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Abstract

Given an n⇥ n non-negative rank-K matrix ⌦ where m eigenvalues are negative,
when can we write ⌦ = ZPZ

0 for non-negative matrices Z 2 Rn,K and P 2
RK,K? While most existing works focused on the case of m = 0, our primary
interest is on the case of general m. With new proof ideas, we present sharp results
on when the NMF problem is solvable, which significantly extend existing results
on this topic. The NMF problem is partially motivated by applications in network
modeling. For a network with K communities, rank-K models are especially
popular. The Degree-Corrected Mixed-Membership (DCMM) model is a recent
rank-K model which is especially useful and interpretable in practice. To enjoy
such properties, it is of interest to study when a rank-K model can be rewritten as
a DCMM model. Using our NMF results, we show that for a rank-K model in the
most interesting parameter ranges, we can always rewrite it as a DCMM model.

1 Introduction

Fix (n,K,m) where n � K � 2 and 0  m  K � 1. We are interested in the following
Non-negative Matrix Factorization (NMF) problem.

The NMF problem: given an n⇥ n symmetric non-negative irreducible matrix ⌦ with
rank K where exactly m of the K nonzero eigenvalues are negative, when can we find
non-negative matrices Z 2 Rn,K and P 2 RK,K such that ⌦ = ZPZ

0?

(1.1)

Definition 1.1 We say a matrix ⌦ non-negative if all of its entries are non-negative, and we say it
positive if all of its entries are (strictly) positive. We say the NMF problem is solvable for ⌦ is we can
find non-negative matrices (Z,P ) as above such that ⌦ = ZPZ

0.

We assume K � 2 for the case of K = 1 is trivial, and we assume m  K � 1 for an irreducible
non-negative matrix has at least one positive eigenvalue (e.g., by Perron’s theorem [9]).

NMF is a fundamental problem and has applications in areas such as image processing [5, 23], text
learning [21], hyper-spectral unmixing, and social network analysis [13]. Our setting is a special
case of NMF where both ⌦ and P are symmetric, so we may call it symmetric NMF. In the literature,
symmetric NMF was widely used in clustering of nonlinearly separable data from a similarity matrix
[7], where for a non-negative symmetric matrix ⌦, it aims to find a non-negative matrix Z such that

⌦ = ZZ
0
, where Z 2 Rn,N and N � K. (1.2)

Note that, first, this implicitly requires that ⌦ is positive semi-definite. Second, it is understood
that for many non-negative and positive semi-definite matrices ⌦, the smallest N we can find in the
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factorization of (1.2) is strictly larger than K (the rank of ⌦). See the 2021 book by Shaked-Monderer
and Berman [26]. The book is 551 pages and summarizes nicely most existing results on NMF.

Unfortunately, our setting in (1.1) is significantly different from that in (1.2), so existing results on
NMF do not directly apply. Especially, our NMF setting is motivated applications of social network
modeling, where we must (a) allow ⌦ to have negative eigenvalues, (b) require that Z has exactly K

columns (K = rank(⌦)), and (c) have a factorization of ⌦ = ZPZ
0 instead of ⌦ = ZZ

0 (we will
soon see that both (P,Z) have practical meanings in our setting).

Below, in Section 1.1, we introduce several recent network models. In Section 1.2, we explain why
the NMF problem (1.1) is important and relevant in social network modeling.

1.1 Several recent rank-K network models, and especially the DCMM model

Consider a symmetric connected network with n nodes and let A be the adjacency matrix, where
A(i, j) = 1 if there is an edge connecting nodes i and j and A(i, j) = 0 otherwise. As a convention,
we do not allow self edges, so all diagonal entries of A are 0. We assume the network has K

perceivable communities (communities are scientifically meaningful but mathematically hard to
define; intuitively, they are clusters of nodes that have more edges “within" than “across" [12, 30]):
C1, C2, . . . , CK . In many network models, we assume that the upper triangular entries of A are
independent Bernoulli random variables, and that there is an n⇥ n non-negative matrix ⌦ such that
⌦(i, j) = P(A(i, j) = 1) for all 1  i 6= j  n. Let diag(⌦) 2 Rn,n be the diagonal matrix where
the i-th diagonal entry is ⌦(i, i) and let W 2 Rn,n be the matrix where W (i, j) = A(i, j)� ⌦(i, j)
if i 6= j and W (i, j) = 0 otherwise. The matrix W is known as the generalized Wigner matrix. With
these notations,

A = ⌦� diag(⌦) +W. (1.3)
We call ⌦ the Bernoulli probability matrix. Frequently, we assume a rank-K model for ⌦:

⌦ is an irreducible non-negative matrix where the rank is K. (1.4)

Note that K is the number of communities and has important practical meanings. Also, irreducibility
is a natural assumption as we assume the network is connected (otherwise, we can study each
connected component of the network separately). Below are some examples of rank-K models.

Example 1 (RDPG Model). In a Random Dot Product Graph (RDPG) model [28], we fix a K-
dimensional distribution F , generate yi

iid⇠ F , and let ⌦(i, j) = (yi, yj) (inner product), 1  i, j  n.
If we write Y = [y1, y2, . . . , yn]0 (which is an n ⇥K matrix), then ⌦ = Y Y

0. The model is well-
known in network and graph modeling. However, a noteworthy issue is that, the matrix ⌦ defined in
this way is always positive semi-definite. This makes the model relatively restrictive (e.g., [25]).

Example 2 (GRDPG Model). To address the issue above, Rubin-Delanchy et al [25] proposed the
generalized RDPG (GRDPG). Fix K and 0  m < K. Let JK,m = diag(1, 1, . . . ,�1, . . . ,�1)
be the K ⇥K diagonal matrix where the first (K �m) diagonal entries are 1 and the remaining
diagonal entries are �1. With a similar Y matrix as in RDPG, GRDPG assumes ⌦ = Y JK,mY

0. An
⌦ defined in this way has negative eigenvalues, but we have to choose (Y, JK,m) carefully to make
sure that ⌦ is non-negative; this problem is not immediately clear.

Example 3. It was argued (e.g., [4]) that the Bernoulli probability matrix ⌦ in a graphon model can
be well-approximated by a low-rank matrix provided with some regularity conditions.

In all these examples above, the parameters do not have explicit practical meanings (at least not
directly or not sufficiently), so in a real application example, it remains unclear how to interpret the
estimates of these parameters. Therefore, it is desirable to have models where the parameters have
more explicit meanings in practice and so are easier to interpret.

The Degree-Corrected Mixed-Membership (DCMM) model is one of such models. Proposed by
[15] (see also [29]), the model is motivated by the observation that natural networks usually have
severe degree heterogeneity and mixed-memberships. To accommodate both features, for each node
i, 1  i  n, we use a (strictly positive) parameter ✓i to model the degree heterogeneity and a weight
vector ⇡i 2 RK to model the memberships, where ⇡i(k) = weight node i puts in Ck, 1  k  K.
We call node i pure if ⇡i is degenerate (i.e., only one entry is nonzero) and mixed otherwise. We also
model the community structure by a symmetric and non-negative matrix P 2 RK,K :

P (k, `) = baseline probability where a node in Ck and a node in C` have an edge, 1  k, `  K.
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DCMM assumes that for all 1  i, j  n, ⌦(i, j) = ✓i✓j⇡
0
iP⇡j . If we let ✓ = (✓1, . . . , ✓n)0,

⇧ = [⇡1, . . . ,⇡n]0, and ⇥ be the n⇥ n diagonal matrix where ⇥(i, i) = ✓i, 1  i  n, then we have

⌦ = ⇥⇧P⇧0⇥, (1.5)

Conventionally, we assume rank(⇧) = rank(P ) = K, so DCMM is also a rank-K model.

Remark 1. The DCMM model can be viewed as the extension of several models, including the
classical block model. In fact, (a) DCMM reduces to Degree-Corrected Block Model (DCBM) [20] if
all nodes are pure, (b) DCMM reduces to the Mixed-Membership Stochastic Block Model (MMSBM)
[1, 2, 24] if all ✓i are equal, and (c) DCMM reduces to the classical Stochastic Block Model (SBM)
[8] if all nodes are pure and all ✓i are equal (as above, node i is pure if ⇡i is degenerate).

1.2 When is a rank-K network model also a DCMM model?

A DCMM model is a rank-K model, but compared to other rank-K models, all parameter matrices
(⇥,⇧, P ) in the DCMM model have practical meanings and are easy to interpret. These make the
DCMM model especially appealing in practice, and motivate the following problem:

When is a rank-K network model also a DCMM model? (1.6)

To explain why this is important, we use the dynamic co-citation networks in [11] (see also [10]) as
an example. The paper presented 21 co-citation networks for the same set of nodes (i.e., authors)
in statistics, each for a different time window. We are interested in (a) how many research areas in
statistics, (b) what are baseline citation exchanges between different research areas, and (c) how the
research interests of individual authors evolve over time. Here, a co-citation network is a symmetrized
citation network where each node is an author, and two nodes have an edge if they have been
co-cited for at least N times (for an N they picked) in the corresponding time window. The paper
suggested that there are 3 primary research areas in statistics (which was interpreted as “Bayes",
“Biostatistics", and “Non-parametric") and a handful of sub-areas, and that it is convenient to model
each co-citation network by a DCMM model with K = 3. In detail, for each author i and time
window t, 1  i  n, 1  t  T , they used a K ⇥K matrix P

(t) to model the baseline citation
exchanges between the primary research areas, a positive number ✓it to model the relative influence
(in citations) of author i, and a weight vector ⇡it to model the research interest of author i. If
we similarly let ⇥(t) = diag(✓1t, ✓2t, . . . , ✓nt) and ⇧(t) = [⇡1t,⇡2t, . . . ,⇡nt]0, then the Bernoulli
probability matrix of the DCMM model at time t is ⌦(t) = ⇥(t)⇧(t)

P
(t)(⇧(t))0⇥(t). Using the

DCMM model, they discovered a research triangle of statisticians (reminiscent of Efron’s triangle for
statistical philosophy [6]), and used it to visualize the trajectories of research interests of a handful of
individual authors.

Imagine that, if we use a different rank-K model (e.g., GRDPG) to model these networks, say, with
⌦(t) = Y

(t)
J
(t)(Y (t))0 for some matrices (Y (t)

, J
(t)). It is unclear how to relate Y

(t) to baseline
citation exchanges, research interests and relative influence of individual authors. This explains why
(1.6) is of interest: given a rank-K network model, we wish to know when we can rewrite it as
DCMM model, and so we can enjoy the properties and interpretability of the DCMM model.

We now come back to (1.6). Seemingly, NMF is to key to answer this question. Consider a
positive matrix ⌦ with rank K and suppose that it has an NMF as in (1.1) for two non-negative
matrices Z 2 Rn,K and P 2 RK,K : ⌦ = ZPZ

0. Write Z = [z1, z2, . . . , zn]0 so z
0
i is the i-

th row. Without loss of generality, assume all zi are nonzero vectors. Let ⇥(i, i) = kzik1 and
⇡i = zi/kzik1, 1  i  n. It is seen that ⇥(i, i) > 0, that each ⇡i is a weight vector, and that
⌦ = ZPZ

0 = ⇥⇧P⇧0⇥. Therefore, we can always rewrite a rank-K model as a DCMM model if
⌦ has an NMF as in (1.1). This explains our motivation underline the NMF problem (1.1).

Note that to answer the question in (1.1), a study on the NMF problem in (1.2) would be not be
relevant. For example, in a DCMM model, K is the number of communities, so an NMF in (1.2)
with an N > K would not be useful. For this reason, we have to focus on the NMF problem in (1.1).

1.3 Results and contributions

Write ⌦ = Y JK,mY
0 as in Example 2, where JK,m = diag(1, . . . , 1,�1, . . . ,�1) is a K ⇥ K

diagonal matrix and Y = [y1, y2, . . . , yn]0 2 Rn,K . Let �k be the k-th eigenvalue of ⌦ and let ⇠k
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be the corresponding eigenvector. For 1  i  n, define ri 2 RK�1 by ri(k) = ⇠k+1(i)/⇠1(i),
1  k  K � 1. For any unit-norm vector y0 2 RK , let c(y0) = max{1in}{|(yi, y0)|/kyik}. In
Section 2, we show that the NMF problem for ⌦ is solvable if m  K/2 and c(y0) �

p
1� 1/K

for some y0; let us call this the main condition. We show that, in order for the NMF problem to be
solvable, the constant

p
1� 1/K can not be further reduced. Therefore, in this sense, our results

are sharp. Using this, we deduce several other results. Especially, we show that the NMF problem
is solvable for ⌦ if

PK�1
k=1 (|�k+1| · r2i (k))  |�1|/(K � 1) for all 1  i  n. We also extend our

results to the case of m > K/2, and explain why we need a different proof in this case.

In Section 3, we apply our results on NMF to network modeling. We argue that for parameters in
the most interesting range, we have (A) all krik are bounded, and (B) max2kK{|�k/�1|} ! 0,
and so the condition just mentioned holds. This implies that we can alway rewrite a rank-K network
model as a DCMM model if the parameters are in the most interesting range. We also discuss how to
check the main condition in practice where ⌦ is unknown. We tackle this by proposing an approach
to estimating ⌦, and support our results by some real networks.

Our contributions are two fold. First, we develop several new results on symmetric NMF (a problem
of interest in many applications [5]). Existing works on symmetric NMF have been focused on the
case of m = 0 (so ⌦ is positive semi-definite; m is the number of negative eigenvalues of ⌦). In this
case, the best result is seen to be [26, Theorem 3.137], which can be viewed as a special case of our
results; see Remark 2. This suggests that our results are sharp, for they are hard to improve even in
the special case of m = 0. Note that our case allows m to take any possible values, so it is clearly
harder to study. For example, to show the results for the case of m = 0, it suffices if we can find a
K ⇥K orthogonal matrix Q such that Y Q

0 is non-negative, since JK,m is the identity matrix in this
case. For our case, we must find a Q such that Y Q

0 and QJK,mQ
0 are simultaneously non-negative.

Clearly, this requires new ideas. We tackle this by constructing a special class of matrices Q; see our
proofs for details. Our approach is quite different from that of [26, Theorem 3.137] and is new.

Second, we shed interesting new light on different rank-K network models. In the literature, it is not
unusual that many similar models are proposed for the same type of data sets. But in the end, we
need to understand the advantages and disadvantages of different models, and pick the most suitable
one. Our study recommends DCMM model, for it offers desired practical interpretability which other
rank-K models do not have, and points out that a general rank-K model is also a DCMM model
if the parameters are in the most interesting range. Such findings are valuable for they can help us
identify the most suitable models in real applications.

Notations. We denote e1, e2, . . . , eK by the standard basis vectors of K-dimensional Euclidean
space and e0 = K

�1/2(e1 + e2 + . . .+ eK). For any q > 0 and vector x, kxkq denotes the `q-norm
(when q = 2, we drop the subscript and write kxk). For any two vectors x and y of the same
dimension, (x, y) denotes the inner product. For a vector a 2 Rn, diag(a) denotes the n⇥n diagonal
matrix where the i-th diagonal entry is ai, 1  i  n. When ⌦ is an n⇥ n matrix, diag(⌦) denotes
the n⇥ n diagonal matrix where the i-th entry is ⌦(i, i), 1  i  n.

2 Main results on NMF

This section presents our results on NMF. Results on network modeling are in Section 3. Consider an
n⇥ n irreducible non-negative matrix ⌦ with rank K, where n is usually much larger than K. By
Perron’s theorem [9], at least one eigenvalue of ⌦ is positive. Fix 0  m  K � 1 and suppose ⌦
has m negative eigenvalues. Let JK,m = diag(1, . . . , 1,�1, . . . ,�1) be the K ⇥K diagonal matrix
as in Example 2. By basic algebra, we can always write

⌦ = Y JK,mY
0
, for a full rank matrix Y 2 Rn,K

. (2.7)

We can also show (e.g., an exercise with the Weyl’s theorem [9]) that for any matrix as in (2.7), the
numbers of positive and negative eigenvalues are (K �m) and m, respectively. Write

Y = [y1, y2, . . . , yn]
0
, so that y0i is row i of Y , 1  i  n. (2.8)

Define the subset of K-dimensional vectors that live on the unit-sphere where the last m entries are 0:

SK,m = {x = (x1, . . . , xK)0 2 RK
, kxk = 1, xK�m+1 = . . . = xK = 0}.

When m = 0, Sm is the unit sphere of RK . The following theorem is proved in the supplement.

4



Theorem 2.1 Fix K � 2, n � K, and 0  m  K/2. Consider the NMF problem (1.1) where
⌦ = Y JK,mY

0 and Y are as in (2.7). Suppose there is a vector y0 2 SK,m such that

|(y0, yi)|/kyik �
p
1� 1/K, for all 1  i  n. (2.9)

There exists a K ⇥K orthogonal matrix Q such that both Y Q
0 and QJK,mQ

0 are non-negative. As
a result, the NMF problem for ⌦ is solvable: ⌦ = ZPZ

0 with Z = Y Q
0 and P = QJK,mQ

0.

We have several comments. First, Theorem 2.1 assumes two conditions: m  K/2 and (2.9). When
K  2, both conditions hold automatically, so the NMF problem is always solvable in this case; see
Section 2.1. As far as we know, our proof is different from existing approaches. Second, in Theorem
2.1, we require y0 2 Sm. This may seem restrictive, but is not. This is because y0 is a vector we
choose for our own convenience. In fact, one of the most interesting settings for NMF seems to be
that in Section 2.3, where we choose y0 = (1, 0, . . . , 0)0, so the requirement is satisfied automatically.
Also, when the last m entries of y0 are nonzero but sufficiently small, Theorem 2.1 continues to
hold if we modify the term

p
1� 1/K slightly. Third, from a practical view point, the condition

of m  K/2 is mild: we rarely see a rank-K network model with m > K/2 (note here m can be
estimated using the eigenvalues of the adjacency matrix A). For theoretical completeness, the case of
m > K/2 is also interesting, but there does not exist an orthogonal matrix Q such that QJK,mQ

0

is non-negative. This is because for any such Q, trace(QJK,mQ
0) = K � 2m < 0. Therefore, we

must find a different way to solve the NMF problem in this case. We discuss this in Section 2.4. Last,
an interesting question is whether our idea is extendable to asymmetric NMF or complex NMF [19].
As a simple extension to asymmetric NMF, consider an n⇥ p positive matrix ⌦ of rank-K. By SVD,
⌦ = Y Z

0 for an n⇥K matrix Y and a p⇥K matrix Z. Let y0i be i-th row of Y and z
0
j be the j-th

row of Z, respectively. If there is a y0 2 SK,m such that for all i and j, |(yi, y0)|/kyik �
p
1� 1/K

and |(zj , y0)|/kzjk �
p
1� 1/K, then we can find a K ⇥K orthogonal matrix Q which rotates all

rows of Y and Z to the first orthant simultaneously. In this case, the asymmetric NMF problem is
solvable for ⌦. For reasons of space, we leave further study along this line to the future.

Our result is sharp for the constant
p
1� 1/K in (2.9) can not be further reduced. While we can

show this for general K, we illustrate with the case of K = 2 for instruction purpose. In this case,
we can rotate n unit-norm vectors y1, y2, . . . yn in R2 simultaneously to the first orthant if and only
if there is a unit-norm vector y0 such that |(y0, yi)| �

p
1� 1/2 (i.e., the angle between them is

 ⇡/4) for all 1  i  n. See Section 2.1 and Remark 3 for more discussion. Another way to see
the sharpness is to consider the case of m = 0 (so ⌦ is positive semi-definite). In this case, condition
(2.9) is hard to improve and is the weakest we have so far in the literature; see Remark 2.

2.1 The case of K = 2

In this case, the NMF problem is always solvable, as the two conditions of Theorem 2.1, m  K/2
and (2.9), hold automatically. In fact, first, since ⌦ has at least one positive eigenvalues and K = 2,
we have either m = 0 or m = 1, and so m  K/2. Second, we can always find a y0 2 Sm such that
(2.9) is satisfied. In detail, let 0  ✓i < 2⇡ be the angle from e1 (e1 = (1, 0)) to yi counterclockwise,
and let ✓min and ✓max be the smallest and largest values of all ✓i. Now, when m = 0, let y0 be the
unit vector where the angle from e1 to y0 is (✓max + ✓min)/2, counterclockwise. When m = 1, take
y0 = (1, 0). The following theorem is proved in the supplement.

Theorem 2.2 Fix K = 2, 0  m  K � 1, n � K, and let y0 be as above. In this case, m  K/2
and (2.9) holds for the y0 above, so the NMF problem is always solvable for ⌦.

2.2 When y0 is a scaled weighted average of yi’s

For the y0 in (2.9), an interesting choice is to let it be proportional to a weighted average of yi’s.
Call w 2 Rn a weight vector if all of its entries are non-negative with a sum of 1. Recall that
⌦ = Y JK,mY

0. Define a proxy of ⌦ by e⌦ = Y Y
0. Note that e⌦ = ⌦ if m = 0. Introduce

y
(w) 2 RK and �

(w) 2 Rn by y
(w) =

Pn
i=1 wiyi = Y

0
w and �

(w) = e⌦w. Since Y is full rank,
y
(w) 6= 0. Take y0 = y

(w)
/ky(w)k. Condition (2.9) reduces to

|�(w)
i |/

q
e⌦(i, i)(w0e⌦w) �

p
1� 1/K, for all 1  i  n. (2.10)
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Theorem 2.3 Fix K � 3, 0  m  K/2, and n � K. The NMF problem (1.1) is solvable for ⌦ if
the last m entries of y(w) are 0 and (2.10) holds.

Theorem 2.3 follows from Theorem 2.1 by direct calculations, so the proof is omitted. We require
that the last m entries of y(w) are 0, for we need y0 2 Sm in Theorem 2.1. As explained before, this
may seem restrictive, but it is not, as in the most interesting case to be discussed in Section 2.3, we
take y

(w) = (1, 0, . . . , 0), so the requirement is satisfied automatically. See details therein.

When m = 0, e⌦ = ⌦, and �
(w) = ⌦w. In this case, condition (2.10) reduces to

|�(w)
i |/

p
⌦(i, i)(w0⌦w) �

p
1� 1/K. (2.11)

We have the following corollary, the proof of which is straightforwards so is omitted.

Corollary 2.1 Fix n � K � 3. The NMF problem (1.1) is solvable for ⌦ if m = 0 and (2.11) holds.

Remark 2. If we take w = n
�11n, then (2.10) reduces to |�i|/

p
⌦(i, i)(10

n⌦1n) �
p
1� 1/K

with � = ⌦1n, and Corollary 2.1 reduces to [26, Theorem 3.137], where m = 0 and ⌦ is positive
semi-definite. Our setting is more general as ⌦ may have m negative eigenvalues for any m  K/2.
For the case of m = 0, [26, Theorem 3.137] (see also [27]) is by far the best results we can have. The
book [26] presents several other results on this topic, but they need some conditions which are less
intuitive or harder to check. Recall that the constant

p
1� 1/K in (2.9) can not be further reduced.

These suggest that Theorem 2.1 is hard to improve and our results are sharp.

Remark 3. (When can we rotate n vectors to the first orthant?) As a stylized application, con-
sider the following problem. Let x1, x2, . . . , xn be n unit-norm vectors in RK , n � K, and let
↵K(x1, x2, . . . , xn) = min1i,jn{(xi, xj)}. For what values of ↵K(x1, x2, . . . , xn) can we rotate
all n points simultaneously to the first orthant? Let X = [x1, x2, . . . , xn]0 and assume X is full
rank without loss of generality. The matrix ⌦ = XX

0 is symmetric and positive semi-definite. Let
↵
⇤
K = 0 if K = 2 and ↵

⇤
K =

p
1� 1/K if K � 3. Applying Theorem 2.1 with m = 0, it follows

that when ↵K(x1, x2, . . . , xn) � ↵
⇤
K , we can rotate all n points to the first orthant. Note that we can

not do so if ↵K(x1, x2, . . . , xn) < 0.

2.3 When Y is constructed by the spectral decomposition of ⌦

So far, we have tried to keep our results as general as we can, and Y can be any matrix satisfying
⌦ = Y JK,mY

0. An interesting special case is when Y is constructed using the spectral decomposition
of ⌦, which we now discuss. For 1  k  K, let �k be the k-th largest eigenvalue of ⌦, and let ⇠k
be the corresponding (unit-norm) eigenvector. In the literature �1 and ⇠1 are called the Perron root
and Perron vector, respectively, where we can always assume all entries of ⇠1 are positive since ⌦
is irreducible and non-negative (e.g., [26]). Write ⌅ = [⇠1, ⇠2, . . . , ⇠K ] and define the n⇥ (K � 1)
so-called matrix of entry-wise ratio R by R(i, k) = ⇠k+1(i)/⇠1(k), 1  k  K � 1, 1  i  n

[12, 16]. Introduce

D = diag(|�1|, |�2|, . . . , |�K |), D0 = diag(|�2|, . . . , |�K |), (2.12)

and write
R = [r1, r2, . . . , rn]

0
, Y = ⌅D1/2 = [y1, y2, . . . , yn]

0
. (2.13)

By spectral decomposition, ⌦ = ⌅D1/2
JK,mD

1/2⌅0 = Y JK,mY
0. Now, in Section 2.2, if we take

w = c⇠1 where c = 1/k⇠1k1, then by basic algebra and definitions, it is seen y
(w) = c

p
�1e1 and so

y0 = e1 and especially y0 2 Sm. Moreover, �(w)
i = c�1⇠1(i), w0e⌦w = c

2
�1, and e⌦(i, i) = y

0
iDyi.

Combining these, condition (2.10) reduces to

r
0
iD0ri ⌘

K�1X

k=1

(|�k+1| · r2i (k))  |�1|/(K � 1), for all 1  i  n. (2.14)

The following theorem is proved in the supplement.

Theorem 2.4 Fix K � 3, m  K
2 , and n � K. The NMF problem (1.1) is solvable if (2.14) holds.

Note that as in most works on NMF (e.g., [26]), the main goal is to find easy-to-check conditions
under which the NMF is solvable. Such conditions are sufficient but are not necessary.
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2.4 The case of m > K/2

So far, we have been focused on the case of m  K/2, which is the case that is most frequently
found in real networks. For completeness, we now consider the case where m > K/2. Since
0  m  K�1, such a case only exists when K � 3. In Theorem 2.1, we show that when m  K/2,
we can find an orthogonal matrix Q such that QJK,mQ

0 is non-negative. When m > K/2, we can not
do this, as for any such Q, trace(QJK,mQ

0) = (K � 2m) < 0. Therefore, we need a new approach.
A convenient approach is to redefine JK,m where we select a subset of the positive diagonal entries of
JK,m and add a positive number for each of them. Success has been shown in a related setting (e.g.,
[3]). Using such a trick, we can extend all our main results to the case of m > K/2. For reasons of
space, we only consider an extension of Theorem 2.4, as the claim of the theorem is probably the
most explicit. Also for reasons of space, we only consider the case where we add a number to the
first diagonal entry of JK,m. Note that the idea is readily extendable to more general cases.

Let Q be the set of all orthogonal matrices where the first column is K
�1/2(1, 1, . . . , 1)0. Fix

1  m  K � 1. For any Q 2 Q, write Q = [Q(K�m)
, Q

(m)], where Q
(K�m) and Q

(m) are
the sub-matrix of Q consisting the first (K �m) columns and the other m columns, respectively.
Introduce a constant by am = 1+K infQ2Q max1i,jK{H(i, j) : H = 2Q(m)(Q(m))0�IK}(IK :
K ⇥K identity matrix). Theorem 2.5 extends Theorem 2.4 and is proved in the supplement.

Theorem 2.5 Fix K � 3, 0  m  (K � 1), and n � K. We have am = 1 if m  K/2
and am = (K � 1) if m = K � 1. Also, the NMF problem is solvable for ⌦ if r0iD0ri ⌘PK�1

k=1 |�k+1|r2i (k)  1/[am(K � 1)] for all 1  i  n.

When m  K/2, am = 1. In this case, the claim here is the same as that in Theorem 2.4.

Remark 4. When the NMF problem for ⌦ is solvable, the solution is usually not unique without a
proper regularity condition (e.g., [5]). In our setting, once we can write ⌦ = ⇥⇧P⇧0⇥ for some
non-negative matrices (⇥,⇧, P ) as in (1.5), the factorization is unique if (a) for each 1  k  K,
there is at least one i such that ⇡j = ek, where ek is the k-th standard Euclidean basis vector of RK ,
and (b) all diagonal entries of P are 1 (see [15, 16] for a proof).

Remark 5. When condition (2.9) of Theorem 2.1 holds for some vectors y0, how to find such a y0

and the orthogonal matrix Q in Theorem 2.1 numerically? This is an interesting question and we
discuss it in Section F of the supplement.

3 When is a rank-K network model also a DCMM model

So far, we focus on general NMF settings where we show that the NMF problem (1.1) is solvable
when, for example, (2.14) holds. We now apply the results to networks and study when we can
rewrite a rank-K network model as a DCMM model. Network analysis (e.g., community detection,
membership estimation, link prediction) is a well-studied area, where we have a lot of knowledge
on what is the regime of major interest and what conditions are reasonable [16, 15, 18, 29]. In fact,
in network analysis, we usually use an asymptotic framework where n ! 1, K is fixed, and other
parameters may vary with n, where it is quite acceptable to assume

(A) all krik are bounded and (B) max2kK{|�k/�1|} ! 0;

the notations are the same as those in Theorem 2.4. In fact, (A)-(B) model the most interesting regime
in network analysis. In Theorem 2.4, the main condition (e.g., (2.14)) is r0iD0ri  |�1|/(K � 1) for
all 1  i  n. Once (A)-(B) hold, (1/|�1|)D0 ! 0 and (2.14) holds, so we can always rewrite a
rank-K network model as a DCMM model when (A)-(B) hold.

The remaining question is then, why (A)-(B) are reasonable assumptions in network analysis, and
why they model the most interesting regime in network analysis. We now explain these in details.

Let ⌦ be the Bernoulli probability matrix as in (1.3). Suppose ⌦ = Y PY
0, where Y 2 Rn,K and is

full rank, P 2 RK,K , and (Y, P ) are not necessarily non-negative. Denote G = Y
0
Y . Note that G is

a K ⇥K symmetric and positive definite matrix. Let G1/2 be the (unique) square root of Y 0
Y . We

usually assume Y is balanced in that (a) the `
2-norm of all K columns are in the same order, and (b)

no severe linearity between the K columns [15, 18]. As a result, all eigenvalues of G are at the same
order. By basic algebra, there is a K⇥K orthogonal matrix Q such that ⌅ = [⇠1, ⇠2, . . . , ⇠K ] = Y B,
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where B = G
�1/2

Q. Write B = [b1, b2, . . . , bK ] and let 0  ↵i < 2⇡ be the angle between b1 and
yi (counterclockwise). Let M(⌦) = max{1in}{1/| cos(↵i)|} and define matrix V 2 RK,K�1 by

V (i, k) = bk+1(i)/b1(i), 1  i  K, 1  k  K � 1. (3.15)
Write V = [v1, v2, . . . , vK ]0 so v

0
k is row-k of V , 1  k  K. For any symmetrical matrix P , �k(P )

denotes the k-th largest eigenvalue; to be consistent with earlier notations, we simply write �k(⌦) as
�k. Lemma 3.1 is proved in the supplement.

Lemma 3.1 We have B = diag(b1)[1K , V ], P = Bdiag(�1, . . . ,�K)B0, b1 is an eigenvec-
tor of PG, and P (k, k) = b

2
1(k)[�1 + v

0
kdiag(�2, . . . ,�K)vk], 1  k  K. Moreover, if as

n ! 1, �1(G)  c0�K(G) for a constant c0 > 0, then condition (B) holds if and only if
max2kK{|�k(P )/�1(P )|} ! 0, and max{1in}{krik}  CM(⌦).

It is seen that conditions (A)-(B) hold if M(⌦)  C and max2kK{|�k(P )/�1(P )|} ! 0. The
first one is mild: it only requires that no yi is nearly orthogonal to b1. To boil these conditions down
to a more explicit and vivid form, we consider the DCMM model. It is fine to consider the DCMM
model here for (a) we only use the model to explain why conditions (A)-(B) are reasonable, and (b)
the argument below is extendable beyond the DCMM model. In the DCMM model, ⌦ = ⇥⇧P⇧0⇥.
Therefore, we can write ⌦ = Y PY

0 if we let Y = ⇥⇧, where we note that (Y, P ) are non-negative.
Recall that G = Y

0
Y (a positive definite K ⇥K matrix). Lemma 3.2 is proved in the supplement.

Lemma 3.2 If (Y, P ) are non-negative, then first, PG is an irreducible non-negative matrix and
b1 is the Perron vector, so all entries of b1 are strictly positive. Second, all rows of ri lives with a
simplex with v1, v2, . . . , vK being the vertices, so max{1in}{krik}  max{1kK}{kvkk}. Last,
if �1(G)  c0�K(G), then max{1in}{krik}  CM(⌦)  Cmax1kK{kb1k/b1(k)}.

Now, first, in a DCMM model, the matrix P (k, `) measures the baseline probability where there is
an edge between a node in community k and a node in community `. Therefore, the most difficult
or most interesting case is where all P (k, `) have similar values. In this case, P is close to rank-1,
or in other words, max2kK{|�k(P )/�1(P )|} ! 0, and so max2kK{|�k/�1|} ! 0. See for
example [15, 18], where it was further pointed out that the most difficult case for network analysis
is when max{2kK}{|�k|}  Ln ·

p
�1 for a multi-log(n) factor Ln. Therefore, condition (A)

models the most difficult case of network analysis and so is of major interest. Moreover, by Lemma
3.2, max{1in}{krik}  C if all entries of b1 are at the same order. This is only a mild condition
for b1 is the Perron vector of PG. Last, by Lemma 3.2, we also have max{1in}{krik}  C if
we alternatively assume max{1kK}{kvkk}  C. Recall that B = G

�1/2
Q = [b1, b2, . . . , bK ]

and v
0
1, v

0
2, . . . , v

0
K are rows of V formed by dividing b2, b3, . . . , bK by b1 entry-wise, where b1 is

the Perron vector. Since G is positive definite where all eigenvalues are at the same order, Q is
orthogonal, and V is properly scaled (and all of them have small-sizes), it is only a mild condition to
assume max{1kK}{kvkk}  C. These explain why conditions (A)-(B) are mild condition and
they model the most challenging regime for network analysis.

4 Real data examples, and especially how to check condition (2.14)

Let ai = (1/|�1|)r0iD0ri, 1  i  n. Condition (2.14) can be rewritten as ai  1/(K � 1), for
all 1  i  n. In applications, ⌦ is unknown, so it is unclear how to obtain ai. A straightforward
approach is to estimate ai with the eigenvalues and eigenvectors of the adjacency matrix A, but the
estimates may be too noisy. We propose the following approach, which is inspired by Lemmas 3.1-3.2
and the recent Mixed-SCORE approach [16]. Let (Y, V ) be as above. Mixed-SCORE suggests
an interesting idea for estimating V and (a normalized version of) Y , denoted by ⇧; see details
therein. Let �̂k be the k-th eigenvalue of A and let ⇠̂k be the corresponding eigenvector. Write
b⌅ = [⇠̂1, ⇠̂2, . . . , ⇠̂K ] = [ẑ1, ẑ2, . . . , ẑn]0, so ẑ

0
i is row-i of b⌅. Our approach runs as follows.

• Apply Mixed-SCORE and obtain an estimate (bV , b⇧) for (V,⇧). Let v̂0k be row k or bV and
let ⇡̂0

i be row i of b⇧, 1  k  K, 1  i  n.
• Estimate b1 by b̂1 where b̂1(k) = [�̂1 +

PK
k=2 �̂kv̂

0
kdiag(�̂2, . . . , �̂K)v̂k]�1/2. Let

bB = diag(b̂1)[1K , bV ], and estimate P by bP = bBdiag(�̂1, �̂2, . . . , �̂K) bB0. Let ŷi =
(kzik1/k bB0

⇡̂ik1)⇡̂i, 1  i  n, and let bY = [ŷ1, ŷ2, . . . , ŷn]0.
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• Let µ̂k be the k-th eigenvalue of the matrix b⌦ = bY bP bY 0, and let ⌘̂k be the corresponding
eigenvector. In the definition of ai (see above and (2.14)), replace (�k, ⇠k) by (µ̂k, ⌘̂k) and
denote the resultant quantity âi, 1  i  n. These are our estimates for ai.

The approach can be shown to be consistent for ⌦ under some regularity conditions. We skip the study
for it is beyond the scope of this paper. In this algorithm, (bY , bP ) are not automatically non-negative,
and to check whether NMF is solvable for b⌦, we can check if

âi  1/(K � 1), for all 1  i  n. (4.16)

Remark 6. Condition (2.14) of Theorem 2.4 is only a sufficient condition for NMF; they are not
necessary conditions. It could happen that an NMF is solvable for an ⌦ but (2.14) does not hold.

We now consider some real examples. The weblog is a well-known data set [22], where with some
light preprocessing, the network has 1, 222 node (each is a blog) and 16, 714 edges (each is a two-way
hyperlink). The network has two communities: democratic and republican. For this data set, a rank-2
model is appropriate, so we have (n,K) = (1, 222, 2) (e.g., [30, 12, 18]). Let ⌦ be the Bernoulli
probability matrix as in (1.3). By Theorem 2.2, when K = 2, we can always decompose ⌦ as
⌦ = Y PY

0 for a non-negative n ⇥ 2 matrix Y and a 2 ⇥ 2 non-negative matrix P . Now, by the
paragraph right above Remark 1, we can rewrite ⌦ = ⇥⇧P⇧⇥ as in (1.3), so ⌦ satisfies a DCMM
model. Same claim can be drawn for the karate data set [30, 12], where we similarly have K = 2.

As another example, we consider the UKFaculty network (e.g., see [17, Table 1]). It is reasonable
to model the network with a rank-K model with (n,K) = (81, 3) and m  K/2. By Theorem
2.4, the model can be rewritten as a DCMM model if (4.16) holds. Following the discussion
above, we first obtain an estimate b⌦ for ⌦. We then use b⌦ to obtain âi and check if (4.16) holds.
The results are in Figure 1 (left) below, where the maximum of â1, â2, . . . , ân is slightly smaller
than 0.5 (1/(K � 1) = 0.5 as K = 3), suggesting that (4.16) holds. Moreover, let µ̂k be the
k-th eigenvector of b⌦ and let ⌘̂k be the corresponding eigenvector. Let bD = diag(µ̂1, . . . , µ̂K)
and bY = [⌘̂1, . . . , ⌘̂K ] bD1/2. We have b⌦ = bY JK,m

bY 0. Let Q be the 3 ⇥ 3 matrix where the
three rows are (1/

p
3, 1/

p
6, 1/

p
2), (1/

p
3, 1/

p
6,�1/

p
2), and (1/

p
3,�2/

p
6, 0), respectively.

Define bZ = bY Q
0. It is seen b⌦ = bY JK,m

bY 0 = bZ[QJK,mQ
0]Ẑ 0, where QJK,mQ

0 is seen to be
non-negative. Moreover, for 1  i  n, let ẑi be the smallest entry in row-i of bZ. Figure 1 (right)
plots the histogram for {ẑi}ni=1. The results suggest that all ẑi are non-negative, so the matrix bY Q

0

is non-negative. Therefore, b⌦ has an NFM by b⌦ = bZ[QJK,mQ
0]Ẑ 0. These suggest that for the

UKFaculty data set, (4.16) holds and it is reasonable to model the UKFaculty with a DCMM model.
In summary, in many recent works on network analysis, we frequently assume that a DCMM model
holds for the settings at hand, but we rarely checked if such an assumption is valid. Our NMF results
provide an approach to checking whether the network satisfies DCMM model.
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15
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Figure 1: Histograms of {âi}ni=1 (left) and {ẑi}ni=1 (right). The results suggest that all âi are smaller
than 0.5 (note that 1/(K � 1) = .5 as K = 3) so condition (4.16) is satisfied, and that all ẑi are
non-negative so the matrix bZ is non-negative. See above for definitions of âi and ẑi.
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5 Discussion

We derive a sharp NMF result and apply it to network modeling. Both NMF and network analysis are
important areas in machine learning, with applications in image processing, social media, NLP, and
cancer study [5, 23, 21]. In comparison, NMF is more theoretically oriented and network analysis is
more application oriented. Our paper makes an interesting connection of the two areas. On one hand,
we find a new application of NMF theory. This may open the door for a line of research where we
find new applications of NMF in areas such as text learning [21] and tensor analysis [14]. On the
other hand, we gain valuable insight on what are the most suitable network models in applications.
This is crucial, for a suitable model is the starting point for methods and theory. Our study may help
researchers identify the right network models and so can channel their strengths to the right direction.
Our work may also help develop new methods. For example, compared to the general rank-K model,
the DCMM model has more structures which we can exploit (see [16, 18] where they discovered a
simplex structure in the spectral domain, using some specific features which the DCMM model has
but a general rank-K model does not). Our approach is useful for it ensures us that in certain settings,
we can use a more specific model and exploit the structures the model provides.

Another point is that, existing NMF theory usually requires some crucial conditions. However,
whether such conditions are reasonable in real applications remains unclear, especially when the
conditions are on matrices that are not directly observable. In Section 3-4, we tackle this problem
by providing (a) a detailed explanation for why our NMF assumptions are reasonable in network
analysis and (b) new ideas for checking the NMF conditions in real applications when the NMF
conditions are on matrices that are not directly observable. We hope our efforts many spark some
new research along this line.
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