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Abstract

Optimization problems with group sparse regularization are ubiquitous in various popu-
lar downstream applications, such as feature selection and compression for Deep Neural
Networks (DNNs). Nonetheless, the existing methods in the literature do not perform par-
ticularly well when such regularization is used in combination with a stochastic loss function.
In particular, it is challenging to design a computationally efficient algorithm with a conver-
gence guarantee and can compute group-sparse solutions. Recently, a half-space stochastic
projected gradient (HSPG) method was proposed that partly addressed these challenges. This
paper presents a substantially enhanced version of HSPG that we call AdaHSPG+ that makes
two noticeable advances. First, AdaHSPG+ is shown to have a stronger convergence result
under significantly looser assumptions than those required by HSPG. This improvement in
convergence is achieved by integrating variance reduction techniques with a new adaptive
strategy for iteratively predicting the support of a solution. Second, AdaHSPG+ requires
significantly less parameter tuning compared to HSPG, thus making it more practical and
user-friendly. This advance is achieved by designing automatic and adaptive strategies for
choosing the type of step employed at each iteration and for updating key hyperparam-
eters. The numerical effectiveness of our proposed AdaHSPG+ algorithm is demonstrated
on both convex and non-convex benchmark problems. The source code is available at
https://github.com/tianyic/adahspg.

1 Introduction
In many machine learning tasks, people not only want to compute solutions with small predic-
tion/generalization errors but also seek easier-to-interpret models by identifying essential problem structures
and filtering redundant parameters (Lin et al., 2019; Wen et al., 2016; Chen et al., 2020a; 2023b). One popu-
lar technique to achieve this goal is the use of structured sparsity-inducing regularization (Bach et al., 2012b;
Jenatton et al., 2010) that encodes the model architecture. When this type of regularization is combined
with an appropriate loss function, one is able to recover structured sparse solutions (Deleu & Bengio, 2021).

*These authors contributed equally to this work.
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The non-overlapping group-sparse regularizer (Yuan & Lin, 2006) has proved useful in machine learning
applications. It also plays an essential role for more general structured sparse learning tasks since problems
with overlapping group sparsity (Bach et al., 2012a) or hierarchical sparsity (Jenatton et al., 2011) are often
solved by converting them into an equivalent non-overlapping group-sparse problem (e.g., by introducing
latent variables (Bach et al., 2012b)). In general, structured sparsity has found numerous applications in
computer vision (Elhamifar et al., 2012), signal processing (Chen & Selesnick, 2014), medical imaging (Liu
et al., 2018), and deep learning (Scardapane et al., 2017; Li et al., 2020; Chen et al., 2021b; 2023a).

1.1 Problem Formulation

In this paper, we study the group-sparse regularization problem (sometimes called the mixed ℓ1/ℓ2 problem)

min
x∈Rn

{
ψ(x) := 1

N

N∑
i=1

fi(x)︸ ︷︷ ︸
f(x)

+
∑
g∈G

λg ∥[x]g∥︸ ︷︷ ︸
r(x)

}
(1)

where ∥·∥ denotes the ℓ2-norm, f is the average of N continuously differentiable functions fi : Rn → R, G is
a set of disjoint subsets of I = {1, 2, . . . , n} (each g ∈ G represents a group of variables), λg > 0 is the weight
for group g, and r(x) is the mixed ℓ1/ℓ2 norm *. Larger values for λg result in greater group sparsity but
may produce more model bias. In practice, λg is usually tuned to achieve an acceptable balance between
sparsity and model generalizability.

1.2 Literature review
Problem (1) has been well studied in deterministic optimization, and there are many algorithms capable
of returning sparse approximate solutions (Yuan & Lin, 2006; Roth & Fischer, 2008; Huang et al., 2011;
Ndiaye et al., 2017). Proximal methods are popular approaches for solving the structured non-smooth
optimization problem (1). These methods include the proximal-gradient (PG) method, which only uses
first-order derivatives. When N is huge, stochastic methods become essential because they use small subsets
of the data at each iteration, whereas deterministic methods perform costly evaluations using the entire
dataset.

The proximal stochastic gradient method (Prox-SG) (Duchi & Singer, 2009) is the natural (stochastic)
extension of the PG method. The regularized dual-averaging method (RDA) (Xiao, 2010; Yang et al., 2010)
applies the dual averaging scheme from (Nesterov, 2009) to Prox-SG. There exists a set of incremental
gradient methods inspired by stochastic average gradient (SAG) (Roux et al., 2012) that utilize the average of
accumulated past gradients to improve the convergence rate. For example, the proximal stochastic variance-
reduced gradient method (Prox-SVRG) (Xiao & Zhang, 2014) and proximal spider (Prox-Spider) (Zhang
& Xiao, 2019) use multi-stage schemes based on the well-known variance reduction technique proposed in
SVRG (Johnson & Zhang, 2013) and Spider (Fang et al., 2018). SAGA (Defazio et al., 2014) is a blend of
ideas from SAG and Prox-SVRG.

Compared to deterministic methods, the above state-of-the-art stochastic algorithms for solving problem
(1) have weaknesses (Chen et al., 2021a;b). In particular, these stochastic algorithms typically struggle to
achieve near-optimal solutions that are also group sparse because of the randomness in the algorithm and
the limitations in ensuring sparsity.

To address the drawbacks of stochastic proximal methods, a two-stage algorithm HSPG (half-space stochas-
tic projected gradient method) was recently proposed with the aim of improving numerical performance,
specifically to improve solution sparsity (Chen et al., 2020b; 2021b). In the first stage, a subgradient algo-
rithm is run to seek an estimate of a solution. The second stage uses the solution estimate from the first
stage to define a certain half-space that is used to improve the sparsity of the solution returned in the first
stage. Although HSPG was shown to perform well in initial testing, it has limitations. First, since HSPG is
a two-stage method, it is unable to converge when an insufficiently accurate solution estimate is provided

*The name ℓ1/ℓ2 norm stems from the fact it can set the norm of some subvectors (indexed by induced g) to zero, hence is
equivalent to selecting a subset of a group of variables that are nonzero.
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from the first stage. This is not ideal from both a theoretical and numerical performance perspective since
much computational effort is likely wasted in stage one in an attempt to ensure an accurate enough solution
estimate. Second, the analysis provided for HSPG does not extend to the mixed ℓ1/ℓ2 problem since it is
not Lipschitz continuous in a neighborhood of the origin. Third, the numerical performance of HSPG relies
heavily on tuning a couple of crucial hyperparameters, which is typically quite time-consuming. The focus
of our research is to address the weaknesses of the HSPG approach, as we describe in the next section.
1.3 Our contributions

We overcome the weaknesses of HSPG discussed above by proposing an adaptive half-space stochastic projected
gradient method (AdaHSPG+). Our main contributions can be summarized as follows.

• Improved algorithmic design and convergence theory. Our proposed approach AdaHSPG+ is
a significance improvement upon HSPG. First, unlike HSPG, our AdaHSPG+ is not a two-stage method
and therefore does not require a “good enough” solution estimate to be provided from a first stage.
Second, although we use a similar half-space projection scheme to enhance solution sparsity, our
strategy for choosing the groups that define the half-space is significantly different from that used in
HSPG. Consequently, unlike HSPG, we establish a convergence theory that holds for problems that are
not Lipschitz continuous in a neighborhood of zero, such as the group sparse problem (1) considered
in this paper. Even though the HSPG theory does not hold in our setting, it is interesting to note that
the theory provided for HSPG (for other types of regularizers) is an expectation-type result that holds
with a certain probability. In contrast, the convergence theory we present is a pure expectation-
type result akin to standard results for stochastic gradient methods. The key to achieving these
improvements over HSPG is an automatic and adaptive strategy that decides the iterations for which
the half-space projection scheme should be used.

• Numerical performance. We numerically demonstrate the effectiveness of AdaHSPG+ on com-
monly tested convex (logistic regression) and nonconvex (deep neural networks (DNNs)) problems.
In the convex setting, AdaHSPG+ performs similarly to HSPG and significantly outperforms Prox-SG
and Prox-SVRG. For the nonconvex setting, AdaHSPG+ significantly outperforms all of the methods,
including HSPG, especially in terms of solution sparsity. These numerical gains are due to the combi-
nation of the enhancements described above and a new automatic and adaptive strategy for defining
a key hyperparameter that defines the half-space projections.

1.4 Preliminaries and notations

Unless specified otherwise, ∥·∥ represents the ℓ2 norm, and |A| denotes the cardinality of a set A. [N ] is the
index set {1, 2, · · · , N} and N+ and R+ are the set of positive integers and positive real numbers, respectively.
For a nonempty set B ⊆ [N ], we define the batch function induced by the set B

fB(x) := 1
|B|

∑
i∈B

fi(x) and ψB(x) := fB(x) + r(x).

For any vector x ∈ Rn and g ∈ G, [x]g ∈ R|g| is the subvector obtained by restricting x to the elements
in g. For any [x]g ̸= 0, the partial gradient of ψ over [x]g is defined as ∇gψB(x) = ∇gfB(x) + ∇gr(x).
In other words, ∇gψB(x) = ∂ψB(x)/∂[x]g. For any η > 0, the proximal operator induced by r is defined
as Proxηr (x) := arg minu∈Rn

1
2η∥u − x∥2

2 + r(u), which has a closed-form solution (Beck, 2017, Example
6.19), i.e., [Proxηr (x)]g =

(
1− α

max{∥xg∥,α}

)
[x]g. Furthermore, we define the proximal gradient step over

the index set B as

sB(x; η) = Proxηr (x− η∇fB(x))− x, (2)

and when B = [N ], we simply write s(x; η) and s(x; η) is the negative of gradient mapping defined in (Beck,
2017, Definition 10.5) The quantity ∥s(x; η)∥ is a stationarity measure for problem (1) (Beck, 2017, Theorem
10.7). Since solution sparsity is of great interest in this paper, we define the concept of support.
Definition 1.1. The support of a point x ∈ Rn with respect to G is Supp(x) := {g ∈ G | [x]g ̸= 0}.
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2 AdaHSPG+ Algorithm
In this section, we propose an Adaptive Half-Space Stochastic Projected Gradient (AdaHSPG+) method for
solving problem (1) that uses optimal support prediction, space decomposition, and half-space projections.
An overview of the algorithm is presented in Section 2.1. For every epoch, either an Enhanced Half-Space
step or a Prox-SVRG step is performed based on an automatic switching mechanism. In general, the
Prox-SVRG step guides how we estimate the solution support (the non-zero groups of variables), and the
Enhanced Half-Space step is designed to improve the sparsity of the iterates. These two steps work
together along with the switching mechanism to drive the convergence of the iterates generated by AdaHSPG+.

2.1 Main algorithm

Algorithm 1 AdaHSPG+ for solving (1).
1: Input: x0 ∈ Rn, µ > 0, ϵ ∈ (0, 1), (α0, η, κ) ∈ R3

+, (mh,mp, b) ∈ N3
+.

2: for epoch k = 0, 1, 2, . . . do
3: Randomly sample an index set Bk ⊆ [N ], and then compute ∇fBk

(xk) and step sBk
(xk, η) as in (2).

4: Compute IHS
k and INHS

k using (4).
5: Compute the measures χHS

k = ∥[sBk
(xk, η)]IHS

k
∥ and χNHS

k = ∥[sBk
(xk, η)]INHS

k
∥ .

6: if χHS
k ≥ µχNHS

k then
7: Call Algorithm 2 to get the next iterate: xk+1 ← EHS(xk, αk, ϵ, κ,mh).
8: else
9: Call Algorithm 3 to get the next iterate: xk+1 ← PSVRG(xk,∇fBk

(xk), η,mp, b).
10: end if
11: Set αk+1 (e.g., constant or diminishing step size).
12: end for

At the beginning of the kth epoch, we partition the groups of variables into two sets. To form these sets, let
us choose a constant κ ∈ (0,∞) and define the function

I(x,B) :=
{
g ∈ G | ∥[x]g∥ ≠ 0, [x + sB(x, η)]g ̸= 0, ∥[x]g∥

∥∇gψB(x)∥ ≥ κ
}

(3)

which we use to define the sets

IHS
k = I(xk,Bk) and INHS

k = G \ IHS
k . (4)

These sets aid in identifying the zero/nonzero groups at a solution. In particular, the groups of variables
in IHS

k are input to the Enhanced Half-Space step computation to explore further whether they should
remain nonzero. This makes sense since g ∈ IHS

k for the given xk and minibatch Bk if and only if the following
conditions hold: (i) xk is nonzero over the group g (i.e., ∥[xk]g∥ ≠ 0); (ii) the batch proximal gradient step
over Bk predicts that group g is in the solution support (i.e, [xk + sBk

(xk, η)]g ̸= 0), and (iii) the restriction
of xk to group g is sufficiently far from the origin (i.e., ∥[xk]g∥ ≥ κ∥∇gψBk

(xk)∥), which is needed for our
convergence analysis.

The switching mechanism that we have designed uses χHS
k and χNHS

k in line 5 of Algorithm 1 to decide which
one the two spaces of variables we should currently explore further. This makes sense since the sizes of χHS

k

and χNHS
k indicate the amount of progress one might expect to achieve by continuing to optimize over the

variables in IHS
k (Enhanced Half-Space step) and INHS

k (Prox-SVRG step), respectively. If χHS
k ≥ µχNHS

k , the
algorithm proceeds with the Enhanced Half-Space step; otherwise, the algorithm performs the Prox-SVRG
step and then generates a new partition of the groups. The value chosen for µ gives preference to either the
Enhanced Half-Space step or Prox-SVRG step.

4



Published in Transactions on Machine Learning Research (06/2023)

2.2 An enhanced half-space step

Algorithm 2 Enhanced Half-Space step (EHS).
1: Input: xk ∈ Rn, αk > 0, ϵ ∈ (0, 1), mh > 0, and κ > 0.
2: Initialize x̃k,0 = xk.
3: for t = 0, · · · ,mh − 1 do
4: Randomly sample an index set Bk,t ⊆ [N ].
5: Form IHS

k,t = I(x̃k,t,Bk,t) and INHS
k,t = G \ IHS

k,t.
6: Compute ∇IHS

k,t
ψBk,t

(x̃k,t), which is well defined.
7: Compute a trial iterate x̂k,t+1 as
8: [x̂k,t+1]IHS

k,t
← [x̃k,t]IHS

k,t
− αk∇IHS

k,t
ψBk,t

(x̃k,t), [x̂k,t+1]INHS
k,t
← [x̃k,t]INHS

k,t
.

9: Set x̃k,t+1 ← ProjIHS
k,t

(x̂k,t+1; x̃k,t) using (5).
10: end for
11: return xk+1 ← x̃k,mh

If the Enhanced Half-Space step (EHS) is computed during the kth epoch of AdaHSPG+, then the goal is
to explore group sparsity with respect to the current candidate support set. Specifically, in Algorithm 2, we
form the partial stochastic gradient of ψ over groups of variables in IHS

k,t, where IHS
k,t = I(x̃k,t,Bk,t), x̃k,t and

Bk,t are the tth iterate and mini-batch of Algorithm 2, and I(·, ·) is defined in (3), and then take a stochastic
gradient step (see line 8 in Algorithm 2) to obtain x̂k,t+1. For t = 0, the gradient of f computed over Bk as
part of the switching mechanism in Algorithm 1 can be reused. Next, a half-space projection operator

[ProjI (z; x)]g =
{

0 if [x]Tg [zg] ≤ ϵ ∥[x]g∥2 and g ∈ I
[z]g otherwise

(5)

is performed on x̂k,t+1 to obtain x̃k,t+1. A graphical illustration of the projection procedure is presented
in Figure 1. The intuition behind the above projection is to project groups of variables to zero when the
stochastic gradient step crosses over the boundary of the hyperplaneHg = {zg ∈ R|g| | [x]Tg zg−ϵ ∥[x]g∥2 = 0}
depicted in Figure 1. The parameter ϵ in (5) determines the distance between the boundary of Hg and the
origin, and therefore controls how aggressively sparsity is sought. Larger values of ϵ are more likely to lead
to solutions with greater group sparsity. For convenience, we let IPROJ

k,t as the index set of the groups of
variables that are projected onto zero via (5) and IGRAD

k,t = IHS
k,t \ IPROJ

k,t as the index set for the remaining
complementary groups in IHS

k,t.

κ
∥

∥
∇

g ψ
B

k
,t (
x̃
k
,t ) ∥

∥

O

[x̃k,t]g[x̃k,t+1]g =

κ
∥

∥
∇

g ψ
B

k
,t (
x̃
k
,t ) ∥

∥

O

ǫ‖
x̃
k
,t
‖

[x̃k,t]g

−
α
k
∇

g
ψ
B
k
(x̃

k
,t
)

[x̃k,t+1]g

O

[x̃k,t]g

ǫ‖
x̃
k
,t
‖

κ
∥

∥
∇

g ψ
B

k
,t (
x̃
k
,t ) ∥

∥

[x̃k,t+1]g

[x̂k,t+1]g

−α
k
∇g

ψBk
(x̃k,

t)

H
g

H
g

(a) (b) (c)

Figure 1: An illustration of the proposed half-space projection. (a) The restriction of the current iterate to
group g, namely [x̃k,t]g, is not sufficiently far from the origin. The Enhanced Half-Space step does not
perform an update. (b) Here, [x̃k,t]g is sufficiently far from the origin, and a stochastic gradient step does
not cross the boundary of the hyperplane Hg. The projection leaves [x̃k,t+1]g unchanged. (c) Here, [x̃k,t]g is
sufficiently far from the origin, and the stochastic gradient step crosses the boundary of Hg. The projection
sets [x̃k,t+1]g = 0, thus creating a sparser solution estimate.
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2.3 A Prox-SVRG step
When Algorithm 1 chooses to compute the Prox-SVRG step during the kth epoch, we simply perform mp

updates of a basic Prox-SVRG method as described in Algorithm 3.

Algorithm 3 Prox-SVRG step (PSVRG).
1: Input: xk ∈ Rn, η > 0, mp > 0, and ∇fBk

(xk).
2: Set x̃k,0 ← xk.
3: for t = 0, · · · ,mp − 1 do
4: Randomly sample an index set Bk,t ⊆ [N ] such that |Bk,t| = b.
5: vk,t ← 1

b

∑
i∈Bk,t

(∇fi(x̃k,t)−∇fi(xk)) +∇fBk
(xk)

6: x̃k,t+1 ← Proxηr (x̃k,t − ηvk,t)
7: end for
8: return xk+1 ← x̃k,mp

Prox-SVRG extends Prox-SG by adding a variance reduction technique (see Johnson & Zhang (2013); Xiao
& Zhang (2014)), which has been frequently studied in J Reddi et al. (2016); Li & Li (2018). Compared
to Prox-SG, Prox-SVRG enjoys a stronger convergence theory and often performs better on convex experi-
ments, although this numerical advantage often disappears on non-convex problems such as those in various
DNN applications (Defazio & Bottou, 2019).

Although the proximal gradient operator is known to identify the solution support (asymptotically and
under certain assumptions) in the deterministic setting, the story is different in the stochastic regime. In
fact, stochastic methods applied in our setting typically return dense solution estimates (e.g., see Chen et al.
(2021b)). In AdaHSPG+, however, the Prox-SVRG step is complemented by the Enhanced Half-Space step
to promote sparse solutions.

3 Convergence Analysis

In this section, we describe the convergence results for the proposed AdaHSPG+ algorithm; all proof may be
found in the appendix. We assume the following hold throughout.
Assumption 3.1. The function fi : Rn → R is continuously differentiable and has an L-Lipschitz continuous
gradient for all i ∈ {1, 2, · · · , N}, i.e., fi is L-smooth. It follows that f is also L-smooth.
Assumption 3.2. The function ψ is bounded below, i.e., ψ(x) > ψ for all x ∈ Rn and some ψ ∈ R.
Assumption 3.3. The step size sequence {αk} satisfies

∑∞
k=0 αk =∞ and

∑∞
k=0 α

2
k <∞.

Assumption 3.4. The iterate sequence {xk} is bounded, i.e., ∥xk∥ ≤M for all k and some M > 0.

Assumption 3.1 and Assumption 3.2 are standard in the literature (Xiao & Zhang, 2014; Johnson & Zhang,
2013; Rosasco et al., 2019). Assumption 3.3 and Assumption 3.4 are used in (Ljung, 1977) to analyze the
convergence behavior of stochastic gradient descent. Assumption 3.4 is reasonable in our setting since the
regularizer penalizes the magnitude of variables, and {∥xk∥} remained bounded in our numerical tests.

We can prove that the Enhanced Half-Space step has the following sufficient decrease property.
Lemma 3.5. If the Enhanced Half-Space step is computed during the kth epoch of Algorithm 1, then the
tth iterate x̃k,t+1 computed in Algorithm 2 satisfies

EBk,t
[ψ(x̃k,t+1) | x̃k,t] ≤ ψ(x̃k,t)−

(
1− ϵ
αk
− L

2

) ∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
− αk

(
1− Lαk

2

) ∥∥∥∇IGRAD
k,t
ψ(x̃k,t)

∥∥∥2

+ λmaxα
2
k

κ2ϵ

∑
g∈IGRAD

k,t

∥[x̃k,t]g∥+ Lα2
kσ

2I(|Bk,t| < N)
2|Bk,t|

,

where the expectation is taken with respect to Bk,t and conditioning on x̃k,t. I(·) is the indicator function, and
λmax = max{λg | g ∈ G}. Furthermore, σ2 is the bounded variance constant satisfying E ∥∇fi(x)−∇f(x)∥ ≤
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σ2, with the expectation taken with respect to randomly sampled i. (The existence of the constant σ2 follows
from the finite-sum structure of f(x), the uniform sampling scheme, and Assumptions 3.1 and 3.4.)

Lemma 3.5 shows that for step size αk sufficiently small and |Bk,t| sufficiently large, the Enhanced
Half-Space step is expected to decrease the objective function ψ.

For completeness, we present the sufficient decrease property of Prox-SVRG from (Li & Li, 2018, pg. 14).
Lemma 3.6. If the Prox-SVRG step is computed during the kth epoch of Algorithm 1 and |Bk| ≤ N ,
|Bk,t| = min(m2

p, N), mp(mp − 1/2) ≤ b, and η ≤ 1
6L , then

E[ψ(xk)] ≤ E

[
ψ(xk−1)−

mp−1∑
t=0

1
36Lη2 ∥s(x̃k,t; η)∥2 +

mp−1∑
t=0

I(|Bk| < N)ησ2

|Bk|

]
.

Lemma 3.6 shows that when the batch size Bk is sufficiently large, the Prox-SVRG step is expected to yield
a decrease in the objective function ψ.

We are now ready to state the main convergence theorem.

Theorem 3.7. Under Assumptions 3.1-3.4, and with ϵ ∈ (0, 1), η ∈ (0, 1
6L ], αk ≤ min

{
2(1−ϵ)
L , 1

}
, |Bk| = N

for all k, mp(mp− 1/2) ≤ b, and |Bk,t| = min(m2
p, N) for all k and t, then Algorithm 1 generates a sequence

of iterates {xk}k∈N such that lim infk→∞ E[∥s(xk; η)∥] = 0.

Theorem 3.7 shows that if the sequence {xk}k∈N computed by Algorithm 1 has a limit point, then that limit
point will be a stationary point in expectation. We remark that this theorem only establishes the asymptotic
convergence result, whereas the previous works (Li & Li, 2018; Pham et al., 2020) establish the complexity
bounds. The main challenge that prevents us from establishing such a convergence result is the diminishing
stepsize used in the Enhanced Half-Space step. We conjecture that with additional variance reduction
integrated into the Enhanced Half-Space step one might be able to establish such a result. Here, we avoid
the variance reduction technique in the Enhanced Half-Space step because the practical performance on
deep learning tasks is significantly better.

We then reveal the sparsity identification property of AdaHSPG+ as stated in Theorem 3.8, which requires a
non-degeneracy assumption, which is similar to (Chen et al., 2018; Nutini et al., 2019). Define

0 < δ := 1
2 min
g∈I0(x∗)

inf
B⊆[n]

(λ− ∥[∇fB(x∗)]g∥) . (6)

Theorem 3.8. Given any k ∈ N+, if the kth epoch performs an Enhanced Half-Space step with αk ≤ 1/L,
then for any t ∈ {0, . . . ,mh − 1} satisfying ∥x̃x,t − x∗∥ ≤ 2αkδ

1−ϵ+αkL
, [x̃k,t + s(x̃k,t; η)]I0(x∗)∩I ̸=0(x̃k,t) ̸= 0,

and κ ≤ ming∈I0(x∗) ∥[x̃k,t]g∥ /
∥∥[∇ψBk,t

(x̃k,t)]g
∥∥, it holds that AdaHSPG+ yields I0(x∗) ⊆ I0(x̃k,t+1), where

I0(x) collects groups of variables that are 0 at x.
Remark 3.9. Theorem 3.8 shows that if x̃k,t falls into an ℓ2-ball centered at x∗ with a radius no greater than

2αkδ
1−ϵ+αkL

, then AdaHSPG+ identifies the sparsity pattern over the groups on which proximal method fails to
identify, i.e., [x̃k,t + s(x̃k,t; η)]I0(x∗)∩I ̸=0(x̃k,t) ̸= 0. Comparing with the radius min{δ/L, αkδ} required from
Prox-SG (Lemma A.1), AdaHSPG+ requires an ℓ2-ball with larger radius, i.e., 2αkδ

1−ϵ+αkL
> min{δ/L, αkδ} as

αk ≤ 1/L and ϵ ∈ (0, 1), thereby is superior to Prox-SG in terms of sparsity identification.

Remark 3.10 (AdaHSPG+ versus HSPG). We provide a more detailed comparison between AdaHSPG+ and HSPG.
The HSPG algorithm is a two-stage algorithm. In the first stage, subgradient descent steps are computed for
a fixed number of epochs (denoted by Kswitch). The second stage uses the nonzero groups of the solution
estimate computed in the first stage to define a half-space similar to, but different from, ours (more on
this below). The rest of the second stage involves the repeated computation of stochastic subgradient steps
followed by projections defined using the half-space. Such a design has two drawbacks. First, the switching
constant Kswitch is determined offline. In practice, for each new problem, users need to spend significant time
tuning this constant to get acceptable results. Second, by only performing iterations based on the half-space
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after Kswitch epochs (i.e., no longer allowing stochastic proximal gradient steps to be performed), it is more
likely that HSPG will predict groups to be zero while they are in fact nonzero at the solution. This is because,
in the second stage, only nonzero groups of variables are updated. To avoid this unfortunate possibility in
their convergence analysis, the authors make rather strong assumptions that are either unlikely to hold in
practice or impossible to verify in practice (e.g., they require the point computed during the first stage to
be close enough to the solution, which is typically unknown in practice). Moreover, the analysis for HSPG
requires the regularizer to be differentiable with Lipschitz continuous gradient, which does not hold at the
origin for the group regularizer considered in this paper; thus, the analysis does not apply in our setting.

To overcome the drawbacks of HSPG, we proposed an automatic and adaptive switching mechanism that
avoids the need for a two-stage algorithm, thus avoiding the challenge of finding a good value for Kswitch.
To overcome the strong smoothness assumption required by HSPG, our AdaHSPG+ uses a more sophisticated
definition of the set IHS

k used to compute the Enhanced Half-Space step. In particular, for a group g to
be included in IHS

k , our definition requires [xk]g to be sufficiently far from the origin (see (3)). This is in
contrast to HSPG, wherein every nonzero group is included in IHS

k . This difference, in some sense subtle, is
crucial in establishing our stronger convergence theory under weaker assumptions on the regularizer. For
additional aspects related to our contributions with respect to HSPG, see our contributions in Section 1.3.

4 Numerical Experiments
In this section, we demonstrate the effectiveness of AdaHSPG+ on non-convex problems. The experimental
results validate that AdaHSPG+ significantly outperforms proximal methods in terms of significantly better
group sparsity exploration and maintaining competitive objective function convergence. In Appendix ??, we
also include a convex experiments comparison.

4.1 Implementation details
We first describe the hyperparameters used in Algorithm 1. We designed an adaptive update for ϵ. At
the end of an epoch, if (i) an Enhanced Half-Space step was computed during the previous and current
epoch, (ii) the group sparsity of the iterate did not improve compared to the iterate at the beginning
of the previous epoch, and (iii) the optimality measure is sufficiently small, then we consider enlarging ϵ
by setting ϵ ← min{2ϵ, 0.999}. Anytime any of (i)–(iii) do not hold, we consider reducing ϵ by setting
ϵ← max{0.001, 0.5ϵ}. We set κ← 10−4 to favor the inclusion of more groups from G into IHS

k . We set µ← 1
to give equal preference to the Enhanced Half-Space step and the Prox-SVRG step. Prior testing showed
that our numerical results are rather insensitive to µ except when µ ≫ 1, which would significantly favor
Prox-SVRG step. The mini-batch size |Bk,t| for all k and t is set to the same number b, whose definition
will change for the convex and non-convex problem settings (these will be discussed in their corresponding
sections below). We set |Bk| = N , which is the total number of data samples. mh and mb are both set as the
ratio between the total number of samples and the mini-batch size. The choice of η and hyperparameters for
Prox-SG, Prox-SVRG, and HSPG are discussed separately below for the convex and non-convex experiments.

4.2 Image classification via convolutional neural network

We now consider popular Deep Neural Networks (DNNs) for image classification tasks to demon-
strate the effectiveness of AdaHSPG+ on non-convex problems. Specifically, we use the popular
benchmark DNN architectures VGG16 (Simonyan & Zisserman, 2014), ResNet18 (He et al., 2016),
and MobileNetV1 (Howard et al., 2017) on the two commonly tested datasets CIFAR10 (Krizhevsky &
Hinton, 2009) and Fashion-MNIST (Xiao et al., 2017). As in (Li et al., 2020; Chen et al., 2021b), we conduct
all experiments using 300 epochs with a mini-batch of size b = 128 on a GeForce RTX 2080 Ti GPU. We
choose λg = 10−3 for all g ∈ G as in Chen et al. (2021b). We remark that λg = 10−3 is the best regular-
izer coefficient among the power of ten after fine-tuning with balancing the model performance and group
sparsity. If λg is too large, then the performance would significantly deteriorate; if λg is too small, then no
group sparsity is yielded. The step size αk is initialized as 0.1, and then decreased by a factor of 0.1 every 75
epoch. The variables of each filter in the convolutional layer and each row of weighting matrix in the linear
layer are clustered as one group following Deleu & Bengio (2021). In Table 1, we report the same metrics as
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for the convex experiments, wherein all results are averaged by three runs with the best values marked as
bold.

Table 1 demonstrates the superiority of AdaHSPG+ in the non-convex setting. In particular, AdaHSPG+ com-
putes significantly higher group sparsity levels than all competing methods. Prox-SVRG does not perform
well compared to the other methods since the variance reduction techniques may not work as desired for
deep learning applications (Defazio & Bottou, 2019). Finally, we note that all methods perform comparably
in terms of generalization error on the validation set.

Table 1: Results of non-convex problems with various neural network architectures and datasets, where we
report numbers in the form of final ψ / group sparsity ratio / validation accuracy for non-convex problems.

Model Dataset Prox-SG Prox-SVRG HSPG AdaHSPG+

VGG16 CIFAR10 0.593 / 54.0% / 90.6% 0.825 / 14.7% / 89.4% 0.591 / 74.6% / 91.1% 0.591 / 76.1% / 91.0%
Fashion-MNIST 0.544 / 19.1% / 93.0% 0.613 / 0.5% / 92.7% 0.541 / 39.7% / 93.0% 0.539 / 51.2% / 92.9%

ResNet18 CIFAR10 0.323 / 26.5% / 94.1% 0.361 / 2.8% / 94.2% 0.312 / 41.6% / 94.4% 0.311 / 42.1% / 94.5%
Fashion-MNIST 0.127 / 0.0% / 94.8% 0.145 / 0.0% / 94.6% 0.120 / 10.4% / 94.9% 0.119 / 43.9% / 94.9%

MobileNetV1 CIFAR10 0.401 / 58.1% / 91.7% 0.652 / 29.2% / 90.7% 0.403 / 65.4% / 92.0% 0.402 / 71.5% / 91.8%
Fashion-MNIST 0.229 / 62.6% / 94.2% 0.246 / 42.0% / 94.2% 0.230 / 74.3% / 94.5% 0.241 / 78.9% / 94.6%

Remark 4.1. One might ask whether we may replace Prox-SVRG step with vanilla Prox-SG? We remark that,
first, Prox-SVRG step allows for a better theoretical convergence guarantee. Second, although Prox-SVRG
performs worse than Prox-SG for deep learning tasks as stand-alone algorithms, AdaHSPG+ performs better
when using the Prox-SVRG step because of its ability to better identify the solution support; consequently,
the majority of steps in AdaHSPG+ are Enhanced Half-Space steps.
Remark 4.2. It is also interesting to compare the testing accuracy of different neural network architectures
trained by sparsity-inducing algorithms and popular algorithms used in the deep learning community. Specif-
ically, we use the stochastic gradient descent with momentum (SGD + M) and AdaHSPG+ as an example, and
report the results in Table 2 including two metrics. One is accuracy difference, which is defined as the pre-
diction accuracy achieved by AdaHSPG+ minus the prediction accuracy achieved by SGD + M). And the other
is model compression rate. One can observe that, in most cases, for neural networks trained by AdaHSPG+,
there is little or even no loss in the testing accuracy while the model sizes are reduced by at least 45%. This
phenomenon brings benefits like faster inference and the potential deployment of models on edge devices.

Table 2: Accuracy difference and model compression rate achieved by AdaHSPG+ and stochastic gradient
descent with momentum on different neural networks and datasets.

Dataset Metric VGG16 ResNet18 MobileNetV1

Cifar10 Accuracy Difference (↑) -1.6% 1.5% -2.6%
Model Compression Rate (↑) 76.1% 42.1% 71.5%

Fashion-MINST Accuracy Difference (↑) -0.6% 0.0% -0.4%
Model Compression Rate (↑) 51.2% 43.9% 78.9%

We then investigate the evolution of our evaluation metrics during the training process. The results are
shown in Figure 4 and Figure 5, which include the objective function ψ, group sparsity ratio, and validation
accuracy. AdaHSPG+ performs better than the other methods in terms of group sparsity since it consistently
exhibits a higher group sparsity ratio in the majority of training epochs.

We next sweep the regularizer coefficient λ over {10−2, 10−3, 10−4}. As shown in Figure 2, AdaHSPG+ con-
sistently exhibits the frontiers of the Pareto curves over CIFAR10 experiments, which demonstrates the
superiority of HSPG-family methods over better group sparsity exploration and competitive objective con-
vergence in practice compared with proximal methods.

9



Published in Transactions on Machine Learning Research (06/2023)

(a) VGG16 on CIFAR10 (b) ResNet18 on CIFAR10 (c) MobileNetV1 on CIFAR10

Figure 2: Validation accuracy versus group sparsity under varying regularizer coefficient λs.

(a) Multi-Step Scheduler (b) Cosine Annealing Scheduler

Figure 3: Validation accuracy versus group sparsity under varying step sizes.

We end this section by fine-
tuning the step size (learn-
ing rate) by considering multi-
step (MultiStep) scheduler
and cosine annealing sched-
uler (Cosine) (Loshchilov &
Hutter, 2016) with differ-
ent starting value α0 from
{1.0, 0.1, 0.01}. For the multi-
step scheduler, we divide the
step size by 10 for every
⌊1/4T ⌋, i.e., αk = α0 ×
0.1⌊k/(0.25T )⌋, where T is the
total number of epochs. For
Cosine scheduler, we use the default parameters provided by Pytorch with the period length as the max-
imum epoch T . The results are presented in Figure 3. We observe that for different step size schedulers
and initial step sizes, AdaHSPG+ consistently exhibits the frontier among all Patero curves. The results val-
idate the superiority of HSPG-family methods over group sparsity exploration and achieving models with
competitive generalization performance compared with proximal methods.

4.3 Question and answering via large-scale transformer

We follow (Chen et al., 2021b) to show the scalability of AdaHSPG+ by training and pruning the large-scale
transformer Bert (Vaswani et al., 2017), evaluated on SQuAD, a question-answering benchmark (Rajpurkar
et al., 2016). The structures inside Bert consist of embedding layers, fully connected layers, and multi-head
attention layers. For fairness, we do not prune the embedding layers following the prior Bert compression
works (Deleu & Bengio, 2021). As (Chen et al., 2021b), we selected λg as 10−3 for all groups g ∈ G with
10% and 30% group sparsity upper bound constraints. We compared with the best results of an adaptive
proximal method ProxSSI presented in (Deleu & Bengio, 2021).

As shown in Table 3, AdaHSPG+ significantly outperforms ProxSSI (Deleu & Bengio, 2021) in terms of
achieving better exact match rate and F1-score and higher group sparsity levels. In particular, with a
similar F1-score of around 82%, HSPG-family methods could reach 1.8x higher group sparsity (30% versus
16.5%). Furthermore, if the proximal method yielded more group sparsity from 16.5% to 23.9%, their
model performance dramatically regressed to 77.5% F1-score, which was not comparable with the 82%-84%
F1-scores of HSPG-family methods. The reason proximal methods are not working well for deep learning
applications is that their group sparsity exploration heavily relies on the selection of the regularizer coefficient
λ and the learning rate α. The proximal method has to increase either λ or α to yield satisfactory group
sparsity, which may noticeably deteriorate the model performance. In sharp contrast, HSPG-family methods
feature a Half-Space projector that provides a novel mechanism for producing group sparsity which explores
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(a) VGG16 on CIFAR10
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(b) ResNet18 on CIFAR10
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(c) MobileNetV1 on CIFAR10

Figure 4: The evolution of ψ, group sparsity ratio, and validation accuracy over the epochs.

Table 3: Pruning Bert on SQuAD.

Method Group Sparsity Exact F1-score
Baseline 0% 81.0% 88.3%

ProxSSI Deleu & Bengio (2021) 16.5% 72.3% 82.0%
ProxSSI Deleu & Bengio (2021) 23.9% 66.2% 77.5%

HSPG Chen et al. (2021b) 10.0% 75.0% 84.1%
HSPG Chen et al. (2021b) 30.0% 72.3% 82.1%

AdaHSPG+ 10.0% 75.2% 84.3%
AdaHSPG+ 30.0% 72.6% 82.5%

group sparsity without such heavy dependency over λ and α, thereby typically achieving solutions with
competitive performance but remarkably higher group sparsity levels.
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(a) VGG16 on Fashion-MNIST
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(b) ResNet18 on Fashion-MNIST
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(c) MobileNetV1 on Fashion-MNIST

Figure 5: The evolution of ψ, group sparsity ratio, and validation accuracy over the epochs.

5 Conclusion

In this paper, we proposed AdaHSPG+, which is a significant upgrade of the recently proposed algorithm HSPG,
to solve optimization problems with group sparse regularization. AdaHSPG+ takes advantage of variance re-
duction techniques and is equipped with a novel adaptive strategy for estimating the support of a solution.
We showed that AdaHSPG+ has a much stronger convergence result under milder assumptions when com-
pared with HSPG. Numerically, thanks to a new adaptive and automatic hyperparameter tuning strategy
and switching mechanism, AdaHSPG+ requires fewer hyper-parameter fine-tuning efforts compared to HSPG.
Finally, the proposed AdaHSPG+ outperforms popular stochastic proximal methods on the non-convex deep
neural network benchmark problems in terms of various performance measures that include final objective
function value, solution group sparsity ratio, and generalization error.
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A Proofs.

A.1 Proof of Lemma 3.5

Lemma 3.5. If the Enhanced Half-Space step is computed during the kth epoch of Algorithm 1, then
the tth iterate x̃k,t+1 computed in Algorithm 2 satisfies

EBk,t
[ψ(x̃k,t+1) | x̃k,t] ≤ ψ(x̃k,t)−

(
1− ϵ
αk
− L

2

) ∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
− αk

(
1− Lαk

2

) ∥∥∥∇IGRAD
k,t
ψ(x̃k,t)

∥∥∥2

+ λmaxα
2
k

κ2ϵ

∑
g∈IGRAD

k,t

∥[x̃k,t]g∥+ Lα2
kσ

2I(|Bk,t| < N)
2|Bk,t|

,

where the expectation is taken with respect to Bk,t and conditioning on x̃k,t, I(·) is the indicator function,

λmax = max{λg | g ∈ G},

IPROJ
k,t = {g ∈ IHS

k,t |
([x̃k,t]g−αk∇gψBk,t

(x̃k,t))T [x̃k,t]g

∥[x̃k,t]g∥2 ≤ ϵ},

IGRAD
k,t = IHS

k,t \ IPROJ
k,t ,

and σ2 is the bounded variance constant satisfying

E ∥∇fi(x)−∇f(x)∥2 ≤ σ2,

with the expectation taken with respect to randomly sampled i. (The existence of the constant σ2 follows
from the finite-sum structure of f(x), the uniform sampling scheme, and Assumptions 3.1 and 3.4.)

Proof. We first prove the existence of σ. By Assumption 3.4 and Lipschitz continuity of ∇fi(x), one can see
that ∥∇fi(x)∥ is uniformly bounded by some constant C. By definition

∥∇f(x)∥2 = 1
N2

N∑
i=1
∥∇fi(x)∥2 + 2

N

N−1∑
i=1

N∑
j=i+1

∇fi(x)T∇fj(x).

Therefore,

E ∥∇fi(x)−∇f(x)∥2 = E[∥∇fi(x)∥2]− ∥∇f(x)∥2

= N − 1
N

N∑
i=1
∥∇fi(x)∥2 − 2

N

N−1∑
i=1

N∑
j=i+1

∇fi(x)T∇fj(x)

≤ (N − 1)C2 + 2
N

N−1∑
i=1

N∑
j=i+1

∥∇fi(x)∥ ∥∇fj(x)∥

≤ σ2,

for some σ > 0.

Next, we prove the main result. An Enhanced Half-Space step can be written as x̃k,t+1 = x̃k,t − αkdk,t,
where

[dk,t]g =


∇gψBk,t

(x̃k,t) if g ∈ IGRAD
k,t

[xk]g/αk if g ∈ IPROJ
k,t ,

0 g ∈ INHS
k,t .

(7)
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Let ξk,t ∈ ∂r(x̃k,t) and ξk,t+1 ∈ ∂r(x̃k,t+1). Therefore

ψ(x̃k,t+1) = ψ(x̃k,t − αkdk,t)
= f(x̃k,t − αkdk,t) + r(x̃k,t − αkdk,t)

≤ f(x̃k,t)− αk∇f(x̃k,t)T dk,t + L

2 α
2
k ∥dk,t∥

2 + r(x̃k,t)− αkξTk,t+1dk,t

= ψ(x̃k,t)− αk∇f(x̃k,t)T dk,t + L

2 α
2
k ∥dk,t∥

2 − αk [ξk,t+1 − ξk,t + ξk,t]T dk,t

= ψ(x̃k,t)− αk [∇f(xk,t) + ξk,t]T dk,t + L

2 α
2
k ∥dk,t∥

2 + αk [ξk,t − ξk,t+1]T dk,t,

(8)

where the only inequality holds by the convexity of r, Assumption 3.1, and (7).

Since ξk,t and ξk,t+1 are arbitrary, consider the following specific choices:

[ξk,t]g =
{
λg

[x̃k,t]g

∥[x̃k,t]g∥2
, if g ∈ I ̸=0

k,t

λgug, if g ∈ I0
k,t

and [ξk,t+1]g =


λg

[x̃k,t+1]g

∥[x̃k,t+1]g∥ , if g ∈ I ̸=0
k,t+1

λg
[x̃k,t]g

∥[x̃k,t]g∥ , if g ∈ I ̸=0
k,t ∩ I0

k,t+1

λg[u]g, if g ∈ I0
k,t ∩ I0

k,t+1

,

where I ̸=0
k,t = {g ∈ G | [x̃k,t]g ̸= 0}, I0

k,t = {g ∈ G | [x̃k,t]g = 0}, ug ∈ R|g|, and ∥ug∥ ≤ 1.

For any g ∈ IPROJ
k,t , by definition g ∈ I ̸=0

k,t and g ∈ I0
k,t+1, it follows that

[ξk,t]g = [ξk,t+1]g for all g ∈ IPROJ
k,t . (9)

If we now define ρgk,t = ϵ ∥[x̃k,t]g∥, then it follows that

[ξk,t − ξk,t+1]T dk,t =
∑

g∈IGRAD
k,t

λg[dk,t]Tg
[

[x̃k,t]g
∥[x̃k,t]g∥

− [x̃k,t+1]g
∥[x̃k,t+1]g∥2

]

≤
∑

g∈IGRAD
k,t

λg
∥[dk,t]g∥
ρgk,t

∥∥∥∥∥
[
ρgk,t[x̃k,t]g
∥[x̃k,t]g∥

−
ρgk,t[x̃k,t+1]g
∥[x̃k,t+1]g∥

]∥∥∥∥∥
≤

∑
g∈IGRAD

k,t

λg
∥[dk,t]g∥
ρgk,t

∥[x̃k,t]g − [x̃k,t+1]g∥ =
∑

g∈IGRAD
k,t

λg
αk
ρgk,t
∥[dk,t]g∥2

,

where the first equality holds by (9), the second inequality holds by Cauchy-Schwarz inequality, and the
third inequality holds by the non-expansiveness of the Euclidean projection and the fact that ∥[x̃k,t]g∥ ≥ ρgk,t
and ∥[x̃k,t+1]g∥ ≥ ρgk,t for all g ∈ IGRAD

k,t . We would like to point out for the third inequality that it holds as
ρg

k,t
[x̃k,t]g

∥[x̃k,t]g∥ and ρg
k,t

[x̃k,t+1]g

∥[x̃k,t+1]g∥ are the projections of [x̃k,t]g and [x̃k,t+1]g onto the ball centered at the origin with
radius ρgk,t, respectively. Since [x̃k,t]g and [x̃k,t+1]g are outside the ball, for all g ∈ IGRAD

k,t , the result follows
from the non-expansiveness of projections. Combining this inequality with (8), we obtain

ψ(x̃k,t+1) ≤ ψ(x̃k,t)− αk [∇f(x̃k,t) + ξk,t]T dk,t + L

2 α
2
k ∥dk,t∥

2 + αk [ξk,t − ξk,t+1]T dk,t

≤ ψ(x̃k,t)− αk [∇f(x̃k,t) + ξk,t]T dk,t + L

2 α
2
k ∥dk,t∥

2 + α2
k

∑
g∈IGRAD

k,t

λg
∥[dk,t]g∥2

ρgk,t

= ψ(x̃k,t)− αk
(
∇I ̸=0

k,t
ψ(x̃k,t)

)T
[dk,t]I ̸=0

k,t
+ L

2 α
2
k

∥∥∥[dk,t]I ̸=0
k,t

∥∥∥2
+ α2

k

∑
g∈IGRAD

k,t

λg
∥[dk,t]g∥2

ρgk,t

≤ ψ(x̃k,t)− αk
(
∇IHS

k,t
ψ(x̃k,t)

)T
[dk,t]IHS

k,t
+ L

2 α
2
k

∥∥∥[dk,t]IHS
k,t

∥∥∥2
+ λmaxα

2
k

κ2ϵ

∑
g∈IGRAD

k,t

∥[x̃k,t]g∥ ,

(10)
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where the only equality holds from (7).

Notice that for any g ∈ IPROJ
k,t , by definition, one has

(
[x̃k,t]g − αk∇gψBk,t

(x̃k,t)
)T [x̃k,t]g ≤ ϵ ∥[x̃k,t]g∥2.

Taking expectation with respect to Bk,t, it follows that ([x̃k,t]g − αk∇gψ(x̃k,t))T [x̃k,t]g ≤ ϵ ∥[x̃k,t]g∥2. Re-
arranging terms, one gets

−αk (∇gψ(x̃k,t))T [x̃k,t]g ≤ (ϵ− 1) ∥[x̃k,t]g∥2
.

Summing over all g ∈ IPROJ
k,t for the above inequality, one has

−αk
(
∇IPROJ

k,t
ψ(x̃k,t)

)T
[x̃k,t]IPROJ

k,t
≤ (ϵ− 1)

∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
. (11)

Note that

−αk
(
∇IHS

k
ψ(x̃k,t)

)T
[dk,t]IHS

k
= −αk

(
∇IGRAD

k,t
ψ(x̃k,t)

)T
[dk,t]IGRAD

k,t
− αk

(
∇IPROJ

k,t
ψ(x̃k,t)

)T
[dk,t]IPROJ

k,t

= −αk
(
∇IGRAD

k,t
ψ(x̃k,t)

)T (
∇IGRAD

k,t
ψBk,t

(x̃k,t)
)
−

(
∇IPROJ

k,t
ψ(x̃k,t)

)T
[x̃k,t]IPROJ

k,t

≤ −αk
(
∇IGRAD

k,t
ψ(x̃k,t)

)T (
∇IGRAD

k,t
ψBk,t

(x̃k,t)
)
− 1− ϵ

αk

∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
,

(12)
where the second equality holds by (7). Now, taking the expectation with respect to Bk,t on (12), one has

−αkE
[(
∇IHS

k
ψ(x̃k,t)

)T
[dk,t]IHS

k

]
≤ −αk

∥∥∥[∇ψ(x̃k,t)]IGRAD
k,t

∥∥∥2
− 1− ϵ

αk

∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
. (13)

Similarly, ∥∥∥[dk,t]IHS
k

∥∥∥2
=

∥∥∥∇IGRAD
k,t
ψBk,t

(x̃k,t)
∥∥∥2

+ 1
α2
k

∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
. (14)

Since for any random vector Y , E[∥Y − E[Y ]∥2] = E[∥Y ∥2]−∥E[Y ]∥2, by taking the expectation with respect
to Bk,t, one obtains

E
[∥∥∥∇IGRAD

k,t
ψBk,t

(x̃k,t)
∥∥∥2

]
=

∥∥∥∇IGRAD
k,t
ψ(x̃k,t)

∥∥∥2
+ E

[∥∥∥∇IGRAD
k,t
ψBk,t

(x̃k,t)−∇IGRAD
k,t
ψ(x̃k,t)

∥∥∥2
]

≤
∥∥∥∇IGRAD

k,t
ψ(x̃k,t)

∥∥∥2
+ E

[∥∥∇fBk,t
(x̃k,t)−∇f(x̃k,t)

∥∥2
]

=
∥∥∥∇IGRAD

k,t
ψ(x̃k,t)

∥∥∥2
+ E


∥∥∥∥∥∥ 1
||Bk,t||

∑
i∈Bk,t

{∇fi(x̃k,t)−∇f(x̃k,t)}

∥∥∥∥∥∥
2


=
∥∥∥∇IGRAD

k,t
ψ(x̃k,t)

∥∥∥2
+ σ2I(|Bk,t| < N)

|Bk,t|
,

(15)

where I(·) is the indicator function. Again, taking the expectation with respect to Bk,t on (14), together
with (15), one has

E
[∥∥∥[dk,t]IHS

k

∥∥∥2
]
≤ σ2I(|Bk,t| < N)

|Bk,t|
+

∥∥∥∇IGRAD
k,t
ψ(x̃k,t)

∥∥∥2
+ 1
α2
k

∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
. (16)
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Finally taking expectation over the entire history over (10), together with (13) and (16), one concludes

EBk,t
[ψ(x̃k,t+1) | x̃k,t] ≤ ψ(x̃k,t)− αk

∥∥∥[∇ψ(x̃k,t)]IGRAD
k,t

∥∥∥2
− 1− ϵ

αk

∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2

+ Lα2
k

2

[
σ2I(|Bk,t| < N)

|Bk,t|
+

∥∥∥∇IGRAD
k,t
ψ(x̃k,t)

∥∥∥2
]

+ L

2

∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
+ λmaxα

2
k

κ2ϵ

∑
g∈IGRAD

k,t

∥[x̃k,t]g∥

= ψ(x̃k,t)− αk(1− Lαk
2 )

∥∥∥∇IGRAD
k,t
ψ(x̃k,t)

∥∥∥2
−

(
1− ϵ
αk
− L

2

) ∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2

+ λmaxα
2
k

κ2ϵ

∑
g∈IGRAD

k,t

∥[x̃k,t]g∥+ Lα2
kσ

2I(|Bk,t| < N)
2|Bk,t|

,

which completes the proof.

A.2 Proof of Theorem 3.7

Theorem 3.7. Under Assumptions 3.1-3.3, and with ϵ ∈ (0, 1), η ∈ (0, 1
6L ], αk ≤ min

{
2(1−ϵ)
L , 1

}
and

|Bk| = N for all k, mp(mp − 1/2) ≤ b, and |Bk,t| = min(m2
p, N) for all k and t, then Algorithm 1 generates

a sequence of iterates {xk}k∈N such that lim infk→∞ E[∥s(xk; η)∥] = 0.

Proof. We first introduce the index sets

KP := {k : kth epoch proceeeds Prox-SVRG step} and (17)
KH := {k : kth epoch proceeeds Enhanced Half-Space step}. (18)

Summing over the first l epochs and taking expectation over all past history, we have

E[ψ(xl)] = E

[
ψ(x0) +

l∑
k=1

(ψ(xk)− ψ(xk−1))
]

= E

[
ψ(x0) +

∑
k∈KH

(ψ(xk)− ψ(xk−1)) +
∑
k∈KP

(ψ(xk)− ψ(xk−1))
]

(19)

≤ ψ(x0)−
∑
k∈KH

mh−1∑
t=0

E
[
αk(1− Lαk

2 )
∥∥∥∇IGRAD

k,t
ψ(x̃k,t)

∥∥∥2
+

(
1− ϵ
αk
− L

2

) ∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
]

+
∑
k∈KH

mh−1∑
t=0

E

λmaxα
2
k

κ2ϵ

∑
g∈IGRAD

k,t

∥[x̃k,t]g∥+ Lσ2α2
k

2|Bk,t|

− 1
36Lη2

∑
k∈KP

mp−1∑
t=0

E ∥s(x̃k,t; η)∥2
. (20)

(19) holds since the index set {1, . . . , l} can be partitioned into two disjoint sets KH and KP . When
k ∈ KH , we upper bound the E{Bk,t}T

t=1
[ψ(xk) − ψ(xk−1)|xk−1] using Lemma 3.5; similarly we use

Lemma 3.6 for k ∈ KP . Then, we use the Law of Total Expectation to get E[ψ(xk) − ψ(xk−1)] =
E[E{Bk,t}T

t=1
[ψ(xk) − ψ(xk−1)|xk−1]] for the next inequality, which leads to the upper bound presented

in (20). Using Assumption 3.4 yields

E[ψ(xl)] ≤ ψ(x0)−
∑
k∈KH

mh−1∑
t=0

E
[
αk(1− Lαk

2 )
∥∥∥∇IGRAD

k,t
ψ(x̃k,t)

∥∥∥2
+

(
1− ϵ
αk
− L

2

) ∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
]

+
∑
k∈KH

mh−1∑
t=0

(
λmaxα

2
kMnG

κ2ϵ
+ Lσ2α2

k

2b

)
− 1

36Lη2

∑
k∈KP

mp−1∑
t=0

E ∥s(x̃k,t; η)∥2
, (21)
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where nG = |G|. Now let l→∞, by the Assumption 3.2 and the Assumption 3.3, one concludes that

∑
k∈KH

αk

mh−1∑
t=0

E
[∥∥∥∇IGRAD

k,t
ψ(x̃k,t)

∥∥∥2
]
<∞, (22)

∑
k∈KH

mh−1∑
t=0

E
[(

1− ϵ
αk
− L

2

) ∥∥∥[x̃k,t]IPROJ
k,t

∥∥∥2
]
<∞, (23)

∑
k∈KP

mp−1∑
t=0

E ∥s(x̃k,t; η)∥2
<∞. (24)

By the design of the algorithm, we consider three cases.

Case-1. |KP | =∞ and |KH | <∞. From (24), we conclude lim infk→∞ E ∥s(xk; η)∥ = 0.

Case-2. |KP | <∞ and |KH | =∞. Since

∥s(xk; η)∥2 =
∥∥∥[s(xk; η)]IHS

k

∥∥∥2
+

∥∥∥[s(xk; η)]INHS
k

∥∥∥2
, (25)

in order to show that lim infk→∞ E ∥s(xk; η)∥ = 0, it is sufficient to show that
lim infk→∞ E

∥∥∥[s(xk; η)]IHS
k

∥∥∥ = 0 and lim infk→∞ E
∥∥∥[s(xk; η)]INHS

k

∥∥∥ = 0 holds simultaneously.

We first prove lim infk→∞ E
∥∥∥[s(xk; η)]IHS

k

∥∥∥. Since |KH | = ∞ and
∑
k αk = ∞, we conclude from

(22) that lim infk→∞
∑mh−1
t=0 E

[∥∥∥∇IGRAD
k,t
ψ(x̃k,t)

∥∥∥]
= 0. Notice that once a group of variables being

projected to 0, that group will never be included in the computation of the Enhanced Half-Space
step anymore based on the design of AdaHSPG+. Hence, there exits a K > 0 that for all k ≥ K, t ∈
{0, . . . ,mh − 1}, IGRAD

k,t = IHS
k,t holds, which implies lim infk→∞

∑mh−1
t=0 E

[∥∥∥∇IHS
k,t
ψ(x̃k,t)

∥∥∥]
= 0. By

Lemma 2.4 in Curtis et al. (2020), we have∥∥∥∇IHS
k
ψ(x̃k,t)

∥∥∥ ≥ ∥∥∥[s(x̃k,t; η)]IHS
k

∥∥∥ (26)

holds for all k and t ∈ {0, . . . ,mh − 1}. Since x̃k,0 = xk, Igrad
k,0 = IGRAD

k,t and (26), we have

lim inf
k→∞

E
∥∥∥[s(xk; η)]IHS

k

∥∥∥ ≤ lim inf
k→∞

mh−1∑
t=0

E
[∥∥∥∇IHS

k,t
ψ(x̃k,t)

∥∥∥]
= 0,

hence lim infk→∞ E
∥∥∥[s(xk; η)]IHS

k

∥∥∥ = 0.

We then prove lim infk→∞ E
∥∥∥[s(xk; η)]INHS

k

∥∥∥ = 0. By the line 6 of Algorithm 1,∥∥∥[s(xk;αk)]INHS
k

∥∥∥ = χNHS
k ≤ 1

µ
χHS
k = 1

µ

∥∥∥[s(xk; η)]IHS
k

∥∥∥ ≤ 1
µ

∥∥∥[∇ψ(xk)]IHS
k

∥∥∥ , (27)

where the final inequality holds from (26). Taking expectation and liminf on both side concludes
that

lim inf
k→∞

E
∥∥∥[s(xk; η)]INHS

k

∥∥∥ ≤ 1
µ

lim inf
k→∞

E
∥∥∥[∇ψ(xk)]IHS

k

∥∥∥ = 0. (28)

Case-3. |KP | =∞ and |KH | =∞, then the result follows from the Case 1.
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A.3 Proof of Theorem 3.8

In this section, we compare the group sparsity identification property of AdaHSPG+ and Prox-SG. First, recall
the non-degeneracy assumption

0 < δ := 1
2 min
g∈I0(x∗)

inf
B⊆[n]

(λ− ∥[∇fB(x∗)]g∥) . (29)

Theorem 3.8 Given any k ∈ N+, if the kth epoch performs an Enhanced Half-Space step with αk ≤
1/L, then for any t ∈ {0, . . . ,mh−1} satisfying ∥x̃x,t − x∗∥ ≤ 2αkδ

1−ϵ+αkL
, [x̃k,t+s(x̃k,t; η)]I0(x∗)∩I ̸=0(x̃k,t) ̸= 0,

and κ ≤ ming∈I0(x∗) ∥[x̃k,t]g∥ /
∥∥[∇ψBk,t

(x̃k,t)]g
∥∥, it holds that AdaHSPG+ yields I0(x∗) ⊆ I0(x̃k,t+1), where

I0(x) collects groups of variables that are 0 at x.

Proof. First, if g ∈ I0(x∗)
⋂
I0(x̃k,t), then we have [x̃k,t]g = 0, which implies g ∈ INHS

k,t . Thus [x̃k,t]g =
[x̃k,t+1]g = 0 as the kth epoch perform Enhanced Half-Space step, and therefore g ∈ I0(x∗)

⋂
I0(x̃k,t+1).

Now, if g ∈ I0(x∗)
⋂
I ̸=0(x̃k,t), for any inner-iteration t ∈ {0, . . . ,mh− 1}, there are three cases to consider.

• Case-1. g ∈ I0(x∗) ∩ IHS
k,t.

• Case-2. g ∈ I0(x∗) ∩ I ̸=0(x̃k,t) ∩ {g ∈ G : [x̃k,t]g + [s(x̃k,t; η)]g = 0}.

• Case-3. g ∈ I0(x∗) ∩ I ̸=0(x̃k,t) ∩
{
g ∈ G : ∥[x̃k,t]g∥ < κ∥∇gψBk,t

(x̃k,t)∥
}

.

Based on the conditions provided above for Theorem 3.8, the Case-2 does not hold due to
condition [x̃k,t]g + [s(x̃k,t; η)]g ̸= 0, and the Case-3 does not hold due to condition κ ≤
ming∈I0(x∗) ∥[x̃k,t]g∥ /

∥∥[∇ψBk,t
(x̃k,t)]g

∥∥. Therefore, it is sufficient to consider g ∈ I0(x∗) ∩ IHS
k,t.

[x̃k,t − αk∇ψBk,t
(x̃k,t)]Tg [x̃k,t]g − ϵ ∥[x̃k,t]g∥2

= ∥[x̃k,t]g∥2 − αk[∇ψBk,t
(x̃k,t)]Tg [x̃k,t]g − ϵ ∥[x̃k,t]g∥2

=(1− ϵ) ∥[x̃k,t]g∥2 − αk
(

[∇fBk,t
(x̃k,t)]g + λ

[x̃k,t]g
∥[x̃k,t]g∥

)T

[x̃k,t]g

=(1− ϵ) ∥[x̃k,t]g∥2 − αk[∇fBk,t
(x̃k,t)]Tg [x̃k,t]g − αkλ ∥[x̃k,t]g∥

≤(1− ϵ) ∥[x̃k,t]g∥2 + αk
∥∥[∇fBk,t

(x̃k,t)]g
∥∥ ∥[x̃k,t]g∥ − αkλ ∥[x̃k,t]g∥

= ∥[x̃k,t]g∥
{

(1− ϵ) ∥[x̃k,t]g∥+ αk
∥∥[∇fBk,t

(x̃k,t)]g
∥∥− αkλ}

(30)

By the Lipschitz continuity of ∇f , we have that for each g ∈ I0(x∗)
⋂
I ̸=0(x̃k,t),∥∥[∇fBk,t

(x̃k,t)−∇fBk,t
(x∗)]g

∥∥ ≤ L ∥[x̃k,t − x∗]g∥ = L ∥[x̃k,t]g∥∥∥[∇fBk,t
(x̃k,t)]g

∥∥ ≤ L ∥[x̃k,t]g∥+
∥∥[∇fBk,t

(x∗)]g
∥∥ . (31)

Combining with the definition of δ, which implies that
∥∥[∇fBk,t

(x∗)]g
∥∥ ≤ λ− 2δ that∥∥[∇fBk,t

(x̃k,t)]g
∥∥ ≤ L ∥[x̃k,t]g∥+ λ− 2δ. (32)

Hence combining with ∥[x̃k,t]g∥ ≤ 2αkδ
1−ϵ+αkL

, (30) can be further written as

[x̃k,t − αk∇ψBk,t
(x̃k,t)]Tg [x̃k,t]g − ϵ ∥[x̃k,t]g∥2

≤∥[x̃k,t]g∥
{

(1− ϵ) ∥[x̃k,t]g∥+ αk
∥∥[∇fBk,t

(x̃k,t)]g
∥∥− αkλ}

≤∥[x̃k,t]g∥ {(1− ϵ) ∥[x̃k,t]g∥+ αkL ∥[x̃k,t]g∥+ αkλ− 2αkδ − αkλ}
= ∥[x̃k,t]g∥ {(1− ϵ+ αkL) ∥[x̃k,t]g∥ − 2αkδ}

≤∥[x̃k,t]g∥
{

(1− ϵ+ αkL) 2αkδ
1− ϵ+ αkL

− 2αkδ
}

= ∥[x̃k,t]g∥ (2αkδ − 2αkδ) = 0,

(33)
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which shows that [x̃k,t − αk∇ψBk,t
(x̃k,t)]Tg [x̃k,t]g ≤ ϵ ∥[x̃k,t]g∥2. Hence the group projection operator is

triggered on g to map the variables to zero, then g ∈ I0(x̃k,t+1), i.e., [x̃k,t+1]g = 0. Therefore, the group
sparsity of x∗ can be successfully identified by Half-Space step, i.e., I0(x∗) ⊆ I0(x̃k,t+1).

We show the generic sparsity identification property of Prox-SG for any mixed ℓ1/ℓp regularization for p ≥ 1.
Lemma A.1. If ∥xk − x∗∥p ≤ min{δ/L, αkδ}, where 1/p + 1/p′ = 1 (p′ = ∞ if p = 1), then the Prox-SG
yields that for each g ∈ I0(x∗), [xk+1]g = 0 holds, i.e., I0(x∗) ⊆ I0(xk+1).

Proof. It follows from the reverse triangle inequality, basic norm inequalities, Lipschitz continuity of ∇f(x)
and the assumption of this lemma that for any g ∈ G,

∥[∇fBk
(xk)]g∥p′ − ∥[∇fBk

(x∗)]g∥p′ ≤ ∥[∇fBk
(xk)−∇fBk

(x∗)]g∥p′

≤ ∥∇fBk
(xk)−∇fBk

(x∗)∥p′

≤ L ∥xk − x∗∥p ≤ L ·
δ

L
= δ.

(34)

By (34), we have that for any g ∈ I0(x∗),

∥[∇fBk
(xk)]g∥p′ ≤ ∥[∇fBk

(x∗)]g∥p′ + δ ≤ λ− 2δ + δ = λ− δ, (35)

where the final inequality holds due to ∥[∇fBk
(x∗)]g∥p′ ≤ λ − 2δ by the definition of δ proposed before.

Combining (35) and the assumption of this lemma, the following holds for any αk > 0 that

∥[xk − αk∇fBk
(xk)]g∥p′ ≤ ∥[xk]g∥p′ + ∥[αk∇fBk

(xk)]g∥p′ ≤ αkδ + αk(λ− δ) = αkλ (36)

which further implies that the Euclidean projection yields that

ProjEuclidean
B(∥·∥p,αkλ)([xk − αk∇fBk

(xk)]g) = [xk − αk∇fBk
(xk)]g. (37)

Combining with (37), the fact that proximal operator is the residual of identity operator subtracted by
Euclidean project operator onto the dual norm ball and [xk]g = 0 for any g ∈ I0(x∗) (Chen, 2018), we have

[xk+1]g = Proxαkλ∥·∥p
([xk − αk∇fBk

(xk)]g)

=
[
I − ProjEuclidean

B(∥·∥p,αkλ)

]
[xk − αk∇fBk

(xk)]g
= [xk − αk∇fBk

(xk)]g − [xk − αk∇fBk
(xk)]g = 0,

(38)

consequently I0(x∗) ∈ I0(xk+1), which completes the proof.

B Additional Experiments

B.1 Convex setting

As in (Xiao & Zhang, 2014; Curtis et al., 2020), we first consider the convex logistic regression problem
with mixed ℓ1/ℓ2-regularization for binary classification. Given N data samples (d1, l1), . . . , (dN , lN ), where
di ∈ Rn and li ∈ {−1, 1} denote the feature vector of the ith data sample and the corresponding ground
truth label, respectively, the problem is formulated as

min
(x;b)∈Rn+1

1
N

N∑
i=1

log(1 + e−li(xT di+b)) +
∑
g∈G

λg ∥[x]g∥

where b ∈ R is the bias. We consider different regularization strengths by choosing λg from {10−2, 10−3, 10−4}
for all g ∈ G and lead to different levels of sparsity in the obtained solutions, correspondingly. To form G,
we sequentially go through the variables collecting them into 100 groups.
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We select all datasets from the LIBSVM repository (Chang & Lin, 2011) that (i) have at least 100 features
so that the formulation of G is well defined, (ii) have at least 104 samples so that a stochastic approach is
appropriate, (iii) can be stored in main memory (16 GB), and (iv) have an accompanying test set so that
the testing error can be computed to evaluate the models obtained. Based on these criteria, we ended up
with the four publicly available large-scale datasets a9a, kdda, rcv1, and w8a (see Table 4 for more details).
All convex experiments are conducted on a 64-bit operating system with an Intel i7-7700K CPU @ 4.20 GHz
and 16 GB random-access memory.

Table 4: Summary of datasets.

Dataset # of Training Samples # of Testing Samples # of Features Attribute
a9a 3.26 × 104 1.63 × 104 1.23 × 102 binary {0, 1}

kdda 8.41 × 106 5.10 × 106 2.02 × 107 real [-1, 4]
rcv1 2.02 × 104 6.77 × 106 4.72 × 104 unit-length
w8a 4.97 × 104 1.50 × 104 3.00 × 102 binary {0, 1}

All algorithms tested were run for a maximum of 100 epochs. The mini-batch size b is set to
min{256, ⌈0.01N⌉} as suggested in (Yang et al., 2019). The step size αk is set following the approach in (Xiao
& Zhang, 2014), wherein an upper bound for the Lipschitz constant L is computed as maxi ∥di∥2

/4, and
then αk ≡ 4/maxi ∥di∥2 for Prox-SG, Prox-SVRG, HSPG, and AdaHSPG+. For HSPG we set ϵ ← 0 and switch
to the Half-Space step after 50 epochs (these are the default values for HSPG).

We use the final objective value of ψ, group sparsity ratio, and testing accuracy as metrics to evaluate the
performance of an algorithm. The group sparsity ratio is the ratio between the number of zero groups in
the solution returned and the total number of groups. All metrics are obtained by averaging across five
independent runs. We report the results for λg ∈ {10−2, 10−3, 10−4} for all g ∈ G in Table 5, where we mark
the best values in bold font to facilitate comparison. As shown in the tables, larger values for λg result in
greater group sparsity ratios and worse final objective values and testing accuracy. One also can observe that
the solutions with λg = 10−2 are zeros for the dataset rcv1 and the solutions with λg = 10−3 and λg = 10−3

are full dense for some datasets. This is indeed expected behavior since, for a given problem, there are two
thresholds λ̄ > 0 and λ > 0. Whenever λg ≥ λ̄, the solution becomes 0, i.e., the group sparse ratio is 100%;
on the other hand, when λg ≤ λ, the solution becomes fully dense, i.e., group sparse ratio is 0%. λ̄ and λ
varies from one problem to the other.

AdaHSPG+ and HSPG clearly perform the best in terms of the group sparsity ratio over the test problems, and
all of the algorithms perform similarly in terms of the objective function value and testing accuracy.

Table 5: Results convex problems for λg ∈ {10−2, 10−3, 10−4} for all g ∈ G, where we report numbers in the
form of final ψ / group sparsity ratio / testing accuracy.

Dataset Prox-SG Prox-SVRG HSPG AdaHSPG+
λg = 10−2

a9a 0.438 / 73.0% / 83.6% 0.438 / 86.0% / 83.7% 0.438 / 86.0% / 83.7% 0.438 / 86.0% / 83.7%
kdda 0.183 / 98.0% / 87.1% 0.183 / 99.0% / 87.1% 0.184 / 99.0% / 86.9% 0.183 / 99.0% / 87.1%
rcv1 0.693 / 100.0% / 47.5% 0.693 / 100.0% / 47.5% 0.693 / 100.0% / 47.5% 0.693 / 100.0% / 47.5%
w8a 0.167 / 78.0% / 97.0% 0.166 / 99.0% / 97.0% 0.166 / 99.0% / 97.0% 0.166 / 99.0% / 97.0%

λg = 10−3

a9a 0.347 / 28.0% / 85.0% 0.347 / 58.0%/ 85.0% 0.347 / 60.0% / 85.0% 0.347 / 58.0% / 85.0%
kdda 0.133 / 0.0% / 89.3% 0.133 / 0.0% / 89.2% 0.133 / 0.0% / 89.3% 0.133 / 0.0% / 89.3%
rcv1 0.461 / 0.0% / 93.2% 0.464 / 44.2% / 93.2% 0.461 / 47.0% / 93.2% 0.461 / 47.0% / 93.2%
w8a 0.118 / 3.0% / 97.2% 0.119 / 16.5% / 97.2% 0.113 / 36.0% / 97.2% 0.113 / 36.0% / 97.2%

λg = 10−4

a9a 0.327 / 3.0% / 85.0% 0.327 / 15.0% / 85.0% 0.327 / 25.0% / 85.0% 0.327 / 25.0% / 85.0%
kdda 0.112 / 0.0% / 89.5% 0.112 / 0.0% / 89.5% 0.112 / 0.0% / 89.5% 0.112 / 0.0% / 89.5%
rcv1 0.164 / 0.0% / 95.9% 0.176 / 0.0% / 95.8% 0.164 / 0.0% / 95.9% 0.164 / 0.0% / 95.9%
w8a 0.097 / 0.0% / 97.5% 0.096 / 0.0% / 97.5% 0.097 / 0.0% / 97.5% 0.096 / 0.0% / 97.5%
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