




ies evaluating the quality of model generated text.

The dataset collected through FALTE has the fol-

lowing form: annotators highlight errors e ∈ E

in a given document d where each annotation e

consists of a text span t ∈ d and corresponding

error category c. Annotators incrementally proceed

through the document and annotate as many errors

as they can identify in the text. In this section, we

will outline the workflow for the two stakeholders:

1) task designers (researchers) that employ the

tool to run these studies, and 2) crowd annotators

that interact with our web interface and provide

annotations for the quality of long text. The overall

workflow is outlined in Figure 2.

2.1 Task Designer Workflow

FALTE is designed to be flexible across different

long document annotation tasks, for both data col-

lection and evaluation use cases. Here, we describe

the different action items for the task designers to

create the annotation website and launch a study.

Define the error taxonomy In order to support

annotation studies across a variety of quality di-

mensions and tasks, we allow task designers to

define their own error taxonomy. FALTE supports

an arbitrary number of error classes.

For each category defined, task designers addi-

tionally classify these as either singleton or paired.

For the singleton errors, each crowd annotation cor-

responds to a pair of text span and an error category

(as shown in Figure 1). For paired, each annotation

is a tuple containing two text spans and the error

category. This latter functionality was introduced

to cover error types such as repetition errors which

are naturally defined between pairs of text spans.

Note that although the tool does not support error

annotations with more than two text spans, these

use cases can be tackled within FALTE’s frame-

work by creating chains of paired error annotations.

To specify their error categories and their spec-

ifications, researchers simply edit a configuration

file. The contents of these configuration files are

then reflected on the task interface when the web

application is launched.

Define the annotation granularity Our annota-

tion tool is aimed at collecting annotations for long

machine generated text, say ~30-40 sentences or

longer, although it can be deployed in shorter set-

tings as well. To simplify this document level anno-

tation task, we allow task designers to decompose

the annotation workflow into iterative paragraph

level annotation tasks. Note that paragraph here

can be defined to correspond to segments of text of

any length. In this paper and the demo, we use the

terms segment and paragraph interchangeably.

Under this setting, initially the crowd annotators

are only shown the first paragraph (or other speci-

fied unit of text) for annotation. Once annotation

for that paragraph is completed, workers can pro-

ceed to subsequent paragraphs with the option to

navigate back. We will discuss this in more detail

in Section 2.2.

The FALTE tool expects a JSON file with con-

taining all of the text to be annotated as input. Each

document in this JSON is represented by a List

of Strings; each list item represents a paragraph.

Therefore, task designers can control the length of

the annotation unit (paragraph) for each document

individually through this input file.

Setting up and launching the crowd an-

notation study Our tool accepts the above

task specifications and generates all relevant

client and server side code. The task designer

can then launch their annotation website us-

ing their preferred cloud platform; we host

our example demo website using Heroku3 at

https://coherence-annotation-summaries.

herokuapp.com/id=oai1. After the task anno-

tation website is live, task designers can recruit

crowd annotators and collect annotations for text

quality.

2.2 Crowd Annotator Workflow

As previously mentioned, each worker starts the

annotation process with the first paragraph of the

text and incrementally annotates succeeding para-

graphs.

Figure 3 shows the task interface and outlines the

annotation steps for annotating a single text span

in the Current Paragraph box, after annotations

have already been completed for paragraphs in the

Context box. The stepwise workflow is:

1. Highlight span containing error: First, the

worker selects the text span in the Current Para-

graph containing the error using the click-and-

drag motion. The highlighted text will automat-

ically populate in the relevant text box at the

bottom.

2. Choose error type: Next, the worker chooses

an error type or label for the highlighted text.

3
https://www.heroku.com/

353





worker clicks on the No more errors. Go to next

paragraph button to update both the Context and

Current Paragraph boxes; the Current Paragraph

will now reflect the next paragraph of the document

text. Finally, after errors in all paragraphs of the

document have been annotated, the worker clicks

on the Submit button that stores their error anno-

tations for the whole document in the server-side

database.

Coreference Cues Since the annotation interface

is designed for long documents, we found that be-

ing able to quickly find instances of entities was

very helpful during our pilot studies. The scope

of this functionality can be controlled by the re-

searchers: in our pilot study (discussed in Section

3), this was only enabled for named entities using

string match on names. Specifically, if the user hov-

ers their cursor over any named entity mention in

the Current Paragraph section, the tool also high-

lighted all other instances of that entity. Putting

the cursor over Findon in the Current Paragraph

highlights the other instance of the same character

in Figure 3. It is equivalent to searching (CTRL+F)

for the entity, but saves keystrokes.

Making Revisions Workers may make mistakes

during the annotation process or simply change

their mind about previously annotated errors. We

provide tools to address this in the FALTE inter-

face. The bottom of the web page displays the Pre-

vious Annotations section that lists all prior error

annotations by the crowd worker. The worker can

remove erroneously annotated error tuples from

this table using the Remove buttons corresponding

to each annotation.

Navigation Flexibility Furthermore, the inter-

face also provides flexibility in navigating between

the different paragraphs of the document text; work-

ers can use the Previous Paragraph button to go

back and annotate any missed errors in text spans.

This final annotation workflow and these ad-

ditional functionalities were designed based on

worker feedback in pilot studies. For example, the

pilot study asked annotators to select the error type

(step 2) before highlighting the text span (step 1).

This order was reversed based on the preference of

multiple crowdworkers.

2.3 Output Data

All error annotations displayed in the Previous An-

notation section get stored on a database when the

crowdworker clicks on the Submit button.

Each row in the database table corresponds to

a single error annotation. Our tool logs in the fol-

lowing fields: Document ID (string), Paragraph ID

(int), Text Span (string), Span Start Index (int),

Span End Index (int), Error Category (string),

Paired Text (string), Optional Comments (string).

The latter two are optional fields that may be empty

for some errors. We log the span start and end

indices in addition to the text to disambiguate be-

tween multiple instances of the same text. Addi-

tionally, FALTE generates a unique session ID for

each (document, annotator) pair to distinguish be-

tween the annotations of different crowdworkers

for the same document.

2.4 System Implementation

FALTE is a web-based annotation framework that

has been tested with Google Chrome, Mozilla

Firefox, and Safari browsers. Currently, the

crowd annotation is only supported on desktop

browsers and not on mobile or other touchscreen

devices. The client side interface is made using

HTML5, CSS, and JavaScript. The sever side

uses the Python-based web framework Flask4 and

the PostgresSQL database5 to manage and store

user annotations, both of which are open-sourced.

Our example demo website is hosted here:

https://coherence-annotation-summaries.

herokuapp.com/id=oai1.6

3 Use Case

FALTE has been used to collect crowd annota-

tions for one long document evaluation task: co-

herence evaluation of long model-generated sum-

maries (Goyal et al., 2022). The annotation study

was conducted for narrative summaries of books

and movies. The study defined 7 different errors

across two categories (1) coherence, and (2) lan-

guage and fluency errors.

Table 1 outlines the statistics of the annotated

dataset in the coherence study. The study was run

for 160 summary documents. Each summary was

an average of 36 sentences long, which is approxi-

mately 12 times the length of the most common use

case in summarization research, that of evaluating

news summaries. For each document, annotations

4
https://flask.palletsprojects.com/

5
https://www.postgresql.org/

6See https://github.com/tagoyal/falte-tool for
the implementation of the tool.

355



Data Statistic Count

Documents Annotated 160
Average Length (words) 480

Average Length (sentences) 36
Error Annotations Collected 9.6K

Crowd Annotators 12

Error Categories 7
Singleton 5

Paired 2

Table 1: Statistics for texts evaluated in the coherence

evaluation study conducted using FALTE.

were collected from 3 crowd annotators, totalling

9.6K error annotations across all summaries.

The study showed that: (1) The strategy of fine-

grained annotation is better suited for long docu-

ments compared to document-level annotation. The

study showed that the inter-annotator agreement of

document-level labels for long texts is 0.19 com-

pared to 0.48 reported for news summaries that

are considerably shorter (Fabbri et al., 2021). (2)

FALTE can be used to run a large-scale annota-

tion study. In fact, the paper (Goyal et al., 2022)

shows that the collected annotations are high qual-

ity and can be used to train a strong classifier for

automatically identifying coherence errors in text.

The results also outline other benefits of fine-

grained annotation. Different annotators have dif-

ferent criterion for judging the overall quality of

text. The task design decision of explicitly break-

ing it down through a taxonomy and prompting

for rationales, i.e. the text spans, provides insight

into which errors types are more critical for each

annotator. Note that due to the nature of the task

design (identifying all error spans in a document),

we saw that annotators tend to be high precision

low recall (Dou et al., 2022; Goyal et al., 2022),

i.e. they rarely highlight non-error spans, but tend

to miss error spans. Devising techniques that can

improve recall for such task designs is a promising

research question that we leave for future work.

4 Related Work

Reference-based evaluation is the most popular

evaluation paradigm for generation models. These

include overlap-based metrics (Lin, 2004; Papineni

et al., 2002; Banerjee and Lavie, 2005), or distribu-

tional similarity metrics (Zhang et al., 2019; Kusner

et al., 2015), and others. However, recent work has

shown that these do not correlate with human judg-

ments of quality (Dhingra et al., 2019; KryÂsciÂnski

et al., 2019; Fabbri et al., 2021).

Human evaluation of generation quality is gen-

erally considered to be more reliable, although

there do not exist any fixed protocols for conduct-

ing these studies (Celikyilmaz et al., 2020). In

recent work, both Likert scale rating and A/B test-

ing based evaluation frameworks have been widely

used (Celikyilmaz et al., 2020; Clark et al., 2021).

However, across both these frameworks, tasks are

generally designed to elicit document-level qual-

ity judgments from crowdworkers that are insuffi-

cient to measure the quality of generated text (Clark

et al., 2021; Karpinska et al., 2021; Gehrmann et al.,

2022). Particularly, Clark et al. (2021) show that

crowd annotators often conflate multiple dimen-

sions of quality, and tend to primarily focus on

surface properties like grammaticality while eval-

uating summaries. Therefore, in our task design,

we focus on fine-grained error annotations that al-

low annotators to clearly distinguish between the

different error categories and their occurrences.

The document-level task design of the prior work

discussed above is quite straightforward to set up

using the basic UI components provided by crowd-

sourcing platforms such as Mechanical Turk. How-

ever, creating a user-friendly interface for fine-

grained annotation collection is much more chal-

lenging. Dou et al. (2022) create a task interface

for fine-grained annotations of short generated text.

In contrast, our iterative tool design is motivated by

prior crowdsourcing research (Kapelner and Chan-

dler, 2010; Hauser et al., 2019) that shows that

worker performance and attention increases with

an incremental task design for longer tasks. More-

over, decomposition into smaller paragraph-level

annotations also reduces the cognitive load on the

annotator (Mayer and Moreno, 2003; Brosnan et al.,

2021).

5 Conclusion

We present FALTE, a web-based annotation tool

to collect fine-grained error annotations for text. It

provides an easy-to-use interface to annotate and

submit fine-grained annotations and is equipped

with capabilities such as navigational flexibility

and coreference highlighting that are specifically

designed for better user experience while annotat-

ing long documents. On the task designer side, our

tool is highly customizable: task designers can de-

fine their own error taxonomy, error category spec-

ifications, and annotation granularity. Therefore,

356



it can accommodate a wide variety of evaluation

objectives, e.g. different dimensions of quality like

coherence or factuality, language or task-specific

taxonomies, and more. We hope that FALTE can

support the design and launch of fine-grained hu-

man evaluation studies in the future.

Acknowledgments

This project was partially supported by Good Sys-

tems,7 a UT Austin Grand Challenge to develop

responsible AI technologies, a grant from the UT

Austin Office of the Vice President for Research

through the ªCreating Connections for National

Security Research Grantsº program, a grant from

Open Philanthropy, NSF grants IIS-2107524, IIS-

2145479, and gifts from Salesforce, Amazon, and

Adobe.

References

Nader Akoury, Shufan Wang, Josh Whiting, Stephen
Hood, Nanyun Peng, and Mohit Iyyer. 2020. STO-
RIUM: A Dataset and Evaluation Platform for
Machine-in-the-Loop Story Generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6470±6484.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the acl workshop on intrinsic and ex-
trinsic evaluation measures for machine translation
and/or summarization, pages 65±72.

Kylie Brosnan, Bettina Grün, and Sara Dolnicar. 2021.
Cognitive load reduction strategies in questionnaire
design. International Journal of Market Research,
63(2):125±133.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877±1901.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey. arXiv
preprint arXiv:2006.14799.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita
Haduong, Suchin Gururangan, and Noah A Smith.
2021. All that’s ‘human’is not gold: Evaluating hu-
man evaluation of generated text. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7282±7296.

7https://goodsystems.utexas.edu/

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884±4895.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah Smith, and Yejin Choi. 2022. Is GPT-3 text
indistinguishable from human text? scarecrow: A
framework for scrutinizing machine text. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7250±7274, Dublin, Ireland. Association
for Computational Linguistics.

Alexander Richard Fabbri, Wojciech KryÂsciÂnski, Bryan
McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2021. SummEval: Re-evaluating
Summarization Evaluation. Transactions of the Asso-
ciation for Computational Linguistics, 9:391±409.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sel-
lam. 2022. Repairing the cracked foundation: A sur-
vey of obstacles in evaluation practices for generated
text. arXiv preprint arXiv:2202.06935.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022.
SNaC: Coherence error detection for narrative sum-
marization. Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing.

David Hauser, Gabriele Paolacci, and Jesse Chandler.
2019. Common concerns with mturk as a partici-
pant pool: Evidence and solutions. In Handbook
of research methods in consumer psychology, pages
319±337. Routledge.

Adam Kapelner and Dana Chandler. 2010. Preventing
satisficing in online surveys. Proceedings of Crowd-
Conf.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
2021. The perils of using mechanical turk to evaluate
open-ended text generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1265±1285.

Wojciech KryÂsciÂnski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 540±551.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Wein-
berger. 2015. From word embeddings to document
distances. In International conference on machine
learning, pages 957±966. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.

357



2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871±7880.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74±81.

Ziming Mao, Chen Henry Wu, Ansong Ni, Yusen Zhang,
Rui Zhang, Tao Yu, Budhaditya Deb, Chenguang
Zhu, Ahmed Awadallah, and Dragomir Radev. 2022.
DYLE: Dynamic Latent Extraction for Abstractive
Long-Input Summarization. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1687±1698.

Richard E Mayer and Roxana Moreno. 2003. Nine
ways to reduce cognitive load in multimedia learning.
Educational psychologist, 38(1):43±52.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311±318.

Alex Wang, Richard Yuanzhe Pang, Angelica Chen,
Jason Phang, and Samuel R Bowman. 2022.
SQuALITY: Building a Long-Document Summa-
rization Dataset the Hard Way. arXiv preprint
arXiv:2205.11465.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328±11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. BERTScore: Evalu-
ating Text Generation with BERT. In International
Conference on Learning Representations.

Yusen Zhang, Ansong Ni, Ziming Mao, Chen Henry Wu,
Chenguang Zhu, Budhaditya Deb, Ahmed Awadallah,
Dragomir Radev, and Rui Zhang. 2022. Summn: A
multi-stage summarization framework for long input
dialogues and documents. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1592±
1604, Dublin, Ireland. Association for Computational
Linguistics.

358


