q � 1
Rcq(P1 k P3) + Rd(q�1/c)(P3 k P2),

for any valid Hölder conjugate pair c, d, i.e., 1
c + 1

d = 1, c, d > 1, and any three probability
distributions P1, P2, P3.

In our case, we let q = 2 � ⇠ and d(q � 1/c) = 2, so that after solving for c, d, we get the
following for ⇠  1/2:

R2�⇠(P1 k P2)  2R2/⇠(P1 k P3) + R2(P3 k P2) .

Consequently, let P1 = µ̂Nh, P2 = µ, P3 = µNh, and combining this result with the discretization
bound of Proposition 11, we then obtain

R2�⇠(µ̂Nh k µ) . R2/⇠(µ̂Nh k µNh) + R2(µNh k µ) . "2 ,
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so long as

h = e⇥
⇣�1/(2s)"1/s⇠1/sq(�)1/(2s)

L1/sd1/2 (L _ d)1/(2s)

⌘
,

N = e⇥
⇣ L1/sd1/2 (L _ d)1+1/(2s)

�1/(2s)"1/s⇠1/sq(�)1+1/(2s)

⌘
.

This completes the proof.

D.2. Log-Sobolev Inequality

D.2.1. KL DIVERGENCE

Proof [Proof of Theorem 6] We provide the following Theorem in the twisted coordinates (�, ),
which were used in Lemma 10. Consider the decomposition of the KL using Cauchy–Schwarz:

KL(µ̂M
T k µM) =

Z
log

µ̂M
T

µM dµ̂M
T

= KL(µ̂M
T k µM

T ) +

Z
log

µM
T

µM dµ̂M
T

= KL(µ̂M
T k µM

T ) + KL(µM
T k µM) +

Z
log

µM
T

µM d(µ̂M
T � µM

T )

 KL(µ̂M
T k µM

T ) + KL(µM
T k µM) +

s

�2(µ̂M
T

k µM
T
)⇥ var

µ
M
T

⇣
log

µM
T

µM

⌘
.

Using the log-Sobolev inequality of the iterates via Lemma 10, we find (through the implication that
a log-Sobolev inequality implies a Poincaré inequality with the same constant)

var
µ
M
T

⇣
log

µM
T

µM

⌘
 CLSI(µ

M
T )E

µ
M
T

h���r log
µM
T

µM

���
2i

,

where we substitute log
µ
M
T

µM for the function in (PI). Here, CLSI(µM
T
) . 1/m for all t � 0.

Since µM = M#µ, then µM(�, ) / µ(M�1(�, )). Therefore,

r logµM = (M�1)Tr logµ �M�1 ,

and similarly for r logµM
T

. This yields the expression

E
µ
M
T

h���r log
µM
T

µM

���
2i

= EµT

h���(M�1)Tr log
µT

µ

���
2i

.

Also, one has

M�1 (M�1)T =


1 ��/2

��/2 �2/2

�
.
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For c0 > 0 and M defined in Appendix B.1, we have

LM� c0M�1 (M�1)T =


1/4� c0

p
L (1/

p
2 + c0

p
2)p

L (1/
p
2 + c0

p
2) L (4� c0)

�
.

The determinant is L ((14 � c0) (4� c0)� ( 1p
2
+ c0

p
2)2) > 0 for c0 > 0 sufficiently small. This

shows that M�1 (M�1)T � c�1
0 LM, and therefore

E
µ
M
T

h���r log
µM
T

µM

���
2i

. LFIM(µT k µ) .

Here we define

FIM(µ0 k µ) := Eµ0
⇥��M1/2r log

µ0

µ

��2⇤

The decay of the Fisher information via Lemma 5 allows us to set

T & CLSI

p
L log

⇣ 
"2

�
KL(µ0 k µ) + FIM(µ0 k µ)

�⌘
=) var

µ
M
T

⇣
log

µM
T

µM

⌘
. "2 .

The same choice of T also ensures that KL(µM
T

k µM)  "2. From our initialization (Lemma 28),
we can naively estimate using that

FIM(µ0 k µ) .
1

L
FI(⇡0 k ⇡) . d ,

and KL(µ0 k µ) . d log , so that our condition on T is (with CLSI  m�1)

T � eO
⇣pL

m
log

d

"2

⌘
.

Recall as well that this requires � ⇣
p
L. For the remaining �2(µ̂T k µT ) and KL(µ̂T k µT ) terms,

we invoke Proposition 11 with the value of T = Nh specified and desired accuracy ", and with
q = 2 and s = 1, which consequently yields

h = e⇥
⇣"m1/2

Ld1/2

⌘
,

with

N = e⇥
⇣3/2d1/2

"

⌘

(using N = T/h).
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D.2.2. TV DISTANCE

Proof [Proof of Theorem 7] Notice first that the TV distance is a proper metric, and therefore satisfies
the triangle inequality. Subsequently, by two applications of Pinsker’s inequality,

kµ̂Nh � µkTV  kµ̂Nh � µNhkTV + kµNh � µkTV
.
p
KL(µ̂Nh k µNh) +

p
KL(µNh k µ) .

These terms can be bounded separately. Analogous to the proof of the prior theorem, using
Lemma 5, it suffices to take

T � eO
⇣
CLSI

p
L log

d

"2

⌘
,

and for the other term, it suffices to use Proposition 11 with any value of q, � ⇣
p
L which combined

with the requirement on T yields:

h = e⇥
⇣ "

C1/2
LSI

Ld1/2

⌘
,

with

N = e⇥
⇣C3/2

LSI
L3/2d1/2

"

⌘
,

(using N = T/h).
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