


understanding what triggers an emotion.

In this work we take a novel view, and formulate

emotion-trigger detection as an abstractive summa-

rization task that synthesizes a natural language

description of the events and their appraisals that

trigger a particular emotion. We frame our work

as emotion detection and trigger summarization

(Figure 1), which entails both detecting perceived

emotions in text, and summarizing triggers for each

emotion.

We present COVIDET (Emotions and their

Triggers during Covid-19), a new dataset sourced

from 1, 883 English Reddit posts about the COVID-

19 pandemic. Each post is annotated with 7 fine-

grained emotion labels; for each emotion, annota-

tors provided a concise, abstractive summary de-

scribing the triggers of the emotion. The triggers

are further validated in a separate stage. COVIDET

spans from June 2021 to January 2022, captur-

ing various significant events as well as how they

were emotionally appraised during the pandemic.

Compared to prior emotion studies that consider

only sentence-level texts (Sosea and Caragea, 2020;

Demszky et al., 2020) or (short) tweets (Sosea et al.,

2022; Abdul-Mageed and Ungar, 2017), COVIDET

is challenging as it contains significantly longer

texts. We showcase examples of COVIDET in Ap-

pendix §A.

Analyses of COVIDET reveal that negative emo-

tions such as fear and anger are prevalent. These

emotions co-occur most frequently with anticipa-

tion, which consistently rise after the Omicron sub-

variant became more dominant with fear dropping.

Topic modeling over the trigger summaries points

to irritations toward those who don’t mask or get

vaccinated, and positivity towards the vaccines.

Using COVIDET, we benchmark models for

emotion detection and emotion-trigger summariza-

tion. We employ both separate emotion detection

and trigger summarization models, as well as joint

models that we designed to simultaneously detect

emotions and generate trigger summaries. Our ex-

periments showcase the distinct nature of our task,

emphasizing that COVIDET is vital to training re-

liable emotion detection and trigger summariza-

tion approaches in a Covid-19 context. COVIDET

bears various unique characteristics, ranging from

its long sequences and invaluable context to the na-

ture of the task itself. Therefore, general emotion

detection or summarization models unsurprisingly

lag behind in performance compared to our meth-

ods. Moreover, human evaluation of the generated

trigger summaries tailored for emotion-trigger sum-

marization indicates that our models are effective

in capturing the underlying triggers of the post.

We release COVIDET and our code at https:

//github.com/honglizhan/CovidET.

2 Related Work

Summarization. Recent pre-trained models led

to substantial progress in single document summa-

rization. In the case of abstractive summarization,

encoder-decoder transformer models are used to

synthesize a concise description of the most salient

concepts in the input (Lewis et al., 2020; Zhang

et al., 2020). Significant efforts in summarization

focus on news because of the availability of large

datasets such as CNN/DailyMail (Hermann et al.,

2015) and XSum (Narayan et al., 2018); in the do-

main of social media, TL;DR sentences has been

mined in Reddit to serve as summaries and train

models (Völske et al., 2017; Kim et al., 2019).

However, generic summaries tend not to be infor-

mative if users are concerned with specific emo-

tions expressed.

In this sense our setup fits into settings where

only a certain part of the content is of interest to the

user. We could view our task as answering a query,

ªWhy does the writer feel [emotion]?º. However,

such queries are more general than query-based

summarization (Daumé III and Marcu, 2006; Otter-

bacher et al., 2009; Schilder and Kondadadi, 2008;

Nema et al., 2017; Baumel et al., 2018; Laskar

et al., 2020; Su et al., 2021; Zhong et al., 2021),

where queries tend to be more document-specific.

Perhaps a closer task is opinion summarization, or

aspect-based summarization more generally. In

opinion summarization, models need to summarize

affect/opinions about a certain aspect of a service or

product (Popescu and Etzioni, 2005; Angelidis and

Lapata, 2018; Huy Tien et al., 2019; Suhara et al.,

2020; Angelidis et al., 2021; Amplayo and Lapata,

2021); on the contrary, our setup entails identify-

ing the emotions and summarizing the events and

how they were made sense of with respect to each

emotion. In aspect-based summarization, existing

work has explored summarizing with respect to pre-

designated aspects of certain news (Frermann and

Klementiev, 2019; Ahuja et al., 2022), and entities

mentioned in text (Maddela et al., 2022).

Emotion Cause Extraction. Emotion Cause Ex-

traction (ECE) is a task that aims to extract the
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agreement between the two annotators by com-

puting the average score differences between their

responses.

Evaluation of BART-FT-JOINT yields a small

average difference of 0.690, indicating that the two

annotators have good agreement on the assigned

scores. The generated summaries have a good

quality, with an average score of 4. We also note

that the lowest score of 3.548 is obtained on con-

sistency, indicating that the model can introduce

non-factual details, and emphasize that our summa-

rization model performs well identifying triggers,

where it obtains a score of 4.048. To offer addi-

tional insights into the summaries generated by our

joint model, we show an example in Figure 7. The

post is annotated as joy and anticipation, and we

provide both the gold and the model generated sum-

maries. The summary for joy emotion is extremely

effective capturing the trigger; i.e., the progress

towards beating the Delta variant. However, we

also note some model errors, such as the repetition

of the word ªhopefulº. The annotators indicate that

the model outputs tends to be two sentences long

and the overall quality is good. Besides scoring the

summaries, we also instruct annotators to spot such

mistakes of the model in order to identify potential

areas of improvement. We detail our findings in

Appendix §F.

As mentioned, we also provide in Table 5 the

Likert scoring of the generic summarization model

by linguistic experts. Inspection of the data re-

veals that the generic summaries tend to be word-

to-word extractive of the original post, leading to

high scores in coherence, consistency, and fluency.

However, the generic summaries perform badly in

terms of relevance, suggesting that the models are

not capturing the triggers of the emotions. This is

also reflected in the low BERTScore performance

for the generic models.

8 Conclusion

We propose a new task entitled emotion detection

and trigger summarization, which aims to jointly

detect perceived emotions in text and summarize

the events as well as their appraisals that trigger

each emotion. To address the task, we introduce

COVIDET, a dataset of 1, 883 English Reddit posts

on COVID-19 annotated with emotions and ab-

stractive summaries of their triggers. Experiments

using our proposed joint model on the dataset re-

veal that COVIDET is vital resource for training

models to capture emotions and their triggers in

text. Our thorough evaluation of model-generated

summaries emphasize that COVIDET is a challeng-

ing benchmark, and our error analysis indicates

potential areas of improvements (e.g., improving

the factuality of the summaries).

Limitations

This work presents a new dataset to address the task

of detecting perceived emotions and summarizing

their triggers in text. While picking the COVID-19

as our topic enables meaningful, real-world appli-

cations and allows us to access emotionally rich

text, the emotion labels in COVIDET are highly

unbalanced: negative emotions such as fear and

anger are more prevalent. This makes it partic-

ularly challenging to train emotion detection and

summarization models on emotions with few exam-

ples (e.g., trust and joy). Moreover, due to the lack

of controllability and interpretability of end-to-end

summarization models, we acknowledge the po-

tential risks of generating biased or inappropriate

trigger summaries for certain posts. In particular,

our results revealed consistency and factuality is-

sues that exist in modern abstractive summarization

systems.
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A Dataset Examples

An example of COVIDET is shown in Figure 8.

This example includes annotations from both an-

notators. Annotations for different emotions are in

distinct colors.

B Data Curation Details

Here we detail the preprocessing procedure over

the source data. We preprocess the source data

using regular expressions. As the first step, we tok-

enize posts into individual words. Specifically, we

apply the following regular expressions in combi-

nation with the NLTK word_tokenize package to

tokenize posts into words:

re.sub("\s+","␣", post)

re.sub(r'(?<=[.,!?:])(?=[^\s])', r'␣', post)

re.sub(r'\s([?.!,:"](?:\s|$))', r'\1', post)

nltk.tokenize.word_tokenize(post)

Then we exclude punctuation from the tokenized

posts and filter the posts that are 50-400 tokens

long. Finally, we mask web links by substituting

them into [url] tokens using the following regular

expressions:

pandas.Series.str.replace(r'http\S+', '[url]').

str.strip()

pandas.Series.str.replace(r'''(?i)\b((?:https

?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z

]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s

()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()

<>]+\)))*\)|[^\s`!()\[\]{};:'".,<>?ńż“”‘’]))

''', '[url]').str.strip()

C Annotation Instructions

Comprehensive instructions are provided to the an-

notators, as demonstrated in Figure 9. Note that

the instruction page pops up as a modal before ev-

ery annotation, so as to remind the annotators of

the task framework. We also ask the annotators to

pay special attention to a few principles as follows.

For the emotion annotations, we ask annotators to

follow the emotion guidelines on the Six Seconds

website6 and interpret anticipation as (good or bad)

expectancy (Plutchik, 1958). For the trigger annota-

tions, we instruct annotators to annotate summaries

containing triggers that lead to the emotion instead

of sentences expressing the emotion itself.

The layout of our annotation task is shown in

Figure 10.

D Hyperparameters

In this section, we detail the hyperparameter search

space and the final hyperparameters used by our

joint BART-FT-JOINT model, which were chosen

based on the best validation performance. Specif-

ically, we show the values for the learning rate,

batch size and multitasking loss weighting term

λ in Table 6. In terms of search space, we tried

batches in the range 4 → 64 and learning rates in

the range 1e−5 → 9e−5 with a step of 1e−5. We

also search a suitable λ in the range 0.1 → 0.9. We

decode our summaries using beam search decoding

and a beam size of 4. Training BART-FT-JOINT

model on our A5000 GPU takes ~1 hour to com-

plete for each emotion.

E Human Evaluation Instructions

We provide the detailed instructions for human eval-

uation in Figure 11.

F Human Evaluation Summary Errors

We instructed our expert human evaluators to find

potential areas of improvement of our BART-FT-

JOINT summarization model by identifying fre-

quent errors the model makes. In this section, we

analyze our findings and present a few examples

in Table 7. Specifically, the annotators pointed out

four main model errors: 1) Non-factual relative

clauses; 2) Model summary includes information

in the summary that is not discussed in the post; 3)

At least a few sentences in the model summary are

formatted to make the text difficult to read; and 4)

The overall model summary is not well-structured.
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POST SUMMARY

Non-factual relative clauses

I am visiting family this week. All of my family members who are eligible for the vaccine, including

myself. have gotten vaccinated. The only people who arent are my niece and nephew, because they are

only 4 and 1 years old. I wanted to see an old friend from high school, but I found out that this friend

did not get vaccinated. My brother and sister in law are asking that I avoid seeing people who are not

vaccinated since their children cannot be vaccinated. Is it too much to completely avoid seeing this person

at the wishes of my brother, or would it be safe enough to see this person in an outdoor setting socially

distanced? I know this is a stupid question, but Im curious what you all would do.

I’m looking for any advice about whether it’s safe to

see a friend who isn’t vaccinated when their children

can’t be vaccinated, or whether I should follow the

wishes of my brother and sister-in-law, who want me

to avoid this person. .

My country is in a third wave. Its never ending. Im sure this post will get removed because Im too

depressed/depressing for Reddit. Im broke because of the pandemic. Im struggling to work because my

anxiety gives me physical symptoms. My friends dont talk to me anymore, or when I do talk to them

they just tell me to see a therapist even though I already do (and can barely afford it). Im thinking about

stopping eating so I can afford therapy. Theres no point to any of this. Every death that is about to happen

here could have been prevented, and no one cares and they call me crazy. Im tired of the endless hurt.

I expect that this post will be removed from Reddit

because I’m too depressed to post it because I ex-

pect that no one will want to read it and everyone will

think that I’m crazy for thinking that I should stop

eating so that I can afford to see a therapist. .

Model Summary includes information in the summary not discussed in the post

israel imposed their mask mandate, despite being one of the most vaccinated countries. i feel like this will

never end and I don’t need stupid replies like ªhang in thereº or ªit will be okay.º and don’t remove this

post because it ªcauses anxiety.º I’m not. I’m simply worried that we’ll never get back to normal.

I’m afraid that we’re never going to be able to get

back to normal after COVID, because Israel has a

mandate and Israel is one of the most vaccinated

countries in the world, and that’s putting a strain

on our health systems and on our mental health.

I am fully vaccinated with the Moderna shot, and have been getting back to my regular life. I live in a state

(MA) with extremely high vaccination rates, but nonetheless Im concerned about the Delta variant. Ive

been hearing stories of breakthroughs of the variant in fully vaccinated people, so I am concerned. At the

same time, Im extremely tired of this. I feel selfish for saying this, Ive done all I can do to protect myself

and others against COVID, and I want to continue to live my life after over a year of taking precautions.

Anyone else feel the same?

I am disgusted to see myself being selfish because I

have done all I can to prevent COVID and I want to

live my life as if I had not had any COVID side effects

at all since I have taken every precaution possible to

prevent the COVID variant.

Some sentences in the model summary are formatted to make the text difficult to read

So the Vaccine team in Iceland is taking a summer holiday for a month that extends over the time when

I was suppose to get my second Astra Zeneca shot. They offered me to get it sooner but I heard it will

decrease it’s effectiveness by allot. Should I get the shot 7 weeks after my first shot or should I wait until

they come back and get it at least 15 weeks after after my first shot. Iceland has stopped all restrictions so

i am a bit nervous.

I trust that the vaccine will help protect me from

catching COVID and I’ll get it as soon as I can get

it. I trust that COVID will do what it’s supposed to

do and do it it will do its best to protect me and my

family from COVID.

Is anyone else experiencing bad post-outing anxiety? Ive been trying to push myself out of my comfort

zone (and sometimes I even get excited to) and so I get ahead of myself and leave my house. No bars

or clubs, but I did attend an outdoor gathering thats weighing heavy on my mind. While Im out, Ive

surprisingly found Im quite bored when I leave my house, but the real problem comes the day afterwards.

I sit and think was that too soon? Can I re-enter my bubble now that people have seen me? Am I a

hypocrite? And these questions flow through my brain in a never ending sequence. Feeling that Ive been

perceived by others and I cant take it back feels unbearable, yet I took the decision to leave my house so I

then encounter feelings of embarrassment, guilt and shame. Not to mention the obvious fear of the delta

variant, and overall uncertainty over cdc recommendations. (I wish someone could spell out a good plan

for reintegration besides - rip off the mask and live!) Everyone I know has returned to life normally and

Im here in a weird limbo. I know a lot of people in this struggle with just leaving the house, but is anyone

else out there struggling with how they feel once they do?

I find it hard to leave the house and it surprises me

when I find out that I’m not feeling the same way

when I do. I feel embarrassed and ashamed that I’ve

been seen out in public and that I can’t go back and

change what I’ve done.

The overall model summary was not well-structured.

I’ve recently heard of stories that people who are getting mildly sick after being vaccinated are still coming

down with long covid. People on the covid long hauler subreddit are saying that we’re going to have a

huge problem on our hands because no vaccine protects against long covid....This isn’t going to end, isn’t

it? Right as I think I’ve tasted freedom, I find out information that makes me want to stay inside forever

like a hermit...

I feel sad and hopeless because I think I’ve tasted

freedom and then I find out more information that

makes me want to stay inside like a hermit. I wish

I could just be free from this virus for a while but it

doesn’t look like that will be possible.

This makes me really just not want to go out and about again.... I’ve been on this sub for a while and

posted a lot. More or less this pandemic has crushed my mental health and with having some health issues

makes me really hesitant to do anything. I was finally getting my life back a little and this Delta variant

makes me want to go back to old habits and just stay home and see no one... I really am at a loss of what

to do and am feeling super overwhelmed.

I’m at a loss for what to do and don’t know what I

can do to get back on track with my health issues, so

I just want to go back to my old ways and stay home

and see no one. I was finally getting my life back

before the pandemic hit.

Table 7: Example of common model errors identified by the expert evaluators.
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Figure 9: Annotation instructions (always shown before annotating).
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Figure 10: The annotation task layout of an example hit on the Amazon Mechanical Turk.
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Figure 11: Human Evaluation Instructions.
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