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Abstract

Physics-informed neural networks (PINNs) have

been increasingly employed due to their capability

of modeling complex physics systems. To achieve

better expressiveness, increasingly larger network

sizes are required in many problems. This has

caused challenges when we need to train PINNs

on edge devices with limited memory, computing

and energy resources. To enable training PINNs

on edge devices, this paper proposes an end-to-

end compressed PINN based on Tensor-Train de-

composition. In solving a Helmholtz equation,

our proposed model significantly outperforms the

original PINNs with few parameters and achieves

satisfactory prediction with up to 15× overall pa-

rameter reduction.

1. Introduction

Physics-informed neural networks (PINNs) are increasingly

used to solve a wide range of forward and inverse problems

involving partial differential equations (PDEs), including

fluids mechanics (Raissi et al., 2020), materials modeling

(Liu & Wang, 2019), safety verification (Bansal & Tomlin,

2021) and control (Onken et al., 2021) of autonomous sys-

tems. Despite their success of learning complex systems

using the simple multilayer perception (MLP) architecture,

large neural networks are often required to achieve high

expressive power. This has significantly increased the mem-

ory and computing cost of training a PINN. Furthermore, a

PINN often has to be trained many times in practice once

the problem setting (e.g., boundary condition, measurement

data, safety specification) changes.

It is increasingly important to enable PINN training on
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resource-constraint edge devices. On one side, safety-aware

learning-based verification and control (Bansal & Tomlin,

2021; Onken et al., 2021) often require the PINN to be

trained on a tiny embedded processor of an autonomous

agent. On the other side, the emerging digital twin and

smart manufacturing need AI-assistant design with IP pro-

tection (Stevens et al., 2020), where federated learning with

many edge devices allows users to design shared AI models

without disclosing their private data. In both cases, training

has to be done on edge devices with very limited memory,

computing and energy budget.

This paper proposes TT-PINN, an end-to-end tensor-

compressed method for training PINNs. This method

achieves huge parameter and memory reduction in the train-

ing process, by combining Tensor-Train compressed model

representation and a physics-informed network to approx-

imate the solutions of PDEs. We use this method to solve

a Helmholtz equation and compare it with standard PINNs.

With only thousands of parameters, our models significantly

outperform the original PINNs of similar or larger sizes.

2. Background: PINN

We consider the problem of solving a PDE

ut +Nx[u] = 0, x ∈ Ω, t ∈ [0, T ]

u(x, 0) = h(x), x ∈ Ω,

u(x, t) = g(x, t), t ∈ [0, T ], x ∈ ∂Ω

(1)

where x and t are the spatial and temporal coordinates

respectively, Ω and ∂Ω denote the computational domain

and its boundary; Nx is a general linear or nonlinear oper-

ator; u(x, t) is the solution of the above PDE with the

initial condition h(x) and the boundary condition. In

PINNs (Raissi et al., 2019), a neural network approximation

u(x, t) ≈ fθ(x, t) parameterized by θ is substituted into

the PDE (1) and yields a residual defined as

rθ(x, t) :=
∂

∂t
fθ(x, t) +Nx [fθ(x, t)] . (2)

We train parameters θ by minimizing the loss function

L = Lr + Lb + L0. (3)
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network size we have considered is still relatively small,

the performance of TT-PINN needs to be demonstrated on

larger PINNs. Finally, deploying this framework on edge

computing platforms (e.g., embedded GPU or FPGA) re-

quires further algorithm/hardware co-design.
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