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Abstract

Despite the wide applications of neural networks, there have been increasing concerns
about their vulnerability issue. While numerous attack and defense techniques have been
developed, this work investigates the robustness issue from a new angle: can we design a
self-healing neural network that can automatically detect and fix the vulnerability issue
by itself? A typical self-healing mechanism is the immune system of a human body. This
biology-inspired idea has been used in many engineering designs but has rarely been in-
vestigated in deep learning. This paper considers the post-training self-healing of a neural
network, and proposes a closed-loop control formulation to automatically detect and fix
the errors caused by various attacks or perturbations. We provide a margin-based analysis
to explain how this formulation can improve the robustness of a classifier. To speed up the
inference, we convert the optimal control problem to Pontryagon’s Maximum Principle and
solve it via the method of successive approximation. Lastly, we present an error estimation
of the proposed framework for neural networks with nonlinear activation functions. We
validate the performance of several network architectures against various perturbations.
Since the self-healing method does not need a-priori information about data perturbations
or attacks, it can handle a broad class of unforeseen perturbations. 1

Keywords: Closed-loop Control, Neural Network Robustness, Optimal Control, Self-
Healing, Pontryagin’s Maximum Principle

1. Introduction

Despite their success in massive engineering applications, deep neural networks are found
to be vulnerable to perturbations of input data. It has been shown that an imperceptible

1. A Pytorch implementation can be found in:https://github.com/zhuotongchen/
Self-Healing-Robust-Neural-Networks-via-Closed-Loop-Control.git
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perturbation of an input image can cause misclassification in a well-trained neural network
(Szegedy et al., 2013; Goodfellow et al., 2014). Even though deep neural networks have
achieved state-of-the-art performance in many applications, such as computer vision, natural
language processing, and recommendation systems, the vulnerability of neural networks has
raised security concerns in safety-critical applications.

Many defense methods have been proposed to circumvent this issue, and we summa-
rize the existing methods into two main types: training-based defense which focuses on
the classifier itself, and data-based defense that exploits the underlying data information.
Arguably, the most representative training-based defense is adversarial training (Madry
et al., 2017) based on robust optimization. This method successfully passed all adversarial
attack evaluations in Athalye et al. (2018). However, such training-based methods have
some limitations. First, adversarial training can be expensive for large-scale applications
(Gan et al., 2020). Second, one often requires some information about the type of attacks
anticipated, e.g. adversarial training simulates an attack using projected gradient ascent
under a chosen norm, thus is adapted to such types of attacks. Data-based defenses, such as
reactive defense (Song et al., 2017; Samangouei et al., 2018), are introduced as alternatives
to training-based defenses in part to alleviate some of the aforementioned issues. However,
there is limited understanding of the working principles behind these methods, and to date,
they have not been able to achieve the state-of-the-art performance (Athalye et al., 2018).

To address the aforementioned challenges, it is natural to consider a self-healing process
that emulates the mechanisms of a robust biological immune system. In a figurative sense,
self-healing properties can be ascribed to systems or processes that, by nature or design,
tend to correct any disturbances brought into them. For instance, in psychology, self-
healing often refers to the recovery of a patient from a psychological disturbance guided by
instinct only. In physiology, the most well-known self-healing mechanism is probably the
human immune system: B cells and T cells can work together to identify and kill many
external attackers (e.g., bacteria) to maintain the health of the human body (Rajapakse
and Groudine, 2011). This idea has been applied in semiconductor chip design, where self-
healing integrated circuits can automatically detect and fix the errors caused by imperfect
nano-scale fabrication, noise, or electromagnetic interference (Tang et al., 2012; Lee et al.,
2012; Goyal et al., 2011; Liu et al., 2011; Chien et al., 2012; Keskin et al., 2010; Sadhu
et al., 2013; Sun et al., 2014). In the context of machine learning, a self-healing process is
expected to fix or mitigate some undesired issues by itself.

In this paper, we realize this proposal via a closed-loop control method. Significantly
differing from the attack-and-defense methods, a self-healing process does not need at-
tack/perturbation information, and it focuses on detecting and fixing possible errors by the
neural network itself. This allows a neural network to handle many types of attacks and
perturbations simultaneously.

Contribution Summary. The specific contributions of this paper are summarized below:

• Closed-loop control formulation and margin-based analysis for post-training
self-healing. We consider a closed-loop control formulation to achieve self-healing in
the post-training stage, to improve the robustness of a given neural network under a
broad class of unforeseen perturbations/attacks. This self-healing formulation has two
key components: embedding functions at both input and hidden layers to detect the
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possible errors, and a control process to adjust the neurons to fix or mitigate these errors
before making a prediction. We investigate the working principle of the proposed control
loss function, and reveal that it can modify the decision boundary and increase the margin
of a classifier.

• Fast numerical solver for the control objective function. The self-healing neural
network is implemented via closed-loop control, and this implementation causes com-
puting overhead in the inference. In order to reduce the computing overhead, we solve
the Pontryagin’s Maximum Principle via the method of successive approximations. This
numerical solver allows us to handle both deep and wide neural networks.

• Theoretical error analysis. We provide an error analysis of the proposed framework
in its most general form by considering nonlinear dynamics with nonlinear embedding
manifolds. The theoretical setup aligns with our algorithm implementation without sim-
plification.

• Empirical validation on several datasets. On two standard and one challenging
datasets, we empirically verify that the proposed closed-loop control implementation of
self-healing can consistently improve the robustness of the pre-trained models against
various perturbations.

Our preliminary result was reported in (Chen et al., 2021). This extended work includes the
following additional contributions: a broader vision of closed-loop control and self-healing
methods, the margin-based analysis of the loss function, an accelerated PMP solver, and a
more generic error analysis in the nonlinear setting.

2. An Optimal Control-based Self-Healing Neural Network Framework

This section introduces the shared robustness issue in integrated circuits (IC) and in neural
networks. We show that the self-healing techniques widely used in IC design can be used to
improve the robustness of neural networks due to the theoretical similarities between these
two seemingly disconnected domains.

2.1 Self-Healing in IC Design

In this work, we use the term “self-healing” to describe the capability of automatically
correcting (possibly after detecting) the possible errors in a neural network. This idea
has been well studied in the IC design community to fix the errors caused by nano-scale
fabrication process variations in analog, mixed-signal, and digital system design (Tang et al.,
2012; Lee et al., 2012; Goyal et al., 2011; Liu et al., 2011; Chien et al., 2012; Keskin
et al., 2010; Sadhu et al., 2013; Sun et al., 2014). In practice, it is hard to precisely
control the geometric or material parameters in IC fabrication, which causes lots of circuit
chips to underperform or even fail to work. To address this issue, two techniques are
widely used: yield optimization and self-healing. Yield optimization (Zhang and Styblinski,
2013; Wang et al., 2017; Li et al., 2006; Cui et al., 2020; He and Zhang, 2021) is similar
to adversarial training: it chooses the optimal circuit parameters in the design phase to
minimize the failure probability assuming that an exact probability density function of the
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Due to the closed-loop structure, the forward propagation of the proposed self-healing
neural network at layer t can be written as xt+1 = Ft(xt + ut). Compared with standard
neural networks, the proposed network needs to compute the control signals u = {ut}

T−1
t=0

during inference by solving an optimal control problem:

min
u

E(x0,y)∼D [J(x0,y,u)] := min
u

E(x0,y)∼D Φ(xT ,y) +

T−1∑

t=0

L(xt,ut, ·),

s.t. xt+1 = Ft(xt + ut), t = 0, · · · , T − 1. (1)

where Φ is the terminal loss, and L denotes a running loss that possibly depends on state
xt, control ut and some external functions.

In order to achieve better robustness via the above self-healing closed-loop control,
several fundamental questions should be answered:

• How shall we design the control objective function (1), such that the obtained controls
can indeed correct the possible errors and improve model robustness?

• How can we solve the control problem efficiently, such that the extra latency is mini-
mized in the inference?

• What is the working principle and theoretical performance guarantees of the self-
healing neural network?

These key questions will be answered through Section 3 to Section 5.

3. Design of Self-Healing via Optimal Control

In this section, we propose a control objective function for self-healing robust neural net-
works in solving classification problems. With a margin-based analysis, we demonstrate that
this control objective function enlarges the classification margin of the decision boundary.

3.1 Towards Better Robustness: Control Loss via Manifold Projection

In general, the control objective function Eq. (1) should have two parts: a terminal loss and
a running loss:

• In traditional optimal control, the terminal loss Φ(xT ,y) can be a distance measurement
between the terminal state of the underlying trajectory and some destination set given
beforehand. In supervised learning, this corresponds to controlling the underlying hidden
states such that the terminal state xT (or some transformation of it) matches the true
label. This is impractical for general machine learning applications since the true label y
is unknown during inference. Therefore, we ignore the terminal loss by setting it as zero.

• When considering a deep neural network as a discretization of a continuous dynamic
system, the state trajectory (all input and hidden states) governed by this continuous
transformation forms a high-dimensional structure embedded in the ambient state space.
The set of state trajectories that leads to ideal model performance, in the discretized anal-
ogy, can be represented as a sequence of embedding manifolds {Mt}

T−1
t=0 . The embedding
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manifold is defined as Mt = f−1
t (0) for a submersion2 f(·) : Rd → R

d−r, where we assume
that all data samples lie in R

d and there exits a r-dimensional embedding manifold to
encode all data. We can track a trajectory during neural network inference and enforce
it onto the desired manifold Mt to improve model performance. This motivates us to
design the running loss of Eq. (1) as follows,

L(xt,ut, ft(·)) :=
1

2
‖ft(xt + ut)‖

2
2 +

c

2
‖ut‖

2
2. (2)

The submersion satisfies ‖ft(xt)‖2 = ‖Et(xt) − xt‖2 and it measures the distance be-
tween a state x to the embedding manifold Mt, ft(x) = 0 if x ∈ Mt. This can be
understood based on the “manifold hypothesis” (Fefferman et al., 2016), which assumes
that real-world high-dimensional data (represented as vectors in R

d) generally lie in a
low-dimensional manifold M ⊂ R

d. The first term in Eq. (2) serves as a “performance
monitor” in self-healing: it measures the discrepancy between the state variable xt and
the desired manifold Mt. The regularization term with a hyper-parameter c prevents
using large controls, the role of control regularization is analysed in Appendix D.

• The performance monitor can be realized by a manifold projection Et(·),

Et(xt) := arg min
z∈Mt

1

2
‖xt − z‖22. (3)

The manifold projection can be considered a constrained optimization. Given that Mt is
a compact set, the solution of Eq. (3) always exists. In practice, the manifold projection
is realized as an auto-encoder due to its simplicity and generality. Specifically, an encoder
embeds a state snapshot into a lower-dimensional space, and then a decoder reconstructs
this embedded data back to the ambient state space. The auto-encoder can be obtained
by minimizing the reconstruction loss on a given clean dataset,

E∗
t (Mt, ·) = argmin

Et

1

N

N∑

i=1

CE(xi,T ,yi)
︸ ︷︷ ︸

model information

+ ‖Et(Mt,xi,t)− xi,t‖
2
2

︸ ︷︷ ︸

data information

, (4)

s.t. xi,t+1 = Ft(xi,t,θt,ui,t), ui,t = Et(xi,t)− xi,t,

where CE(·, ·) denotes cross-entropy loss function, θt is the model parameter at the tth

layer. The objective function Eq. (4) defines an attack-agnostic setting, where only clean
data and model information are accessible to the control system. Furthermore, we do
not attempt to recover the underlying data manifold. Instead, we find a low-dimensional
manifold that is defined by one having a submersion using the encoder-decoder function,
and this estimated low-dimensional manifold approximately contains the true data man-
ifold. If one is only concerned with approximating the true data manifold, Eq. (4) can be
modified to only optimize the data information (Schmidhuber, 2015).

2. a submersion is a differentiable map between differentiable manifolds whose differential is everywhere
surjective
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classifier has accuracies of 100% and 0% on clean data and against adversarial examples re-
spectively. Fig. 3 (b) shows the reconstruction loss field, computed by ‖(I−P)x‖22, ∀x ∈ R

2,
where P is the `2 orthogonal projection onto the 1-d embedding subspace M. The esti-
mated embedding subspace M is represented as the reconstruction loss being less than
0.1. As expected, clean data samples are located in the low loss regions, and adversarial
examples fall out of M and have larger reconstruction losses. In Fig. 3 (c), our control
process adjusts adversarially perturbed data samples towards the embedding subspace M,
and the classifier predicts those with 100% accuracy. Essentially, the manifold projection
forces those adjacent out-of-manifold samples to have the same prediction as the clean data
in the manifold, and the margin of the decision boundary has been increased as shown in
Fig. 3 (d).

Remark 2 In this simplified linear case, the embedding manifold M is the 1-D linear
subspace highlighted as the darkest blue in Fig. 3 (b) (c). Specifically, any data point in this
subspace incurs zero reconstruction loss. Therefore, the constrained optimization problem
in Eq. (3) is the orthogonal projection onto a linear subspace M, The manifold projection
reduces the pre-image of a classifier F (·) from R

2 7→ R
1. Given a data point x sampled

from this linear subspace, any out-of-manifold data x̃ satisfies ‖Px̃ − x‖22 ≤ ‖x̃ − x‖22.
Consequently, the margin of F (·) is enlarged.

A margin-based analysis on the manifold projection. Now we formally provide
two definitions for margins related to classification problems. Specifically, we consider a
classification dataset D belonging to the ground-truth manifold M∗, D ⊂ M∗, this enables
the formal definitions of different types of margins.

• Manifold margin: We define RM as the geodesics

RM(a,b) := inf
γ∈ΓM(a,b),

∫ 1

0

√

〈 γ′(t), γ′(t)〉γ(t)dt,

where γ ∈ ΓM(a,b) is a continuously differentiable curve γ : [0, 1] → M such that
γ(0) = a and γ(1) = b. Here, 〈, 〉p is the positive definite inner product on the tangent
space TpM at any point p on the manifold M. In other words, the distance RM(a,b)
between two points a and b of M is defined as the length of the shortest path connecting
them. Given a manifold M and classifier F (·), the manifold margin dM(F (·)) is defined
as the shortest distance along M such that an instance of one class transforms to another.

dM(F (·)) :=
1

2
inf

x1,x2∈D
RM(x1,x2), s.t. F (x1) 6= F (x2). (6)

• Euclidean margin: In practice, data perturbations are any perturbations of a small
Euclidean distance (or any equivalent norm). The classifier margin de(F (·)) is the smallest
magnitude of a perturbation in R

d that causes the change of output predictions.

de(F (·)) := inf
x∈D

inf
δ∈Rd

‖δ‖2, s.t. F (x) 6= F (x+ δ). (7)

In addition, we introduce the ground-truth margin and manifold projection margin from
the definitions of manifold and Euclidean margins, respectively.

9



Chen, Li, Zhang

• Ground-truth margin: For the ground-truth manifold M∗ and ground-truth classifier
F ∗(·) (population risk minimizer), the ground-truth margin dM∗(F ∗(·)) [according to
Eq. (6)] is the largest classification margin.

• Manifold projection margin: The manifold projection Eq. (3) modifies a classifier
from F (·) to F ◦ E(M, ·). Therefore, its robustness depends on the “manifold projection
margin” [according to Eq. (7)] as

de(F ◦ E(·)) := inf
x∈D

inf
δ∈Rd

‖δ‖2, s.t. F (E(x)) 6= F (E(x+ δ)).

A manifold projection essentially constraints the data space R
d into a smaller subset

according to the embedding manifold M ⊂ R
d.

In R
d, a binary linear classifier forms a (d − 1)-dimensional hyperplane that partitions

R
d into two subsets. Let the range of V ∈ R

d×(d−1) be this hyperplane, n̂ as a d-dimensional
normal vector such that VT n̂ = 0. In general, a linear classifier with a random decision
boundary can be defined as setting the normal vector n̂ ∼ N (0, 1

d
I). In this simplified linear

setting, the following proposition provides a relationship between the Euclidean margin
de(F (·)) and the manifold margin dM(F (·)).

Proposition 3 Let M ⊂ R
d be a r-dimensional (r ≤ d) linear subspace that contains

the ground-truth manifold M∗, such that M∗ ⊂ M, F (·) a linear classifier with random

decision boundary, then E

[

de(F (·))
dM(F (·))

]

≤
√

r
d
.

The detailed proof is shown in Appendix A. The margin-based analysis explains the
design choice of the running loss in Eq. (2) that depends on an embedding manifold. Specif-
ically, using an embedding manifold (a submersion function) to measure the running loss
leads to an increased margin.

A demonstration of margin increase. Fig. 4 (a) shows a binary classification dataset
embedded in a 1-dimensional manifold (M is shown as green curve). Given a classifier F (·),
the manifold margin dM(F (·)) (orange curve shows 2 · dM(F (·))) is shown as the shortest
distance that an instance of one class transforms to another. The underlying classifier
results in a small Euclidean margin, as shown in Fig. 4 (b). In Fig. 4 (c), subsets-A and
B are predictions of class-1, subsets-C and D are predictions of class-2. The manifold
projection E(·) projects subsets-A and D onto the top portion of M, subsets B and C onto
the lower portion of M. The decision boundary of classifier and manifold projection form
four partitions of R2. For the composed classifier F ◦ E(·), any samples in regions A and D
are predicted as class-2, and samples from regions B and C are predicted as class-1. As a
result, Fig. 4 (d) shows the decision boundary of F ◦ E(·), the manifold projection margin
(shown in orange) is significantly improved than the Euclidean margin.

4. An Optimal Control Solver for Self-Healing

In this section, we present a general optimal control method to solve the proposed objective
function in Eq. (5). A more efficient method is proposed to reduce the inference overhead
caused by generating the controls.
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Computational Overhead in Inference. When the closed-loop control module is de-
ployed for inference, the original forward propagation is now replaced by iterating through
the Hamiltonian dynamics. For each input data, solving the optimal control problems re-
quires us to propagate through both forward Eq. (8) and backward adjoint Eq. (9) dynamics
and to maximize the Hamiltonian Eq. (10) at all layers. When maximizing the Hamiltonian
n times, running the Hamiltonian dynamics approximately increase the time complexity by
a factor of n with respect to the standard inference. The computational overhead prevents
deploying the closed-loop control module in real-world applications.

A Faster PMP Solver. To address this issue, we consider the method of successive
approximation (Chernousko and Lyubushin, 1982) from the optimal condition of the PMP.
For a given input data sample, Eq. (8) and (9) generate the state variables and adjoint
states respectively for the current controls {ut}

T−1
t=0 . The optimal condition of the objective

function in Eq. (1) is achieved via maximizing all Hamiltonians in Eq. (10). Instead of iter-
ating through all three Hamiltonian dynamics for a single update on the control solutions,
we can consider optimizing the tth Hamiltonian locally for all t ∈ [0, · · · , T − 1] with the
current state xt and adjoint state pt+1. This allows the control solution ut to be updated
multiple times within one complete iteration. Once a locally optimal control u∗

t is achieved
by maximizing H(t,xt,pt+1,θt,ut) w.r.t. ut, the adjoint state pt+1 is backpropagated to
pt via the adjoint dynamic in Eq. (9) followed by maximizing H(t− 1,xt−1,pt,θt−1,ut−1).
Under this setting, running the Hamiltonian dynamics (8), (9) and (10), n times can be
decomposed into maxItr full iterations and InnerItr local updates. Here, maxItr can be
significantly smaller than n since the locally optimal control solutions via InnerItr updates
can speed up the overall convergence. Instead of iterating the full Hamiltonian dynamics
n times, the proposed fast implementation iterates maxItr full Hamiltonian dynamics and
InnerItr local updates.

The detailed implementation is presented in Algorithm 1. Here we summarize this
efficient implementation.

1. To begin with, we initialize all controls with the greedy solution, ut = Et(xt)−xt, by set-
ting the control regularization c = 0. This improves the convergence of the Hamiltonian
dynamics.

2. We forward propagate the input data via Eq. (8) to obtain all hidden states.

3. Since there is no terminal loss, the initial condition of the adjoint state is pT = 0. We
backpropagate the adjoint states and maximize the Hamiltonian at each layer as follows:

(a) We compute the adjoint state pt from the adjoint dynamics Eq. (9),

(b) Instead of updating control ut once via maximizing the Hamiltonian Eq. (10), we
perform multiple updates (InnerItr iterations) on control ut to achieve the optimal
solution u∗

t that satisfies the maximization condition (Notice that any optimization
algorithm can be applied).

4. The backpropagation terminates when it reaches layer t = 0. This process repeats for a
maximum number of iterations (maxItr iterations).
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Algorithm 1: The Method of Successive Approximation.

Input : Input x0 (possibly perturbed), a trained neural network F (·), embedding
functions {Et(·)}

T−1
t=0 , control regularization c, learning rate lr, maxItr,

InnerItr.
Output: Output state xT .

1 Initialize controls {ut}
T−1
t=0 with the greedy solution ;

2 for i = 0 to maxItr do
3 xi

0 = x0 + ui
0 ; // The controlled initial condition

4 for t = 0 to T − 1 do
5 xi

t+1 = Ft(x
i
t + ui

t) ; // Controlled forward propagation Eq. (8)

6 end for
7 pi

T = 0 ; // The terminal condition of the adjoint state is set to 0

8 for t = T − 1 to 0 do
9 for τ = 0 to InnerItr do

10 H(t,xi
t,p

i
t+1,θt,u

i,τ
t ) = pi

t+1 · Ft(x
i
t,θt,u

i,τ
t )− L(xi

t,u
i,τ
t , Et(x

i
t)) ;

// Compute Hamiltonian

11 ui,τ+1
t = ui,τ

t + lr · ∇uH(t,xi
t,p

i
t+1,θt,u

i,τ
t ) ; // Maximize Hamiltonian

w.r.t. control ut

12 end for
13 pi

t = pi
t+1 · ∇xF (xi

t,θt,u
i
t)−∇xL(x

i
t,u

i
t, Et(x

i
t)) ; // Backward propagation

Eq. (9)

14 end for

15 end for

5. Theoretical Error Analysis

In this section, we formally establish an error analysis for the closed-loop control framework.
Let xt be a “clean” state originated from an unperturbed data sample x0, and xε,t be the
perturbed states originating from a possible attacked or corrupted data sample xε,0 = x0+z.
In our proposed self-healing neural network, the controlled state becomes xε,t = xε,t + ut.
We ask this question: how large is ‖xε,t − xt‖, i.e., the distance between xt and xε,t?

We consider a general deep neural network F = FT ◦FT−1◦· · ·◦F0, where each nonlinear
transformation Ft(·) is of class C2, and each embedding manifold can be described by a
C2 submersion f(·) : Rd → R

d−r, such that M = f−1(0). Given an unperturbed state
trajectory {xt ∈ Mt}

T−1
t=0 , we denote TxtMt as the tangent space of Mt at xt.

This theoretical result is an extension of the linear closed-control setting in our prelim-
inary work (Chen et al., 2021) where an error estimation in the linear setting is derived.
We provide the error estimation between xε,t and xt in the linear and nonlinear cases in
Section 5.1 and Section 5.2 respectively.

Outline of the proof. Our goal is to derive an error estimation on the clean state xt

and perturbed state corrected with controls xt. We achieve this analysis with three steps:

1. Linear control system: Derivation for the error estimation of the linear system
with linear control. This is presented in Section 5.1 as Theorem 4.
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2. Linearization error: We linearize the given closed-loop controlled dynamical sys-
tem. This linearization leads to two error sources. We derive an upper bound on
linearizing the embedding manifold and nonlinear dynamical system in Appendix C.1
and C.2 respectively.

3. Finally, the error estimation is presented in Theorem 5 from Section 5.2,

‖xε,t − xt‖ ≤ Linear control system+ Linearization error.

5.1 Error Estimation For The Linear Case

Now we analyze the error of the self-healing neural network for a simplified case with linear
activation functions. We denote θt as the Jacobian matrix of the nonlinear transformation
Ft(·) centered at xt, such that θt = F ′

t(xt). In the linear case, the solution of the running
loss in Eq. (2) is a projection onto the linear subspace, which admits a closed-form solution.
For a perturbed input, q0 = x0 + z with some perturbation z, we denote {qε,t}

T−1
t=0 as

sequence of states of the linear system, and {qε,t}
T−1
t=0 as the states adjusted by the linear

control. The perturbation z ∈ R
d admits a direct sum of two orthogonal components,

z = z‖ ⊕ z⊥. Here z‖ ∈ Tx0
M0 is a perturbation within the tangent space, and z⊥ lies in

the orthogonal complement of Tx0
M0.

The following theorem (Chen et al., 2021) provides an upper bound of ‖qε,t − xt‖
2
2.

Theorem 4 For t ≥ 1, we have an error estimation for the linear system

‖qε,t − xt‖
2
2 ≤ ‖θt−1 · · ·θ0‖

2
2 ·

(

α2t‖z⊥‖22 + ‖z‖‖22 + γt‖z‖
2
2

(
γtα

2(1− αt−1)2 + 2(α− αt)
)
)

.

where γt := max
s≤t

(
1 + κ(θs−1 · · ·θ0)

2
)
‖I − (θs−1 · · ·θ0)

T (θs−1 · · ·θ0)‖2, κ(θ) is condition

number of θ, α = c
1+c

, and c represents the control regularization. In particular, the equality

‖qε,t − xt‖
2
2 = α2t‖z⊥‖22 + ‖z‖‖22

holds when all θt are orthogonal.

The detailed derivation is presented in Appendix B. The error upper bound is tight since
it becomes the actual error if all the linear transformations are orthogonal matrices. Note
that the above bound from the greedy control solution is a strict upper bound of the optimal
control solution. The greedy solution does not consider the dynamic, and it optimizes each
running loss individually.

5.2 Error Analysis of Nonlinear Networks with Closed-loop Control

Here we provide an error analysis for the self-healing neural network with general nonlinear
activation functions. For a 3-dimensional tensor, e.g. the Hessian F ′′(x), we define the
2-norm of F ′′(x) as

‖F ′′(x)‖∗ := sup
z 6=0

‖F ′′(x)i,j,kzjzk‖2
‖z‖22

.

14



Self-Healing Robust Neural Networks via Closed-Loop Control

For the nonlinear transformation Ft(·) ∈ C2 at layer t, we assume its Hessian F ′′
t (·) is

uniformly bounded, i.e., supx∈Rd‖F ′′
t (x)‖∗ ≤ βt. Let ft ∈ C2 : Rd → R

d−r be the sub-
mersion of the embedding manifold Mt, we assume its Hessian is uniformly bounded, i.e.,
supx∈Rd‖f ′′

t (x)‖∗ ≤ σt. We use xt, xε,t and xε,t to denote the clean states, perturbed states
without control and the states adjusted with closed-loop control, respectively. The initial
perturbation z = ε · v, where ‖v‖2 = 1 and v = v‖ ⊕ v⊥. Let

• kt = 4σt‖(f
′
t(xt)f

′
t(xt)

T )−1‖2 · (‖f
′
t(xt)‖2 + 2σt),

• δxt = ‖θt−1 · · ·θ0‖
2
2 ·

(

α2t‖v⊥‖22 + ‖v‖‖22 + γt‖v‖
2
2

(
γtα

2(1− αt−1)2 + 2(α− αt)
)
)

.

The following theorem provides an error estimation between xε,t and xt.

Theorem 5 If the initial perturbation satisfies

ε2 ≤
1

(
∑T−1

i=0 δxi
(kxi

‖θi‖2 + 2βi)
∏T−1

j=i+1(‖θj‖2 + kxj
‖θj‖2 + 2βj)

) .

for 1 ≤ t ≤ T , we have the following error bound for the closed-loop controlled system

‖xε,t+1−xt+1‖2 ≤ ‖θt · · ·θ0‖2

(

αt+1‖z⊥‖2+‖z‖‖2+‖z‖2
(
γt+1α(1−αt)+

√

2γt+1(α−αt+1)
)
)

+

( t∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)
t∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2.

The detailed proof is provided in Appendix C. From Theorem 5, we have the following
intuitions:

• The error estimation has two main components: a linearization error in the order of
O(ε2), and the error of O(ε) of the linearized system. Specifically, the linearization error
becomes smaller when the activation functions and embedding manifolds behave more
linearly (kt and βt become smaller).

• The closed-loop control minimizes the perturbation components z⊥ within the orthogonal
complements of the tangent spaces. This is consistent with the manifold hypothesis, the
robustness improvement is more significant if the underlying data are embedded in a
lower dimensional manifold (‖z‖‖2 → 0).

• The above error estimation improves as the control regularization c goes to 0 (so α → 0).
It is not the sharpest possible as it relies on a greedily optimal control at each layer. The
globally optimal control defined by the Ricatti equation may achieve a lower loss when
c 6= 0.

• The error estimation is done via linearizing both the underlying dynamical system and
embedding manifolds. This may result in a loose error bound when the underlying tra-
jectory is diverging due to the non-negligible linearization error. The goal of this error
estimation is to explain the working principle behind the proposed method in the general
nonlinear case, which does not conflict with the linearization error.
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Remark 6 The derivation of the error estimation depends on the assumption that the
ground-truth manifold is given. To account for the approximation from the estimated em-
bedding manifold that has non-zero reconstruction loss, the error from the imperfect embed-
ding manifold should propagate in the same way as the linearization error at every layer.
Specifically, the embedding error at tth layer contributes to both the linearization of the dy-
namical system and the tangent space approximation of the nonlinear embedding manifold
at (t + 1)th layer, then this error is accumulated towards the terminal state.

6. Numerical Experiments

In this section, we test the performance of the proposed self-healing framework. Specifically,
we show that using only one set of embedding functions can improve the robustness of many
pre-trained models consistently. Section 6.1 shows that the proposed method can signifi-
cantly improve the robustness of both standard and robustly trained models on CIFAR-10
against various perturbations. Furthermore, in the same experimental setting, Sections 6.2
and 6.3 evaluate our method on CIFAR-100 and Tiny-ImageNet datasets, which empirically
verify the effectiveness and generalizability of the self-healing machinery.

6.1 Experiments On CIFAR-10 Dataset

We evaluate all controlled models under an “oblivious attack” setting 3. In this setting, the
pre-trained models are fully accessible to an attacker, but the control information is not
released. Meanwhile, the controllers do not know the incoming attack algorithms. We will
show that by using one set of embedding functions, our self-healing method can improve
the robustness of many pre-trained models against a broad class of perturbations. Our
experimental setup is summarized below.

• Baseline models. We showcase that one set of controllers can consistently increase
the robustness of many pre-trained ResNets when those models are trained via standard
training (momentum SGD) and adversarial training (TRADES (Zhang et al., 2019)).
Specifically, we use Pre-activated ResNet-18 (RN-18), -34 (RN-34), -50 (RN-50), wide
ResNet-28-8 (WRN-28-8), -34-8 (WRN-34-8) as the testing benchmarks.

• Robustness evaluations. We evaluate the performance of all models with clean testing
data (None), and auto-attack (AA) (Croce and Hein, 2020b) that is measured by `∞, `2
and `1 norms. Auto-attack that is an ensemble of two gradient-based auto-PGD attacks
(Croce and Hein, 2020b), fast adaptive boundary attack (Croce and Hein, 2020a) and a
black-box square attack (Andriushchenko et al., 2020).

• Embedding functions. We choose the fully convolutional networks (FCN) (Long et al.,
2015) as an input embedding function and a 2-layer auto-encoder as an embedding func-
tion for the hidden states. Specifically, we use one set of embedding functions for all 5
pre-trained models. The training objective function of the tth embedding function follows
Eq. (4), where both model and data information are used.

3. This consideration is general, e.g. Liao et al. (2018) has adopted this setting in the previous NIPS
competition on defense against adversarial attacks.
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Table 1: CIFAR-10 accuracy measure: baseline model / controlled model
`∞ : ε = 8/255, `2 : ε = 0.5, `1 : ε = 12

Standard models

None AA (`∞) AA (`2) AA (`1)

RN-18 94.71 / 92.81 0. / 63.89 0. / 82.1 0. / 75.75

RN-34 94.91 / 92.84 0. / 64.92 0. / 83.64 0. / 78.05

RN-50 95.08 / 92.81 0. / 64.31 0. / 83.33 0. / 77.15

WRN-28-8 95.41 / 92.63 0. / 75.39 0. / 86.71 0. / 84.5

WRN-34-8 94.05 / 92.77 0. / 64.14 0. / 82.32 0. / 73.54

Robust models (trained with `∞ perturbations)

None AA (`∞) AA (`2) AA (`1)

RN-18 82.39 / 87.51 48.72 / 66.61 58.8 / 79.88 9.86 / 42.85

RN-34 84.45 / 87.93 49.31 / 65.49 57.27 / 78.81 7.21 / 40.74

RN-50 83.99 / 87.57 48.68 / 65.17 57.25 / 78.26 6.83 / 39.44

WRN-28-8 85.09 / 87.66 48.13 / 64.44 54.38 / 77.08 5.38 / 41.78

WRN-34-8 84.95 / 87.14 48.47 / 64.55 54.36 / 77.15 4.67 / 42.65

• PMP hyper-parameters setting. We choose 3 outer iterations and 10 inner iterations
with 0.001 as control regularization parameters in the PMP solver. As in Algorithm 1,
maxIte=3, InnerItr=10, and c = 0.001.

As shown in Table 1, for standard trained baseline models, despite the high accuracy of
clean data, their robustness against strong auto-attack degrades to 0% accuracy under all
measurements. The self-healing process is attack-agnostic, and it improves the robustness
against all perturbations with negligible degradation on clean data. Specifically, the con-
trolled models have more than 80% and near 80% accuracies against perturbations measured
by `2 and `1 norms respectively.

On adversarially trained baseline models. Since all robust baseline models are pre-
trained with `∞ measured adversarial examples, they show strong robustness against `∞
auto-attack. Surprisingly, models that trained using `∞ as adversarial training objective
preserve strong robustness against `2 perturbations. However, a `1 measured perturbation
can significantly degrade their robustness. On average, our proposed control method has
achieved 20% accuracy improvements against `∞ and `2 perturbations, and a near 40% im-
provement against `1 perturbation. Surprisingly, by applying the proposed control module,
all adversarially trained models have achieved higher accuracy on clean testing data.

6.2 Experiments On CIFAR-100 Dataset

In this section, we investigate the effectiveness of self-healing on the more challenging
CIFAR-100 dataset. We summarize our experiment settings below.

• Baseline models. We consider different variants of Wide-ResNet. Specifically, we
use Wide-ResNet-28-10 (WRN-28-10), -34-10 (WRN-34-10), -76-10 (WRN-76-10).
We show that one set of controllers can consistently increase the robustness of all 3
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Table 2: CIFAR-100 accuracy measure: baseline model / self-healing
Standard models

`∞ : ε = 8/255, `2 : ε = 0.5, `1 : ε = 12

None AA (`∞) AA (`2) AA (`1)

WRN-28-10 79.53 / 75.80 0.04 / 11.43 0.06 / 32.70 0.03 / 28.53

WRN-34-10 79.12 / 72.70 0.02 / 13.89 0.03 / 29.78 0.02 / 31.78

WRN-76-10 79.28 / 71.10 0.01 / 19.31 0.03 / 28.96 0.01 / 35.13

Robust models (trained with `∞ perturbations)

None AA (`∞) AA (`2) AA (`1)

WRN-28-10 56.96 / 56.84 24.97 / 30.81 29.54 / 39.18 3.24 / 16.43

WRN-34-10 57.32 / 56.91 25.35 / 31.04 29.68 / 39.64 2.99 / 17.66

WRN-76-10 57.58 / 57.11 24.84 / 29.96 27.81 / 38.05 2.41 / 19.13

pre-trained models when those models are trained via momentum SGD and adversarial
training (TRADES (Zhang et al., 2019)).

• Other settings. The embedding functions and PMP settings follow the same.

In Table 2, the proposed self-healing framework consistently improves the robustness
of adversarially trained models on the CIFAR-100 dataset. On average, the self-healing
models have achieved 10% ∼ 20% accuracy improvement with almost no effects on the clean
data performance. Although the improvements are not as significant as in the CIFAR-10
experiment, this is due to the hardness of constructing embedding manifolds for this more
challenging dataset. Specifically, it is more difficult to distinguish the controlled data point
among 100 different classes than 10 classes on a single embedding manifold.

6.3 Experiments On Tiny-ImageNet

Finally, we examine the proposed self-healing framework on the Tiny-ImageNet dataset.
Tiny-ImageNet contains 100, 000 and 10, 000 of 64×64 sized training and validation images
with 200 different classes. Although over-fitting is more significant in this dataset, we
show that the proposed self-healing framework can consistently improve the robustness of
pre-trained models. The experimental settings are summarized below.

• Baseline models. We consider EfficientNet-b0, EfficientNet-b1 and EfficientNet-
b2 trained via momentum SGD and adversarial training (TRADES (Zhang et al., 2019))
as testing benchmarks.

• Embedding functions. We choose SegNet (Badrinarayanan et al., 2017) as an input
embedding function, and a 2-layer auto-encoder as an embedding function for the hidden
states. The training objective function of the tth embedding function follows Eq. (4),
where both model and data information are used.

• PMP hyper-parameters setting. The PMP setting follows the same.
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Table 3: Tiny-ImageNet accuracy measure: baseline model / controlled
`∞ : ε = 4/255, `2 : ε = 0.8, `1 : ε = 10

Standard models

None AA (`∞) AA (`2) AA (`1)

EfficientNet-b0 57.68 / 59.92 0.21 / 46.08 1.73 / 49.86 5.86 / 50.4

EfficientNet-b1 57.99 / 59.72 0.13 / 44.35 1.24 / 48.26 4.43 / 48.86

EfficientNet-b2 58.06 / 59.3 0.25 / 44.33 1.40 / 47.86 4.58 / 48.39

Robust models (trained with `∞ perturbations)

EfficientNet-b0 45.16 / 41.09 22.56 / 30.69 26.86 / 34.57 24.42 / 34.51

EfficientNet-b1 46.29 / 41.18 22.70 / 30.91 26.60 / 34.10 22.30 / 33.67

EfficientNet-b2 45.64 / 41.58 23.26 / 31.42 26.77 / 34.45 21.59 / 34.00

In this task, we aim to validate the practical applicability of the proposed method on
a generally large dataset and deep network architectures. As shown in Table 3, on the
challenging Tiny-ImageNet dataset, despite the high accuracy of clean data, as expected,
all pre-trained models result in an extremely poor performance against auto-attacks. The
proposed framework can improve all three pre-trained EfficientNets consistently against
auto-attacks. Specifically, the controlled models have shown 45% ∼ 50% robustness im-
provements against all perturbations.

6.4 Summary On Numerical Experiments

Fig. 5 shows the radar plots of accuracy against many perturbations on some chosen baseline
models. Overall, the self-healing via closed-loop control consistently improves the baseline
model performance. Notice that adversarial training can effectively improve the robustness
of baseline models against a certain type of perturbation (e.g. Auto-attack measured in `∞).
However, those seemingly robust models are extremely vulnerable against other types of
perturbations (e.g. Auto-attack measured in `1). The proposed method is attack-agnostic
and can consistently improve the robustness of many baseline models against various per-
turbations.

6.5 Experiment On Multi-Label Classification

The robustness issue of multi-label classification is little explored. We consider the PASCAL
Visual Object Detection (VOC) dataset and adopt the standard training protocol where we
consider a union of the VOC 2007 and 2012 training dataset following (Liu et al., 2016).
For testing, we use the VOC 2007 test with 4952 test images and 20 classes (Everingham
et al., 2010). We resize the original images to 128 × 128 × 3 for computational efficiency.
We use average precision as a measurement for all models.

We apply the proposed method on EfficientNet-b0, b1 and b2 that are trained via
momentum SGD. For control settings, we choose fully convolutional networks (FCN) (Long
et al., 2015) as an input embedding function and a 2-layer auto-encoder as an embedding
function for the hidden states. The PMP hyper-parameter settings are the same as in pre-
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not exist a linear embedding subspace that results in 0 reconstruction loss on the given
dataset. In this case, the ground-truth manifold cannot be correctly estimated by the
chosen manifold learning method. Fig. 7 (a) shows reconstruction loss versus controlled
model performance w.r.t. varying dimensions on the CIFAR-100 clean test set. As can be
seen, when the chosen linear embedding subspace has a low dimension and cannot contain
the ground-truth manifold, the prediction accuracy is low due to inaccurate reconstruction.

As the dimension of linear embedding subspace increases, the reconstruction loss of
embedding subspace decreases. A linear embedding subspace with 0 reconstruction loss
contains the ground-truth manifold. However, an accurate embedding subspace that con-
tains the ground-truth manifold may lead to low robustness improvement. To see this, we
further increase the dimension of the linear embedding subspace. Fig. 7 (b) and (c) show
the reconstruction loss versus controlled model performance on perturbed data. As the
dimension further increases, the robustness improvement reduces significantly. This hap-
pens because the perturbation lies within the embedding subspace and the perturbed data
cannot be distinguished from the clean counterpart.

Similar behaviour can be seen in the Tiny-Imagenet dataset as shown in Fig. 7 (d), (e),
and (f). This supports the correlation between inaccurate embedding manifold and poor
model performance

Empirical validation for the margin-based analysis. The margin-based analysis in
Section 3.2 has shown that the composition of a classifier and a manifold-based embedding
function can increase the Euclidean margin to a manifold margin. Although the analysis
is conducted in a simplified case that considers a linear classifier with a random decision
boundary, the implication of this analysis can be empirically demonstrated in more general
settings.

Recall Proposition 3, if the estimated linear embedding subspaceM contains the ground-
truth manifold M∗, for a linear classifier with a random decision boundary F (·), we have

E

[

de(F (·))
dM(F (·))

]

≤
√

r
d
. To verify this analysis in more general settings, we choose a linear

embedding subspace to embed the input data, and study the model performance and ro-
bustness w.r.t. varying dimensions of the linear embedding subspace. We randomly sample
20 linear classifiers to replace a pre-trained ResNet-18 on the CIFAR-10 dataset. The mod-
ified model is Flin ◦Ffeature ◦VVT , where Flin is a randomly sampled linear classifier, Ffeature

is the pre-trained feature extractor, V ∈ R
d×r is a basis of a r-dimensional linear embedding

subspace, VVT is the orthogonal projection operator. As shown in Fig. 7 (i) and (g), as
the dimension r of the embedding subspace increases, the model robustness against both
`∞ and `2 perturbations decreases. This validates Proposition 3 since

√
r
d
approaches to

1 as r increases, and the manifold margin is close to the Euclidean margin, which means
the gained robustness decreases. Furthermore, the margin variation does not significantly
affect the model performance on clean data, as shown in Fig. 7 (h).

Analysis of numerical approximation errors. In the proposed closed-loop control
method, both numerical errors from estimating the ground-truth manifold and solving the
PMP can affect the final result.

When a manifold learning setting is chosen, the set of embedding manifolds that can
be generated from this method may not include the ground-truth manifold. As shown in
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Beyond Robustness. The key idea of self-healing is to automatically fix the possible
errors or weakness of a neural network, with or without a performance monitor. This
idea may be extended to address other fundamental issues in AI, such as AI fairness, where
machine learning models perform unequally against minority subpopulations (Amodei et al.,
2016). Specifically, one can construct fair embedding manifolds that exclude the sensitive
attributes. This can be done by modifying the objective function of generating embedding
manifolds in (4) by adding fairness constraints, such as equal opportunity (Hardt et al.,
2016).

Self-healing at the Hardware Level/Computing Platforms. The self-healing per-
spective brings in many opportunities and challenges at the hardware level. On one hand,
the proposed self-healing can cause extra hardware cost in the inference. Therefore, it is
important to investigate hardware-efficient self-healing mechanisms, which can provide self-
healing capability with minimal hardware overhead. On the other hand, many imperfections
in AI hardware may also be addressed via self-healing. Examples include process variations
in AI ASIC chip design and software/hardware errors in distributed AI platforms.

Our vision is visualized in Fig. 9. This work is a proof-of-concept demonstration of
self-healing for AI robustness, and many more research problems need to be investigated in
the future.

8. Conclusion

This paper has improved the robustness of neural networks from a new self-healing perspec-
tive. By formulating the problem as a closed-loop control, we show that it is possible for a
neural network to automatically detect and fix the possible errors caused by various pertur-
bations and attacks. We have provided a margin-based analysis to explain why the designed
control loss function can improve robustness. We have also presented efficient numerical
solvers to mitigate the computational overhead in inference. Our theoretical analysis has
also provided a strict error bound of the neural network trajectory error under data per-
turbations. Numerical experiments have shown that this method can significantly increase
the robustness of neural networks under various types of perturbations or attacks that were
unforeseen in the training process. As pointed out in Section 7, this self-healing method
may be extended to investigate other fundamental issues (such as fairness and hardware
reliability) of neural networks in the future.
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Appendix A. Manifold Projection On Classifier Margin

Proposition 7 Let M ⊂ R
d be a r-dimensional (r ≤ d) linear subspace that contains

the ground-truth manifold M∗, such that M∗ ⊂ M, F (·) a linear classifier with random

decision boundary, then E

[

de(F (·))
dM(F (·))

]

≤
√

r
d
.

Proof We define the ground-truth manifold as follows,

M∗ = {x : Ax = 0, |cTx| ≥ dmargin},

where A defines a subspace where the ground-truth manifold belongs, c ∈ R
d is a unit

vector and |cTx| ≥ dmargin defines two half-spaces. That is, the ground-truth manifold M∗

consists of two half-spaces corresponding to the two classes. Let M be an linear subspace
M = {x : Ax = 0}, in which case, M∗ ⊂ M. We consider a linear classifier with a random
decision boundary. Let B be a hyperplane that represents the decision boundary of this
linear classifier, and n̂ a d-dimensional normal vector such that n̂TB = 0. A random linear
classifier can be represented by n̂ ∼ N (0, 1

d
I).

Manifold and Euclidean margins attain the same x∗. In this linear case, the fol-
lowing shows that the manifold margin dM(F (·)) in Eq. (6) is equivalent to de(F ◦ E(·))
in Eq. (7) where E(·) is the orthogonal projection onto the subspace M. The embedding
manifold M is a linear subspace, the geodesics defined on the manifold are equivalent to
the Euclidean norm,

RM(a,b) := inf
γ∈ΓM(a,b),

∫ 1

0

√

〈 γ′(t), γ′(t)〉γ(t)dt,

= ‖a− b‖2,

the manifold margin can be shown as follows,

dM(F (·)) =
1

2
inf

x1,x2∈M∗
RM(x1,x2), s.t. F (x1) 6= F (x2),

=
1

2
inf

x1,x2∈M∗
‖x1 − x2‖2, s.t. F (x1) 6= F (x2).

Furthermore,

de(F ◦ E(·)) = inf
x∈M∗

inf
δ∈Rd

‖δ‖2, s.t. F ◦ E(x) 6= F ◦ E(x+ δ),

= inf
x∈M∗

inf
δ∈Rd

‖δ‖2, s.t. F (x) 6= F (x+ E(δ)),

= inf
x∈M∗

inf
δ∈Rd

inf
δ′=E(δ)

‖δ′‖2, s.t. F (x) 6= F (x+ δ′),

= inf
x∈M∗

inf
δ′∈M

‖δ′‖2, s.t. F (x) 6= F (x+ δ′),

=
1

2
inf

x1,x2∈M∗
‖x1 − x2‖2, s.t. F (x1) 6= F (x2),

= dM(F (·)).
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where the embedding function E(·) is replaced by restricting δ ∈ M.

The Euclidean margin in Eq. (7) can be shown as follows,

de(F (·)) = inf
x∈M∗

‖xT n̂‖2.

Since E(·) is a linear orthogonal projection, recall that dM(F (·)) = de(F ◦ E(·)),

dM(F (·)) = de(F ◦ E(·)) = inf
x∈M∗

‖xTE(n̂)‖2
‖E(n̂)‖2

= inf
x∈M∗

‖(E(x))T n̂‖2
‖E(n̂)‖2

= inf
x∈M∗

‖xT n̂‖2
‖E(n̂)‖2

,

since x ∈ M∗ ∈ M, the orthogonal projection E(x) = x. Therefore, the manifold margin
is the Euclidean margin divided by a constant scalar ‖E(n̂)‖, dM(F (·)) and de(F (·)) are
achieved at the same optimum x∗.

Relationship between manifold and Euclidean margins. Let V ∈ R
d×r be a or-

thonormal basis of the r-dimensional embedding subspace. An angle θ between the classifier
hyperplane and the embedding subspace describes the relationship between de(F (·)) and
dM(F (·)),

E
[
sin θ

]
= E

[
de(F (·))

dM(F (·))

]

.

Denote ω as the angle between n̂ and the embedding subspace, θ = π
2 − ω,

sin θ = cosω = ‖VTn‖.

Moreover, when the linear classifier forms a random decision boundary, we consider its
orthogonal normal vector n̂ ∼ N (0, 1

d
I). Therefore, VT n̂ ∼ N (0, 1

d
VTV).

E
[
‖VT n̂‖22

]
=

1

d
Tr(VTV) =

r

d
.

Then

E
[
(sin θ)2

]
= E

[
(cosω)2

]
=

r

d
,

and from Jensen’s inequality,

(
E
[
sin θ

]
]
)2

≤ E
[
(sin θ)2

]
.

Therefore,

E

[
de(F (·))

dM(F (·))

]

≤

√
r

d
.
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Appendix B. Error Estimation of Linear System

This section derives the error estimation of the closed-loop control framework in linear
cases. Given a sequence of states {xt}

T−1
t=0 , such that xt ∈ Mt for all t, we denote θt as the

linearized transformation of the nonlinear transformation Ft(·) centered at xt. We represent
the tth embedding manifold Mt = f−1

t (0), where ft(·) : R
d → R

d−r is a submersion of class
C2. Recall Proposition 14, the kernel of f ′

t(xt) is equivalent to TxtMt, and the orthogonal
projection onto TxtMt (Eq. (16)) is

Pt := I− f ′
t(xt)

T (f ′
t(xt)f

′
t(xt)

T )−1f ′
t(xt),

and the orthogonal projection onto orthogonal complement of TxtMt is

Qt = I−Pt = f ′
t(xt)

T (f ′
t(xt)f

′
t(xt)

T )−1f ′
t(xt).

For simplicity, a orthonormal basis of TxtMt is denoted as Vt ∈ R
d×d, in which case, the

orthogonal projection Pt = VtV
T
t , and Qt = I−VtV

T
t .

We consider a set of tangent spaces {TxtMt}
T−1
t=0 , that is, each TxtMt is the tangent

space of Mt at xt. Recall the running loss in Eq. (2), the linear setting uses projection onto
a tangent space rather than a nonlinear embedding manifold.

J(xt,ut) =
1

2
‖Qt(xt + ut)‖

2
2 +

c

2
‖ut‖

2
2, (11)

it measures the magnitude of the controlled state xt+ut within the orthogonal complement
of TxtMt, and the magnitude of applied control ut.

The optimal feedback control under Eq. (11) is defined as

uP
t (xt) = argmin

ut

J(xt,ut),

it admits an exact solution by setting the gradient of performance index (Eq. (11)) to 0.

∇uJ(xt,ut) = ∇u

(
1

2
‖Qt(xt + ut)‖

2
2 +

c

2
‖ut‖

2
2

)

,

= QT
t Qtxt +QT

t Qtut + c · ut,

which leads to the exact solution of uP
t (Eq. (18)) as

uP
t = −(c · I+QT

t Qt)
−1QT

t Qtxt = −Ktxt, (12)

where the feedback gain matrix Kt = (c · I+QT
t Qt)

−1QT
t Qt. Thus, the one-step feedback

control can be represented as uP
t = −Ktxt.

Given a sequence {xt}
T−1
t=0 , we denote {qε,t}

T−1
t=0 as another sequence of states resulted

from the linear system, qε,0 = x0+z, for some perturbation z, and {qε,t}
T−1
t=0 as the adjusted

states by the linear control,

qε,t+1 = θt(qε,t + uP
t ),

= θt(I−Kt)qε,t.

29



Chen, Li, Zhang

The difference between the controlled system applied with perturbation at the initial
condition and the uncontrolled system without perturbation is as follows,

qε,t+1 − xt+1 = θt(qε,t + ut − xt),

= θt(qε,t −Ktqε,t − xt). (13)

The control objective is to minimize the state components that lie in the orthogonal com-
plement of the tangent space. When the data locates on the embedding manifold, xt ∈ Mt,
this results in Qtxt = 0, consequently, its feedback control Ktxt = 0. The state difference
of Eq. (13) can be further shown by adding a 0 term of (θtKtxt)

qε,t+1 − xt+1 = θt(I−Kt)qε,t − θtxt + θtKtxt,

= θt(I−Kt)(qε,t − xt). (14)

In the following, we show a transformation on (I−Kt) based on its definition.

Lemma 8 For t ≥ 0, we have

I−Kt = α · I+ (1− α) ·Pt,

where Pt := Vr
t (V

r
t )

T , which is the orthogonal projection onto Zt
‖, and α := c

1+c
such that

α ∈ [0, 1].

Proof Recall that Kt = (c · I + QT
t Qt)

−1QT
t Qt, and Qt = I − Vr

t (V
r
t )

T , Qt can be
diagonalized as following

Qt = Vt










0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
0 0 · · · 0 1










VT
t ,

where the first r diagonal elements have a common value of 0 and the last (d− r) diagonal
elements have a common value of 1. Furthermore, the feedback gain matrix Kt can be
diagonalized as

Kt = Vt










0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1
1+c

0

0 0 · · · 0 1
1+c










VT
t ,

where the last (d − r) diagonal elements have a common value of 1
1+c

. The control term
(I−Kt) thus can be represented as

I−Kt = Vt










1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · c
1+c

0

0 0 · · · 0 c
1+c










VT
t ,
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where the first r diagonal elements have common value of 1 and the last (d − r) diagonal
elements have common value of c

1+c
. By denoting the projection of first r columns as Vr

t

and last (d− r) columns as V̂r
t , it can be further shown as

I−Kt = Vr
t (V

r
t )

T +
c

1 + c

(
V̂r

t (V̂
r
t )

T
)
,

= Pt + α
(
I−Pt

)
,

= α · I+ (1− α) ·Pt.

Lemma 9 Define for t ≥ 0

{

P0
t := Pt,

P
(s+1)
t := θ−1

t−s−1P
s
tθt−s−1, s = 0, 1, . . . , t− 1,

for 0 ≤ s ≤ t. Then

1. Ps
t is a projection.

2. Ps
t is a projection onto Zt−s

‖ , i.e. range(Ps
t ) = Zt−s

‖ .

Proof

1. We prove it by induction on s for each t. For s = 0, P0
t = Pt, which is a projection by

its definition. Suppose it is true for s such that Ps
t = Ps

tP
s
t , then for (s+ 1),

(Ps+1
t )2 =

(
θ−1
t−s−1P

s
tθt−s−1

)2
,

= θ−1
t−s−1

(
Ps

t

)2
θt−s−1,

= θ−1
t−s−1P

s
tθt−s−1,

= Ps+1
t .

2. We prove it by induction on s for each t. For s = 0, P0
t = Pt, which is the orthogonal

projection onto Zt
‖. Suppose that it is true for s such that Ps

t is a projection onto Zt−s
‖ ,

then for (s+ 1), Ps+1
t = θ−1

t−s−1P
s
tθt−s−1, which implies

range(Ps+1
t ) = range(θ−1

t−s−1P
s
t ),

= {θ−1
t−s−1x : x ∈ Zt−s

‖ },

= Zt−s−1
‖ .

The following Lemma reformulates the state difference equation.
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Lemma 10 Define for 0 ≤ s ≤ t,

Gs
t := α · I+ (1− α)Ps

t .

The state difference equation, qε,t+1 − xt+1 = θt(I−Kt)(qε,t − xt), can be written as

qε,t − xt = (θt−1θt−2 · · ·θ0)(G
t−1
t−1G

t−2
t−2 · · ·G

0
0)(qε,0 − x0), t ≥ 1.

Proof We prove it by induction on t. For t = 1,

qε,1 − x1 = θ0(I−K0)(qε,0 − x0),

= θ0(α · I+ (1− α) ·P0)(qε,0 − x0), Lemma 8,

= θ0G
0
0(qε,0 − x0).

Recall the definitions of P
(s+1)
t := θ−1

t−s−1P
s
tθt−s−1, and Gs

t := α · I+ (1− α)Ps
t ,

Gs+1
t = α · I+ (1− α) ·P

(s+1)
t ,

= α · I+ (1− α) · θ−1
t−s−1P

s
tθt−s−1,

= θ−1
t−s−1

(
α · I+ (1− α) ·Ps

t

)
θt−s−1,

= θ−1
t−s−1G

s
tθt−s−1,

which results in θt−s−1G
(s+1)
t = Gs

tθt−s−1. Suppose that it is true for (qε,t − xt),

qε,t+1 − xt+1 = θt(I−Kt)(qε,t − xt),

= θt(α · I+ (1− α) ·Pt)(qε,t − xt), Lemma 8,

= θtG
0
t (θt−1θt−2 · · ·θ0)(G

t−1
t−1G

t−2
t−2 · · ·G

0
0)(qε,0 − x0),

= (θtθt−1)G
1
t (θt−2θt−3 · · ·θ0)(G

t−1
t−1G

t−2
t−2 · · ·G

0
0)(qε,0 − x0),

= (θtθt−1 · · ·θ0)(G
t
tG

t−1
t−1 · · ·G

0
0)(qε,0 − x0).

Lemma 11 For t ≥ 1,

G
(t−1)
t−1 G

(t−2)
t−2 · · ·G0

0 = αt · I+ (1− α)
t−1∑

s=0

αsPs
s.

Proof We prove it by induction on t. Recall the definition of Gs
t := α · I + (1 − α) · Ps

t .
When t = 1,

G0
0 = α · I+ (1− α) ·P0

0.

Suppose that it is true for t such that

G
(t−1)
t−1 G

(t−2)
t−2 · · ·G0

0 = αt · I+ (1− α)
t−1∑

s=0

αsPs
s,
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for (t+ 1),

Gt
tG

(t−1)
t−1 · · ·G0

0

= Gt
t(α

t · I+ (1− α)

t−1∑

s=0

αsPs
s),

= (α · I+ (1− α) ·Pt
t)(α

t · I+ (1− α)

t−1∑

s=0

αsPs
s),

= αt+1 · I+ αt(1− α)Pt
t + (1− α)2

t−1∑

s=0

αs ·Pt
tP

s
s + α(1− α)

t−1∑

s=0

αs ·Ps
s.

Recall Lemma 9, range(Pt
t) = range(Ps

s) = Z0
‖ . Since Pt

t and Ps
s are projections onto the

same space, Pt
tP

s
s = Ps

s. Therefore,

Gt
tG

(t−1)
t−1 · · ·G0

0 = αt+1 · I+ αt(1− α) ·Pt
t + (1− α)

t−1∑

s=0

αs ·Ps
s,

= αt+1 · I+ (1− α)
t∑

s=0

αs ·Ps
s.

Lemma 12 Let P = VVT be the orthogonal projection onto a subspace D, and θ to be
invertible. Denote by P̂ the orthogonal projection onto θD := {θx : x ∈ D}. Then

‖θ−1P̂θ −P‖2 ≤
(
1 + κ(θ)2

)
· ‖I− θTθ‖2.

Proof

P̂ = θV
[
(θV)T (θV)

]−1
(θV)T ,

= θV
[
VTθTθV

]−1
VTθT .
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Furthermore, the difference between the oblique projection and the orthogonal projection
can be bounded by the following

‖θ−1P̂θ −P‖2 = ‖V
[
VTθTθV

]−1
VTθTθ −VVT ‖2,

≤ ‖V
[
VTθTθV

]−1
VTθTθ −VVTθTθ‖2 + ‖VVTθTθ −VVT ‖2,

≤ ‖V
(
[VTθTθV]−1 − I

)
VT ‖2 · ‖θ

Tθ‖2 + ‖θTθ − I‖2,

≤ ‖[VTθTθV]−1‖2 · ‖I−VTθTθV‖2 · ‖θ
Tθ‖2 + ‖θTθ − I‖2,

≤ ‖[VTθTθV]−1‖2 · ‖I− θTθ‖2 · ‖θ
Tθ‖2 + ‖θTθ − I‖2,

=
(
λmin(V

TθTθV)
)−1

· ‖I− θTθ‖2 · ‖θ
Tθ‖2 + ‖θTθ − I‖2,

=
(

inf
‖x‖2=1

xTVTθTθVx
)−1

· ‖I− θTθ‖2 · ‖θ
Tθ‖2 + ‖θTθ − I‖2,

≤
(

inf
‖x′‖2=1

(x′)TθTθx′
)−1

· ‖I− θTθ‖2 · ‖θ
Tθ‖2 + ‖θTθ − I‖2,

=
(
λmin(θ

Tθ)
)−1

· ‖I− θTθ‖2 · ‖θ
Tθ‖2 + ‖θTθ − I‖2,

= ‖(θTθ)−1‖2 · ‖I− θTθ‖2 · ‖θ
Tθ‖2 + ‖θTθ − I‖2,

=
(
1 + κ(θ)2

)
· ‖I− θTθ‖2.

Corollary 13 Let t ≥ 1. Then for each s = 0, 1, · · · , t, we have

‖Ps
s −P0‖2 ≤

(
1 + κ(θs)

2
)
· ‖I− θ

T

s θs‖2,

where

• θs := θs−1 · · ·θ0, s ≥ 1,

• θs := I, s = 0.

The following theorem provides an error estimation for the linear dynamic system with
linear controls.

Theorem 4 For t ≥ 1, we have an error estimation for the linear system

‖qε,t − xt‖
2
2 ≤ ‖θt−1 · · ·θ0‖

2
2 ·

(

α2t‖z⊥‖22 + ‖z‖‖22 + γt‖z‖
2
2

(
γtα

2(1− αt−1)2 + 2(α− αt)
)
)

.

where γt := max
s≤t

(
1 + κ(θs−1 · · ·θ0)

2
)
‖I − (θs−1 · · ·θ0)

T (θs−1 · · ·θ0)‖2, κ(θ) is condition

number of θ, α = c
1+c

, and c represents the control regularization. In particular, the equality

‖qε,t − xt‖
2
2 = α2t‖z⊥‖22 + ‖z‖‖22

holds when all θt are orthogonal.
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Proof The input perturbation z = qε,0 − x0 can be written as z = z‖ + ·z⊥, where z‖ ∈ Z‖

and z⊥ ∈ Z⊥, where z‖ and z⊥ are vectors such that

• z‖ · z⊥ = 0 almost surely.

• z‖, z⊥ have uncorrelated components.

Recall Lemma 10,

‖qε,t − xt‖
2
2 = ‖(θt−1θt−2 · · ·θ0)(G

t−1
t−1 · · ·G

0
0)z‖

2
2,

≤ ‖θt−1θt−2 · · ·θ0‖
2
2 · ‖(G

t−1
t−1 · · ·G

0
0)z‖

2
2, (15)

For the term ‖(Gt−1
t−1G

t−2
t−2 · · ·G

0
0)z‖

2
2, recall Lemma 11,

‖(Gt−1
t−1 · · ·G

0
0)z‖

2
2 = ‖

(

αt · I+ (1− α)

t−1∑

s=0

αs ·Ps
s

)

z‖22,

= ‖αtz+ (1− α)

t−1∑

s=0

αsP0z+ (1− α)

t−1∑

s=0

αs(Ps
s −P0)z‖

2
2,

= ‖αtz+ (1− αt)z‖ + (1− α)

t−1∑

s=0

αs(Ps
s −P0)z‖

2
2,

in the above, P0 is an orthogonal projection on t = 0 (input data space), therefore, P0z = z‖.
Furthermore, when s = 0, Ps

s −P0 = 0. Thus,

‖(Gt−1
t−1 · · ·G

0
0)z‖

2
2

= α2t‖z‖22 + (1− αt)2‖z‖‖22 + (1− α)2
t−1∑

s,q=1

αsαqzT (Ps
s −P0)

T (Pq
q −P0)z

+ 2αt(1− αt)‖z‖‖22 + 2αt(1− α)

t−1∑

s=1

αszT (Ps
s −P0)z

+ 2(1− αt)(1− α)

t−1∑

s=1

αs(z‖)T (Ps
s −P0)z,

= α2t‖z⊥‖22 +
(
α2t + 2αt(1− αt) + (1− αt)2

)
‖z‖‖22

+ (1− α)2
t−1∑

s,q=1

αsαqzT (Ps
s −P0)

T (Pq
q −P0)z+ 2αt(1− α)

t−1∑

s=1

αszT (Ps
s −P0)z

+ 2(1− αt)(1− α)
t−1∑

s=1

αs(z‖)T (Ps
s −P0)z,

= α2t‖z⊥‖22 + ‖z‖‖22 + (1− α)2
t−1∑

s,q=1

αsαqzT (Ps
s −P0)

T (Pq
q −P0)z

+ 2αt(1− α)

t−1∑

s=1

αszT (Ps
s −P0)z+ 2(1− αt)(1− α)

t−1∑

s=1

αs(z‖)T (Ps
s −P0)z.
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Using Corollary 13, we have

•

zT (Ps
s −P0)z ≤ ‖z‖22 · ‖P

s
s −P0‖,

≤ γt‖z‖
2
2.

•

zT (Ps
s −P0)

T (Pq
q −P0)z ≤ ‖z‖22 · ‖P

s
s −P0‖ · ‖P

q
q −P0‖,

≤ γ2t ‖z‖
2
2.

•

(z‖)T (Ps
s −P0)z ≤ γt‖z

‖‖2 · ‖z‖2,

≤ γt‖z‖
2
2.

Thus, we have

‖(Gt−1
t−1 · · ·G

0
0)z‖

2
2 ≤ α2t‖z⊥‖22 + ‖z‖‖22 + α2(1− αt−1)2γ2t ‖z‖

2
2 + 2αt+1(1− αt−1)γt‖z‖

2
2

+ 2α(1− αt)(1− αt−1)γt‖z‖
2
2,

= α2t‖z⊥‖22 + ‖z‖‖22 + γt‖z‖
2
2

(
γtα

2(1− αt−1)2 + 2(α− αt)
)
.

Recall the error estimation in Eq. (15),

‖qε,t − xt‖
2
2 ≤ ‖θt−1θt−2 · · ·θ0‖

2
2 · ‖(G

t−1
t−1 · · ·G

0
0)z‖

2
2,

≤ ‖θt−1 · · ·θ0‖
2
2 ·

(

α2t‖z⊥‖22 + ‖z‖‖22 + γt‖z‖
2
2

(
γtα

2(1− αt−1)2 + 2(α− αt)
)
)

.

In the specific case, when all θt are orthogonal,

γt : = max
s≤t

(
1 + κ(θs)

2
)
‖I− θ

T

s θs‖2

= 0.

Thus,

‖qε,t − xt‖
2
2 = α2t‖z⊥‖22 + ‖z‖‖22.

Appendix C. Error Estimation of Nonlinear System

In this section, we analyze the error ‖xε,t − xt‖2 via the following steps:

• Appendix C.1 considers two solutions of the running loss Eq. (2) where the projections
are defined based on an embedding manifold and a tangent space respectively. An
O(ε2) error estimation is derived for the difference between those two solutions.

• Appendix C.2 provides an O(ε2) solution for the linearization error (defined later).

• Finally, Appendix C.3 derives an upper bound for the total error ‖xε,t − xt‖2.
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C.1 Analysis On Nonlinear Manifold Projection

Definition for the tangent space TxM based on the submersion f(·).

Proposition 14 Let M ⊂ R
d be an r-dimensional smooth manifold and x ∈ M. Given a

submersion f(·) : Rd → R
d−r of class C1, such that M = f−1(0). Then the tangent space

at any x ∈ M is the kernel of the linear map f ′(x), i.e., TxM = Kerf ′(x).

Proof For any x ∈ M and v ∈ TxM, suppose that there is an open interval J ∈ R

such that 0 ∈ J , and a smooth curve γ : J → M such that γ(0) = x, γ′(0) = v. Since
f(x) = 0, ∀x ∈ M, and γ(λ) ∈ M, ∀λ ∈ J ,

f ◦ γ(λ) = 0, λ ∈ J .

Therefore, f ◦ γ(λ) is a constant map for all λ ∈ J ,

0 = (f ◦ γ)′(0) = f ′(γ(0))γ′(0) = f ′(x)v,

since v ∈ TxM is arbitrarily chosen from TxM, f ′(x)v = 0, ∀v ∈ TxM. Therefore,
TxM ∈ kerf ′(x) (the kernel of linear map f ′(x)).

Recall that f : Rd → R
d−r is a submersion, its differential f ′(x) is a surjective linear

map with constant rank for all x ∈ M.

dim(kerf ′(x)) = dim(Rr)− rank(f ′(x)) = d− (d− r) = r.

Since TxM ∈ kerf ′(x) and dim(TxM) = dim(kerf ′(x)), TxM = kerf ′(x).

Definitions for the control solutions of running loss. Given a smooth manifold M,
we can attach to every point x ∈ M a tangent space TxM. Proposition 14 has shown
the equivalence between the kernel of f ′(x) and the tangent space TxM. Therefore, f ′(x)
consists a basis of the complement of the tangent space TxM. For simplicity, we assume
the submersion to be normalized such that the columns of f ′(x) consist of a orthonormal
basis. In this case, the orthogonal projection onto TxM can be defined as following,

Px := I− f ′(x)T f ′(x). (16)

In general cases, when f ′(x) does not consist of an orthonormal basis, the orthogonal
projection in Eq. (16) can be defined by adding a scaling factor as following,

Px := I− f ′(x)T (f ′(x)f ′(x)T )−1f ′(x).

The orthogonal projection onto the orthogonal complement of TxM is defined as follows,

Qx := I−Px = f ′(x)T f ′(x).

Recall that a general embedding manifold is defined by a submersion, such that M =
f−1(0). In the linear case, an embedding manifold is considered as a linear sub-space. This
linear sub-space can be defined by a submersion M = (f ′(x))−10 = f ′(x)T0, in which case,
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the submersion is a linear operator f ′(x). In this linear case, we denote uP
x (xε) as the

minimizer of running loss L(xε,u, E(·)) in Eq. (2),

uP
x (xε) = arg min

u∈Rd

1

2
· ‖f ′(x)(xε + u)‖22 +

c

2
· ‖u‖22. (17)

Notice (xε + uP
x (xε)) = Px(xε) when the regularization c = 0, uP

x (xε) admits an exact
solution

uP
x (xε) = −(c · I+Qx)

−1Qxxε = −(c · I+ f ′(x)T f ′(x))−1f ′(x)T f ′(x)xε. (18)

In the nonlinear case, let M ⊂ R
d be an embedding manifold such that M = f−1(0), for

a submersion f(·) of class C2, a constant σ be a uniform upper bound on the Hessian of f(·),
such that supx∈Rd‖f ′′(x)‖∗ ≤ σ. For simplicity, we assume a normalized submersion f(·) to
be where f ′(x) is a orthonormal basis for the orthogonal complement of tangent space at
x ∈ M. In this case, we denote uM(xε) as the minimizer of the running loss L(xε,u, E(·))
in Eq. (2),

uM(xε) = arg min
u∈Rd

1

2
· ‖f(xε + u)‖22 +

c

2
· ‖u‖22. (19)

In general, when the submersion is not normalized, we can always normalize it by replacing
f(x) as f ′(x)T (f ′(x)f ′(x)T )−1f(x), where f ′(x)T (f ′(x)f ′(x)T )−1 is a scaling factor.

Error bound for linear and nonlinear control solutions. For a 3-dimensional tensor,
e.g. the Hessian f ′′(x), we define the 2-norm of f ′′(x) as

‖f ′′(x)‖∗ := sup
z 6=0

‖f ′′(x)i,j,kzjzk‖2
‖z‖22

.

The following proposition shows an error bound between uM(xε) and uP
x (xε).

Proposition 15 Consider a data point xε = x + ε · v, where x ∈ M, ‖v‖2 = 1 and ε
sufficiently small 0 ≤ ε ≤ 1. The difference between the regularized manifold projection
uM(xε) and the regularized tangent space projection uP

x (xε) is upper bounded as following,

‖uM(xε)− uP
x (xε)‖2 ≤ 4ε2σ(1 + 2σ).

Proof Recall the definition of regularized manifold projection in Eq. (19), the optimal
solution uM(xε) admits a exact solution by setting the gradient of Eq. (19) to 0,

∇u

(
1

2
· ‖f(xε + u)‖22 +

c

2
· ‖u‖22

)

=

(

f ′(x+ εv + u)

)T(

f(x+ εv + u)

)

+ c · u. (20)

The control u is in the same order as the perturbation magnitude ε, we parametrize u = ε·µ.
By applying Taylor series expansion centered at ε = 0, and f(x) = 0 since x ∈ M,

(

f ′(x+ εv + εµ)

)T(

f(x+ εv + εµ)

)

+ c · ε · µ

=

(

f ′(x)+ε
(
f ′′(xµ)i,j,k(v+µ)k

)
)T(

εf ′(x)(v+µ)+ε2
(
f ′′(xµ)i,j,k(v+µ)j(v+µ)k

)
)

+c·ε·µ,
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since µ is a variable dependent on u, the Hessian of f(·) is a function that depends on µ.
There exists a xµ satisfying the following,

f(x+ εv + εµ) = f(x) + εf ′(x)(v + µ) + f ′′(xµ)i,j,k(v + µ)j(v + µ)k.

Furthermore, recall that u = ε · µ,

(

f ′(x)+
(
f ′′(xµ)i,j,k(εv+u)k

)
)T(

f ′(x)(εv+u)+
(
f ′′(xµ)i,j,k(εv+u)j(εv+u)k

)
)

+c·u,

= f ′(x)T f ′(x)(εv + u) + c · u+ f ′(x)T
(
f ′′(xµ)i,j,k(εv + u)j(εv + u)k

)

+

(
(
f ′′(xµ)i,j,k(εv+u)k

)
)T(

f ′(x)(εv+u)+
(
f ′′(xµ)i,j,k(εv+u)j(εv+u)k

)
)

.

Setting the above to 0 results in an implicit solution for uM(xε),

uM(xε) = −

(

f ′(x)T f ′(x) + cI

)−1(

εf ′(x)T f ′(x)v +E1 +E2

)

,

where

E1 = f ′(x)T
(
f ′′(xµ)i,j,k(εv + uM(xε))j(εv + uM(xε))k

)
,

E2 =
(

f ′′(xµ)i,j,k(εv+u)k

)T(

f ′(x)(εv+u)+f ′′(xµ)i,j,k(εv+u)j(εv+u)k

)

.

Note that uM(xε) is an implicit solution since E1 and E2 both depend on the solution
u. Recall the definition of uP

x (xε) in Eq. (18),

uP
x (xε) = −(c · I+Qx)

−1Qxxε,

= −(c · I+Qx)
−1Qx(x+ ε · v),

= −ε

(

c · I+ f ′(x)T f ′(x)

)−1

f ′(x)T f ′(x)v,

the difference between uM(xε) and uP
x (xε),

‖uM(xε)− uP
x (xε)‖2 ≤ ‖

(
f ′(x)T f ′(x) + c · I

)−1
‖2 · ‖E1 +E2‖2.

Let us simplify the above inequality.

• For any non-negative c,

‖
(
f ′(x)T f ′(x) + c · I

)−1
‖2 = ‖

(
f ′(x)T f ′(x) + c · I

)−1
‖2 ≤ 1.

• Recall the gradient of the running loss (Eq. (20)),

(

f ′(x+εv+εµ)

)T(

f(x+εv+εµ)

)

+c ·ε ·µ =

(

f ′(x+εv+u)

)T(

f ′(p)(εv+u)

)

+c ·u,
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where p = αx+ (1− α)(x+ εv + uM) for α ∈ [0, 1] such that

f(x+ εv + εµ) = f(x) + ε · f ′(p)(εv + εµ).

Setting the gradient of running loss to 0 results in the optimal solution uM(xε),

uM(xε) = −

(
(
f ′(x+ εv + u)

)T
f ′(p) + cI

)−1(
(
f ′(x+ εv + u)

)T
f ′(p)

)

(εv).

Since f ′(·) contains orthonormal basis, the solution ‖uM(xε)‖ can be upper bounded by
the follows,

‖uM(xε)‖ ≤
∥
∥

(
(
f ′(x+ εv + u)

)T
f ′(p) + cI

)−1∥
∥
2
·
∥
∥

(
(
f ′(x+ εv + u)

)T
f ′(p)

)
∥
∥
2
(ε),

≤
∥
∥
(
f ′(x+ εv + u)

)T
f ′(p)

∥
∥2

2
· (ε),

≤ ‖f ′(x+ εv + u)T ‖22 · ‖f
′(p)‖22 · (ε),

≤ ε. (21)

• From above,

‖εv + uM(xε)‖
2
2 = ‖εv‖22 + 2‖εv‖2 · ‖u

M(xε)‖2 + ‖uM(xε)‖
2
2 ≤ 4ε2,

‖εv + uM(xε)‖
3
2 ≤ 8ε3.

• Recall the f ′(x) is a orthnormal basis, ‖f ′(x)‖2 ≤ 1, the error terms can be bounded as
follows,

‖E1‖2 = ‖f ′(x)T
(
f ′′(xµ)i,j,k(εv + uM(xε))j(εv + uM(xε))k

)
‖2,

≤ ‖εv + uM(xε)‖
2
2 · ‖f

′′(xµ)‖∗ · ‖f
′(x)T ‖2,

≤ 4ε2.

‖E2‖2 =
∥
∥
∥

(

f ′′(xµ)i,j,k(εv+u)k

)T(

f ′(x)(εv+u)+f ′′(xµ)i,j,k(εv+u)j(εv+u)k

)∥
∥
∥
2

≤ ‖εv+uM(xε)‖
2
2·‖f

′′(xµ)‖∗·‖f
′(x)‖2+‖εv+uM(xε)‖

3
2·‖f

′′(xµ)‖2∗,

≤ 4ε2σ + 8ε3σ2.

Therefore, for sufficiently small ε, such that ε ≤ 1, the difference

‖uM(xε)− uP
x (xε)‖2 ≤ ‖E1‖2 + ‖E2‖2 ≤ 4ε2σ(1 + 2σ).

The above proposition shows that the error between solutions of running loss with tangent
space and nonlinear manifold is of order O(ε2), this result will serve to derive the error
estimation in the nonlinear case.
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C.2 Analysis On Linearization Error

This section derives an O(ε2) error from linearizing the nonlinear system Ft(xt) and non-
linear embedding function Et(xt). We represent the tth embedding manifold Mt = f−1

t (0),
where ft(·) : R

d → R
d−r is a submersion of class C2. Recall the definition of the 2-norm of

a 3-dimensional tensor,

‖f ′′(x)‖∗ := sup
z 6=0

‖f ′′(x)i,j,kzjzk‖2
‖z‖22

,

we consider a uniform upper bound on the submersion supx∈Rd‖f ′′
t (x)‖∗ ≤ σt, and a uniform

upper bound on the nonlinear transformation supx∈Rd‖F ′′
t (x)‖∗ ≤ βt.

Recall the definition of control in linear case. Recall Proposition 14, the kernel of
f ′
t(xt) is equivalent to TxtMt. When the submersion ft(·) is normalized where the columns
of f ′

t(xt) consist of a orthonormal basis, the orthogonal projection onto TxtMt (Eq. (16)) is

Pxt
:= I− f ′

t(xt)
T f ′

t(xt),

and the orthogonal projection onto orthogonal complement of TxtMt is Qxt = I−Pxt . In
this linear case, the running loss in Eq. (2) L(xt,ut, Et(·)) is defined as

L(xε,ut, Et(·)) =
1

2
‖f ′

t(xt)(xε + ut)‖
2
2 +

c

2
‖ut‖

2
2.

Its optimal solution uP
xt
(xε) (Eq. (18)) is

uP
xt
(xε) = −(c · I+ f ′

t(xt)
T f ′

t(xt))
−1f ′

t(xt)
T f ′

t(xt)xε = −Kxtxε, (22)

where the feedback gain matrix Kxt = (c · I+ f ′
t(xt)

T f ′
t(xt))

−1f ′
t(xt)

T f ′
t(xt).

Definition of linearized system. For the nonlinear transformation Ft(·), the optimal
solution is uMt(xε,t) of running loss in Eq. (2) equipped with an embedding manifold Mt

is defined in Eq. (19). Controlled nonlinear dynamics is

xε,t+1 = Ft(xε,t + uMt(xε,t)).

By definition in the running loss of Eq. (19), uMt(xt) = 0 when xt ∈ Mt. Therefore, we
denote a sequence {xt}

T−1
t=0 as the unperturbed states such that

xt+1 = Ft(xt), xt ∈ Mt, ∀t = 0, 1, ..., T − 1.

Given the unperturbed sequence {xt}
T−1
t=0 , we denote {θt}

T−1
t=0 as the Jacobians of {Ft(·)}

T−1
t=0

such that
θt = F ′

t(xt), ∀t = 1, 2, ..., T − 1,

and {TxtMt}
T−1
t=0 as the tangent spaces such that TxtMt is the tangent space of Mt at

xt ∈ Mt.
When a perturbation z is applied on initial condition, xε,0 = x0 + z, the difference

between the controlled system of perturbed initial condition and {xt}
T−1
t=0 is

xε,t+1 − xt+1 = Ft(xε,t + uMt(xε,t))− Ft(xt).
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The linearization of the state difference is defined as following,

xε,t+1 − xt+1 = Ft(xε,t + uMt(xε,t))− Ft(xt),

= Ft(xt) + θt(xε,t + uMt(xε,t)− xt)

+
1

2
F ′′
t (p)

i,j,k(xε,t + uMt(xε,t)− xt)j(xε,t + uMt(xε,t)− xt)k − Ft(xt),

= θt(xε,t + uMt(xε,t)− uP
xt
(xε,t) + uP

xt
(xε,t)− xt)

+
1

2
F ′′
t (p)

i,j,k(xε,t + uMt(xε,t)− xt)j(xε,t + uMt(xε,t)− xt)k,

= θt(xε,t + uP
xt
(xε,t)− xt) + θt(u

Mt(xε,t)− uP
xt
(xε,t))

+
1

2
F ′′
t (p)

i,j,k(xε,t + uMt(xε,t)− xt)j(xε,t + uMt(xε,t)− xt)k,

where p = αxt + (1− α)(xε,t + uMt) for α ∈ [0, 1], F ′′
t (p) is a third-order tensor such that

Ft(xε,t + uMt(xε,t)) = Ft(xt) + θt(xε,t + uMt(xε,t)− xt)

+
1

2
F ′′
t (p)

i,j,k(xε,t + uMt(xε,t)− xt)j(xε,t + uMt(xε,t)− xt)k,

such a p always exists according to the mean-field theorem. Recall the definition of uP
xt
(xε,t)

in Eq. (22), θt(xε,t + uP
xt
(xε,t)− xt) = θt(I−Kxt)(xε,t − xt),

xε,t+1 − xt+1 = θt(I−Kxt)(xε,t − xt) + θt(u
Mt(xε,t)− uP

xt
(xε,t))

+
1

2
F ′′
t (p)

i,j,k(xε,t + uMt(xε,t)− xt)j(xε,t + uMt(xε,t)− xt)k. (23)

Definition of linearization error. Given a perturbation z, we define the propagation of
perturbation via the linearized system as θt−1(I−Kxt−1

) · · ·θ0(I−Kx0
)z. The linearization

error is defined as following,

et := ‖(xε,t − xt)− θt−1(I−Kxt−1
)θt−2(I−Kxt−2

) · · · ,θ0(I−Kx0
)z‖2.

The following proposition formulates a difference inequality for et.

Proposition 16 For t ≥ 1,

et+1 ≤ ‖θt‖2et + (kt‖θt‖2 + 2βt)e
2
t + (kt‖θt‖2 + 2βt) · δxt · ε

2,

e1 ≤ (kx0
‖θ0‖2 + 2β0) · δx0

· ε2,

where

kt = 4σt(1 + 2σt),

δxt = ‖θt−1 · · ·θ0‖
2
2 ·

(

α2t‖v⊥‖22 + ‖v‖‖22 + γt‖v‖
2
2

(
γtα

2(1− αt−1)2 + 2(α− αt)
)
)

, t ≥ 1,

δx0
= 1,

α = c
1+c

for a control regularization c. γt := max
s≤t

(
1 + κ(θs)

2
)
‖I− θ

T

s θs‖2,
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• θt := θt−1 · · ·θ0, t ≥ 1,

• θ0 := I, t = 0.

Proof we subtract both sides of Eq. (23) by θt(I − Kxt) · · ·θ0(I − Kx0
)z, and recall the

definition of linearization error et,

et+1 ≤ ‖θt(I−Kxt)‖2·et+‖θt‖2·‖u
Mt(xε,t)−uP

xt
(xε,t)‖2+

1

2
‖F ′′

t (p)‖∗·‖xε,t+uMt(xε,t)−xt‖
2
2.

Let us simplify the above inequality.

• The orthogonal projection admits ‖I−Kxt‖2 ≤ 1.

• Recall Proposition 15,

‖uMt(xε,t)− uP
xt
(xε,t)‖2 ≤ 4σt(1 + 2σt) · ‖xε,t − xt‖

2
2,

where σt is the uniform upper bound on ‖f ′′
t (x)‖∗. We denote

kt = 4σt(1 + 2σt),

‖uMt(xε,t)− uP
xt
(xε,t)‖2 ≤ kt · ‖xε,t − xt‖

2
2.

• Ft(·) admits a uniform upper bound βt such that supx∈Rd‖F ′′
t (x)‖∗ ≤ βt.

• Recall the inequality in Eq. (21), ‖uMt(xε,t)‖2 ≤ ‖xε,t − xt‖2,

‖xε,t + uMt(xε,t)− xt‖
2
2 ≤ 2 · ‖xε,t − xt‖

2
2 + 2 · ‖uMt(xε,t)‖

2
2,

≤ 4 · ‖xε,t − xt‖
2
2.

.

Therefore,

et+1 ≤ ‖θt‖2et + (kt‖θt‖2 + 2βt) · ‖xε,t − xt‖
2
2.

Furthermore,

‖xε,t − xt‖
2
2

= ‖xε,t − xt − θt−1(I−Kxt−1
) · · ·θ0(I−Kx0

)z+ θt−1(I−Kxt−1
) · · ·θ0(I−Kx0

)z‖22,

≤ e2t + ‖θt−1(I−Kxt−1
) · · ·θ0(I−Kx0

)z‖22.

Then, the linearization error can be bounded as follows,

et+1 ≤ ‖θt‖2et + (kt‖θt‖2 + 2βt)e
2
t + (kt‖θt‖2 + 2βt) · ‖θt−1(I−Kxt−1

) · · ·θ0(I−Kx0
)z‖22.

We can express the initial perturbation as z = εv, where ε is perturbation magnitude and
v is a unit vector that represents the perturbation direction. The perturbation direction
v admits a direct sum such that v = v‖ ⊕ v⊥, where v‖ ∈ Tx0

M0 and v⊥ lies in the
orthogonal complement of Tx0

M0.
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Recall Theorem 4,

‖θt−1(I−Kxt−1
)θt−2(I−Kxt−2

) · · ·θ0(I−Kx0
)z‖22,

≤ ‖θt−1 · · ·θ0‖
2
2 ·

(

α2t‖z⊥‖22 + ‖z‖‖22 + γt‖z‖
2
2

(
γtα

2(1− αt−1)2 + 2(α− αt)
)
)

,

≤ ‖θt−1 · · ·θ0‖
2
2 ·

(

α2t‖v⊥‖22 + ‖v‖‖22 + γt‖v‖
2
2

(
γtα

2(1− αt−1)2 + 2(α− αt)
)
)

ε2,

where α = c
1+c

for a control regularization c. γt := max
s≤t

(
1 + κ(θs)

2
)
‖I− θ

T

s θs‖2,

• θt := θt−1 · · ·θ0, t ≥ 1,

• θ0 := I, t = 0.

Let δxt = ‖θt−1 · · ·θ0‖
2
2 ·

(

α2t‖v⊥‖22+ ‖v‖‖22+γt‖v‖
2
2

(
γtα

2(1−αt−1)2+2(α−αt)
)
)

for

t ≥ 1, and δx0
= 1, the linearization error et+1 can be upper bounded by

et+1 ≤ ‖θt‖2et + (kt‖θt‖2 + 2βt)e
2
t + (kt‖θt‖2 + 2βt) · δxt · ε

2.

Since et is defined for t ≥ 1, the following derives a upper bound on e1. When t = 1, recall
the initial perturbation xε,0 − x0 = z,

xε,1 − x1

= F0(xε,0 + uM
0 (xε,0))− F0(x0),

= θ0(xε,0 + uM
x0
(xε,0)− x0) +

1

2
F ′′
0 (p)

i,j,k(xε,0 + uM
x0
(xε,0)− x0)j(xε,0 + uM

0 − x0)k,

= θ0(z+uM
x0
(xε,0))+

1

2
F ′′
0 (p)

i,j,k(z+uM
0 (xε,0))j(z+uM

0 (xε,0))k,

= θ0(z+uM
0 (xε,0)−uP

0 (xε,0)+uP
0 (xε,0))+

1

2
F ′′
0 (p)

i,j,k(z+uM
0 (xε,0))j(z+uM

0 (xε,0))k,

= θ0(I−Kx0
)z+θ0(u

M
0 (xε,0)−uP

0 (xε,0))+
1

2
F ′′
0 (p)

i,j,k(z+uM
0 (xε,0))j(z+uM

0 (xε,0))k.

By following the same procedure as the derivation of et+1,

e1 ≤ (kx0
‖θ0‖2 + 2β0) · δx0

· ε2.

The following proposition solves the difference inequality of linearization error.

Proposition 17 If the perturbation satisfies

ε2 ≤
1

(
∑T−1

i=0 δxi
(kxi

‖θi‖2 + 2βi)
∏T−1

j=i+1(‖θj‖2 + kxj
‖θj‖2 + 2βj)

) .

for t ≤ T , the linearization error can be upper bounded by

et ≤

( t−1∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)
t−1∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2.

44



Self-Healing Robust Neural Networks via Closed-Loop Control

Proof We prove it by induction on t up to some T , such that t ≤ T . We restrict the
magnitude of initial perturbation ‖z‖22 ≤ εT for some constant εT , such that the error
et ≤ 1 for all t ≤ T . The expression of εT is derived later.

When t = 1,

e1 ≤ (kx0
‖θ0‖2 + 2β0) · δx0

· ε2,

which agrees with Proposition 16.
Suppose that it is true for some t ≤ T − 1, such that

et ≤

( t−1∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)

t−1∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2.

Then at t+ 1, recall Proposition 16, given that et ≤ 1 for all t ≤ T ,

et+1 ≤ ‖θt‖2et + (kt‖θt‖2 + 2βt)e
2
t + (kt‖θt‖2 + 2βt) · δxt · ε

2,

≤ (‖θt‖2 + kt‖θt‖2 + 2βt)et + (kt‖θt‖2 + 2βt) · δxt · ε
2,

≤ (‖θt‖2 + kt‖θt‖2 + 2βt)

( t−1∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)
t−1∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2

+ (kt‖θt‖2 + 2βt) · δxt · ε
2,

=

( t∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)
t∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2.

We have restricted the initial perturbation ‖z‖22 = ε2 ≤ εT , for some constant εT , such
that et ≤ 1, for all t ≤ T .

For t ≤ T ,

et ≤ eT ,

≤

( T−1∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)

T−1∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2,

≤

( T−1∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)
T−1∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

εT ,

= 1,

therefore,

εT =
1

(
∑T−1

i=0 δxi
(kxi

‖θi‖2 + 2βi)
∏T−1

j=i+1(‖θj‖2 + kxj
‖θj‖2 + 2βj)

) .

Proposition 17 provides several intuitions.
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• the linearization error is of O(ε2) when the data perturbation is small, where ε is the
magnitude of the data perturbation.

• the linearization error becomes smaller when the nonlinear transformation Ft(·) behaves
more linearily (βt decreases), and the curvature of embedding manifold is smoother (kt
decreases). Specifically, in the linear case, βt and kt become 0, which results in no
linearization error.

• the linearization becomes smaller when the initial perturbation lies in a lower-dimensional
manifold (δxt decreases).

C.3 Error Estimation

Now we reach the main theorem on the error estimation of ‖xε,t − xt‖.

Theorem 5 If the initial perturbation satisfies

ε2 ≤
1

(
∑T−1

i=0 δxi
(kxi

‖θi‖2 + 2βi)
∏T−1

j=i+1(‖θj‖2 + kxj
‖θj‖2 + 2βj)

) .

for 1 ≤ t ≤ T , we have the following error bound for the closed-loop controlled system

‖xε,t+1−xt+1‖2 ≤ ‖θt · · ·θ0‖2

(

αt+1‖z⊥‖2+‖z‖‖2+‖z‖2
(
γt+1α(1−αt)+

√

2γt+1(α−αt+1)
)
)

+

( t∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)

t∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2.

Proof recall that et+1 = ‖(xε,t+1 − xt+1)− θt(I−Kxt) · · ·θ0(I−Kx0
)z‖2,

‖xε,t+1 − xt+1‖2

= ‖xε,t+1 − xt+1 − θt(I−Kxt) · · ·θ0(I−Kx0
)z+ θt(I−Kxt) · · ·θ0(I−Kx0

)z‖2,

≤ ‖θt(I−Kxt) · · ·θ0(I−Kx0
)z‖2 + ‖xε,t+1 − xt+1 − θt(I−Kxt) · · ·θ0(I−Kx0

)z‖2,

= ‖θt(I−Kxt) · · ·θ0(I−Kx0
)z‖2 + et+1.

Recall Theorem 4,

‖θt(I−Kxt) · · ·θ0(I−Kx0
)z‖2

≤

(

‖θt+1‖
2
2 ·

(

α2(t+1)‖z⊥‖22 + ‖z‖‖22 + γt+1‖z‖
2
2

(
γt+1α

2(1− αt)2 + 2(α− αt+1)
)
)) 1

2

,

≤ ‖θt+1‖2 ·

(

αt+1‖z⊥‖2 + ‖z‖‖2 + ‖z‖2
(
γt+1α(1− αt) +

√

2γt+1(α− αt+1)
)
)

,

where θt+1 = θtθt−1 · · ·θ0.
Recall Proposition 17 for the linearization error,

et+1 ≤

( t∑

i=0

δxi
(kxi

‖θi‖+ 2βi)
t∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2.
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Therefore, for t ≥ 1,

‖xε,t+1−xt+1‖2 ≤ ‖θt+1‖2

(

αt+1‖z⊥‖2+‖z‖‖2+‖z‖2
(
γt+1α(1−αt)+

√

2γt+1(α−αt+1)
)
)

+

( t∑

i=0

δxi
(kxi

‖θi‖2 + 2βi)

t∏

j=i+1

(‖θj‖2 + kxj
‖θj‖2 + 2βj)

)

ε2.

Appendix D. Optimal Control Versus Greedy Solution

We now formally discuss the difference between optimal control and greedy solutions. Let
Vt be a orthonormal basis of the tth linear embedding subspace, Qt = I − VtV

T
t be a

orthogonal projection onto the orthogonal complement of Vt. Under the linear setting, the
running loss (2) can be realized as

L(xt,ut, Et(·)) =
1

2
‖Qt(xt + ut)‖

2
2 +

c

2
‖ut‖

2
2,

the exact solution of the above can be obtained by setting the gradient ∇utL = 0,

ugreedy
t (xt) = −(c · I+QT

t Qt)
−1QT

t Qtxt.

Notice that ugreedy
t is considered as the greedy solution since it optimizes the tth running

loss without considering other layers. Furthermore, since Qt = I−VtV
T
t ,

ugreedy
t = −Vt










0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1
1+c

0

0 0 · · · 0 1
1+c










VT
t xt.

The greedy solution ugreedy
t does not control the state components that lie in the r-dimensional

embedding subspace (the first r diagonal elements are 0), it applies regularized control onto
the components from orthogonal complements (as the regularization c → ∞, the effect of
applying control diminishes to identity mapping).

Now we present the closed-form solution for the optimal control solution. For the sim-
plified linear system that contains linear orthogonal layers θt such that θT

t θt = θtθ
T
t = I,

the following Lemma characterizes the optimal control solution.

Lemma 18 For a simplified system with linear orthogonal layers, the optimal feedback con-
trol uoptimal

t is,

uoptimal
t = −Vt










0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1− c
1+λt+1+c

0

0 0 · · · 0 1− c
1+λt+1+c










VT
t xt,
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where Vt is a orthogonal basis of the linear embedding subspace, λT = 0, λt =
c(1+λt+1)
1+λt+1+c

.

The detailed derivation is provided in Sec. D.1. When the control regularization c = 0,
the diagonal elements become 1. In this case, the optimal control is the equivalent to the
greedy solution. However, for any c > 0, the control regularization at each layer is governed
by a difference equation that relates the tth control to all succeeding layers. Essentially, the
optimal control solutions regularize the applied controls differently at every layer.

D.1 Proof for Optimal Feedback Control

In this section, we derive the closed-form solution for optimal feedback control. Let θt be
the tth linear transformation with control ut,

xt+1 = θt(xt + ut). (24)

Let Vt be a orthogonal basis of the tth embedding subspace, Qt = I−VtV
T
t be a orthogonal

projection onto the orthogonal complement of Vt.

Lemma 19 For the the sum of the one-step costs over a finite horizon

J(x0, {u}
T−1
t=0 ) =

T−1∑

t=0

1

2
‖Qt(xt + ut)‖

2
2 +

c

2
‖ut‖

2
2, s.t. Eq. (24). (25)

the optimal cost-to-go function, parametrized as V (xt) = xT
t Ptxt, is the solution of the

following Riccati equation

Pt

=
1

2
Qt + θT

t Pt+1θt −
1

2
(Qt + 2θT

t Pt+1θt)
T (Qt + 2θT

t Pt+1θt + ctI)
−1(Qt + 2θT

t Pt+1θt).

(26)

with the optimal control solution

ut = −(Qt + cI+ 2θT
t Pt+1θt)

−1(Qt + 2θT
t Pt+1θt)xt, (27)

Proof The optimal cost-to-go function (value function V (xt)) of Eq. (25) satisfies

V (xt) = min
ut

1

2
(Qtxt +Qtut)

T (Qtxt +Qtut) +
c

2
· uT

t ut + V (xt+1), s.t. Eq. (24). (28)

By taking derivative on the right-hand-side of Eq. (28) and considering the dynamical
system Eq. (24),

dV (xt)

dut

= Qtxt +Qtut + c · ut +

(
dxt+1

dut

)T dV (xt+1)

dxt+1
,

= Qtxt +Qtut + c · ut + 2θT
t Pt+1xt+1,

= Qtxt +Qtut + c · ut + 2θT
t Pt+1θtxt + 2θT

t Pt+1θtut. (29)
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Setting the above to 0 results in the optimal control u∗
t

u∗
t = −(Qt + c · I+ 2θT

t Pt+1θt)
−1(Qt + 2θT

t Pt+1θt)xt.

By parametrizing the value function V (xt) as xT
t Ptxt, consider the optimal control

solution Eq. (27) and the dynamical programming equation Eq. (28),

xT
t Ptxt

= min
ut

1

2
(Qtxt +Qtut)

T (Qtxt +Qtut) +
c

2
· uT

t ut + V (xt+1),

= min
ut

1

2
(Qtxt +Qtut)

T (Qtxt +Qtut) +
c

2
· uT

t ut + (θtxt + θtut)
TPt+1(θtxt + θtut),

=
1

2
xT
t (Qt + 2θT

t Pt+1θt)xt +
1

2
(u∗

t )
T (Qt + cI+ 2θT

t Pt+1θt)u
∗
t + xT

t (Qt + 2θT
t Pt+1θt)u

∗
t ,

for the second term in the above, recall the optimal control solution u∗
t from Eq, (27),

1

2
(u∗

t )
T (Qt + c · I+ 2θT

t Pt+1θt)u
∗
t ,

= −
1

2

(

(Qt + c · I+ 2θT
t Pt+1θt)

−1(Qt + 2θT
t Pt+1θt)xt

)T

(Qt + c+ 2θT
t Pt+1θt)u

∗
t ,

= −
1

2
xT
t (Qt + 2θT

t Pt+1θt)u
∗
t ,

the above uses the fact that (Qt + c · I+ 2θT
t Pt+1θt)

−1 is symmetric. Therefore,

xT
t Ptxt

=
1

2
xT
t (Qt + 2θT

t Pt+1θt)xt −
1

2
xT
t (Qt + 2θT

t Pt+1θt)u
∗
t + xT

t (Qt + 2θT
t Pt+1θt)u

∗
t ,

=
1

2
xT
t (Qt + 2θT

t Pt+1θt)xt +
1

2
xT
t (Q

T
t Qt + 2θT

t Pt+1θt)u
∗
t ,

which results in the algebraic Riccati equation

Pt

=
1

2
Qt + θT

t Pt+1θt −
1

2
(Qt + 2θT

t Pt+1θt)
T (Qt + 2θT

t Pt+1θt + cI)−1(Qt + 2θT
t Pt+1θt).

We consider a special case that each linear transformation θt is orthogonal and full-rank,
such that θT

t θt = θtθ
T
t = I, ∀t.

Lemma 20 Given a T -layer system with orthogonal linear transformations, the solution of
algebraic Riccati equation Eq. (26) is

Pt =
1

2
Vt










0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · λt 0
0 0 · · · 0 λt










VT
t , (30)

where λT = 0, λt =
c(1+λt+1)
1+λt+1+c

.
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Proof We prove it by induction on t. Recall the algebraic Riccati equation Eq. (26), given
the terminal condition PT = 0,

PT−1 =
1

2
QT−1 −

1

2
QT

T−1(QT−1 + cI)−1QT−1,

=
1

2
VT−1










0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · c
1+c

0

0 0 · · · 0 c
1+c










VT
T−1,

Suppose it is true for t+ 1, such that,

Pt+1 =
1

2
Vt+1










0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · λt+1 0
0 0 · · · 0 λt+1










VT
t+1,

since θT
t θt = θtθ

T
t = I, θT

t Vt+1 = Vt, in which case, Qt and θT
t Pt+1θt contain the same

basis Vt. Recall the algebraic Riccati equation Eq. (26),

Pt

=
1

2
Qt + θT

t Pt+1θt −
1

2
(Qt + 2θT

t Pt+1θt)
T (Qt + 2θT

t Pt+1θt + cI)−1(Qt + 2θT
t Pt+1θt),

=
1

2
Vt








0 · · · 0
0 · · · 0
...

. . . 0
0 · · · 1 + λt+1







VT

t −
1

2
Vt








0 · · · 0
0 · · · 0
...

. . . 0
0 · · · (1 + λt+1)

2(1 + λt+1 + c)−1







VT

t ,

=
1

2
Vt








0 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · λt =
c(1+λt+1)
1+λt+1+c







VT

t .

Recall the optimal feedback control in Eq. (27), let λT = 0, λt =
c(1+λt+1)
1+λt+1+c

.

Corollary 21 For a system with linear orthogonal transformations, the optimal feedback
control is

u∗
t = −Vt










0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1− c
1+λt+1+c

0

0 0 · · · 0 1− c
1+λt+1+c










VT
t xt.

50



Self-Healing Robust Neural Networks via Closed-Loop Control

References

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Bat-
tenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al.
Deep speech 2: End-to-end speech recognition in english and mandarin. In International
conference on machine learning, pages 173–182. PMLR, 2016.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.
Square attack: a query-efficient black-box adversarial attack via random search. In Eu-
ropean Conference on Computer Vision, pages 484–501. Springer, 2020.

Kurt J Antreich, Helmut E Graeb, and Claudia U Wieser. Circuit analysis and optimiza-
tion driven by worst-case distances. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 13(1):57–71, 1994.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International Conference
on Machine Learning, pages 274–283. PMLR, 2018.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pattern anal-
ysis and machine intelligence, 39(12):2481–2495, 2017.

Richard Bellman. On the theory of dynamic programming. Proceedings of the National
Academy of Sciences of the United States of America, 38(8):716, 1952.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems, 31,
2018.

Zhuotong Chen, Qianxiao Li, and Zheng Zhang. Towards robust neural networks via close-
loop control. In International Conference on Learning Representations, 2021.

FL Chernousko and AA Lyubushin. Method of successive approximations for solution of
optimal control problems. Optimal Control Applications and Methods, 3(2):101–114, 1982.

Charles Chien, Adrian Tang, Frank Hsiao, and Mau-Chung Frank Chang. Dual-control self-
healing architecture for high-performance radio SoCs. IEEE Design & Test of Computers,
29(6):40–51, 2012.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast
adaptive boundary attack. In International Conference on Machine Learning, pages
2196–2205. PMLR, 2020a.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with
an ensemble of diverse parameter-free attacks. In International conference on machine
learning, pages 2206–2216. PMLR, 2020b.

Chunfeng Cui, Kaikai Liu, and Zheng Zhang. Chance-constrained and yield-aware optimiza-
tion of photonic ICs with non-gaussian correlated process variations. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(12):4958–4970, 2020.

51



Chen, Li, Zhang

Weinan E. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1–11, 2017.

Mark Everingham, Luc Van Gool, Christopher KI Williams, JohnWinn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypoth-
esis. Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale
adversarial training for vision-and-language representation learning. Advances in Neural
Information Processing Systems, 33:6616–6628, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncov-
ering the limits of adversarial training against norm-bounded adversarial examples. arXiv
preprint arXiv:2010.03593, 2020.

Abhilash Goyal, Madhavan Swaminathan, Abhijit Chatterjee, Duane C Howard, and John D
Cressler. A new self-healing methodology for RF amplifier circuits based on oscillation
principles. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(10):
1835–1848, 2011.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse
Problems, 34(1):014004, 2017.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

Zichang He and Zheng Zhang. PoBO: A polynomial bounding method for chance-
constrained yield-aware optimization of photonic ICs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2021.

Chung-Wen Ho, Albert Ruehli, and Pierce Brennan. The modified nodal approach to
network analysis. IEEE Transactions on circuits and systems, 22(6):504–509, 1975.

Gokce Keskin, Jonathan Proesel, and Larry Pileggi. Statistical modeling and post man-
ufacturing configuration for scaled analog CMOS. In IEEE Custom Integrated Circuits
Conference, pages 1–4, 2010.

Jangjoon Lee, Srikar Bhagavatula, Swarup Bhunia, Kaushik Roy, and Byunghoo Jung.
Self-healing design in deep scaled CMOS technologies. Journal of Circuits, Systems, and
Computers, 21(06):1240011, 2012.

Qianxiao Li, Long Chen, Cheng Tai, and Weinan E. Maximum principle based algorithms
for deep learning. The Journal of Machine Learning Research, 18(1):5998–6026, 2017.

52



Self-Healing Robust Neural Networks via Closed-Loop Control

Xin Li, Padmini Gopalakrishnan, Yang Xu, and T Pileggi. Robust analog/RF circuit design
with projection-based posynomial modeling. In IEEE/ACM International Conference on
Computer Aided Design, pages 855–862, 2004.

Xin Li, Padmini Gopalakrishnan, Yang Xu, and Lawrence T Pileggi. Robust analog/RF
circuit design with projection-based performance modeling. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(1):2–15, 2006.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense
against adversarial attacks using high-level representation guided denoiser. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition, pages 1778–1787, 2018.

Jenny Yi-Chun Liu, Adrian Tang, Ning-Yi Wang, Qun Jane Gu, Roc Berenguer, Hsieh-Hung
Hsieh, Po-Yi Wu, Chewnpu Jou, and Mau-Chung Frank Chang. A V-band self-healing
power amplifier with adaptive feedback bias control in 65 nm cmos. In IEEE Radio
Frequency Integrated Circuits Symposium, pages 1–4, 2011.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European conference
on computer vision, pages 21–37. Springer, 2016.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

Indika Rajapakse and Mark Groudine. On emerging nuclear order. Journal of Cell Biology,
192(5):711–721, 2011.

Bodhisatwa Sadhu, Mark A Ferriss, Arun S Natarajan, Soner Yaldiz, Jean-Olivier
Plouchart, Alexander V Rylyakov, Alberto Valdes-Garcia, Benjamin D Parker, Aydin
Babakhani, Scott Reynolds, et al. A linearized, low-phase-noise vco-based 25-ghz pll
with autonomic biasing. IEEE Journal of Solid-State Circuits, 48(5):1138–1150, 2013.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers
against adversarial attacks using generative models. arXiv:1805.06605, 2018.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:
85–117, 2015.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pix-
eldefend: Leveraging generative models to understand and defend against adversarial
examples. arXiv preprint arXiv:1710.10766, 2017.

53



Chen, Li, Zhang

Shupeng Sun, Fa Wang, Soner Yaldiz, Xin Li, Lawrence Pileggi, Arun Natarajan, Mark
Ferriss, Jean-Olivier Plouchart, Bodhisatwa Sadhu, Ben Parker, et al. Indirect perfor-
mance sensing for on-chip self-healing of analog and RF circuits. IEEE Transactions on
Circuits and Systems I: Regular Papers, 61(8):2243–2252, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

Adrian Tang, Frank Hsiao, David Murphy, I-Ning Ku, Jenny Liu, Sandeep D’Souza, Ning-
Yi Wang, Hao Wu, Yen-Hsiang Wang, Mandy Tang, et al. A low-overhead self-healing
embedded system for ensuring high yield and long-term sustainability of 60ghz 4gb/s
radio-on-a-chip. In IEEE International Solid-State Circuits Conference, pages 316–318,
2012.

Mengshuo Wang, Fan Yang, Changhao Yan, Xuan Zeng, and Xiangdong Hu. Efficient
bayesian yield optimization approach for analog and sram circuits. In Design Automation
Conference, pages 1–6, 2017.

Ren Wang, Tianqi Chen, Stephen Lindsly, Cooper Stansbury, Indika Rajapakse, and
Alfred Hero. Immuno-mimetic deep neural networks (immuno-net). arXiv preprint
arXiv:2107.02842, 2021a.

Ren Wang, Tianqi Chen, Stephen Lindsly, Cooper Stansbury, Alnawaz Rehemtulla, Indika
Rajapakse, and Alfred Hero. RAILS: A robust adversarial immune-inspired learning
system. arXiv preprint arXiv:2107.02840, 2021b.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael
Jordan. Theoretically principled trade-off between robustness and accuracy. In Interna-
tional Conference on Machine Learning, pages 7472–7482. PMLR, 2019.

Jian Cheng Zhang and MA Styblinski. Yield and variability optimization of integrated
circuits. Springer Science & Business Media, 2013.

54


	Introduction
	An Optimal Control-based Self-Healing Neural Network Framework
	Self-Healing in IC Design
	Self-Healing Robust Neural Network via Closed-Loop Control

	Design of Self-Healing via Optimal Control
	Towards Better Robustness: Control Loss via Manifold Projection
	A Margin-based Analysis On the Running Loss

	An Optimal Control Solver for Self-Healing
	Control Solver Based on the Pontryagin's Maximum Principle
	A Fast Implementation of the Closed-loop Control

	Theoretical Error Analysis
	Error Estimation For The Linear Case
	Error Analysis of Nonlinear Networks with Closed-loop Control

	Numerical Experiments
	Experiments On CIFAR-10 Dataset
	Experiments On CIFAR-100 Dataset
	Experiments On Tiny-ImageNet
	Summary On Numerical Experiments
	Experiment On Multi-Label Classification
	Ablation Study

	Discussions
	Limitation of the proposed self-healing framework
	A Broader Scope of Self-Healing

	Conclusion
	Manifold Projection On Classifier Margin
	Error Estimation of Linear System
	Error Estimation of Nonlinear System
	Analysis On Nonlinear Manifold Projection
	Analysis On Linearization Error
	Error Estimation

	Optimal Control Versus Greedy Solution
	Proof for Optimal Feedback Control


