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Abstract

This paper introduces a new proximal stochas-

tic gradient method with variance reduction and

stabilization for minimizing the sum of a convex

stochastic function and a group sparsity-inducing

regularization function. Since the method may

be viewed as a stabilized version of the recently

proposed algorithm PStorm, we call our al-

gorithm S-PStorm. Our analysis shows that

S-PStorm has strong convergence results. In

particular, we prove an upper bound on the num-

ber of iterations required by S-PStorm before

its iterates correctly identify (with high probabil-

ity) an optimal support (i.e., the zero and nonzero

structure of an optimal solution). Most algo-

rithms in the literature with such a support iden-

tification property use variance reduction tech-

niques that require either periodically evaluating

an exact gradient or storing a history of stochas-

tic gradients. Unlike these methods, S-PStorm

achieves variance reduction without requiring ei-

ther of these, which is advantageous. Moreover,

our support-identification result for S-PStorm

shows that, with high probability, an optimal sup-

port will be identified correctly in all iterations

with index above a threshold. We believe that

this type of result is new to the literature since

the few existing other results prove that the op-

timal support is identified with high probability

at each iteration with a sufficiently large index

(meaning that the optimal support might be iden-

tified in some iterations, but not in others). Nu-

merical experiments on regularized logistic loss

problems show that S-PStorm outperforms ex-

isting methods in various metrics that measure

how efficiently and robustly iterates of an algo-

rithm identify an optimal support.
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1 INTRODUCTION

We consider the regularized stochastic learning problem

min
x∈Rn

F (x) := f(x) + r(x), (1)

where f(x) := Eξ∼P [ℓ(x; ξ)] with ξ being a random vector

following a probability distribution P , ℓ(·, ξ) is a smooth

convex function almost surely with respect to the distri-

bution of ξ, and r is a sparsity-promoting closed con-

vex function with group separable structure, i.e., r(x) :=
∑nG

i=1 ri([x]gi) for some number of groups nG > 0 with

gi ⊆ {1, 2, . . . , n} for each i ∈ {1, 2, . . . , nG},
⋃nG

i=1 gi =
n, and gi ∩ gj = ∅ for all i ̸= j. Some commonly

used regularization functions have these properties, such as

the weighted ℓ1 norm
∑n

i=1 λi|[x]i| and the weighted non-

overlapping Group-ℓ1 norm
∑nG

i=1 λi ∥[x]gi∥, where {λi}
are positive scalars, [x]i denotes the ith component of x,

[x]gi denotes the subvector of x with entries from gi, and

∥ · ∥ is the ℓ2 norm. Problem (1) is general enough to

cover a broad class of problems of interest. In particular,

when data samples (ξ) are available in a streaming manner,

problem (1) recovers online convex learning (Hazan et al.,

2016), and when P is a uniform distribution over a finite

set {1, 2, · · · , N}, problem (1) recovers many regularized

finite-sum problems (Tibshirani, 1996; Hastie et al., 2009).

In this work, we are interested in designing an algorithm

for solving problem (1) that can identify the support of an

optimal solution (i.e., the zero and nonzero group structure

of an optimal solution) in a finite number of iterations. This

can be useful for applications like variable selection in re-

gression problems (Tibshirani, 1996). It can also be used

in combination with higher-order methods to design more

efficient algorithms. For example, subspace acceleration

methods benefit from F being smooth over the variables

in the support of an optimal solution, even though F may

be non-differentiable over the entire set of variables. For

such methods, once the support is identified, more pow-

erful methods (e.g., truncated Newton’s method (Nocedal

and Wright, 2006)) can be applied over the variables in the

support to accelerate the local convergence rate (Wright,

2012; Chen et al., 2017; Curtis et al., 2022).
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1.1 Related Work

The proximal stochastic gradient method (Rosasco et al.,

2020) and its variants (Xiao and Zhang, 2014; Defazio

et al., 2014; Wang et al., 2019; Pham et al., 2020; Tran-

Dinh et al., 2022) are perhaps the most popular methods

for solving problem (1). Since there is a large body of work

on proximal stochastic gradient methods, we will (in align-

ment with the contributions of our work) focus on methods

that have both a convergence guarantee and support identi-

fication property. Support identification is also sometimes

referred to as manifold identification (Wright, 2012; Poon

et al., 2018; Sun et al., 2019; Lee and Wright, 2012).

Proximal stochastic gradient-type methods are based on it-

erations that take the form

yk+1 ← proxαkr
(xk − αkdk) with αk > 0, (2)

where proxαkr
(·) is the proximal operator (Beck, 2017,

Definition 6.1) associated with r and step size αk > 0 and

dk is an estimator of∇f(xk). If dk = ∇ℓ(xk; ξk) for some

realization ξk of the random variable ξ and xk+1 = yk+1,

then (2) recovers the proximal stochastic gradient method.

As observed by Poon et al. (2018) and Sun et al. (2019), the

proximal stochastic gradient method does not have a sup-

port identification property because the error in the stochas-

tic gradient estimator ϵk = dk−∇f(xk) does not vanish as

k goes to infinity. One way of overcoming this deficiency

is to employ variance reduction techniques. When r is the

weighted ℓ1-norm, Sun et al. (2019) considers the variance

reduction properties of ProxSVRG, SAGA, and RDA (i.e,

they consider whether E [∥ϵk∥] → 0),1 and establishes an

active-set identification property (in expectation) for these

three methods. Specifically, for a given sufficiently large k,

they show that the zero groups of xk agree with the zero

groups of the optimal solution (in expectation). Moreover,

when F is strongly convex so that a unique minimizer x∗

exists, by knowing the rates at which {E [∥xk − x∗∥]} and

{E [∥ϵk∥]} converge to zero, Sun et al. (2019, Theorem 4)

establishes an upper bound, that holds in expectation, on

the number of iterations before the zero variables are iden-

tified. When r is strongly convex, Lee and Wright (2012)

establishes for RDA that, for any given sufficiently large k,

the support of xk matches that of x∗ with high probabil-

ity. (Observe that this means that the supports can match

in some such iterations while not in other such iterations.)

Later, Huang and Lee (2022) extends this result for RDA to

the non-convex setting by making additional assumptions

on the rate of convergence of the iterates and the step sizes.

A drawback of ProxSVRG and SAGA is that they are only

applicable when problem (1) has a finite-sum structure, i.e.,

P is a uniform distribution over a finite set {1, 2, . . . , N}.
1These results for ProxSVRG, SAGA, and RDA can be found

in Table 2, Appendix C.3, and Appendix C.4 of (Sun et al., 2019).

In particular, ProxSVRG requires an extra exact evalua-

tion of∇f every epoch, and SAGA requires one exact eval-

uation of ∇f in the first iteration and stores a history of

stochastic gradients in a matrix of size N × n, where N is

the size of the data set and n is the number of optimization

variables. Thus, ProxSVRG and SAGA are not practical

for applications involving streaming data or large N .

The recent work by Cutkosky and Orabona (2019) and its

extension by Xu and Xu (2020) consider a new stochastic

gradient estimator called Storm. When Storm is com-

bined with a proper step size selection strategy, it has a

variance reduction property, and yet never requires an exact

evaluation of ∇f . Our method S-PStorm draws inspira-

tion from their work and introduces an iterate stabilization

update to achieve a support identification property without

having to store a history of stochastic gradients or to com-

pute an exact evaluation of∇f . The above results are sum-

marized in Table 1.

Table 1: The first column gives the algorithm name. The

second column shows the convergence rate of the iterates

with ρProxSVRG > 0 and ρSAGA > 0. The third column

shows the support identification complexity where ∆∗ and

δ∗ are positive constants (see (6) and (7)). (The ∆∗ ap-

pearing in the result for our method S-PStorm is a conse-

quence of our accounting for both zero and nonzero groups,

whereas the other results are derived based on when only

the zero groups are identified.) The result for RDA is valid

when f and r are both strongly convex whereas the re-

sult for S-PStorm only assumes strong convexity of f .

The fourth column indicates how often a method evaluates

an exact gradient, and the fifth column gives the storage

costs. The results for ProxSVRG and SAGA hold only

when problem (1) has a finite-sum structure.

Algorithm
∥

∥xk − x∗
∥

∥

2 Support Identification # Exact ∇f Storage

ProxSVRG O

(

ρk
ProxSVRG

)

O(log(1/δ∗)) every epoch O(n)

SAGA O

(

ρk
SAGA

)

O(log(1/δ∗)) once O(Nn)

RDA O(log k/k) O

(

1
(δ∗)4

)

never O(n)

S-PStorm O(log k/k) O

(

max
{

1
(δ∗)4

, 1
(∆∗)4

})

never O(n)

1.2 Contributions

This paper makes three main contributions.

1. We establish the variance reduction property (with

high probability) of the Storm stochastic gradient es-

timator (Theorem 3.1), which is missing in Xu and

Xu (2020). This is achieved by introducing a simple

stabilization step in line 12 of Algorithm 1, which we

show allows for a constant step size to be employed.

This result is interesting in its own right, and the fact

that our method allows for a constant step size to be

used is a crucial property that we leverage in proving

a support identification result.
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2. To the best of our knowledge, RDA and our proposed

S-PStorm are the only methods with a support iden-

tification property that neither require an exact gradi-

ent evaluation nor incur excessive storage costs. Com-

pared with RDA, S-PStorm has a stronger notion of

support identification (formalized in Definition 1.3).

In particular, we show that, with high probability, all

sufficiently large iterates in S-PStorm will correctly

identify the support of the optimal solution. In con-

trast, RDA proves that each iterate with sufficiently

large index will identify the support of the optimal so-

lution with high probability (meaning that the support

might be identified correctly in some iterations and not

in others). We are able to obtain this stronger result

as a consequence of the construction of the Storm

stochastic gradient estimator and the added stabiliza-

tion step, which allow for a sharp union bound (see

Remark 3.6 for additional details).

3. Our numerical experiments on regularized logistic

loss functions with weighted group ℓ1-norm regular-

ization show that S-PStorm outperforms popular

methods in metrics that measure how efficiently and

robustly iterates of an algorithm identify an optimal

support, and in the final objective value achieved.

1.3 Notation and Preliminaries

Throughout the paper we use the following notation. We

use ∥·∥ to represent the ℓ2 norm, |S| to denote the cardinal-

ity of a set S , and N+ and R+ to be the sets of positive inte-

gers and positive real numbers, respectively. For N ∈ N+,

we define [N ] := {1, 2, · · · , N}. For x ∈ Rn and index set

I ⊆ [n], we use [x]I ∈ R|I| to denote the subvector of x
that corresponds to the elements of I. For two sequences of

non-negative real numbers {ϕk}k≥1 and {ψk}k≥1, we say

ϕk = O(ψk) if and only if there exist constants k0 ∈ N+

and M ∈ R+ such that ϕk ≤Mψk for all k ≥ k0.

Let us now formally define what we mean by the support,

a support identification property, and a consistent support

identification property for a randomized algorithm.

Definition 1.1 (support). The support of a point x ∈ Rn is

denoted by S(x) and defined as

S(x) := {i ∈ [nG ] | [x]gi ̸= 0},

where {gi}nG

i=1 forms a non-overlapping partition of [n].
We say that x ∈ Rn has optimal support if and only if

S(x) = S(x∗) for some solution x∗ ∈ Rn to problem (1).

Definition 1.2 (support identification property). A ran-

domized algorithm is said to have the support identification

property if and only if there exists K ∈ N+ and p ∈ (0, 1]
such that, when the algorithm generates a sequence of vec-

tors {yk}∞k=1, one finds for each k ≥ K that the event

{S(yk) = S(x∗)} occurs with probability at least p.

Definition 1.3 (consistent support identification property).

A randomized algorithm has the consistent support iden-

tification property if and only if there exist K ∈ N+ and

p ∈ (0, 1] so that, when the algorithm generates a se-

quence of vectors {yk}∞k=1, one finds that the event Eid :=
⋂∞

k≥K{S(yk) = S(x∗)} occurs with probability at least p.

While Lee and Wright (2012) and Sun et al. (2019) prove

the support identification property of their algorithms (see

Definition 1.2), we prove the stronger consistent support

identification property (see Definition 1.3) for S-PStorm.

We next introduce some properties related to the proximal

operator. For any α > 0 and convex function r, the proxi-

mal operator proxαr (·) is single-valued. We define

χ(x;α) := 1
α ∥proxαr (x− α∇f(x))− x∥ , (3)

which is the norm of the so-called gradient mapping, and

is known to serve as an optimality measure for prob-

lem (1) (Beck, 2017, Theorem 10.7 (b)).

2 ALGORITHM

In this section, we present S-PStorm as Algorithm 1

for solving problem (1). At the beginning of iteration k,

a mini-batch of independently and identically distributed

(i.i.d) data samples {ξk,i}mi=1 are drawn according to the

distribution P , and two stochastic gradients vk and uk are

formed at the current iterate xk and the previous iterate

xk−1 in (4)±(5). Then, the Storm stochastic gradient esti-

mator is constructed in line 9. After performing the prox-

imal stochastic gradient update to obtain yk, a stabiliza-

tion step is performed in line 12. As shown in the proof

of Theorem 3.1, the stabilization step is critical because it

allows for a constant step size strategy to be employed (i.e.,

αk ≡ α > 0 for all k), which in turn allows us to prove a

consistent support identification result for S-PStorm.

3 ANALYSIS

We begin this section by introducing the assumptions under

which our convergence analysis is performed.

3.1 Assumptions

Our first assumption concerns strong convexity of f and

Lipschitz continuity of the gradient of the loss function ℓ.

Assumption 3.1. The following hold:

1. f is µf -strongly convex over Rn and ri is convex and

closed over Rn for all i ∈ [nG ].

2. There exists a constant Lg > 0 such that, for any

(x, y) ∈ Rn × Rn and any ξ ∼ P , it holds that

∥∇ℓ(x, ξ)−∇ℓ(y, ξ)∥ ≤ Lg ∥x− y∥ ,
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Algorithm 1 S-PStorm

1: Inputs: Initial point x0 = x1 ∈ Rn, size of mini-batch

m ∈ N+, weight sequence {βk}k≥2 ⊂ (0, 1), stepsize

sequence {αk} ⊂ (0,∞), and parameter ζ ∈ (0,∞).
2: for k = 1, 2, . . . , do

3: Draw m i.i.d samples {ξk1, · · · , ξkm} w.r.t. P .

4: Set
vk ← 1

m

m
∑

i=1

∇ℓ(xk; ξki). (4)

5: if k = 1 then

6: Set dk ← vk.

7: else

8: Set

uk ← 1
m

m
∑

i=1

∇ℓ(xk−1; ξki). (5)

9: Set dk ← vk + (1− βk)(dk−1 − uk).
10: end if

11: Compute yk ← proxαkr
(xk − αkdk).

12: Set xk+1 ← xk + ζβk(yk − xk).
13: end for

i.e., ∇f is Lg-Lipschitz continuous.

The strong convexity assumption on f is for deriving a

complexity result for consistent support identification. This

assumption can be relaxed to f being convex if, similar

to Sun et al. (2019), we instead assume that there exists

a decreasing sequence {νk} such that P({∥xk − x∗∥ ≤
νk}) = 1. Under this assumption, we can also prove a

consistent support identification result for S-PStorm, al-

though without an explicit upper bound on K in Defini-

tion 1.3Ðwhereas under Assumption 3.1 we provide such

an upper bound. The smoothness assumption on ℓ(·, ξ) is

standard (Cutkosky and Orabona, 2019; Xu and Xu, 2020).

For our next assumption, we refer to the filtrationÐdefined

by the initial point and sequence of mini-batch stochastic

gradientsÐcorresponding to the stochastic process gener-

ated by the algorithm. Denoting F1 := σ(x1) and, for all

k ≥ 2, denoting Fk as the σ-algebra generated by the ran-

dom variables {{Ξ1,i}mi=1, . . . , {Ξ(k−1),i}mi=1} (of which

{{ξ1,i}mi=1, . . . , {ξ(k−1),i}mi=1} is a realization), it follows

that {Fk} is this filtration of interest. Recall that the distri-

bution P of ξ is independent of the filtration.

Assumption 3.2. The following hold:

1. For all k ≥ 1, Eξ∼P [∇ℓ(xk; ξ) | Fk] = ∇f(xk).

2. There exists Gr ∈ R+ such that, for all k ≥ 1,

P{∥gr∥2 ≤ Gr, ∀gr ∈ ∂r(xk)} = 1.

3. There exists σ ∈ R+ such that, for all k ≥ 1,

Pξ∼P{∥∇ℓ(xk, ξ)−∇f(xk)∥ ≤ σ | Fk} = 1.

4. There exists Gd ∈ R+ such that, for all k ≥ 1,

Pξ∼P{∥dk∥ ≤ Gd | Fk} = 1.

Assumption 3.2(1) ensures that the stochastic gradient

∇ℓ(x; ξ) is an unbiased estimator of the gradient∇f(x) for

all x ∈ Rn. Assumption 3.2(2) provides a constant upper

bound on the norm of an element of ∂r(x) for all x ∈ Rn,

which exists when r is the weighted ℓ1-norm or weighted

group ℓ1-norm, for example. Assumption 3.2(3) guaran-

tees (almost surely) a bound on the difference between

∇ℓ(xk; ξ) and ∇f(xk) for all k ∈ N+. This assumption

is implied by the uniform bound assumption on ∇ℓ(x; ξ)
used in (Liu et al., 2022, Assumption 4). It may be possible

to relax Assumption 3.2(3) by assuming that the stochas-

tic gradient error has a sub-exponential tail, e.g., Na et al.

(2022), which we leave as future work. Assumption 3.2(4)

is implied by the following two, perhaps more natural, as-

sumptions: (i) There exists a constant ce > 0 such that,

for all k, it holds that P{∥dk −∇f(xk)∥ ≤ ce|Fk} = 1,

i.e., the error in the stochastic gradient estimator dk is al-

most surely bounded; and (ii) There exists a constant cα
such that, for a given α > 0 and all k ≥ 1, it holds that

P{χ(xk;α) ≤ cα|Fk} = 1 (also see (3)), i.e., the opti-

mality measure is almost surely bounded. Note that As-

sumption 3.2(4) is slightly weaker than a bounded iterates

assumption, which is also made in RDA (Lee and Wright,

2012). A proof that Assumption 3.2(4) follows from (i) and

(ii) can be found in Appendix A.4.

Our last assumption is on the parameters of Algorithm 1.

Assumption 3.3. The sequences {βk} and {αk} in Algo-

rithm 1 are chosen, with c > 1 and α ∈ (0,∞), to satisfy

βk = min{1/2, c/(k + 1)} and αk ≡ α for all k ≥ 1.

The constant 1/2 appearing in the definition of βk in As-

sumption 3.3 can be replaced by any constant between zero

and one; the choice of 1/2 is to simplify expressions ap-

pearing throughout our analysis.

3.2 Convergence Analysis

The first result establishes the variance reduction property

of the Storm stochastic gradient estimator.

Theorem 3.1. Let Assumption 3.1±Assumption 3.3 hold,

let ϵk = dk − ∇f(xk) for all k ∈ N+, and define k =
⌈(2c) − 1⌉. Then, for any k ≥ k and any ηk ∈ (0, 1), the

event Ek := {∥ϵk∥ ≤ U(k)} holds with probability at least

1 − ηk, where for some constant C ∈ R+ independent of

k, one defines

U(k) = C
(

σ + Lg(Gr +Gd)ζα
)

·max

{(

k + 1

k + 2

)c

,
c√
k + 2

}
√

log
2

ηk
.

The proof of Theorem 3.1 is presented in Appendix A.1.

Remark 3.1. The upper bound U(k) in Theorem 3.1 is

independent of the mini-batch size m. This is due to the

bound in Assumption 3.2(3) that holds almost surely.
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Remark 3.2. By setting ηk = η0

k2 for all k ∈ N+

with constant η0 ∈ (0, 6/π2), one obtains U(k) =
O(max{√log k/kc,

√

log k/k}) so that {∥ϵk∥} → 0 with

high probability. This is formalized in the next result.

Corollary 3.1. Let Assumption 3.1±Assumption 3.3 hold,

ηk = η0

k2 for all k ≥ 1 with η0 ∈ (0, 6/π2), and Ek be

defined as in Theorem 3.1. Then, the event E :=
⋂∞

k≥k Ek
happens with probability at least 1− η0π

2

6 .

The proof of Corollary 3.1 can be found in Appendix A.2.

Next, we establish the rate of convergence of the iterate

sequence {xk} with high probability (for small η0).

Theorem 3.2. Let α = µf/L
2
g , ζ ∈ (0, 2), θ ≥ 2,

c = (2θL2
g)/(ζµ

2
f ) > 2, and k = ⌈2c − 1⌉. Set

ηk = η0/k
2 for all k ≥ 1 with η0 ∈ (0, 6/π2). Then,

under Assumption 3.1±Assumption 3.3, there exists a con-

stant C3 ∈ R+ independent of k, such that the event Exk :=
{

∥xk − x∗∥2 ≤ c̄1 ∥
xk−x∗∥2

kθ + c̄2 ·
log 2k

η0

k

}

with c̄1 :=

(k + 2)θ and c̄2 := C3ζ

(

µ2
f

L4
g
+ 2

L2
g

(

1 +
µf

Lg

)2
)

(σ +

Lg(Gr +Gd)ζα)
2 satisfies

P





∞
⋂

k≥k

Exk



 ≥ 1− η0π2/6 > 0.

The proof of Theorem 3.2 is presented in Appendix A.3.

Remark 3.3. Theorem 3.2 provides a O(
√

log k/k) con-

vergence rate for ∥xk − x∗∥ for all k ≥ k with high prob-

ability. It is worth noting that the constant k depends on

the square of the condition number Lg/µf . We also note

that the first term c1∥xk − x∗∥2/kθ can be made to con-

verge to zero arbitrarily fast by choosing θ as large as de-

sired, although this results in larger k. It is the second term

c2 log(
2k
η0
)/k that dictates the overall convergence rate of

the iterates. This rate of convergence is obtained by using

the rate at which the error in the Storm stochastic gradient

estimator converges to zero (see Remark 3.2).

Remark 3.4. Theorem 3.2 establishes a sub-linear rate

of convergence for the iterates with high probability for

strongly convex loss functions. However, it remains un-

known whether there exists a method that has a linear

convergence rate for strongly convex functions and avoids

huge storage and exact gradient evaluations.

3.3 Support Identification

In this section, we restrict our attention to r being

the weighted non-overlapping group ℓ1 regularizer, i.e.,

r(x) =
∑nG

i=1 λi ∥[x]gi∥ with nG > 0, {gi} ⊆ [n] for each

i ∈ [nG ],
⋃nG

i=1 gi = [n], gi ∩ gj = ∅ for all i ̸= j, and

{λi}nG

i=1 strictly positive group weights.

Let us now introduce quantities that are crucial for estab-

lishing our support identification result. Specifically, let x∗

be the unique solution to problem (1). Define

∆ :=







min
i∈S(x∗)

∥[x∗]gi∥ if S(x∗) ̸= ∅,

1 if S(x∗) = ∅,

∆∗ := min{1,∆}, (6)

δmin :=







min
i ̸∈S(x∗)

{λi − ∥∇gif(x
∗)∥} if S (x∗) ⫋ [nG ],

1 if S (x∗) = [nG ],

δ∗ := min{δmin, 1}. (7)

Geometrically, ∆ captures the minimum ℓ2-norm of the

groups that are non-zero at x∗, taking into account the

possibility that S (x∗) is empty. The definition of δmin

measures the minimum distance between λi and the corre-

sponding optimal dual variables (see (9)) for groups not in

S(x∗). To see this, without loss of generality, suppose that

S (x∗) ⫋ [nG ]. For any α > 0 define z∗ := x∗−α∇f(x∗)
and then consider the proximal problem

min
x∈Rn

ϕp(x;x
∗, α) := 1

2α∥x− z∗∥2 + r(x) (8)

and its dual problem

max
ω∈Rn

ϕd(ω;x
∗, α) := −

(

α
2 ∥ω∥22 + ωT z∗

)

s.t. r∗(ω) ≤ 1

(9)

where r∗(ω) = maxi∈[nG ]
∥[ω]gi∥

λi
is the dual norm of the

weighted group ℓ1 norm. It can be seen that x∗ is the opti-

mal solution to the primal problem (8) (Beck, 2017, Theo-

rem 10.7). Denoting ω∗ as the optimal solution to the dual

problem (9), it follows that

[ω∗]gi = −min
{

1
α ,

λi

∥[z∗]gi∥
}

[z∗]gi for all i ∈ [nG ]. (10)

Then, by the Fenchel-Young inequality (Rockafellar, 1970,

Theorem 31.1), it follows that

x∗ = αω∗ + z∗. (11)

Combining the definition of z∗ and (11), one establishes

that ω∗ = ∇f(x∗). Therefore, δmin measures the mini-

mum distance from [ω∗]gi to the boundary of the ball cen-

tered at origin with distance λi for all i ̸∈ S (x∗).
The discussion above leads to a non-degeneracy as-

sumption: For groups of variables not in S (x∗), their

corresponding dual variables are strictly feasible, i.e.,

∥[ω∗]gi∥ < λi for all i ̸∈ S (x∗). Let us formally state this

non-degeneracy assumption using ω∗ = ∇f(x∗) to make it

consistent with the literature (Lee and Wright, 2012; Poon

et al., 2018; Sun et al., 2019; Curtis et al., 2022).

Assumption 3.4. The scalar δ∗ in (7) satisfies δ∗ > 0.
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With the non-degeneracy assumption in hand, we may now

give a sufficient condition for support identification.

Theorem 3.3. Let Assumption 3.4 hold. Given α > 0,

d ∈ Rn, and the optimal solution x∗ to problem (1), let us

define z = x− αd and y = proxαr (z). If

∥

∥

∥

∥

[z − x∗]gi
α

+∇gif(x
∗)

∥

∥

∥

∥

< δ∗ for all i ̸∈ S (x∗) ,

then S (y) ⊆ S (x∗). Furthermore, if ∥y − x∗∥ < ∆∗,

then S (x∗) ⊆ S (y) so that, in fact, S (y) = S (x∗).

The proof of Theorem 3.3 is presented in Appendix A.4.

Remark 3.5. Theorem 3.3 extends the result in (Sun et al.,

2019, Lemma 1) from the ℓ1 regularizer to the group ℓ1 reg-

ularizer considered here. Also, our result slightly strength-

ens theirs since they only discuss the result S(y) ⊆ S(x∗).

Using the sufficient conditions for support identification

from Theorem 3.3, the result of consistent support iden-

tification (Definition 1.3) can now be established.

Theorem 3.4. Let Assumption 3.1±Assumption 3.4 hold,

ζ ∈ (0, 2), θ ≥ 2, c = (2θL2
g)/(ζµ

2
f ) > 2, and k =

⌈2c − 1⌉. Consider the sequence {yk} of Algorithm 1 and

define the event E id
k = {S(yk) = S(x∗)} for all k ≥ 1.

Then, there exists constants {C41, C42} ⊆ Rn
+ that are in-

dependent of k, kδ∗ = (C41/δ
∗)4 and k∆∗ = (C42/∆

∗)4

such that, with K := max{kδ∗ , k∆∗ , k}, it follows that

P





∞
⋂

k≥K

E id
k



 ≥ 1− η0π
2

6
> 0.

The proof of Theorem 3.4 is presented in Appendix A.5.

Remark 3.6. Using Theorem 3.4 and results from Xiao

(2009) and Lee and Wright (2012), we can also de-

rive a high probability support identification complex-

ity bound for RDA for any given iterate xk, which is

different from the result in Sun et al. (2019, Theo-

rem 5). To do so, we need extra assumptions on the

function r that do not hold for the weighted group ℓ1-

norm, and boundedness of {∇ℓ(xk; ξk)} generated by

RDA2. Specifically, we consider the update of RDA as

xk+1 = proxαkr
(−αkdk) with αk =

√
k

α , where dk =
1
k

∑k
i=1∇ℓ(xi; ξi)3. It follows from Lemma A.5(3) that

P [S (xk+1) = S (x∗)] ≥ 1− ηRDAk

where

ηRDAk = max

{

O
(

1

δ∗ · k1/4
)

,O
(

1

∆∗ · k1/4
)}

.

2See Lemma A.5(2) for precise details of the assumptions.
3See Lemma A.5(1) to see how this form of the update is

equivalent to the RDA update presented in Xiao (2009).

Since
∑∞

k=1 η
RDA

k diverges, one cannot give a lower bound

on P
[

∩∞k≥KRDA{S (xk) = S (x∗)}
]

for some sufficiently

large KRDA. Instead, for any η0 ∈ (0, 1), there exists

a k = O
(

max
{(

1
η0δ∗

)4

,
(

1
η0∆∗

)4 })

such that any

given k ≥ k satisfies P [S(xk+1) = S(x∗)] ≥ 1 − η0.

This establishes the support identification property (see

Definition 1.2). However, in Theorem 3.4 we show that

S-PStorm has a consistent support identification property

(see Definition 1.3), which is a stronger result. Lastly, we

note that theK value appearing in Theorem 3.4 grows with

the condition number Lg/µf .

Remark 3.7. Similar to Sun et al. (2019), under additional

assumptions, it is possible to extend Theorem 3.4 to the

case that f is convex. In particular, if we assume that

∥xk − x∗∥ ≤ Ak for some optimal solution x∗ and a de-

creasing sequence {Ak}with some positive probability (for

example, with probability 1 − ηk) for all k ≥ 1, then we

can prove a support identification result, but we no longer

have a complexity bound.

4 NUMERICAL EXPERIMENTS

4.1 Problems, Baselines, and Implementation Details

Problems. We consider solving problem (1) with f(x)
and r(x) given by the regularized binary logistic loss and

group-ℓ1 regularizer, respectively, resulting in the problem

min
x∈Rn

1
N

N
∑

j=1

log
(

1 + e−yjx
T dj

)

+10−5∥x∥2+
nG
∑

i=1

λi ∥[x]gi∥

where N is the number of data points, dj ∈ Rn is the

jth data point, yj ∈ {−1, 1} is the class label for the

jth data point, and λi > 0 for all (j, i) ∈ [N ] × [nG ].
Data sets for the logistic regression problems were obtained

from the LIBSVM repository.4 We excluded all multi-class

(greater than two) classification datasets, datasets with fea-

ture less than 50 or samples less than 10000, and all data

sets that were too large (≥ 16GB)5. Finally, for the adult

data (a1a±a9a) and webpage data (w1a±w8a), we used only

the largest instances, namely a9a and w8a. This left us with

our final subset of 10 data sets that can be found in Table 2.

Following Xiao and Zhang (2014), we scaled each data

point to have a unit norm, i.e., ∥dj∥ = 1 for all j ∈ [N ].

For each dataset, we considered four group structures and

two different solution sparsity levels, which led to 80 test

instances in total. We considered the four different num-

bers of groups in {⌊0.25n⌋, ⌊0.50n⌋, ⌊0.75n⌋, n}, where n

4https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets
5Memory usage is counted by a Python object instead of the

raw txt file. We also exclude the dataset epsilon since we had an
error message indicating a wrong data format in line 33334.
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Table 2: Description of the data sets.

data set N n

a9a 32561 123

avazu-app.tr 12,642,186 1,000,000

covtype 581,012 54

kdd2010 8,407,752 20,216,830

news20 19,996 1,355,191

phishing 11,055 68

rcv1 20,242 47,236

real-sim 72,309 20,958

url 2,396,130 3,231,961

w8a 49,749 300

is the problem dimension; notice that the last setting re-

covers ℓ1-norm regularization. Then, for a given number

of groups, the variables were sequentially distributed (as

evenly as possible) to the groups; e.g., 10 variables among

3 groups would have been distributed as g1 = {1, 2, 3},
g2 = {4, 5, 6}, and g3 = {7, 8, 9, 10}. We considered

two different solution sparsity levels obtained by adjusting

the group weights {λi}. Specifically, we considered group

weights λi = Λ
√

|gi| for all i ∈ [nG ] with Λ = 0.1Λmin

and Λ = 0.01Λmin, where Λmin is the minimum positive

number such that the solution to the logistic problem with

λi = Λmin

√

|gi| is x = 0. See Yang and Zou (2015, equa-

tion (23)) for the formula to compute Λmin.

Baselines. We choose ProxSVRG (Xiao and Zhang,

2014), SAGA (Defazio et al., 2014), and RDA (Xiao, 2009)

as baselines since they have theoretical guarantees for iden-

tifying the support. We also include PStorm (Xu and Xu,

2020) to demonstrate the empirical importance of the mod-

ification we made in S-PStorm (i.e., the stabilization step

in Line 12). We use FaRSA-Group (Curtis et al., 2022),

a deterministic second-order method, to find a highly ac-

curate estimate to the optimal solution x∗ for each test in-

stance by solving the problem to high accuracy (10−8), as

measured by the norm of the gradient mapping in (3).

Implementation Details We implemented a version of

ProxSVRG as described in Poon et al. (2018, Equation (8)

Option II), SAGA as described in Poon et al. (2018, Equa-

tion (6)), RDA as described in Lee and Wright (2012, Al-

gorithm 1), and PStorm as described in Xu and Xu (2020,

Algorithm 1)6. (i) Step size strategy: For ProxSVRG,

SAGA, and S-PStorm, we used a constant step size strat-

egy by setting αk ≡ 0.1/Lg , which follows the choice

made in Xiao and Zhang (2014). We remark that Lg

can be estimated by 1/4 since the data set is normal-

ized instance-wise (see Xiao and Zhang (2014, Section

4.1) for the reason). For RDA, the step size was set as

αk =
√
k/γ.7 We tuned γ by choosing its value from

6The code is publicly available at https://github.com/
Yutong-Dai/S-PStorm.

7The original paper used βk to denote the step size. See part

the set {10j}j∈{−4,−3,...,2} using the 32 test instances ob-

tained from the datasets a9a, covtype, phishing, and w8a,

and found that γ = 10−2 worked the best. For PStorm,

we used αk =
41/3/(8Lg)

(k+4)1/3
as suggested in Xu and Xu

(2020, Theorem 2). (ii) Algorithm specific parameters:

ProxSVRG is a double loop algorithm and we set the in-

ner loop length to 1, i.e., the parameter P in Poon et al.

(2018, Equation (8) Option II) was set to 1. For RDA

the prox-function h was chosen as the square of the ℓ2

norm. For PStorm we used βk =
1+24α2

kL
2
g−

αk+1
αk

1+4α2
kL

2
g

, and

for S-PStorm we used βk = 1
k+1 . The ζ parameter is

chosen in an adaptive way to improve the practical perfor-

mance. In particular, ζ is initialized to 1 and increased by 1
after an iteration is completed. Although this choice is not

covered by the convergence theory, one could cap the num-

ber of adjustments made to ζ, in which case it is covered by

the theory. For all algorithms, the batch size was set to 256

and the starting point was the zero vector. (iii) Termina-

tion conditions: A test instance was terminated when ei-

ther 1000 epochs was reached, or a 12 hour time limit was

reached. We note that SAGA terminated immediately on

all test instances associated with the datasets avazu-app.tr,

kdd2010, news20, real-sim, and url because the storage of

the gradient look-up table exceeded the memory limit.

4.2 Numerical Results

Experiments were run on a cluster with 16 AMD Opteron

Processor 6128 2.0 GHz CPUs and 32 GB memory.

Support Identification Performance. We considered four

metrics for measuring an algorithm’s performance on sup-

port identification. Specifically, we computed the supports

of the iterates {xkb | k = 1 · · · , 1000} with b = ⌈N/m⌉,
where m was the mini-batch size. The sequence {xkb} can

be thought of as the ªmajor iteratesº resulting after each

full data-pass. The first metric was the total number of

identifications, which measured the number of iterates in

{xkb} that correctly identified the support S(x∗) (the larger

the better); the second metric was the first identification,

which was the smallest k0 ∈ [1000] such that xk0b iden-

tified the support S(x∗) (the smaller the better); the third

metric was the first consistent identification, which was the

smallest K ∈ [1000] such that all {xkb}k≥K identified

the support S(x∗) (the smaller the better); the last metric

was the last iterate support recovery, which was defined as

1− |S(x1000b)∆S(x∗)|
|S(x∗)| (the closer to 1 the better) with ∆ be-

ing the set symmetric difference. The last iterate support

recovery metric was introduced because we observed that

all five algorithms failed to identify the support S(x∗) on

some test instances generated by the larger datasets (e.g.,

url) as a result of not getting an accurate enough approx-

imate solution. Nonetheless, when the algorithms termi-

(1) of Lemma A.5 for how to map βk to αk.
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nated, the last iterates still had sparse structure, and the last

iterate support recovery metric measured how close the al-

gorithm was to identifying the true support.

For every test instance solved by a given algorithm, we re-

peated the experiments for 3 independent runs and for each

run compute the four metrics, which are then averaged to

obtain the final values of the metrics for the algorithms. For

a given test instance and metric, we assigned scores from

{1, 2, 3, 4, 5} to the 5 algorithms based on their ranked per-

formances. The better an algorithm performed, the higher

the score it received. The best performer received a score

of 5, the second best performer received a score of 4, and

so forth.8 For the first three metrics, if an algorithm failed

to identify the support before it terminated, we assigned the

algorithm a score of 0. For each metric, we summed over

all test instances to get the final scores for each algorithm

and then normalized the scores so that the scores for all

algorithms under a given metric summed to one.

We present the normalized scores for the 5 algorithms over

the 4 metrics in Figure 1, and provide the raw data for these

metrics in Appendix B.2. One can see that S-PStorm

consistently outperformed the other algorithms on all 4

metrics by a significant margin.
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Figure 1: Normalized scores for four metrics that evaluate

the performance of the support identification.

Solution Quality. We measure the solution quality of an al-

gorithm by computing the optimal objective function value

gap. Specifically, for a given test instance, denote F ∗ =
minj{F best

j }, where F best
j = minb∈[1000]{F (xjkb)} with

j ∈{ProxSVRG, SAGA, RDA, PStorm, S-PStorm} and

{xjkb} generated by the jth algorithm. If algorithm j failed

on a given problem instance (due to insufficient memory),

we set F best
j = ∞. Then, we compute the optimal objec-

tive function value gap as (F best
j −F ∗)/max{1, F ∗} for all

j. The results are visualized in Figure 2. The deeper the

blue color of a rectangle for an algorithm, the better it per-

formed in terms of achieving a lower objective value. On

the flip side, the deeper the red color of a rectangle for an

algorithm, the worse it performed in terms of achieving a

8When two or more algorithms obtained the same value for a
metric, we assign them all the same score.

lower objective value. In Appendix B.1, we provide a dis-

cussion on the performance gap for the different methods.
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Figure 2: Visualization of objective value gaps for different

methods. Each rectangular represents a test instance.

Together Figure 1 and Figure 2 illustrate that S-PStorm

performed significantly better in both support identification

and achieving better objective function values.

Lastly, in Appendix B.2, we illustrate how the distance to

the optimal solution ∥xk − x∗∥ (x∗ is obtained using the

FaRSA-Group algorithm) and error ϵk in the gradient es-

timator converge to 0. It can be observed empirically that

the rates at which {ϵk} converges to 0 and {xk} converges

to x∗ agree with our O(
√

log k/k) convergence result (see

Remark 3.2 and Remark 3.3).

5 CONCLUSION

This paper proposes a new variance-reduced and stabi-

lized stochastic proximal gradient method S-PStorm for

stochastic optimization with structured sparsity. Compared

with existing methods, S-PStorm has two new advan-

tages. In terms of theoretical results, S-PStorm has the

consistent support identification property, which has not

been proved for RDA. Regarding the efficiency and de-

ployability, S-PStorm neither requires any exact gradi-

ent evaluations nor needs to store a history of stochastic

gradients. Numerical experiments on regularized logistic

loss problems show that S-PStorm outperforms popular

methods in terms of both support identification and final

objective function values obtained.

Future directions. First, it would be interesting to inves-

tigate whether our consistent support identification results

extend to the non-convex setting. Second, our convergence

and support identification results rely on exact evaluations

of proximal operator, but some proximal operators, for ex-

ample, overlapping group ℓ1 regularizers (Obozinski et al.,

2011; Yuan et al., 2013), do not admit closed-form solu-

tions. We believe our results can be extended to this setting

provided a subproblem solver is carefully designed to pro-

duce inexact proximal operator solutions geared towards

support identification (Dai and Robinson, 2022).
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A Proofs of Results in Section 3

A.1 Proof of Theorem 3.1

We first establish some useful lemmas. The first lemma establishes an upper bound on
(

∏k
j=i(1− βj)

)

, which will be

used later to prove the variance reduction property.

Lemma A.1. Under Assumption 3.3 and with k = ⌈(2c)− 1⌉, it holds for all k ≥ k and i ∈ {2, 3, · · · , k} that





k
∏

j=i

(1− βj)



 ≤ exp

(

−k −min{k, i}
2

)(

max{k, i}+ 1

k + 2

)c

.

Proof. One can see from Assumption 3.3 that

βj =

{ 1
2 if j < k
c

j+1 if j ≥ k.

It follows from the above inequality and the fact that 1− x ≤ exp(−x) for all x ∈ R that





k
∏

j=i

(1− βj)



 ≤ exp



−
k
∑

j=i

βj



 =







exp
(

−∑k
j=i

c
j+1

)

if i ≥ k,
exp

(

−∑k−1
j=i

1
2 −

∑k
j=k

c
j+1

)

if i < k,

= exp



−k −min{k, i}
2

−
k
∑

j=max{k,i}

c

j + 1





≤ exp

(

−k −min{k, i}
2

−
∫ k+1

x=max{k,i}

c

x+ 1
dx

)

= exp

(

−k −min{k, i}
2

)(

max{k, i}+ 1

k + 2

)c

,

where the second inequality follows from
∫ b+1

a
1
xdx <

∑b
j=a

1
i for any 0 < a ≤ b. This completes the proof.

The next lemma establishes, for all k, a relationship between the stochastic gradient error ϵk = dk − ∇f(xk) and a

martingale. This is useful for an Azuma-Hoeffding-type inequality that will be used to prove a variance reduction property.

Lemma A.2. For all k ≥ 2, with the convention that
∏u

i=l ai = 1 if l > u, consider {eki}ki=0 with

eki :=















0 i = 0,
(

∏k
j=2(1− βj)

)

A1 i = 1,
(

∏k
j=i+1(1− βj)

)

Ai +
(

∏k
j=i(1− βj)

)

Bi 2 ≤ i ≤ k,

where Ai := vi −∇f(xi) and Bi := ∇f(xi−1)− ui for all i ≥ 1 with vi and ui defined as in Algorithm 1.

1. Consider {Skt}∞t=0 with Skt :=
∑t

i=0 eki for all 0 ≤ t ≤ k and Skt = Skk for all t > k. Under Assumption 3.2(1),

{Skt}∞t=0 forms a martingale with respect to the filtration {Ft}∞t=0. Specifically, with F0 = F1 = σ(x1) and Ft is the

σ-algebra generated by {{Ξ1,i}mi=1, . . . , {Ξ(t−1),i}mi=1} (of which {{ξ1,i}mi=1, · · · , {ξ(t−1),i}mi=1} is a realization) for

all t ∈ {2, · · · , k}, and Ft = Fk for all t > k.

2. With {Skt}∞t=0 defined as in part 1, one has that Skk = ϵk.

3. Under Assumption 3.2 and Assumption 3.3 and with k = ⌈(2c)− 1⌉, it holds almost surely that

∥eki∥ ≤



















σ exp
(

−k−2
2

)(

k+1
k+2

)c

if i = 1,
(

2σ + 2Lg(Gr +Gd)ζα
)

1
2 exp

(

−k−i
2

)(

k+1
k+2

)c

if 2 ≤ i ≤ k,
(

2σ + 2Lg(Gr +Gd)ζα
)

c
i

(

i+1
k+2

)c

if k + 1 ≤ i ≤ k.
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Proof. Consider part 1. We have Sk0 = ek0 = 0, and for all 1 ≤ t ≤ k, one finds Skt − Sk(t−1) = ekt, so that

Eξ∼P [Skt|Ft] = Eξ∼P
[

Sk(t−1) + ekt|Ft

]

= Sk(t−1) + Eξ∼P [ekt|Ft] . (12)

Assumption 3.2(1) implies that Eξ∼P [ekt|Ft] = 0, which may then be combined with (12) to conclude that

Eξ∼P [Skt|Ft] = Sk(t−1) for all 1 ≤ t ≤ k. On the other hand, for all t > k, we trivially have Eξ∼P [Skt|Ft] =

Eξ∼P
[

Sk(t−1)|Ft

]

= Sk(t−1). Therefore, {Skt}∞t=0 forms a martingale.

Consider part 2. For all k ≥ 2, one finds that

ϵk = dk −∇f(xk)
= (1− βk)ϵk−1 +Ak + (1− βk)Bk

= (1− βk)(1− βk−1)ϵk−2 + (1− βk)Ak−1 +Ak + (1− βk)(1− βk−1)Bk−1 + (1− βk)Bk

=





k
∏

j=2

(1− βj)



 ϵ1 +

k
∑

i=2





k
∏

j=i+1

(1− βj)



Ai +
k
∑

i=2





k
∏

j=i

(1− βj)



Bi.

Since ϵ1 = A1, the desired conclusion follows that ϵk =
∑k

i=0 eki = Skk.

We now prove part 3. Consider the following two cases:

Case I: For i = 1, it follows from the triangular inequality and Assumption 3.2(3) that, almost surely, one finds

∥ek1∥ =

∥

∥

∥

∥

∥

∥





k
∏

j=2

(1− βj)



 ϵ1

∥

∥

∥

∥

∥

∥

≤





k
∏

j=2

(1− βj)



 ∥ϵ1∥

=





k
∏

j=2

(1− βj)





∥

∥

∥

∥

∥

1

m

m
∑

i′=1

∇ℓ(x1; ξ1i′)−∇f(x1)
∥

∥

∥

∥

∥

≤ σ





k
∏

j=2

(1− βj)



 .

It follows from Lemma A.1 that, almost surely, one finds

∥ek1∥ ≤ σ exp
(

−k − 2

2

)(

k + 1

k + 2

)c

.

Case II: For any i with 2 ≤ i ≤ k, it follows almost surely that

∥eki∥ (13)

=

∥

∥

∥

∥

∥

∥





k
∏

j=i+1

(1− βj)



Ai +





k
∏

j=i

(1− βj)



Bi

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥





k
∏

j=i+1

(1− βj)



 (1− βi + βi)Ai +





k
∏

j=i

(1− βj)



Bi

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

βi





k
∏

j=i+1

(1− βj)



Ai +





k
∏

j=i

(1− βj)



 (Ai +Bi)

∥

∥

∥

∥

∥

∥

≤ σβi





k
∏

j=i+1

(1− βj)



+





k
∏

j=i

(1− βj)





∥

∥

∥

∥

∥

1

m

m
∑

i′=1

∇ℓ(xi; ξii′)−
1

m

m
∑

i′=1

∇ℓ(xi−1; ξii′)− (∇f(xi)−∇f(xi−1))

∥

∥

∥

∥

∥

≤ σβi





k
∏

j=i+1

(1− βj)



+ 2Lg





k
∏

j=i

(1− βj)



 ∥xi − xi−1∥ , (14)
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where the first inequality holds by Assumption 3.2(3) and the second inequality holds by Assumption 3.1(2). Since

yi−1 = proxαi−1r (xi−1 − αi−1di−1), it follows from Beck (2017, Theorem 6.39) that
xi−1−yi−1

αi−1
− di−1 ∈ ∂r(yi−1).

Hence, it follows from Assumption 3.2(2) that

∥

∥

∥

xi−1−yi−1

αi−1
− di−1

∥

∥

∥ ≤ Gr. It follows from line 12 of Algorithm 1, As-

sumption 3.2(4), the triangular inequality, and the previous inequality that

∥xi − xi−1∥ = ζβi−1 ∥xi−1 − yi−1∥
≤ ζβi−1(∥xi−1 − yi−1 − αi−1di−1∥+ αi−1 ∥di−1∥)
≤ ζβi−1αi−1(Gr +Gd).

Combining (14) and the above inequality, one finds almost surely that

∥eki∥ ≤ σβi





k
∏

j=i+1

(1− βj)



+ 2Lg(Gr +Gd)ζβi−1αi−1





k
∏

j=i

(1− βj)



 . (15)

It follows from Assumption 3.3 that βk = min{ 12 , c
(k+1)} for all k ≥ 2. Therefore, since 2(1− βi) ≥ 1, one finds

βi





k
∏

j=i+1

(1− βj)



 ≤ 2βi





k
∏

j=i

(1− βj)



 ≤ 2βi−1





k
∏

j=i

(1− βj)



 , (16)

It follows from (15), (16), and αi ≡ α that almost surely one finds

∥eki∥ ≤
(

2σ + 2Lg(Gr +Gd)ζα
)

βi−1





k
∏

j=i

(1− βj)



 .

Applying Lemma A.1 to the above inequality, one finds almost surely that

∥eki∥ ≤







(

2σ + 2Lg(Gr +Gd)ζα
)

1
2 exp

(

−k−i
2

)(

k+1
k+2

)c

if 2 ≤ i ≤ k,
(

2σ + 2Lg(Gr +Gd)ζα
)

c
i

(

i+1
k+2

)c

if k + 1 ≤ i ≤ k.

Combining the two cases above give the results claimed in part 3.

The last lemma bounds
∑k

i=1 ∥eki∥
2
, which will appear in the Azuma-Hoeffding type inequality.

Lemma A.3. Under Assumption 3.2 and Assumption 3.3, there exits a constant C1 > 0 that is independent of k such that,

for all k ≥ k = ⌈(2c)− 1⌉, one finds

k
∑

i=1

∥eki∥2 ≤ C1

(

σ + Lg(Gr +Gd)ζα
)2

max

{

(

k + 1

k + 2

)2c

,
c2

k + 2

}

almost surely.

Proof. It follows from Lemma A.2(3) that, almost surely,

k
∑

i=1

∥eki∥2 = ∥ek1∥2 +
k
∑

i=2

∥eki∥2 +
k
∑

i=k+1

∥eki∥2

≤ σ2 exp (−(k − 2))

(

k + 1

k + 2

)2c

+

k
∑

i=2

(

2σ + 2Lg(Gr +Gd)ζα
)2 1

4
exp (−(k − i))

(

k + 1

k + 2

)2c

+

k
∑

i=k+1

(

2σ + 2Lg(Gr +Gd)ζα
)2 c2

i2

(

i+ 1

k + 2

)2c

. (17)
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With respect to each of three terms above, for some C11 that is independent of k, one finds

σ2 exp (−(k − 2)) ·
(

k + 1

k + 2

)2c

= σ2e2 exp(−k) ·
(

k + 1

k + 2

)2c

(18)

k
∑

i=2

(

2σ + 2Lg(Gr +Gd)ζα
)2 1

4
exp (−(k − i)) ·

(

k + 1

k + 2

)2c

≤
(

σ + Lg(Gr +Gd)ζα
)2 e

e− 1
·
(

k + 1

k + 2

)2c

(19)

k
∑

i=k+1

(

2σ + 2Lg(Gr +Gd)ζα
)2 c2

i2
·
(

i+ 1

k + 2

)2c

≤
(

2σ + 2Lg(Gr +Gd)ζα
)2
c2C11

k + 2
, (20)

where (19) holds since the geometric series
∑k

i=2 exp (−(k − i)) =
∑k

i=2
exp(i)
exp(k) =

e−e2−k

e−1 ≤ e
e−1 and (20) hold since

k
∑

i=1

(i+ 1)2c

i2
=

1
∑

i=1

(i+ 1)2c

i2
+

k
∑

i=2

(i+ 1)2c

i2

≤ 4c +

k
∑

i=2

(1.5i)2c

i2

≤ 4c + (1.5)2c
∫ k+1

i=2

i2c−2di

= 4c + (1.5)2c
(

(k + 1)2c−1

2c− 1
− 22c−1

2c− 1

)

≤ C11(k + 1)2c−1 ≤ C11(k + 2)2c−1. (21)

Combining (17)-(20), one finds almost surely that

k
∑

i=1

∥eki∥2 ≤
(

σ + Lg(Gr +Gd)ζα
)2

(

C12

(

k + 1

k + 2

)2c

+

(

4C11 +
e

e− 1

)

c2

k + 2

)

≤
(

σ + Lg(Gr +Gd)ζα
)2
(

C12 + 4C11 +
e

e− 1

)

max

{

(

k + 1

k + 2

)2c

,
c2

k + 2

}

,

where we use the fact that σ2e2 exp(−k) ≤ C12

(

σ + Lg(Gr + Gd)ζα
)2

for some C12 > 0 that is independent of k. We

complete the proof by setting C1 =
(

C12 + 4C11 +
e

e−1

)

.

Now, we are ready to formally prove Theorem 3.1.

Theorem 3.1. Let Assumption 3.1±Assumption 3.3 hold, let ϵk = dk−∇f(xk) for all k ∈ N+, and define k = ⌈(2c)−1⌉.
Then, for any k ≥ k and any ηk ∈ (0, 1), the event Ek := {∥ϵk∥ ≤ U(k)} holds with probability at least 1− ηk, where for

some constant C ∈ R+ independent of k, one defines

U(k) = C
(

σ + Lg(Gr +Gd)ζα
)

·max

{(

k + 1

k + 2

)c

,
c√
k + 2

}
√

log
2

ηk
.

(Specifically, the constant is C =
√
2C1, where C1 is defined in Lemma A.3.)

Proof. It follows from Lemma A.3 that almost surely one finds

k
∑

i=1

∥eki∥2 ≤ C1

(

σ + Lg(Gr +Gd)ζα
)2

max

{

(

k + 1

k + 2

)2c

,
c2

k + 2

}

=: h(k).

Based on Lemma A.2(1), we have for k ≥ k that {Skt}kt=0 forms a martingale with respect to the filtration {Ft}kt=0.

For any ρk > 0, using the Azuma-Hoeffding type inequality (Pinelis, 1994, Theorem 3.5)9 on the martingale {Skt}kt=0,

9See Remark A.1 for details on applying this theorem.
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together with ∥eki∥∞ ≤ ∥eki∥ (eki is defined in Lemma A.2) and the fact that Skk = ϵk (Lemma A.2(2)), we have

P [∥ϵk∥ ≥ ρk] = P [∥Skk∥ ≥ ρk] ≤ P

[

sup
t∈[k]

∥Skt∥ ≥ ρk
]

≤ 2 exp

(

− ρ2k
2h(k)

)

. (22)

For any ηk ∈ (0, 1), by setting ρk = U(k) =
√

2h(k) log(2/ηk) in (22), we have P
[

∥ϵk∥ ≥ U(k)
]

≤ ηk, which implies

that the event Ek = {∥ϵk∥ ≤ U(k)} holds with probability at least 1− ηk. This completes the proof.

Remark A.1. We define the f used in (Pinelis, 1994, Theorem 3.5) when cited in the proof of Theorem 3.1 above as

f = {Sk0, Sk1, · · · , Skk, Skk, . . . } with fj = Skj for all 1 ≤ j ≤ k and fj = Skk for all j > k. As proved in

Lemma A.2(1), f is a martingale. Consequently, the dj and f∗ appearing in (Pinelis, 1994, Theorem 3.5) are defined as

dj = Skj − Sk(j−1) = ekj and f∗ = supj∈[k]{∥fj∥} = supj∈[k]{∥Skj∥}, respectively. As proved in Lemma A.3, we

have
∑k

j=1 ∥dj∥
2
∞ ≤

∑k
j=1 ∥dj∥

2
2 =

∑k
j=1 ∥ekj∥

2
2 ≤ h(k) almost surely.

A.2 Proof of Corollary 3.1

Corollary 3.1 Let ηk = η0

k2 for all k ≥ 1 with η0 ∈ (0, 6/π2). Define the event Ek := {∥ϵk∥ ≤ U(k)} and recall that

k = ⌈(2c)− 1⌉. Under Assumption 3.1±Assumption 3.3, the event E :=
⋂∞

k≥k Ek holds with probability at least 1− η0π
2

6 .

Proof. It follows from the stated conditions, the union bound from probability, and Theorem 3.1 that

P





∞
⋂

k=k

{∥ϵk∥ ≤ U(k)}



 = P





∞
⋂

k=k

Ek



 = 1− P









∞
⋂

k=k

Ek





c

 (here c is the set complement operator)

= 1− P





∞
⋃

k=k

Eck



 ≥ 1−
∞
∑

k≥k

P [Eck] = 1−
∞
∑

k≥k

P [∥ϵk∥ > U(k)]

≥ 1−
∞
∑

k≥k

ηk ≥ 1−
∞
∑

k=1

η0
k2

= 1− η0π
2

6
,

where the last equality holds by the Basel equality
∑∞

k=1
1
k2 = π2

6 .

A.3 Proof of Theorem 3.2

Theorem 3.2. Let α = µf/L
2
g , ζ ∈ (0, 2), θ ≥ 2, c = (2θL2

g)/(ζµ
2
f ) > 2, and k = ⌈2c − 1⌉. Set ηk = η0/k

2

for all k ≥ 1 with η0 ∈ (0, 6/π2). Then, under Assumption 3.1±Assumption 3.3, there exists a constant C3 ∈ R+

independent of k, such that the event Exk :=

{

∥xk − x∗∥2 ≤ c̄1 ∥
xk−x∗∥2

kθ + c̄2 ·
log 2k

η0

k

}

with c̄1 := (k + 2)θ and c̄2 :=

C3ζ

(

µ2
f

L4
g
+ 2

L2
g

(

1 +
µf

Lg

)2
)

(σ + Lg(Gr +Gd)ζα)
2 satisfies

P





∞
⋂

k≥k

Exk



 ≥ 1− η0π2/6 > 0 .

Proof. Since the proximal operator is non-expansive (Beck, 2017, Theorem 6.42) and x∗ = proxαkr
(x∗ − αk∇f(x∗)), it

follows that

∥yk − x∗∥2 =
∥

∥proxαkr
(xk − αkdk)− proxαkr

(x∗ − αk∇f(x∗))
∥

∥

2

≤ ∥xk − x∗ − αk(dk −∇f(x∗))∥2

= ∥xk − x∗∥2 − 2αk(xk − x∗)T (dk −∇f(x∗)) + α2
k ∥dk −∇f(x∗)∥2

= ∥xk − x∗∥2 − 2αk(xk − x∗)T (ϵk +∇f(xk)−∇f(x∗)) + α2
k ∥dk −∇f(x∗)∥2 . (23)
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It follows from Assumption 3.1 that f is µf -strongly convex, and therefore

(xk − x∗)T (∇f(xk)−∇f(x∗)) ≥ µf ∥xk − x∗∥2 . (24)

It follows from (23) that

∥yk − x∗∥2 (25)

≤ ∥xk − x∗∥2 − 2αk(xk − x∗)T (∇f(xk)−∇f(x∗))− 2αk(xk − x∗)T ϵk + α2
k ∥dk −∇f(x∗)∥2

(i)

≤ (1− 2µfαk) ∥xk − x∗∥2 − 2αk(xk − x∗)T ϵk + α2
k ∥dk −∇f(x∗)∥2

= (1− 2µfαk) ∥xk − x∗∥2 + 2αk(x
∗ − xk)T ϵk + α2

k ∥dk −∇f(xk) +∇f(xk)−∇f(x∗)∥2
(ii)
= (1− 2µfαk) ∥xk − x∗∥2 + 2αk(x

∗ − xk)T ϵk + α2
k

(

∥ϵk∥2 + 2ϵTk (∇f(xk)−∇f(x∗)) + ∥∇f(xk)−∇f(x∗)∥2
)

(iii)

≤ (1− 2µfαk) ∥xk − x∗∥2 + 2αk ∥xk − x∗∥ ∥ϵk∥+ α2
k

(

∥ϵk∥2 + 2Lg ∥ϵk∥ ∥xk − x∗∥+ L2
g ∥xk − x∗∥2

)

= (1− 2µfαk + α2
kL

2
g) ∥xk − x∗∥2 + (2αk + 2Lgα

2
k) ∥xk − x∗∥ ∥ϵk∥+ α2

k ∥ϵk∥2 , (26)

where (i) follows from (24), (ii) follows from the definition of ϵk, and (iii) follows from Assumption 3.1 and the Cauchy-

Schwarz inequality. When the event Ek = {∥ϵk∥ ≤ U(k)} happens (U(k) defined in Theorem 3.1), it follows from line 12

in Algorithm 1, ζβk < 1, (26), and Theorem 3.1 that

∥xk+1 − x∗∥2

= ∥ζβk(yk − x∗) + (1− ζβk)(xk − x∗)∥2

≤ ζβk ∥yk − x∗∥2 + (1− ζβk) ∥xk − x∗∥2

≤ ζβk
(

(1− 2µfαk + α2
kL

2
g) ∥xk − x∗∥2 + (2αk + 2Lgα

2
k) ∥xk − x∗∥ ∥ϵk∥+ α2

k ∥ϵk∥2
)

+ (1− ζβk) ∥xk − x∗∥2

≤ (1− ζβk(2µfαk − α2
kL

2
g)) ∥xk − x∗∥2 + (2αk + 2Lgα

2
k) ∥xk − x∗∥ ζβkU(k) + α2

kζβkU(k)2; (27)

we emphasize that the first inequality above follows from the convexity of the 2-norm-squared. Therefore, (27) holds with

probability at least 1− ηk since the event Ek = {∥ϵk∥ ≤ U(k)} happens with probability at least 1− ηk.

Define s2k = ∥xk − x∗∥2 and since αk ≡ α = µf/L
2
g , then (27) becomes

s2k+1 ≤
(

1− ζβk
µ2
f

L2
g

)

s2k +
2µf

L2
g

(

1 +
µf

Lg

)

ζβkU(k)sk +
µ2
f

L4
g

ζβkU(k)2.

= (1− c0ζβk)s2k + c1ζβkU(k)sk + c2ζβkU(k)2, (28)

with c0 =
µ2
f

L2
g
, c1 =

2µf

L2
g

(

1 +
µf

Lg

)

, and c2 =
µ2
f

L4
g

. The second term in the above inequality can be upper bounded as

c1ζβkU(k)sk = 2

(

c1
√
ρζβk
2

sk

)(√
ζβk√
ρ
U(k)

)

≤ ρζβkc
2
1

4
s2k +

ζβk
ρ
U(k)2 for all ρ > 0,

by using Young’s inequality. Combining this result with (28), one obtains

s2k+1 ≤
[

1−
(

c0ζ − ρζ
c21
4

)

βk

]

s2k +

[

c2ζ +
ζ

ρ

]

βkU(k)2.

Now setting ρ =
2µ2

f

L2
gc

2
1

, it follows from this inequality that

s2k+1 ≤
[

1−
ζµ2

f

2L2
g

βk

]

s2k +

[

ζµ2
f

L4
g

+
ζc21L

2
g

2µ2
f

]

βkU(k)2 = (1− γk)s2k + c3βkU(k)2, (29)

where γk =
ζµ2

f

2L2
g
βk and c3 =

ζµ2
f

L4
g
+

ζc21L
2
g

2µ2
f

.
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Conditioning on the event E =
⋂∞

i≥k Ei happens, it follows from (29), for all k ≥ k, that

s2k+1 ≤ (1− γk)s2k + c3βkU(k)2

≤ (1− γk)(1− γk−1)s
2
k−1 + c3

k
∑

i=k−1





k
∏

j=i+1

(1− γj)βiU(i)2





≤ (expanding recursively on s2k−1)

≤





k
∏

i=k

(1− γi)



 · s2k + c3 ·
k
∑

i=k





k
∏

j=i+1

(1− γj)



βiU(i)2, (30)

where we use the convention that
∏u

i=l ai = 1 if l > u for any ai ∈ R and (l, u) ∈ Z2
+. Then using a similar argument as

from Lemma A.1, one can establish, for any i ≥ 2, that

k
∏

j=i

(1− γj) ≤ exp



−
k
∑

j=i

γj



 = exp



−
ζµ2

f

2L2
g

·
k
∑

j=i

min

{

1

2
,

c

j + 1

}





= exp



−
ζµ2

f

2L2
g

· k −min{k, i}
2

−
ζµ2

f

2L2
g

·
k
∑

j=max{k,i}

c

j + 1





≤ exp

(

−
ζµ2

f

2L2
g

· k −min{k, i}
2

)

·
(

max{k, i}+ 2

k + 1

)ζµ2
f c/(2L

2
g)

= exp

(

−
ζµ2

f

2L2
g

· k −min{k, i}
2

)

·
(

max{k, i}+ 2

k + 1

)θ

.

Combing the above inequality with (30) we obtain, for any k ≥ k, that

s2k+1 ≤
(

k + 2

k + 1

)

· s2k + c3 ·
k
∑

i=k

[

(

(i+ 1) + 2

k + 1

)θ
]

c

i+ 1
U(i)2. (31)

It follows from Theorem 3.1 that

U(i)2 =







G2
(

k+1
i+2

)2c

log 2
ηi

if i < k̄,

G2 c2

i+2 log
2
ηi

if i ≥ k̄,
(32)

where G = C(σ + Lg(Gr +Gd)ζα) and k̄ = max
{

k,
⌈

(k+1)2c/(2c−1)

c2/(2c−1) − 2
⌉}

. Then it follows from (32) that

c3 ·
k
∑

i=k

[

(

(i+ 1) + 2

k + 1

)θ
]

c

i+ 1
U(i)2

≤ c3 · c ·G2

(k + 1)θ





min{k̄−1,k}
∑

i=k

(i+ 3)θ

i+ 1

(k + 1)2c

(i+ 2)2c
log

2

ηi
+

k
∑

i=min{k̄−1,k}+1

(i+ 3)θ

i+ 1

c2

i+ 2
log

2

ηi



 , (33)

where we use the convention that
∑u

i=l ai = 0 if l > u for any ai ∈ R and (l, u) ∈ Z2
+.

It follows from (33) and θ ≥ 2, there exists constants {C30, C31, C32, C34} ⊂ R+, which are independent of k, such that,



A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

for all k ≥ k, one obtains,

c3 ·
k
∑

i=k

[

(

(i+ 1) + 2

k + 1

)θ
]

c

i+ 1
U(i)2

=
c3 · c ·G2

(k + 1)θ





min{k̄−1,k}
∑

i=k

(i+ 3)θ

i+ 1

(k + 1)2c

(i+ 2)2c
log

2

ηi
+

k
∑

i=min{k̄−1,k}+1

(i+ 3)θ

i+ 1

c2

i+ 2
log

2

ηi





=







c3·c·G2

(k+1)θ

[

∑k
i=k

(i+3)θ

i+1
(k+1)2c

(i+2)2c log 2
ηi

]

if k ≤ k < k̄,

c3·c·G2

(k+1)θ

[

∑k̄−1
i=k

(i+3)θ

i+1
(k+1)2c

(i+2)2c log 2
ηi

+
∑k

i=k̄
(i+3)θ

i+1
c2

i+2 log
2
ηi

]

if k ≤ k̄ ≤ k,

≤











c3·c·G2(k+1)2c log 2
ηk

(k+1)θ

[

∑k
i=k

(i+3)θ

i+1
1

(i+2)2c

]

if k ≤ k < k̄, (due to ηi ≥ ηk)

c3·c3·G2 log 2
ηk

(k+1)θ

[

C30 +
∑k

i=k̄
(i+3)θ

i+1
1

i+2

]

if k ≤ k̄ ≤ k, (due to ηi ≥ ηk, k̄, and k are both constants)

≤











C31

c3·c·G2(k+1)2c log 2
ηk

(k+1)θ

(

∫ k

1
tθ−1−2cdt

)

if k ≤ k < k̄,

C32

c3·c3·G2 log 2
ηk

(k+1)θ

(

∫ k

1
tθ−2dt

)

if k ≤ k̄ ≤ k,

≤







C31

c3·c·G2(k+1)2c log 2
ηk

(k+1)θ
· 1
2c−θ if k ≤ k < k̄, (due to c > θ)

C32

c3·c3·G2 log 2
ηk

(k+1)θ
kθ−1 · 1

θ−1 if k ≤ k̄ ≤ k,

≤







C31

c3·c·G2(k+1)2c log 2
ηk

k+1 · 1
2c−θ if k ≤ k < k̄, (due to θ ≥ 2 > 1)

C32

c3·c3·G2 log 2
ηk

k+1 · 1
θ−1 if k ≤ k̄ ≤ k,

≤ c3G2C34

log 2
ηk

k + 1
. (34)

Combining (31) with (34), for all k ≥ k, gives

s2k+1 ≤
(

k + 2

k + 1

)θ

· s2k + c3G
2C34

log 2
ηk

k + 1
, (35)

which implies, for all k ≥ k, that

∥xk − x∗∥2 ≤
(

k + 2

k

)θ
∥

∥xk − x∗
∥

∥

2
+ c3G

2C34

2 log 2k
η0

k

=

(

k + 2

k

)θ
∥

∥xk − x∗
∥

∥

2
+ ζ

(

µ2
f

L4
g

+
2

L2
g

(

1 +
µf

Lg

)2
)

(σ + Lg(Gr +Gd)ζα)
2C34

log 2k
η0

k

= c̄1

∥

∥xk − x∗
∥

∥

2

kθ
+ c̄2

log 2k
η0

k
,

where we set C3 = C34. It follows from the definition of Exk and the above result that P
[

⋂∞
k≥k Exk |

⋂∞
k≥k Ek

]

= 1. In

conclusion, for any given η0 ∈ (0, 6/π2), it follows from Corollary 3.1 that

P





∞
⋂

k≥k

Exk



 =
P
[

⋂∞
k≥k Exk ,

⋂∞
k≥k Ek

]

P
[

⋂∞
k≥k Ek |

⋂∞
k≥k Exk

] ≥ P





∞
⋂

k≥k

Exk ,
∞
⋂

k≥k

Ek





= P





∞
⋂

k≥k

Exk |
∞
⋂

k≥k

Ek



P





∞
⋂

k≥k

Ek



 = P





∞
⋂

k≥k

Ek



 ≥ 1− η0π2/6 > 0,

which completes the proof.
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A.4 Proof of Theorem 3.3

Theorem 3.3. Given α > 0, d ∈ Rn, and the optimal solution x∗ to problem (1), denote z = x−αd and y = proxαr (z).
Let Assumption 3.4 hold. If

∥

∥

∥

∥

[z − x∗]gi
α

+∇gif(x
∗)

∥

∥

∥

∥

< δ∗ for all i ̸∈ S (x∗) ,

then S (y) ⊆ S (x∗). Furthermore, if ∥y − x∗∥ < ∆∗, then S (x∗) ⊆ S (y) so that, in fact, S (y) = S (x∗).

Proof. We start with the first claim S (y) ⊆ S (x∗). It follows from Assumption 3.4 and the triangular inequality that, for

all i ̸∈ S (x∗), one has

∥

∥

∥

∥

[z − x∗]gi
α

∥

∥

∥

∥

=

∥

∥

∥

∥

[z − x∗]gi
α

+∇gif(x
∗)−∇gif(x

∗)

∥

∥

∥

∥

≤
∥

∥

∥

∥

[z − x∗]gi
α

+∇gif(x
∗)

∥

∥

∥

∥

+ ∥∇gif(x
∗)∥

< δ∗ + ∥∇gif(x
∗)∥ ≤ δmin + ∥∇gif(x

∗)∥ < λi.

Since [x∗]gi = 0 for all i ̸∈ S (x∗), it follows that
[z−x∗]gi

α ∈ ∂ri([x
∗]gi)

10. It follows from the optimality condition

for the proximal problem (Beck, 2017, Theorem 6.39) that this is true if and only if [x∗]gi = proxαri ([z]gi) for all

i ̸∈ S (x∗), which further implies [y]gi = [x∗]gi = 0 for all i ̸∈ S (x∗). Consequently, (S (x∗))c ⊆ (S (y))c, which

implies S (y) ⊆ S (x∗).
Now we prove the second claim S (x∗) ⊆ S (y). Note that ∥[y − x∗]gi∥ ≤ ∥yk − x∗∥ for any i ∈ [nG ]. Therefore, when

∥y − x∗∥ < ∆∗, for i ∈ S (x∗), [y]gi cannot be 0 for all i ∈ S (x∗). Otherwise, ∆∗ ≤ ∥[x∗]gi∥ < ∆∗ for i ∈ S (x∗). This

proves that S (x∗) ⊆ S (yk).

A.5 Proof of Theorem 3.4

Theorem 3.4. Let Assumption 3.1±Assumption 3.4 hold, ζ ∈ (0, 2), θ ≥ 2, c = (2θL2
g)/(ζµ

2
f ) > 2, and k = ⌈2c− 1⌉.

Consider the sequence {yk} of Algorithm 1 and define the event E id
k = {S(yk) = S(x∗)} for all k ≥ 1. Then, there

exists constants {C41, C42} ⊆ Rn
+ that are independent of k, kδ∗ = (C41/δ

∗)4 and k∆∗ = (C42/∆
∗)4 such that, with

K := max{kδ∗ , k∆∗ , k}, it follows that

P





∞
⋂

k≥K

E id
k



 ≥ 1− η0π
2

6
> 0.

Proof. Denote zk = xk − αkdk for all k ≥ 1, then it follows from Assumption 3.1(2) and the triangular inequality that

∥

∥

∥

∥

zk − x∗
αk

+∇f(x∗)
∥

∥

∥

∥

≤ 1

αk
∥xk − x∗∥+ ∥dk −∇f(x∗)∥

≤ 1

αk
∥xk − x∗∥+ ∥dk −∇f(xk)∥+ ∥∇f(xk)−∇f(x∗)∥

≤
(

1

αk
+ Lg

)

∥xk − x∗∥+ ∥dk −∇f(xk)∥ . (36)

Conditioning on the events
⋂∞

k≥k Ei and
⋂∞

k≥k Exi happening (with Ek defined in Theorem 3.1 and Exk defined in Theo-

rem 3.2), it follows from αk ≡ α for all k (Assumption 3.3), Corollary 3.1, and Theorem 3.2 that, there exists a constant

C41 > 0 that is independent of k, for all k ≥ k,

(

1

αk
+ Lg

)

∥xk − x∗∥+ ∥dk −∇f(xk)∥ ≤ C41

√

log k

k
. (37)

10The subdifferential is given by ∂ ∥x∥ = {v ∈ Rn | ∥v∥ ≤ 1}.
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Combining (36) and (37), we know for all k ≥ kδ∗ that C41

√

log k
k ≤ C41/k

4 < C41/k
4
δ∗ = δ∗ 11. Together with

Theorem 3.3 and the definition of yk (line 11 of Algorithm 1), we have S (yk) ⊆ S (x∗) for all k ≥ max{kδ∗ , k}.
It follows from the non-expansiveness (Beck, 2017, Theorem 6.42) of the proximal operator, x∗ =
proxαkr

(x∗ − αk∇f(x∗)), the definition of yk (line 11 of Algorithm 1), and the triangular inequality that

∥yk − x∗∥ =
∥

∥proxαkr
(xk − αk∇f(xk))− proxαkr

(x∗ − αk∇f(x∗))
∥

∥

≤ ∥(xk − x∗)− αk(dk −∇f(x∗))∥
≤ ∥xk − x∗∥+ αk ∥dk −∇f(x∗)∥ . (38)

Again, conditioning on the events
⋂∞

k≥k Ei and
⋂∞

k≥k Exi happening, it follows from αk ≡ α for all k (Assumption 3.3),

Corollary 3.1, Theorem 3.2, and (38) that, there exist a constant C42 > 0 that is independent of k, such that for all k ≥ k,

∥yk − x∗∥ ≤ C42

√

log k
k . Therefore, when k ≥ k∆∗ , it follows that C42

√

log k
k ≤ C42/k

4 < C42/k
4
∆∗ = ∆∗. Together

with Theorem 3.3 and the definition of yk (line 11 of Algorithm 1), we have S (x∗) ⊆ S (yk) for all k ≥ max{k∆∗ , k}.
Therefore, when k ≥ K = max{kδ∗ , k∆∗ , k}, together with the fact that P

[

⋂∞
k≥K E id

k |
⋂∞

k≥k Ei,
⋂∞

k≥k Exi
]

= 1, it

follows that

P





∞
⋂

k≥K

E id
k



 =
P
[

⋂∞
k≥K E id

k ,
⋂∞

k≥k Ei,
⋂∞

k≥k Exi
]

P
[

⋂∞
k≥k Ei,

⋂∞
k≥k Exi |

⋂∞
k≥K E id

k

] ≥ P





∞
⋂

k≥K

E id
k ,

∞
⋂

k≥k

Ei,
∞
⋂

k≥k

Exi





= P





∞
⋂

k≥K

E id
k |

∞
⋂

k≥k

Ei,
∞
⋂

k≥k

Exi



P





∞
⋂

k≥k

Ei,
∞
⋂

k≥k

Exi





= P





∞
⋂

k≥k

Ei,
∞
⋂

k≥k

Exi



 ≥ 1− η0π
2

6
,

which completes the proof.

A.6 Proofs for additional lemmas

Lemma A.4. Denote F1 = σ(x1) and, for all k ≥ 2, denote Fk as the σ-algebra generated by the random variables

{{Ξ1,i}mi=1, . . . , {Ξ(k−1),i}mi=1} (of which {{ξ1,i}mi=1, . . . , {ξ(k−1),i}mi=1} is a realization) so that {Fk} is a filtration. If

(i) there exists a constant ce > 0 such that for all k ≥ 1, P{∥dk −∇f(xk)∥ ≤ ce | Fk} = 1 and (ii) there exists a constant

cα such that for a given α > 0 and all k ≥ 1, P{χ(xk;α) ≤ cα | Fk} = 1, then there exists a constant Gd > 0 such that

for all k ≥ 1, it holds that P{∥dk∥ ≤ Gd | Fk} = 1.

Proof. To see why the implication holds, we define ỹk = proxαr (xk − α∇f(xk)) and we make an algorithmic choice

αk ≡ α for all k. Since yk = proxαr (xk − αdk), then xk−yk

α − dk ∈ ∂r(yk). It follows from Assumption 3.2.2 that
∥

∥

xk−yk

α − dk
∥

∥ ≤ Gr. By the triangle inequality, we have

∥dk∥ ≤ Gr +
∥xk − yk∥

α
≤ Gr +

∥xk − ỹk∥
α

+
∥yk − ỹk∥

α

= Gr + χk(α) +
∥proxαr (xk − αdk)− proxαr (xk − α∇f(xk))∥

α
≤ Gr + χk(α) + ∥dk −∇f(xk)∥ ≤ Gr + cα + ce,

where the penultimate inequality holds by the non-expansiveness of the proximal operator(Beck, 2017, Theorem 6.42).

Lemma A.5. Consider the RDA algorithm with its update defined as

xk+1 = arg min
x∈Rn

{

dTk x+ r(x) +
ρk
k
∥x∥2

}

with dk =
k − 1

k
dk−1 +

1

k
∇ℓ(xk; ξk),

where ξk is a i.i.d sample from P .

11We use the inequality

√

log x
x

< 1

x1/4 for all x > 1.
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1. If ρk = α
√
k for a given k ≥ 1 and α is defined as in Assumption 3.3, then the update can be equivalently written as

xk+1 = proxαkr
(−αkdk) with αk =

√
k

α
.

2. Assume r is µr > 0 strongly convex. Further, assume that there are constants {G,D} ⊂ (0,∞) such that, for all

k ≥ 1, it holds that ∥∇ℓ(xk; ξk)∥ ≤ G and ∥x∗∥ ≤ D. If ρk = α
√
k, then

E
[

∥xk − x∗∥2
]

≤ 2
(

αD2 +G2/α
)

µr

1√
k
.

Moreover, for any ϵ > 0 and k ≥ 1, it holds that

P [∥xk − x∗∥ ≥ ϵ] ≤
√

2 (αD2 +G2/α)

µrϵ2
1

k1/4
.

3. Assume f and r are µf > 0 and µr > 0 strongly convex, respectively. Further, assume that there are constants

{G,D} ⊂ (0,∞) such that, for all k ≥ 1, it holds that ∥∇ℓ(xk; ξk)∥ ≤ G and ∥x∗∥ ≤ D. If ρk = α
√
k, then for all

k ≥ 1, it holds that

P [S (xk+1) = S (x∗)] ≥ 1− ηRDAk ,

where ηRDAk = max
{

O
(

1
δ∗·k1/4

)

,O
(

1
∆∗·k1/4

)}

.

Proof. For part 1, let βk = α
√
k. Then

arg min
x∈Rn

{

dTk x+ r(x) +
ρk
k
∥x∥2

}

= arg min
x∈Rn

{

dTk x+ r(x) +
1

1
α

√
k
∥x∥2

}

= arg min
x∈Rn

{

dTk x+ r(x) +
1

αk
∥x∥2

}

= arg min
x∈Rn

{

1

αk
∥x+ αkdk∥2 + r(x)

}

= proxαkr
(−αkdk) .

For part 2, it follows from Xiao (2009, Equation 22) and Xiao (2009, Corollary 2) that for all k ≥ 1,

E
[

∥xk − x∗∥2
]

≤ 2

µrk

(

αD2 +G2/α
)
√
k =

2
(

αD2 +G2/α
)

µr

1√
k
.

It follows from Jensen’ inequality that

E [∥xk − x∗∥] ≤
√

E
[

∥xk − x∗∥2
]

≤
√

2 (αD2 +G2/α)

µr

1

k1/4
,

which together with the Markov inequality implies that

P [∥xk − x∗∥ ≥ ϵ] ≤
√

2 (αD2 +G2/α)

µrϵ2
1

k1/4
.

For part 3, consider three events ERDAk,1 := {∥dk −∇f(x∗)∥ < δ∗/2}, ERDAk,2 := {(1/αk + Lg) ∥xk − x∗∥ < δ∗/2}, and

ERDAk,3 := {∥xk+1 − x∗∥ < ∆∗}. It follows from Lee and Wright (2012, Theorem 11, equation (31)) and part 2 of this

lemma that

P
[(

ERDAk,1

)c] ≤ O
(

1

δ∗ · k1/4
)

, (39)

P
[(

ERDAk,2

)c] ≤ O
(

1

δ∗ · k3/4
)

, and (40)

P
[(

ERDAk,2

)c] ≤ O
(

1

∆∗ · k1/4
)

. (41)
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It follows from the union bound and (39)±(41) that

P
[

ERDAk,1

⋂

ERDAk,2

⋂

ERDAk,3

]

= 1− P
[

(

ERDAk,1

)c⋃(

ERDAk,2

)c⋃(

ERDAk,3

)c
]

≥ 1−
(

P
[(

ERDAk,1

)c]
+ P

[(

ERDAk,2

)c]
+ P

[(

ERDAk,3

)c])

= 1−max

{

O
(

1

δ∗ · k1/4
)

,O
(

1

∆∗ · k1/4
)}

,

which together with Theorem 3.3 implies that, for any chosen k ≥ 1,

P [S (xk+1) = S (x∗)] ≥ 1− ηRDAk ,

which completes the proof.

B Experiments

B.1 Discussions on the performance gaps in different methods

First, ProxSVRG performs poorly on test instances induced by the datasets phishing, rcv1, real-sim, and news20. It can

be checked that these datasets cover different sample sizes and decision variable dimensions. We attribute the cause of

poor performance to the inner loop length parameter, which is difficult to choose to work on all test instances. In the

experiments, we set it to 1 for all cases to follow the original paper’s experimental setting (Xiao and Zhang, 2014).

Second, SAGA performed quite well on the first 32 test instances, where the memory limit is not violated, and failed on the

remaining 48 test instances (marked as the darkest red) because the program terminates immediately due to memory limits

being exceeded.

Third, RDA appears to perform poorly compared with PStorm (S-PStorm) because the prox step of RDA only applies to

its initial point x0 = 0 with updated search direction −αkdk (see Lemma A.5(1)), whereas PStorm (S-PStorm) applies

the prox step at the up-to-date iterate xk.

Finally, one can see that S-PStorm significantly outperforms PStorm. We attribute this to a combination of the stabiliza-

tion that we introduced and that the step size for PStorm was designed for nonconvex problems (for our tests, nonetheless,

we fine-tuned the step size for PStorm to be fair).

B.2 Additional results

We visualize three metrics: the distance to the optimal solution ∥xk − x∗∥ (x∗ is obtained by the FaRSA-Group algo-

rithm), the error in the gradient evaluation ϵk (defined in Theorem 3.1), and the sparse structure of major iterates, which

can be found in the first, second, and third column of Figure 3, respectively. The first metric measures the convergence

speed of {xk}, the second metric shows how fast the error in the stochastic gradient estimator dk (defined in Algorithm 1

line 9) diminishing to zero, and the third metric visualizes the progress made with respect to support identification.

For demonstration, we only show results on six moderate-size datasets with randomly picked problem parameters Λ = 0.1
and number of groups ⌊0.5n⌋. We remark that in some plots, lines that represent different algorithms could visually

overlap. For example, the green line (S-PStorm) and purple line (SAGA) overlap in the first column for dataset phishing

and rcv1.12 We also emphasize that SAGA does not appear in the Figure 3(f) due to memory limitation.

From the first and the second column of Figure 3, it can be observed that the rates at which the xk converges to x∗

and ϵk converges to 0 seem to be bounded by O(
√

log k/k), which matches our theoretical results in Theorem 3.1 and

Theorem 3.2. We can also observe that for the relatively large datasets rcv1 and real-sim, 1000 data passes is not enough

to obtain accurate estimates of x∗, but a decent ratio of zeros groups is identified nonetheless.

12The reason is that the numerical difference between ∥xk − x∗∥ for S-PStorm and SAGA is of order 10−2.
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Figure 3: Visualization of three metrics: the distance to optimal solution ∥xk − x∗∥ (the first column), error in the gradient

evaluation ϵk (the second column), and the progress of support identification on different datasets (the third column). We

added a dotted reference line corresponding to
√

log k/k (for k ≥ 2) for the plots in the first and second columns. In

addition, we added a horizontal black reference line for the plots in the third column to indicate the number of zero groups

at the optimal solution x∗.
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Finally, we provide the raw data for the metrics of total identification (Table 3), first identification (Table 4), first consistent

identification (Table 5), and the last iterate support recovery (Table 6); for an explanation of their precise meaning, revisit

Section 4.2. All results (excluding FaRSA-Group which is a deterministic algorithm) are reported as the average of three

independent runs. In all tables, the problem instance is formatted as (dataset name)-(value of Λ)-(ratio of # of groups).

We remark that NaN represents that a particular method failed to identify the support within 1000 data pass. We also

removed the instances that all five methods failed to identify the support.

Table 3: Total number of support identifications.

instance ProxSVRG SAGA RDA PStorm S-PStorm

a9a-0.1-0.25 976.0 987.0 1000.0 899.0 988.0

a9a-0.1-0.5 790.0 893.0 75.0 NaN 895.0

a9a-0.1-0.75 932.0 965.0 998.0 547.0 966.0

a9a-0.1-1.0 932.0 965.0 998.0 547.0 966.0

a9a-0.01-0.25 NaN NaN NaN NaN 93.0

a9a-0.01-0.5 578.0 788.0 706.0 NaN 786.0

a9a-0.01-0.75 652.0 825.0 84.0 NaN 825.0

a9a-0.01-1.0 652.0 825.0 84.0 NaN 825.0

covtype-0.1-0.25 998.0 999.0 1000.0 998.0 1000.0

covtype-0.1-0.5 1000.0 999.0 1000.0 999.0 1000.0

covtype-0.1-0.75 1000.0 999.0 1000.0 999.0 1000.0

covtype-0.1-1.0 1000.0 999.0 1000.0 999.0 1000.0

covtype-0.01-0.25 1000.0 1000.0 1000.0 1000.0 1000.0

covtype-0.01-0.5 1000.0 1000.0 1000.0 1000.0 1000.0

covtype-0.01-0.75 994.0 991.0 999.0 837.0 1000.0

covtype-0.01-1.0 994.0 991.0 999.0 837.0 1000.0

phishing-0.1-0.25 792.0 896.0 991.0 NaN 895.0

phishing-0.1-0.5 390.0 694.0 901.0 NaN 695.0

phishing-0.1-0.75 420.0 710.0 502.0 NaN 710.0

phishing-0.1-1.0 326.0 662.0 28.0 NaN 667.0

w8a-0.1-0.25 960.0 979.0 997.0 749.0 980.0

w8a-0.1-0.5 906.0 952.0 891.0 120.0 954.0

w8a-0.1-0.75 886.0 942.0 951.0 NaN 942.0

w8a-0.1-1.0 886.0 942.0 951.0 NaN 942.0

w8a-0.01-0.5 164.0 581.0 NaN NaN 580.0

w8a-0.01-0.75 NaN 185.0 NaN NaN 195.0

w8a-0.01-1.0 NaN 185.0 NaN NaN 195.0

real-sim-0.1-0.25 NaN NaN NaN NaN 212.0

real-sim-0.1-0.5 326.0 NaN 163.0 NaN 664.0

news20-0.1-0.25 38.0 NaN NaN NaN 26.0

news20-0.1-0.5 6.0 NaN NaN NaN 312.0

url-combined-0.1-0.25 4.0 NaN NaN NaN 2.0

avazu-app.tr-0.1-0.25 6.0 NaN 4.0 3.0 3.0

avazu-app.tr-0.1-0.5 2.0 NaN 3.0 2.0 2.0

avazu-app.tr-0.1-0.75 2.0 NaN 2.0 2.0 2.0

avazu-app.tr-0.1-1.0 NaN NaN 2.0 1.0 1.0

avazu-app.tr-0.01-0.25 6.0 NaN 3.0 NaN 3.0

avazu-app.tr-0.01-0.5 2.0 NaN 2.0 NaN 2.0

avazu-app.tr-0.01-0.75 2.0 NaN 1.0 NaN 2.0

avazu-app.tr-0.01-1.0 NaN NaN 2.0 NaN 1.0
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Table 4: First support identification.

instance ProxSVRG SAGA RDA PStorm S-PStorm

a9a-0.1-0.25 25.0 14.0 1.0 102.0 13.0

a9a-0.1-0.5 211.0 108.0 660.0 NaN 106.0

a9a-0.1-0.75 69.0 36.0 3.0 454.0 35.0

a9a-0.1-1.0 69.0 36.0 3.0 454.0 35.0

a9a-0.01-0.25 NaN NaN NaN NaN 908.0

a9a-0.01-0.5 423.0 213.0 264.0 NaN 215.0

a9a-0.01-0.75 349.0 176.0 77.0 NaN 176.0

a9a-0.01-1.0 349.0 176.0 77.0 NaN 176.0

covtype-0.1-0.25 3.0 1.0 1.0 1.0 1.0

covtype-0.1-0.5 1.0 1.0 1.0 1.0 1.0

covtype-0.1-0.75 1.0 1.0 1.0 1.0 1.0

covtype-0.1-1.0 1.0 1.0 1.0 1.0 1.0

covtype-0.01-0.25 1.0 1.0 1.0 1.0 1.0

covtype-0.01-0.5 1.0 1.0 1.0 1.0 1.0

covtype-0.01-0.75 3.0 5.0 1.0 1.0 1.0

covtype-0.01-1.0 3.0 5.0 1.0 1.0 1.0

phishing-0.1-0.25 209.0 105.0 10.0 NaN 106.0

phishing-0.1-0.5 611.0 307.0 100.0 NaN 306.0

phishing-0.1-0.75 581.0 291.0 492.0 NaN 291.0

phishing-0.1-1.0 675.0 339.0 734.0 NaN 334.0

w8a-0.1-0.25 41.0 22.0 4.0 252.0 21.0

w8a-0.1-0.5 95.0 49.0 110.0 881.0 47.0

w8a-0.1-0.75 115.0 59.0 38.0 NaN 59.0

w8a-0.1-1.0 115.0 59.0 38.0 NaN 59.0

w8a-0.01-0.5 837.0 420.0 NaN NaN 421.0

w8a-0.01-0.75 NaN 816.0 NaN NaN 806.0

w8a-0.01-1.0 NaN 816.0 NaN NaN 806.0

real-sim-0.1-0.25 NaN NaN NaN NaN 789.0

real-sim-0.1-0.5 675.0 NaN 838.0 NaN 337.0

news20-0.1-0.25 963.0 NaN NaN NaN 504.0

news20-0.1-0.5 995.0 NaN NaN NaN 523.0

url-combined-0.1-0.25 9.0 NaN NaN NaN 5.0

avazu-app.tr-0.1-0.25 3.0 NaN 1.0 1.0 1.0

avazu-app.tr-0.1-0.5 3.0 NaN 1.0 1.0 1.0

avazu-app.tr-0.1-0.75 3.0 NaN 1.0 1.0 1.0

avazu-app.tr-0.1-1.0 NaN NaN 1.0 1.0 1.0

avazu-app.tr-0.01-0.25 3.0 NaN 1.0 NaN 1.0

avazu-app.tr-0.01-0.5 3.0 NaN 1.0 NaN 1.0

avazu-app.tr-0.01-0.75 3.0 NaN 2.0 NaN 1.0

avazu-app.tr-0.01-1.0 NaN NaN 1.0 NaN 1.0
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Table 5: First consistent support identification.

instance ProxSVRG SAGA RDA PStorm S-PStorm

a9a-0.1-0.25 25.0 14.0 1.0 102.0 13.0

a9a-0.1-0.5 211.0 108.0 NaN NaN 106.0

a9a-0.1-0.75 69.0 36.0 3.0 454.0 35.0

a9a-0.1-1.0 69.0 36.0 3.0 454.0 35.0

a9a-0.01-0.25 NaN NaN NaN NaN 908.0

a9a-0.01-0.5 423.0 213.0 299.0 NaN 215.0

a9a-0.01-0.75 349.0 176.0 NaN NaN 176.0

a9a-0.01-1.0 349.0 176.0 NaN NaN 176.0

covtype-0.1-0.25 3.0 3.0 1.0 11.0 1.0

covtype-0.1-0.5 1.0 3.0 1.0 5.0 1.0

covtype-0.1-0.75 1.0 3.0 1.0 5.0 1.0

covtype-0.1-1.0 1.0 3.0 1.0 5.0 1.0

covtype-0.01-0.25 1.0 1.0 1.0 1.0 1.0

covtype-0.01-0.5 1.0 1.0 1.0 1.0 1.0

covtype-0.01-0.75 29.0 24.0 8.0 879.0 1.0

covtype-0.01-1.0 29.0 24.0 8.0 879.0 1.0

phishing-0.1-0.25 209.0 105.0 10.0 NaN 106.0

phishing-0.1-0.5 611.0 307.0 100.0 NaN 306.0

phishing-0.1-0.75 581.0 291.0 520.0 NaN 291.0

phishing-0.1-1.0 675.0 339.0 997.0 NaN 334.0

w8a-0.1-0.25 41.0 22.0 4.0 252.0 21.0

w8a-0.1-0.5 95.0 49.0 110.0 881.0 47.0

w8a-0.1-0.75 115.0 59.0 65.0 NaN 59.0

w8a-0.1-1.0 115.0 59.0 65.0 NaN 59.0

w8a-0.01-0.5 837.0 420.0 NaN NaN 421.0

w8a-0.01-0.75 NaN 816.0 NaN NaN 806.0

w8a-0.01-1.0 NaN 816.0 NaN NaN 806.0

real-sim-0.1-0.25 NaN NaN NaN NaN 789.0

real-sim-0.1-0.5 675.0 NaN 838.0 NaN 337.0

news20-0.1-0.25 963.0 NaN NaN NaN NaN

news20-0.1-0.5 995.0 NaN NaN NaN 523.0

url-combined-0.1-0.25 9.0 NaN NaN NaN 5.0

avazu-app.tr-0.1-0.25 3.0 NaN 1.0 1.0 1.0

avazu-app.tr-0.1-0.5 3.0 NaN 1.0 1.0 1.0

avazu-app.tr-0.1-0.75 3.0 NaN 1.0 1.0 1.0

avazu-app.tr-0.1-1.0 NaN NaN 1.0 1.0 1.0

avazu-app.tr-0.01-0.25 3.0 NaN 4.0 NaN 1.0

avazu-app.tr-0.01-0.5 3.0 NaN 4.0 NaN 1.0

avazu-app.tr-0.01-0.75 3.0 NaN 2.0 NaN 1.0

avazu-app.tr-0.01-1.0 NaN NaN 1.0 NaN 1.0
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Table 6: Last iterate sparsity.

instance FaRSAGroup ProxSVRG SAGA RDA PStorm S-PStorm

a9a-0.1-0.25 26 26.0 26.0 26.0 26.0 26.0

a9a-0.1-0.5 57 57.0 57.0 56.0 56.0 57.0

a9a-0.1-0.75 86 86.0 86.0 86.0 86.0 86.0

a9a-0.1-1.0 117 117.0 117.0 117.0 117.0 117.0

a9a-0.01-0.25 20 19.0 19.0 18.0 16.0 20.0

a9a-0.01-0.5 44 44.0 44.0 44.0 38.0 44.0

a9a-0.01-0.75 65 65.0 65.0 66.0 58.0 65.0

a9a-0.01-1.0 96 96.0 96.0 97.0 89.0 96.0

covtype-0.1-0.25 11 11.0 11.0 11.0 11.0 11.0

covtype-0.1-0.5 25 25.0 25.0 25.0 25.0 25.0

covtype-0.1-0.75 38 38.0 38.0 38.0 38.0 38.0

covtype-0.1-1.0 52 52.0 52.0 52.0 52.0 52.0

covtype-0.01-0.25 10 10.0 10.0 10.0 10.0 10.0

covtype-0.01-0.5 22 22.0 22.0 22.0 22.0 22.0

covtype-0.01-0.75 33 33.0 33.0 33.0 33.0 33.0

covtype-0.01-1.0 47 47.0 47.0 47.0 47.0 47.0

phishing-0.1-0.25 12 12.0 12.0 12.0 9.0 12.0

phishing-0.1-0.5 25 25.0 25.0 25.0 22.0 25.0

phishing-0.1-0.75 43 43.0 43.0 43.0 41.0 43.0

phishing-0.1-1.0 59 59.0 59.0 59.0 55.0 59.0

w8a-0.1-0.25 57 57.0 57.0 57.0 57.0 57.0

w8a-0.1-0.5 132 132.0 132.0 132.0 132.0 132.0

w8a-0.1-0.75 208 208.0 208.0 208.0 206.0 208.0

w8a-0.1-1.0 281 281.0 281.0 281.0 279.0 281.0

w8a-0.01-0.5 79 79.0 79.0 77.0 67.0 79.0

w8a-0.01-0.75 150 149.0 150.0 149.0 129.0 150.0

w8a-0.01-1.0 214 213.0 214.0 213.0 189.0 214.0

real-sim-0.1-0.25 5211 5210.0 NaN 5210.0 5187.0 5211.0

real-sim-0.1-0.5 10439 10439.0 NaN 10439.0 10394.0 10439.0

news20-0.1-0.25 338697 338697.0 NaN 338661.0 338674.0 338698.0

news20-0.1-0.5 677496 677496.0 NaN 677459.0 677464.0 677496.0

url-combined-0.1-0.25 807983 807983.0 NaN 807982.0 807974.0 807983.0

avazu-app.tr-0.1-0.25 249995 249995.0 NaN 249995.0 249995.0 249995.0

avazu-app.tr-0.1-0.5 499993 499993.0 NaN 499993.0 499993.0 499993.0

avazu-app.tr-0.1-0.75 749990 749990.0 NaN 749990.0 749990.0 749990.0

avazu-app.tr-0.1-1.0 999988 999987.0 NaN 999988.0 999988.0 999988.0

avazu-app.tr-0.01-0.25 249980 249980.0 NaN 249980.0 249973.0 249980.0

avazu-app.tr-0.01-0.5 499978 499978.0 NaN 499979.0 499970.0 499978.0

avazu-app.tr-0.01-0.75 749976 749976.0 NaN 749976.0 749972.0 749976.0

avazu-app.tr-0.01-1.0 999973 999814.0 NaN 999973.0 999965.0 999973.0


	INTRODUCTION
	Related Work
	Contributions
	Notation and Preliminaries

	ALGORITHM
	ANALYSIS
	Assumptions
	Convergence Analysis
	Support Identification

	NUMERICAL EXPERIMENTS
	Problems, Baselines, and Implementation Details
	Numerical Results

	CONCLUSION
	Proofs of Results in Section 3
	Proof of Theorem 3.1
	Proof of Corollary 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proofs for additional lemmas

	Experiments
	Discussions on the performance gaps in different methods
	Additional results


