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Abstract

The performance of state-of-the-art machine learn-

ing models is observed to degrade in scenarios

involving under-represented demographic popu-

lations during training. This issue has been ex-

tensively studied within a supervised learning

framework where data distribution remains un-

changed. Nonetheless, real-world use cases often

encounter distribution shifts induced by the mod-

els in deployment. For example, performance bias

against minority users can affect customer reten-

tion rates, thereby skewing available data from

active users due to the absence of minority user

input. This feedback effect further exacerbates the

discrepancy across various demographic groups

in subsequent time steps. To mitigate this prob-

lem, we introduce asymptotic fairness, a criterion

that aims at preserving sustained model perfor-

mance across all demographic populations. In ad-

dition, we construct a surrogate retention system,

based on existing literature on evolutionary pop-

ulation dynamics, to approximate the dynamics

of distribution shifts on active user counts. This

system allows the aim of achieving asymptotic

fairness to be formulated as an optimal control

problem. To evaluate the effectiveness of the pro-

posed method, we design a generic simulation

environment that simulates the population dynam-

ics of the feedback effect between user retention

and model performance. When we deploy the

models to this simulation environment, by con-

sidering long-term planning, the optimal control

solution outperforms existing baseline methods,

demonstrating superior performance.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction

In dynamically changing environments, data distributions

can evolve over time, giving rise to the phenomenon known

as concept drift. Concept drift entails changes in the con-

ditional distribution of the target variable given the input

features, while the distribution of the input features them-

selves might remain fixed (Gama et al., 2014; Schlimmer &

Granger, 1986; Widmer & Kubat, 1996). This work consid-

ers a distinct case of concept drift, where the performance of

a machine learning system can impact the number of active

users, while the feature distribution of these users remains

fixed. A relevant scenario involves users interacting with

personal devices such as Google Home or Amazon Alexa,

providing input features like voice commands. Device per-

formance feedback, be it positive (accurate voice identi-

fication) or negative (misidentification), can respectively

increase user engagement or decrease user retention. This

issue becomes more pronounced when populations from

different demographic groups are considered (Harwell). A

system demonstrating performance bias against minority

demographics can result in diminished retention rates for

these users. Subsequently, the available training data col-

lected from active users might be insufficient to represent

the distribution of minority users, Consequently, this can

further amplify the representation disparity issue when the

model is fine-tuned based on this training set (Hashimoto

et al., 2018).

In this study, we aim to develop machine learning mod-

els that engage users from all demographic groups, under

the aforementioned population dynamics. This task can be

viewed as a trajectory planning problem, wherein the evolu-

tion of user engagement is optimized through control design.

With the given population dynamics, trajectory planning can

be considered as an optimal control problem, solvable by

existing methods, such as dynamic programming (Bellman,

1952). However, the generation and evaluation of an optimal

control solution pose three challenges. Firstly, the notion

of fairness in a non-stationary environment has not been

formally defined. Existing fairness definitions aim to mea-

sure performance disparities between different demographic

groups at a singular time point, such as equal opportunity

(Hardt et al., 2016), and demographic parity (Feldman et al.,

2015). These definitions fail to adequately encapsulate the

goals in a non-stationary environment. Second, solving the
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optimal control problem requires knowledge of the under-

lying population dynamics, which are typically complex

and inaccessible. Lastly, evaluation of the performance of

an optimal control solution (e.g., one generated from some

estimated dynamic system) necessitates its deployment on

population dynamics with real-world users, an often costly

and unattainable requirement. In response to these chal-

lenges, our contributions are threefold:

1. We introduce the concept of asymptotic fairness to de-

fine the consistent performance across all demographic

groups over an extended time period.

2. We propose a surrogate retention system built upon the

existing literature on evolutionary population dynam-

ics, from which we formulate the objective of achieving

asymptotic fairness as an optimal control problem. To

address this control problem, we consider Pontryagin’s

maximum principle which allows us to solve for the

optimal control solution efficiently.

3. Through empirical evaluation, we highlight the advan-

tages of taking into account the underlying dynamics

in model design. Our results consistently outperform

existing baseline methods, thereby validating the supe-

riority of our approach in terms of performance.

Furthermore, we design a simulator that simulates the non-

stationary environment of the user’s willingness to retain

or churn from a deployed model. This simulator allows

for testing the evolutionary fairness property of machine

learning models in synthetic population dynamics.

2. Related Works

We review existing literature about fairness in non-stationary

settings, and further discuss the intersection of machine

learning and optimal control, emphasizing its relevance and

applicability to our work.

Fairness problems in the non-stationary setting. Re-

cent studies have brought attention to the potential pitfalls

of imposing static fairness constraints (Hardt et al., 2016;

Feldman et al., 2015). These constraints can yield unfa-

vorable long-term effects, as demonstrated in the work by

(Liu et al., 2018; Zhang et al., 2020). The interplay between

algorithmic decisions and individuals’ reactions plays a piv-

otal role in shaping these long-term effects (Zhang et al.,

2020). For instance, model decisions can cause changes

in the underlying data distribution, subsequently affecting

the model’s performance in future time steps. (Zhang et al.,

2019) recently presented a comprehensive study of the in-

teraction between user retention rates and model decisions

in dynamic environments. The most common approach to

address this problem is via successive one-step methods,

which prioritize fairness for minority demographic groups

(Hashimoto et al., 2018). In view of these insights, our

research emphasizes the importance of considering the in-

herent dynamics within a non-stationary environment.

The connection between deep learning and optimal con-

trol. Recent works have highlighted the connection be-

tween dynamical systems and deep neural networks (E,

2017; Haber & Ruthotto, 2017). This perspective offers

valuable theoretical insights for understanding deep learning

through an optimal control lens (Liu & Theodorou, 2019).

The pioneering work that bridged and extended the classi-

cal back-propagation algorithm with optimal control theory

was introduced by (Li et al., 2018; Li & Hao, 2018), es-

tablishing a direct relationship between the Pontryagon’s

maximum principle (Kirk, 1970) and gradient-based train-

ing. Building upon this foundation, (E et al.) established

the mathematical basis for the optimal control viewpoint

in deep learning. Moreover, optimal control methods have

been applied to tackle challenging issues in deep learning.

For instance, (Liu et al., 2020a;b) proposed efficient high-

order optimizers using differential dynamic programming,

and (Chen et al., 2021) explored closed-loop controllers to

improve robustness against adversarial attacks. These ad-

vances highlight the efficacy of optimal control approaches

in resolving key challenges of deep learning.

3. Fairness in Non-Stationary Environment

In this section, we discuss the problem setup for fairness

in a non-stationary environment, where user retention or

churn is conditioned on the model’s performance on the

data they provide. This configuration leads to a condition

for the machine learning models, which we term as asymp-

totic fairness. This condition requires the models to sustain

their performance across all demographic groups over an

extended period.

3.1. Problem Description for Fairness in a

Non-Stationary Environment

In a non-stationary environment, we consider a predictive

model with time-varying model parameters, denoted as

{θt}
T−1
t=0 . We consider K distinct demographic groups,

each comprising N i users that include both participative

and non-participative users of the predictive model. Let

us denote Λi
t as the number of active users within the ith

demographic group at time t. To facilitate our analysis, we

normalize Λi
t by defining a population density λi

t =
Λi

t

Ni ,

which falls within the range of 0 to 1. The growth (resp.

decay) of λi
t indicates that more users from the ith demo-

graphic group participate in (resp. leave) the system. We

denote Ai
t as a N -tuple to indicate the active users from the

ith demographic group at time step t (e.g. Ai
t = (1, 0, 1)
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means that the 1st and 3rd users from the ith group are ac-

tive at time step t). We formulate the population dynamics

of the user’s willingness to participate as a Markov decision

process and denote it as population retention system,

Ai
t+1 ∼ P(·|Ai

t,θt, {z
i,n}Nn=1,Φ(·)), (1)

where the state space is a N -tuple that indicates the indices

of active users, P(·) denotes the transition probability, θt

is the model parameter at time step t, zi,n represents the

features of the nth user from the ith demographic group, this

feature vector contains both input data (e.g. voice command)

and characteristics (e.g. the probability of a user churn when

encountered with a correct prediction, and the probability of

a user retaining when receiving a wrong prediction) of the

user, Φ(·) is a loss (or reward) function acting on each indi-

vidual user. In addition, a certain number of inactive users

become active in the system at each time step, this number

is conditioned on the model performance of currently active

users. In a nutshell, if a user is active at time step t, the

activeness of this user at the next time step is conditioned on

the model performance of that specific user. Moreover, data

features of only active users at each time step are considered

an observable state that can be leveraged for generating a

model. Once a sequence of models {θt}
T
t=1 is generated,

we evaluate its performance using the population retention

system defined in Eq. (1).

3.2. The Definition for Asymptotic Fairness

The population retention system, defined in Eq. (1), simu-

lates variation in the active user population density, resulting

from the individual model performance of each user. In this

context, the deployment of a model with an adequately

minimized population risk encourages increased user par-

ticipation within the system. This encourages more active

users to subsequently contribute training data for model

refinement, culminating in an enhanced model, which in

turn can further decrease population risk in the subsequent

time step. This positive feedback loop, given enough time,

results in the population risks for all demographic groups

converging towards 0 for a large number of total users N i,

while the number densities approach 1. This motivates us to

define the concept of asymptotic fairness as follows:

Definition 3.1. Asymptotic fairness A sequence of models

satisfies asymptotic fairness if the dynamics it drives satisfy

the following condition:

λi
t → 1, as t → ∞ ∀i ∈ [1, 2, ...,K],

s.t. Ai
t+1 ∼ P(·|Ai

t,θt, {z
i,n}Nn=1,Φ(·)),

λi
t =

∑Ni

n=1[A
i
t]n

N i
.

Furthermore, the satisfaction of asymptotic fairness by a

sequence of models is implicitly linked to the initial popula-

tion densities. In scenarios where all demographic groups

initially have high population densities, the likelihood of

achieving asymptotic fairness increases. Conversely, scenar-

ios with highly imbalanced representations of demographic

groups pose significant challenges in meeting this condition.

Therefore, the representation of demographic groups plays

a critical role in the successful implementation of models

adhering to the condition of asymptotic fairness.

Remark 3.2. The mode of convergence as per Definition 3.1

is application-dependent, thus, it varies across different con-

texts. In this work, we introduce a deterministic surrogate

system as defined in Section 4.1. Given the deterministic

nature of this surrogate system, we abstain from specifying

the mode of convergence pertaining to random variables.

The absence of inherent stochasticity in the surrogate system

obviates the need for a specific convergence criterion that

would otherwise be necessary for the presence of random

variables.

Remark 3.3. The concept of asymptotic fairness provides a

more precise interpretation of fairness in a non-stationary

environment. Prior research has considered disparity ampli-

fication (Hashimoto et al., 2018) to assess the representation

disparity across all demographic groups at each individual

time step. However, the definition of asymptotic fairness

diverges from this approach as it emphasizes long-term be-

havior. To illustrate, consider an extreme scenario where the

population densities of all demographic groups concurrently

decay to zero. Although this is an undesirable situation, it

would nonetheless satisfy the condition of disparity ampli-

fication, yet not meet the criterion of asymptotic fairness.

Thus, the distinction underscores the importance of consider-

ing long-term behavior in fairness definitions, a perspective

that asymptotic fairness uniquely encapsulates.

4. An Optimal Control Solution for

Asymptotic Fairness

According to Def. 3.1, our goal is to maximize the popu-

lation densities across all demographic groups within the

context of the population retention system, as defined by

Eq. (1). Due to the inaccessibility of the underlying dy-

namics of the population retention system, our initial step

involves the construction of a surrogate system to estimate

these dynamics. Subsequently, we formulate the condition

of asymptotic fairness as an optimal control problem and

provide an efficient solver based on Pontryagin’s maximum

principle (PMP) (Pontryagin, 1987).

4.1. Surrogate Retention System for the Evolutionary

Population Dynamics

Our design of the surrogate retention system is rooted in

the existing body of literature on evolutionary population

dynamics (Cushing, 2019). This system features a low-
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dimensional state representation, adding to its computa-

tional efficiency. Moreover, the system is deterministic and

differentiable, which allows for solving the optimal control

solution efficiently. Thus, the surrogate retention system

not only provides a meaningful connection to evolutionary

dynamics but also offers practical advantages in terms of

computational efficiency.

Evolutionary population dynamics describes the dynam-

ics of user participation. Difference equations are com-

monly employed to describe discrete-time dynamics where

temporal variations in vital rates are influenced by popu-

lation density dependencies. Activities of an individual,

such as reproduction and survival, may experience fluctu-

ations, thereby contributing to the evolutionary dynamics

of population density. Such explicit temporal dependencies

can be encapsulated through the optimization of the coeffi-

cients of a difference equation over time (Vincent & Brown,

2005). To account for such evolutionary mechanisms, a dif-

ference equation population model can be developed (Cush-

ing, 2019). In a simplified context, the population’s growth

and decay are attributed to births and deaths, respectively.

Individuals present at time step t+ 1 are either newcomers

within the time frame or survivors from time step t. We

model those dynamics as the following discrete dynamic

system:

λi
t+1 = (1− λi

t)β(κ
i(λi

t,θt)) + λi
tσ(κ

i(λi
t,θt)), (2)

where κi(·) computes a value that reflects the response of

the ith population on some external controls θt (e.g. medical

treatment, resource allocation), β(·) and σ(·) compute the

ratios of newborns and survived population during a time

interval respectively. We consider the range of both birth

and survival rate functions to be [0, 1], in which case, the

population densities take the range of [0, 1]. Moreover, we

denote λt = [λ1
t , λ

2
t , ..., λ

K
t ]T as a K-dimensional vector.

Subsequently, a K-dimensional discrete dynamic system

describing the simplified evolutionary population dynamics

can be constructed as follows:

λt+1 = T (λt,θt), (3)

where the ith element of T (·) is defined in Eq. (2).

In cases where user retention or churn rates are influenced by

population dynamics, the function κi(·) is used to measure

the model’s performance on the currently active population.

Here, the birth rate β(·) and the survival rate σ(·) denote the

proportions of incoming and retained users at each respec-

tive time step. For performance evaluation of the model,

we maintain a small holdout set of accessible users, all of

whose user features are observable. From this set, data from

active users can be sampled at every time step, based on the

population density λi
t. Moreover, when model performance

is evaluated via a reward (or alternately, a loss) function, we

hypothesize that the birth and survival rates correspond pro-

portionally (or inversely) to the model performance κi(·).
This assumption ensures that an improved model perfor-

mance leads to an increase in population density. We denote

this difference equation as the surrogate retention system.

Model evaluation through the worst-case distributional

loss. The surrogate retention system, as defined by Eq. (3),

leads to a low-dimensional state representation, consisting

only of the population densities across all demographic

groups. However, its simulation requires random sampling

of training data from the holdout set, based on the present

population density. This is inconsistent with the population

retention system, where the training data are provided from

active users. To resolve this discrepancy, we consider the

formulation of distributionally robust optimization, which

considers the λi
t proportion of users who received optimal

model performance.

To begin with, let dX 2(M||Q) =
∫

(dM
dQ − 1)2dQ) denote

the X 2-divergence between two probability distributions

M and Q, B(M, r) = {Q : dX 2(M||Q) ≤ r} denote

the chi-squared ball around a probability distribution M of

radius r. Let Mi be the feature distribution of users from

the ith demographic group, we consider the performance

measure κi(·) as the worst-case distributional loss over all

r-radius balls around Mi defined as follows,

κi(λi
t,θt) = sup

Q∈B(Mi,ri
t
)

Ez∼QΦ(θt, z),

rit = (1/λi
t − 1)2. (4)

Clearly, as the number density λi
t approaches 1, rit decays to

0, and κi(λi
t,θt) is equivalent to population risk. For small

λi
t, the radius rit → ∞ and this leads to a large loss value.

In general, computing the worst-case distributional loss over

a set of distributions is a challenging task. Fortunately, the

maximization problem in Eq. (4) can be reformulated into

its dual form (Duchi et al., 2019). More specifically, if Φ(·)
is upper semi-continuous for any θ, then for rit ≥ 0 and any

θ, the following holds true:

sup
Q∈B(Mi,ri

t
)

Ez∼QΦ(θt, z)

= inf
η∈R

(

C(λi
t) ·

(

EMi

[

[Φ(θt, z)− η]2+
])

1

2 + η
)

,

where C(λi
t) = (2(1/λi

t − 1)2 + 1)
1

2 , (5)

where [x]+ = x if x ≥ 0 and 0 otherwise. At time step t,
given θt and λi

t, the worst-case distributional loss is com-

puted by averaging the sample losses that are higher than the

optimal η∗(λi
t,θt), where η∗(λi

t,θt) attains the infimum.

Rather than calculating the worst-case distributional loss, we

consider Φ(·) as a reward function. In this setting, the worst-

case distributional loss corresponds to the computation of
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the maximal distributional reward, as defined within the chi-

square ball of radius λi
t., and the active users are the ones

who received a reward equal to or greater than η∗(λi
t,θt).

This computation can be performed efficiently using Eq. (5).

Overall, the surrogate retention system for the ith demo-

graphic population is defined as follows,

λi
t+1 = (1− λi

t)β(κ
i(λi

t,θt)) + λi
tσ(κ

i(λi
t,θt)),

where κi(λi
t,θt) = sup

Q∈B(Mi,ri
t
)

Ez∼QΦ(θt, z),

rit = (1/λi
t − 1)2.

Here we describe two remarks about the proposed surrogate

retention system.

Remark 4.1. The surrogate retention system, when imple-

mented with the worst-case distributional loss formulation,

yields a low-dimensional state representation, with the state

consisting of the population densities of all demographics.

Furthermore, given a model θt and population density λt,

the system represents a deterministic difference equation

where active users are generated as per Eq.(5). The system

is differentiable with respect to the state λt, allowing for

efficient computation of the optimal model parameters, as

detailed in Sec.4.2.

Remark 4.2. Model-based reinforcement learning (RL) tech-

niques offer notable advantages in terms of sample complex-

ity, addressing a key challenge faced by model-free RL

methods such as policy gradient-based approaches. Despite

these benefits, scaling model-based RL to high-dimensional

problem domains remains a challenge. In this study, we pro-

pose a novel approach that considers population density as

a statistical average, effectively capturing underlying evolu-

tions. By adopting this perspective, we simplify the problem

to a low-dimensional surrogate retention system. The sim-

ulations conducted in this work can serve as a valuable

foundation for the development of model-free RL methods.

4.2. Optimal Control Formulation for Asymptotic

Fairness

We denote Ψ(·,1) as the binary cross-entropy loss between

population densities and a fixed vector of 1 at a specific time

step and 1. In this case, minimizing Ψ(·,1) is equivalent

to maximizing the population densities at the terminal time

step. Consequently, the objective of realizing asymptotic

fairness can be formulated as follows:

min
{θt}

T−1

t=0

Ψ(λT ,1) s.t.λt+1 = T (λt,θt), given λ0, (6)

where T (·) is the surrogate retention system defined in

Eq. (3). This is a special case of a class of general opti-

mal control problems for discrete dynamical systems, in

which we consider the control variables as the model param-

eters at all time steps. From this optimal control perspective,

asymptotic fairness can be achieved by solving for a set of

controls such that Eq. (6) is satisfied.

This is known as closed-loop control in which the opti-

mal control θ∗
t (λt) has explicit dependence on the state.

The optimal control solution can be solved via dynamical

programming principle (Bellman, 1952), which involves

solving a Hamilton Jacobi Bellman partial differential equa-

tion. For an efficient model generation, PMP (Pontryagin,

1987) converts dynamical programming into two difference

equations and a maximization condition. Instead of com-

puting the closed-loop control θ∗
t (λt), the PMP provides

a necessary condition for the optimality with fixed control.

To begin with, we define the Hamiltonian as

H(t,λt,pt+1,θt) := pT
t+1 · T (λt,θt)− L(θt,λt),

where L(θt, λ
i
t) is a running loss at time t. We consider all

running losses as 0 since asymptotic fairness is defined at the

terminal state. The PMP consists of a two-point boundary

value problem,

λ
∗
t+1 = ∇pH(t,λi,∗

t ,p∗
t ,θ

∗
t ), λ0 given, (7)

p∗
t = ∇λH(t,λi,∗

t ,p∗
t+1,θ

∗
t ), pT =

∂Ψ(λT ,1)

∂λT

, (8)

plus a maximum condition of the Hamiltonian.

H(t,λi,∗
t ,p∗

t ,θ
∗
t ) ≥ H(t,λi,∗

t ,p∗
t ,θt), ∀ θt and t. (9)

We consider the method of successive approximation (Chen

et al., 2022) to solve for the control solution. Given a initial

condition λ0, Eq.(7) corresponds to the surrogate retention

system. We then set a terminal condition, pT = ∂Ψ(λT ,1)
∂λT

.

During backpropagation of the adjoint state, the current

state λt and adjoint state pt+1 remain fixed, allowing for

the maximization of the tth Hamiltonian for InnerItr iter-

ations. This strategy permits multiple updates to the model

θt within a single forward-backward propagation. Once a

locally optimal model is achieved, we continue the back-

propagation of the adjoint state pt+1 to pt and optimize the

model θt−1. In this configuration, executing the Hamilto-

nian dynamics n times can be decomposed into maxItr
complete iterations and InnerItr local updates. The algo-

rithm is depicted in Alg.1.

5. Numerical Experiments

In this section, we describe two simulation environments

that function as the population retention system, as defined

in Eq. (5.1). Subsequently, we empirically validate the pro-

posed optimal control solution utilizing a synthetic dataset in

Section 5.2, and two realistic datasets frequently employed

in fairness studies, as discussed in Section 5.3.
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Algorithm 1 Method of Successive Approximation.

input λ0, learning rate lr, maxItr, InnerItr
output models {θt}

T
t=0

for m = 1 to maxItr do

for t = 0 to T-1 do

// Forward propagation (Eq. (7)).

λ
∗
t+1 = ∇pH(t,λi,∗

t ,p∗
t ,θ

∗
t ),

end for

// Set terminal condition.

p∗
T = ∂Ψ(λT ,1)

∂λT

,

for t = T − 1 to 0 do

for τ = 0 to InnerItr do

// Compute Hamiltonian with pt+1 and λt.

H(t,λt,pt+1,θt) = pT
t+1 · T (λt,θt),

// Max Hamiltonian (Eq. (9)).

θt = θt + lr · ∇λH(t,λt,pt+1,θt),
end for

// Backward propagation (Eq. (8)).

p∗
t = ∇λH(t,λi,∗

t ,p∗
t+1,θ

∗
t ),

end for

end for

5.1. A Generic Platform for Fairness in Non-Stationary

Environment

In this work, we construct two distinct population reten-

tion systems. The first configuration is based on a Markov

decision process, where the model’s prediction accuracy

at each time step determines user participation in the next

time step. Additionally, the feature vector zi,n describes

the probabilities of user churn following a correct predic-

tion and user retention subsequent to an incorrect prediction.

This creates a more realistic simulation, as the decision to

retain or churn is typically not solely dependent on the ac-

curacy of the model’s prediction. The second configuration

describes user retention as conditioned on a consequence of

the historical accuracy of model predictions for a specific

user. For instance, a user might churn if the model has

produced a set number of incorrect predictions (e.g., 3 accu-

mulated wrong predictions) for that specific user in the past.

In both configurations, we assume that the number of new

users joining at each time step is positively correlated with

the performance of the model. For instance, if the model

demonstrates high accuracy across all active users at time t,
it attracts a larger number of new users at t+1. This enables

an increase in population density as the performance of the

model improves. For each simulation run, a set of active

users is randomly sampled according to a given λ0 as ini-

tialization. In this case, simulation results in the evaluation

phase are not expected to align with the training simulations,

necessitating the models to exhibit robust generalization ca-

pabilities when different users are considered active during

the initialization of the simulation. We denote P1 and P2

as the population retention systems in the Markovian and

non-Markovian settings respectively.

For evaluation, we discuss a variety of existing baseline

methods to compare against the proposed optimal control

solution. We define S(θt, z
i,n) = Φ(θt, z

i,n) if [Ai
t]n = 1,

and 0 otherwise.

• Empirical risk minimization (ERM) optimizes an aver-

age loss of all observable data,

θt = argmin
θ

1
∑K

i=1

∑N
n=1[A

i
t]n

K
∑

i=1

N
∑

n=1

S(θt, z
i,n).

• Minimax optimization (Minimax) optimizes the worst-

case loss among all groups (Diana et al., 2021),

θt = argmin
θ

max
i=[1,...,K]

1
∑N

n=1[A
i
t]n

N
∑

n=1

S(θt, z
i,n).

• Distributionally robust optimization (DRO) sets a

lower bound on the population density of active users

and considers a proportion of data that produces the

worst-case loss (Hashimoto et al., 2018).

• A greedy control (Greedy) is equivalent to one-step

planning of the optimal control method,

θt = argmin
θ

Ψ(λt+1,1)

s.t.λt+1 = T (λt,θt), given λt.

5.2. Modeling with Synthetic Dataset

In this study, we employ both population retention systems,

P1 and P2, with a synthetic binary classification dataset. As

depicted in Fig. 1 (a), the synthetic dataset is composed of

two Gaussian blobs, each centered at disparate locations,

to formulate the feature distributions of two demographic

groups. The blobs located on the left and right are denoted as

the majority and minority demographic groups, respectively,

with respective initial population densities of 0.7 and 0.3.

All experiments are reiterated with five random seeds, and

the binary cross-entropy loss Ψ(λt,1) is used to quantify

the quality of each state λt. For instance, as λt increases

towards 1, this loss diminishes to zero.

In the proposed optimal control methodology, we express

both the survival rate and birth rate functions of the surro-

gate retention system as a weighted sum of polynomials.

Subsequently, we impose constraints on the weighting pa-

rameters to ensure a monotonically increasing behavior in

both functions, thereby aligning with the assumption under-

pinning the proposed surrogate retention system. During

each simulation run, the optimal control method learns a sur-

rogate retention system by optimizing the weight parameters
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