




News (Expert) News (Crowd) Books (Crowd)

0.41∗∗ 0.48 0.19

Table 1: Summary-level agreement, measured by Krip-

pendorff’s α. ∗∗Expert agreement after one round of

annotations; this aligns with the crowd setting.

Limitations of Current Human Evaluation

Summary-level Likert scale annotations are the

most commonly used setup for collecting coher-

ence in single-document news summarization re-

search (Fabbri et al., 2021). Here, we run an analo-

gous study for our longer narrative summaries.

We ask 3 Mechanical Turk workers with prior

experience in annotation for NLP tasks, specifically

discourse analysis and text simplification, to rate

the overall coherence of 100 generated summaries

on a 5-point scale. Table 1 reports the observed

agreement, measured by Kripendorff’s α. Com-

pared to newswire summaries collected under a

similar setup (Fabbri et al., 2021), annotations for

longer narratives have a much lower agreement.

This shows the difficulty in obtaining a consensus

on coherence for a 500+ word summary through a

single value on a 5-point scale.

In Appendix B, we further show that automatic

metrics like ROUGE and BERTScore (Zhang et al.,

2019) that are primarily used for evaluating long

document summarization fail to penalize coher-

ence errors in summaries. Better tools for both

automatic and human evaluation are needed.

3 SNAC Annotation Methodology

We design our methodology to: 1) simplify the

summary-level annotation task into smaller sub-

tasks, and 2) provide a structured framework that

allows annotators to specify the type of coherence

error, instead of evaluating coherence holistically.

3.1 Task Workflow and Notation

We decompose the summary-level task into smaller

segment-level tasks: at each step, annotators eval-

uate a subpart of the summary, which is usually

2-4 sentences long. Let S0, S1...SN denote these

summary segments. While evaluating segment Si,

coherence judgments are made with respect to both

the context S0, S1...Si−1 and text within Si.

To annotate a single error in Si, annotators se-

lect the error span tj ∈ Si and the coherence error

type ej (error taxonomy outlined in Section 3.2)

to construct the error triple aj = (Si, tj , ej). This

process is repeated until all errors in segment Si

have been added, after which they proceed to the

next segment Si+1 for annotation. At the end of

the annotation, workers produce the full set of an-

notations A = {aj ∀j} across all the text segments.

The outcome of this is shown in Figure 2.

For book summaries, i.e. BOOK-175B and

BOOK-6B, our segments come from boundaries

present in the generated summaries. These are an

average of 2.7 sentences. For MOVIE-BART, we

segment summaries into chunks of 3 sentences.

3.2 Error Taxonomy

Reinhart (1980) states three conditions for coher-

ence: connectedness (cohesion), consistency, and

relevance. Our error taxonomy is guided by these

conditions while covering the broad range of coher-

ence errors produced by current models.

We divide errors into two categories: a) Coher-

ence errors: these measure whether the summary

is well-structured and events in the summary make

narrative sense, and b) Language errors: these

measure other aspects of the quality of generated

text, such as grammar. While these do not come

under the ambit of coherence errors, we found it

useful to provide these additional error types for

crowd workers to anchor other ªbadnessº in text to.

3.2.1 Coherence Errors

New character without introduction (CharE)

These refer to scenarios where a new person is

introduced in the narrative without providing any

background about the person, or their relation with

other characters in the story. This violates condi-

tion 1 of coherence, i.e. connectedness. Note that

well-known people, e.g. Barack Obama, do not

need an introduction.3

Missing reference to an event or object (RefE)

These refer to scenarios where an event or object

is mentioned for the first time, but the phrasing

strongly implies that it must have been introduced

previously or that some context is missing to fully

understand it. E.g., in Figure 2, the phrasing of her

husband’s suicide gives the strong impression that

the reader is already aware of this event.

Abrupt scene transition (SceneE) These occur

where there is a sudden shift in the narrative and are

3We special-cased this class of error because it was so fre-
quent in our data. Our narratives are about fictional people in
real-world settings, so places, organizations, and other named
entity types are less likely to require explicit introduction.
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Error Type Coherence Language Total

r -0.26∗ -0.34∗ -0.33∗

Coherence Errors Language Errors

CharE -0.22∗ RepE -0.21
RefE -0.29∗ CorefE -0.24∗

SceneE -0.05 GramE -0.25∗

InconE -0.09

Table 3: Pearson correlation between no. of errors and

summary-level coherence score for error categories. An-

notators tend to focus on grammar instead of coherence-

specific errors while assigning overall summary-score.

∗: p-value < 0.05, according to a two-tailed test.

Table 3 outlines our results. First, it shows

that the total number of errors is correlated with

the overall coherence score, but annotators tend

to weight language errors higher than coherence-

specific errors. Surprisingly, we see negligible

correlation with SceneE errors although these are

a prominent distinguisher between generated and

human-written summaries. Amongst other error

types, both RefE errors and GramE errors show rel-

atively higher correlation. Although not directly

evaluating coherence, Clark et al. (2021) report sim-

ilar observations where annotators tend to focus on

grammar errors while judging text quality.

Narrative Summarization ̸= Open-Ended Gen-

eration In story completion, models are not re-

quired to cover all salient information from a doc-

ument and only condition on past generated text;

generated open-ended summaries rarely diverge

off-topic. Examples of GPT-3 generated stories

in Figure 8 (Appendix A) show that these gener-

ate almost no CharE, RefE or SceneE errors that

form the majority in SNaC, and instead mainly ex-

hibit repetition. Therefore, research efforts that

introduce fine-grained taxonomies for this task, e.g.

Scarecrow (Dou et al., 2022), are directly applica-

ble to summarization which needs to be indepen-

dently studied.

4.4 Inter-Annotator Agreement

We first compute inter-annotator agreements at the

sentence- and segment-levels. This allows for

an apples-to-apples comparison with Fabbri et al.

(2021) as the average length of news summaries is

roughly equal to our segment length. We convert

their 5-point Likert ratings into binary labels using

that each annotator’s aggregated segment-level errors are cor-
related with their own summary-level judgment; here, agree-
ment between annotators is not relevant.

Our Annotations Newswire

Expert Crowd Crowd
Sent Seg Sent Seg Seg

Coherence .77 .90 .59 .69 .49
Language .33 .45 .22 .28 -

Table 4: Segment and sentence-level agreement, mea-

sured by Krippendorff’s α for SNAC. Our dataset re-

ports higher inter-annotator agreement compared to

newswire summaries adapted to a similar setting.

Error Krippendorff’s α Two-agree %
Expert Crowd Expert Crowd

CharE .91 .69 86 67
SceneE .57 .30 62 35

RefE .25 (.39) .10 (22) 27 (39) 11 (23)
InconE .18 (.29) .13 (21) 20 (37) 14 (23)

Table 5: Token-level agreement for errors in the co-

herence sub-category. For RefE and InconE, we also

report agreement (in parentheses) after normalizing span

boundaries for overlapping errors.

the threshold that gives the best agreement score.

We compare Krippendorff’s α for SNAC and news

in Table 4: SNAC reports high inter-annotator

agreement at both the sentence- and segment-level.

Notably, this segment level agreement is better than

that of crowdworkers in the news domain.

Span-level analysis Next, we evaluate category-

specific agreement between annotators at the span

level. We report two metrics: 1) Krippendorff’s

α and 2) two-agree %; borrowed from Dou et al.

(2022), this reports the percentage of tokens la-

beled as erroneous by at least one annotator that

were also labelled by one or more additional anno-

tators. For RefE and InconE, we noticed that small

differences in span boundaries caused a significant

drop in agreement, therefore, for these we also re-

port metrics after normalizing span boundaries of

overlapping spans to their union.

Table 5 outlines the agreement: for both ex-

pert and crowdworkers, we see high agreement

for CharE and fair agreement for SceneE. On the

other hand, lower agreement is observed for RefE;

this aligns with our observation that individual an-

notators may have low recall. Different annotators

fundamentally have different notions of what extra

information is critical for understanding the text.

Similar overall results at the token-level are re-

ported by Dou et al. (2022) for their error taxon-

omy: their error categories Commonsense and En-

cyclopedic report the lowest metrics, the two-agree
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Table 6 outlines the results. As observed during

qualitative evaluation, the held-out human annota-

tions are high precision and low recall. On the other

hand, FT w/ span is trained on the aggregated an-

notations from three annotators and reports higher

recall than humans. Consequently, its F1 scores

are comparable to human performance except for

InconE. We attribute this to the limited number of

training examples of this category.

Similar to previous analysis, we observe that

models and humans report the best performance at

detecting CharE. Interestingly, the trained model

can identify both SceneE and RefE with higher

recall compared to human annotators. For these

top three error types, trained models are successful

at localizing error to specific spans, reporting high

overlap scores.

6 Discussion

Our analysis of current narrative summarization

models reveals that these do not generate coher-

ent narratives; in fact, each generated summary

contains ~30 coherence errors of varying degrees

of severity. Moreover, both automatic and human

approaches for coherence evaluation fail to reliably

measure coherence. SNAC addresses this gap.

However, we stop short of providing a prepack-

aged metric: which errors are more severe is

application-dependent and subjective, and over-

all error counts cannot be compared. We encour-

age future work to focus on fine-grained error an-

notations, like those we present here, instead of

sentence- or document-level annotations that do not

provide actionable insights. We also recommend

fine-grained error modeling for future coherence

systems as well. While previous modeling has tar-

geted document- or sentence-level coherence, our

models trained on SNAC data can detect span-level

coherence errors, particularly CharE errors with

high accuracy. This automatic error localization

opens up future avenues of post-hoc error correc-

tion systems built on top of coherence models.

7 Related Work

Coherence frameworks Inspired by Centering

Theory (Grosz et al., 1995), Barzilay and Lapata

(2005, 2008) proposed entity-grid models to mea-

sure coherence through transitions of entity roles.

This was further extended to incorporate non-head

entities (Elsner and Charniak, 2011), discourse

roles (Lin et al., 2011), and other improvements

(Feng and Hirst, 2012; Feng et al., 2014), including

neural variations (Guinaudeau and Strube, 2013;

Nguyen and Joty, 2017; Joty et al., 2018) to better

model text coherence. However, these models have

been evaluated primarily on document-level essay

scoring tasks (Mesgar and Strube, 2018) or arti-

ficial sentence-ordering tasks (Shen et al., 2021),

and not on model-generated coherence errors.

Summarization Evaluation Automatic metrics

such as BLEU (Papineni et al., 2002), METEOR

(Banerjee and Lavie, 2005), ROUGE (Lin, 2004),

BERTScore (Zhang et al., 2019), and others have

been used to evaluate summarization, but Fabbri

et al. (2021) showed that these correlate poorly

with summary quality. Human evaluation is widely

considered the gold standard for generation tasks,

however, recent work (Karpinska et al., 2021; Clark

et al., 2021) demonstrated that humans are not reli-

able for evaluating strong models like GPT-3.

8 Conclusion

We introduce SNAC, a narrative coherence evalua-

tion framework for long summaries. We develop an

error taxonomy grounded in coherence errors made

by current models and annotate data to provide

the first characterization of such errors in narrative

summaries. We also make our annotation tool pub-

licly available to support future research efforts.

9 Limitations

Although we view this work as an important step to-

wards better understanding and evaluation of coher-

ence in summaries, we acknowledge there is much

more to do here. In this work, we only collect anno-

tations and analyze coherence errors in summaries

of English language books and movie screenplays.

Our proposed taxonomy may not cover errors made

by text summarization models for other languages

and our trained models and analysis are English-

specific.

Moreover, some of these books summarized

were written decades ago and may reflect the soci-

etal biases of those times, which could conceivably

bias our trained error detection models. In this

work, we use the text from the model generated

summaries as is and do not perform any filtering.

Finally, our work studies generated summaries

for long narrative text. While we believe that our

taxonomy is generalizable to other types of narra-

tive text, we do not investigate whether it covers
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other domains involving summarization of long

documents, such as government report summariza-

tion (Huang et al., 2021) or meeting summarization

(Zhong et al., 2021).
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A Narrative Summarization ̸=
Open-Ended Generation

In Section 4.3, we noted that narrative summa-

rization exhibits substantially different errors than

open-ended text generation tasks like story gener-

ation or story completion, hence the need for our

new taxonomy. We show examples of generated

stories using the GPT-3 DaVinci in Figure 8. We

prompt the GPT-3 text-davinci-002 model with the

first few sentences of three generated summaries

and ask for a 500-word completion. The coher-

ence errors contained in these model outputs are

very different from those in our narrative summa-

rization setting. In particular, the stories hardly

introduce any new characters (only Mr. Greene is

introduced in the third example), and when they do,

these are properly contextualized with the narrative.

Furthermore, these models rarely generate RefE

and generate no SceneE type of errors. In fact,

repetition errors, shown in blue, dominate these

narratives. Therefore, error taxonomies devised for

these tasks, e.g. SCARECROW (Dou et al., 2022),

are not useful for summarization settings which

needs to be independently studied.

B Limitations of Automatic Metrics

Long document summarization research (Chen

et al., 2022; Huang et al., 2021; KryÂsciÂnski et al.,

2021; Mao et al., 2021; Pang et al., 2022) has pri-

marily relied on ROUGE scores to evaluate sum-

maries. But do these capture narrative coherence?

We test this for long narrative summaries, using

the BOOK-175B dataset as a case study. Specif-

ically, we test whether ROUGE or BERTScore

(Zhang et al., 2019) can differentiate between ac-

tual generated summaries and their corrupted ver-

sions with artificially injected coherence errors. We

introduce 3 types of coherence errors to generated

summaries:

1. Random shuffling using a random permutation

of all sentences in a BOOK-175B summary.

This does not change the overall length of the

generated summary.

2. Repetition of a randomly selected subset of

sentences. We randomly sample 50% of the sen-

tences to repeat, all other sentences only occur

once.

3. Retaining only named entities in the summary

and top generated bigrams. We first extract

the top 200 bigrams from the generated sum-

maries in BOOK-175B, which include frequent

bigrams like of the, that he, then he, in the, etc.

For each test set summary, we construct a cor-

rupted summary by concatenating all named

entities in the summary (appending each named

entity as many times as it occurs in the original

summary) and the top bigrams extracted from

the testset-wide summaries.

For an upper bound, we also report metrics for

a different human-written summary for the same

input book sampled from the BookSum dataset.

Automatic metrics fail to penalize coherence

errors. Table 7 shows that both shuffling and

repetition do not hurt ROUGE or BERTScore, de-

spite introducing critical coherence errors in gener-

ated summaries. The +NE & bigram setting does

lead to a significant drop in BERTScore as these

summaries are no longer fully-formed sentences.

However, even this trivial baseline reports ROUGE

scores on par with the original BOOK-175B sum-

maries, showing that ROUGE is easy to ªgameº for

this task. Finally, we see that human-written sum-

maries, i.e., gold coherent summaries, only report

2 points of improvement in R2 and BERTScore

over artificially incoherent baselines. This clearly

shows that these metrics are inadequate to mea-
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Summary R1 R2 RL BERTScore

OpenAI 175B 41.9 11.0 17.1 .51
+ Shuffled 41.9 11.0 15.6 .51

+ Repetition 44.7 10.6 17.2 .49
+ NE & bigram 42.8 10.1 16.3 .26

Human-written 45.8 12.5 17.9 .53

Table 7: ROUGE and BERTScore for BOOK-175B and

several artificially corrupted versions. Results show that

automatic metrics fail to penalize coherence errors.

Method #train #dev F1 Acc.

Coref-based 6.0k 920 .78 .77
Next-Sent 3.8k 880 .71 .74

Table 8: Dataset sizes and intrinsic performance of T5-

Large models trained on synthetic datasets.

sure coherence, or even overall quality, for long

summaries.

C Detecting Coherence Errors: Details

and Additional Results

C.1 Models trained on synthetic data (SYN)

Table 8 shows the training data and development

data size, as well as the intrinsic performance of

these synthetic dataset-based coherence models

on this development set. We construct both our

datasets with an equal number of positive and nega-

tive coherence examples. The results show that T5

learns to model the synthetic task with reasonable

accuracy. We do not expect the models to perform

perfectly, as the synthetic data may have false pos-

itives (examples constructed to exhibit errors that

are actually coherent).

C.2 Implementation Details

Table 9 shows the hyperparameters used for fine-

tuning the T5-Large models on both synthetic train-

ing datasets and SNAC.

Computing Infrastructure 32GB NVIDIA V100 GPU
Max Input Seq Length 1024
Max Output Seq Length 80 (for FT w/ span)
Optimizer Adam

Optimizer Params β = (0.9, 0.999), ϵ = 10−8

Learning Rate Decay Linear
Learning rate 1e-4
Batch size 8
Epochs 5

Table 9: Hyperparameters used for fine-tuning T5-Large

on synthetic and SNAC train sets.

Model CharE SceneE RefE InconE All

Coref-based .61 .47 .48 .15 .43
Next-Sent .31 .35 .32 .09 .27

FT w/o span .89 .84 .64 .51 .73
FT w/ span .90 .82 .58 .47 .70

Table 10: Sentence-level recall of different errors types.

Models (except FT w/ span) do not predict the error cat-

egory; here, we treat these methods as binary classifiers

and compute recalls as described in Appendix C.3.

C.3 Additional Results

Sentence-level binary classification In Section

5, we reported sentence-level binary classification

results for all models. However, the sentence-level

ypred judgment in that setting can be due to any of

the 4 error types or their combination and binary

classification metrics do not tell us which of these

error types are easier to detect.

To answer this, we compute the error-wise recall

under the binary setting. We assume e
pred
j = 0 if

ypred = 0 for all error types ej ; that is, a prediction

of a binary error counts as detecting an error of any

type in that sentence. This overestimates the recall

performance and can be viewed as an upper bound;

a model that can only detect CharE may report non-

zero recall for other errors if these co-occur with

CharE.

For fair comparison between different models,

we report category-wise recall for all models at the

same precision level P = 0.7. Table 10 outlines

our results. Both synthetic models report higher

recall for the error category they were designed

for. E.g., the coref-based method can detect CharE

errors better than other error types. However, our

FT models significantly outperform both synthetic

approaches across all error types at thresholds with

high precision performance. In particular, we ob-

serve high recall scores for CharE and SceneE.

Fine-grained prediction In Table 6, we com-

pared human and model (FT w/ spans) performance

on a modified test set created by combining annota-

tions from 2 crowdworkers. This unfairly penalized

the trained models, which may have slightly higher

recall due to being trained on annotations from 3

crowdworkers. In Table 11, we report results on

the original test set that combines annotations from

all 3 annotators.
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methods fail to identify gaps in narrative coherence

and are not suited for evaluating long summaries.

Our SNAC dataset and annotation framework re-

leases a large-scale dataset of fine-grained coher-

ence annotations and establishes a protocol for elic-

iting such annotations from crowdworkers. This

provides a foundation for future research efforts in

this area.

Has the dataset been used already? At the time

of submission, the dataset has only been used in

the current paper for analysis of generation er-

rors made by current state-of-the-art summariza-

tion models and for training automatic coherence

detection models.

Who funded the dataset? We withhold this in-

formation to maintain anonymity but will include

it upon publication.

E.2 Dataset Composition

What are the instances? Each instance in this

dataset is a model generated summary from either

the book or the movie domain. All summaries are

in the English language.

How many instances are there? Our dataset

contains annotations for 160 generated summaries

(including both expert and crowd annotations).

What data does each instance consist of? Each

instance contains multiple span-level highlights cor-

responding to coherence errors, each of which is

tagged with a specific error category.

Does the data rely on external sources? Yes.

For the book datasets, we annotate summaries from

the publicly available model outputs released by

Wu et al. (2021). For movies, we generate sum-

maries using the SummˆN model (Zhang et al.,

2022) on the publicly available TRIPOD dataset

(Papalampidi et al., 2020).

Are there recommended data splits or evalu-

ation measures? We will include the recom-

mended training, development, and test splits for

our annotations with the dataset release. The statis-

tics for the data splits are outlined in Section 5.

E.2.1 Data Collection Process

Who was involved in the collection process and

what were their roles? For expert annotations, 3

authors of the paper with experience in engaging

with model-generated text annotated 10 book sum-

maries. To recruit crowd annotators, we launched

a qualification task on Mechanical Turk. After this

qualification, 11 workers were asked to annotate

150 summaries.

How was the dataset collected? Given a gener-

ated summary, annotators were asked to select span

highlights that correspond with coherence errors

and categorize the type of that error. We provided

all annotators with detailed instructions describing

the task interface, error type definitions as well as

the overall workflow.

Over what time frame was the data collected?

The dataset was collected over the months of March

and April 2022.

Does the dataset contain all possible instances?

No, we only annotate narrative summaries from

two summarization models on two domains

(movies and books). Moreover, our dataset only

contains English language summaries.

If the dataset is a sample, then what is the popu-

lation? The dataset is a subset of generated sum-

maries produced by state-of-the-art summarization

models on narratives like books or movie screen-

plays.

E.3 Data Preprocessing

What preprocessing/cleaning was done? We

fix sentence and word boundaries for highlighted

spans from crowd annotations.

Was the raw data saved in addition to the

cleaned data? Yes.

Does this dataset collection/preprocessing proce-

dure achieve the initial motivation? Yes. This

dataset serves as a large-scale collection of anno-

tated coherence errors and provides the first char-

acterization of such errors in long narrative sum-

maries.

E.4 Dataset Distribution

How is the dataset distributed? Our dataset is

publicly released at this link: https://github.

com/tagoyal/snac.

When was it released? The dataset was released

in October, 2022.

What license (if any) is it distributed under?

The dataset is released under the CC BY-SA 4.0

license.7

7
https://creativecommons.org/licenses/by-sa/4.

0/legalcode
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Who is supporting and maintaining the dataset?

This dataset is maintained by authors of this paper.

E.5 Legal and Ethical Considerations

Were workers told what the dataset would be

used for and did they consent? Crowdworkers

were aware that their responses were being col-

lected as part of a research study on analyzing

coherence errors in narrative text. The Amazon

Mechanical Turk Participation Agreement permits

the use of their annotated responses for this work.

We do not release any personal information, e.g.

worker IDs, of the crowdworkers.

If it relates to people, could this dataset expose

people to harm or legal action? No.

If it relates to people, does it unfairly advantage

or disadvantage a particular social group? No.
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