FALTE: A Toolkit for Fine-grained Annotation for Long Text Evaluation

Tanya Goyal'

Junyi Jessy Li?
! Department of Computer Science

Greg Durrett!
2 Department of Linguistics

The University of Texas at Austin
tanyagoyal@utexas.edu

Abstract

A growing swath of NLP research is tackling
problems related to generating long text, in-
cluding tasks such as open-ended story gen-
eration, summarization, dialogue, and more.
However, we currently lack appropriate tools to
evaluate these long outputs of generation mod-
els: classic automatic metrics such as ROUGE
have been shown to perform poorly, and newer
learned metrics do not necessarily work well
for all tasks and domains of text. Human rating
and error analysis remain a crucial component
for any evaluation of long text generation. In
this paper, we introduce FALTE, a web-based
annotation toolkit designed to streamline such
evaluations. Our tool allows researchers to col-
lect fine-grained judgments of text quality from
crowdworkers using an error taxonomy spe-
cific to the downstream task. Using the task
interface, annotators can select and assign error
labels to text span selections in an incremen-
tal paragraph-level annotation workflow. The
latter functionality is designed to simplify the
document-level task into smaller units and re-
duce cognitive load on the annotators. Our tool
has previously been used to run a large-scale
annotation study that evaluates the coherence
of long generated summaries, demonstrating its
utility.

1 Introduction

Recent years have seen a significant improvement
in the generation capabilities of large language
models (Lewis et al., 2020; Zhang et al., 2020;
Brown et al., 2020), across tasks such as machine
translation, open-ended story generation, summa-
rization, and others. As these models generate ex-
tremely fluent and human-like text, their errors are
more subtle than those of prior models and harder
to detect (Clark et al., 2021). Overlap-based auto-
matic metrics such as ROUGE (Lin, 2004), BLEU
(Papineni et al., 2002), and BERTScore (Zhang
et al., 2019) have historically been the most popular

Mrs. Bennet tells her husband, Mr. Bennet, that
Netherfield Park has been leased to a single man of
large fortune from the north of England. His name is
Mr. Bingley. She assumes he will want to marry one of
their daughters.

Mr. Bennet doesn't see the need to visit the man but
agrees to after Mrs. Bennet insists that he do so, as it's
likely the man will fall in love with one of their
daughters. Mr. Bennet says the girls can go visit Mr.
Bingley instead of him. Their daughter Elizabeth
enters the room.

Lady Lucas tells the Bennets that Sir William was very
impressed with Mr. Bingley, who is young, handsome,
and very agreeable. Mrs. Bennet hopes to see one of
her daughters happily settled at Netherfield.

Contradiction Repetition = Coherence/Fluency

Figure 1: An example of fine-grained annotation using
FALTE. A single annotation consists of a text span high-
lighted by a crowdworker and an error category attached
to it. FALTE allows task designers to define their own
error taxonomy. Error categories in this taxonomy, e.g.
contradiction and repetition in the above example, can
be modified to require two associated text spans.

metrics used to evaluate the outputs of such genera-
tion models. However, recent work has shown that
these are unreliable measures of quality (Fabbri
et al., 2021), especially for longer text and more
open-ended tasks that can have multiple reasonable
answers (Wang et al., 2022).

For generation tasks, human evaluation of out-
puts is generally considered to be the gold standard.
Such evaluations are primarily conducted using
untrained annotators recruited through crowdsourc-
ing platforms like Mechanical Turk! and Upwork.?
However, even deploying human evaluators for a
task is not a straightforward solution. Recent work
(Karpinska et al., 2021; Clark et al., 2021) showed
that untrained human crowdworkers fail to reliably

"https://www.mturk.com/
Zhttps://www.upwork . com

351

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 351 - 358
December 7-11, 2022 (©)2022 Association for Computational Linguistics

distinguish human-written and model-written out-
puts for strong language models like GPT-3 (Brown
et al., 2020), focusing on task designs where anno-
tators are asked to evaluate the generated outputs
holistically. To address these limitations, Dou et al.
(2022) recommend fine-grained evaluation of text
quality that is more successful at eliciting quality
annotations from untrained crowdworkers. Instead
of holistically rating the quality of the whole gener-
ated output, they instead ask annotators to identify
text spans that correspond to errors from a pre-
defined taxonomy. Moreover, human evaluation
conducted using such fine-grained annotations also
provides insights into error distributions of current
models and reveals avenues for improvement. Fig-
ure 1 shows an example of fine-grained annotations
at the span-level collected using our tool - FALTE;
this is similar to the prior work.

In this paper, we are interested in the evaluation
of long text. Human evaluation practices from short
text evaluation studies (e.g. paragraph-level text
from (Dou et al., 2022)), are not feasible for long
text evaluation scenarios (Akoury et al., 2020). In
fact, a majority of recent work on long text evalua-
tion, e.g. evaluation of long generated summaries
(Mao et al., 2022; Zhang et al., 2022), does not
conduct any human evaluation, possibly due to the
the difficulty in getting high-quality annotations
from crowd workers for long texts. In this paper,
we introduce FALTE (Fine-grained Annotation for
Long Text Evaluation), a web-based annotation
tool to address this gap. Our tool is designed to
allow for fine-grained evaluation while also sim-
plifying the long text annotation task through the
design of the Ul and task workflow. To achieve
these goals, FALTE is centered around the follow-
ing main functionality:

* Fine-grained annotations: Prior generation
quality evaluation has primarily focused on
collecting document-level labels along mul-
tiple dimensions, such as fluency, grammar,
etc. In this work, we ask annotators to select
specific text spans that exhibit errors in a par-
ticular error taxonomy, allowing for a more
nuanced evaluation of model errors.

* Decomposing the document-level task into
smaller sub-tasks: FALTE decomposes the
overall document-level task into paragraph-
level annotation tasks to simplify the user in-
terface and reduce the cognitive load for the

Task interface

|l

lQTask Designer

i » Task Specification: Error

i taxonomy

i » Input Data: JSON file with
i raw document texts

Crowdworkers..‘.‘ \

o ah
b= ’ e ———-——
—1 = =
— —

Crowd annotations
saved to server-side
database.

Annotate the document text
paragraph by paragraph

Figure 2: Overall Workflow

crowd workers. This is motivated by prior re-
search in crowdsourcing (Mayer and Moreno,
2003; Kapelner and Chandler, 2010; Hauser
et al., 2019) that shows that incrementally in-
troducing texts motivate workers to pay more
attention to all units of the task text. We allow
task designers to set this granularity of anno-
tation. FALTE also provides tools to crowd
workers to easily navigate back and forth be-
tween paragraphs.

* Flexibility over error definitions: Finally,
we refrain from setting a fixed error taxonomy
to support annotation studies along different
quality dimensions. Even within the same
dimension, researchers may wish to opt for
a different error taxonomy across different
languages or datasets. Therefore, we allow
them to define their own set of categories for
annotation that aligns with their specific use
case. We also allow them to pre-define if each
error category must be associated with one or
two text spans during annotation.

Figure 1 shows an example of fine-grained anno-
tations that can be collected using FALTE. Each
error in the collected annotations is associated with
a corresponding text span; this helps in pinpointing
exactly where the error occurred and support fur-
ther downstream analysis. Note that each error in
the error taxonomy can additionally be modified to
require two associated text spans, to support error
categories like repetition and contradiction.

2 FALTE Tool Description

FALTE is a web-based annotation toolkit designed
to help researchers run large-scale annotation stud-

352

ies evaluating the quality of model generated text.
The dataset collected through FALTE has the fol-
lowing form: annotators highlight errors e € E
in a given document d where each annotation e
consists of a text span ¢ € d and corresponding
error category c. Annotators incrementally proceed
through the document and annotate as many errors
as they can identify in the text. In this section, we
will outline the workflow for the two stakeholders:
1) task designers (researchers) that employ the
tool to run these studies, and 2) crowd annotators
that interact with our web interface and provide
annotations for the quality of long text. The overall
workflow is outlined in Figure 2.

2.1 Task Designer Workflow

FALTE is designed to be flexible across different
long document annotation tasks, for both data col-
lection and evaluation use cases. Here, we describe
the different action items for the task designers to
create the annotation website and launch a study.

Define the error taxonomy In order to support
annotation studies across a variety of quality di-
mensions and tasks, we allow task designers to
define their own error taxonomy. FALTE supports
an arbitrary number of error classes.

For each category defined, task designers addi-
tionally classify these as either singlefon or paired.
For the singleton errors, each crowd annotation cor-
responds to a pair of text span and an error category
(as shown in Figure 1). For paired, each annotation
is a tuple containing two text spans and the error
category. This latter functionality was introduced
to cover error types such as repetition errors which
are naturally defined between pairs of text spans.
Note that although the tool does not support error
annotations with more than two text spans, these
use cases can be tackled within FALTE’s frame-
work by creating chains of paired error annotations.

To specify their error categories and their spec-
ifications, researchers simply edit a configuration
file. The contents of these configuration files are
then reflected on the task interface when the web
application is launched.

Define the annotation granularity Our annota-
tion tool is aimed at collecting annotations for long
machine generated text, say ~30-40 sentences or
longer, although it can be deployed in shorter set-
tings as well. To simplify this document level anno-
tation task, we allow task designers to decompose
the annotation workflow into iterative paragraph

level annotation tasks. Note that paragraph here
can be defined to correspond to segments of text of
any length. In this paper and the demo, we use the
terms segment and paragraph interchangeably.

Under this setting, initially the crowd annotators
are only shown the first paragraph (or other speci-
fied unit of text) for annotation. Once annotation
for that paragraph is completed, workers can pro-
ceed to subsequent paragraphs with the option to
navigate back. We will discuss this in more detail
in Section 2.2.

The FALTE tool expects a JSON file with con-
taining all of the text to be annotated as input. Each
document in this JSON is represented by a List
of Strings; each list item represents a paragraph.
Therefore, task designers can control the length of
the annotation unit (paragraph) for each document
individually through this input file.

Setting up and launching the crowd an-
notation study Our tool accepts the above
task specifications and generates all relevant
client and server side code. The task designer
can then launch their annotation website us-
ing their preferred cloud platform; we host
our example demo website using Heroku® at
https://coherence-annotation-summaries.
herokuapp.com/id=oail. After the task anno-
tation website is live, task designers can recruit
crowd annotators and collect annotations for text
quality.

2.2 Crowd Annotator Workflow

As previously mentioned, each worker starts the
annotation process with the first paragraph of the
text and incrementally annotates succeeding para-
graphs.

Figure 3 shows the task interface and outlines the
annotation steps for annotating a single text span
in the Current Paragraph box, after annotations
have already been completed for paragraphs in the
Context box. The stepwise workflow is:

1. Highlight span containing error: First, the
worker selects the text span in the Current Para-
graph containing the error using the click-and-
drag motion. The highlighted text will automat-
ically populate in the relevant text box at the
bottom.

2. Choose error type: Next, the worker chooses
an error type or label for the highlighted text.

3https: //www.heroku.com/

353

Context:
John Fenwick, an aspiring artist, accepts a loan from Mr. Morrison, a wealthy benefactor, to move to London to pursue
his art career. In London, he impresses several wealthy art collectors with his work.

In London, at Lord Findon's dinner party, Fenwick meets Madame de Pastourelles, a beautiful and intelligent woman
who is also an artist. Fenwick is immediately taken by her, and he feels jealous of the other man who is conversing
with her her.

As the party progresses, Madame de Pastourelles makes Fenwick feel comfortable and at ease. Fenwick is
impressed by her poise and grace, and begins to imagine what it would be like to be around women of her social class

Current Paragraph:
In London, John Fenwick meets Lord Findon at an art gallery. He impresses wealthy art collectors with his work

Highlighted Text in the Current Paragraph box
v STEP 1: Highlight Error Span (from C aragraph) will automatically get populated here.
«

He impresses wealthy art collectors with his work

v STEP 2: Choose Error Type Grammar Fluency Repetition Contradiction

v STEP 3: Highlight Earlier Span |he impresses several wealthy art collectors with his work. ¢ OPtion only appears when

paired error type is selected
STEP 4: OTHER COMMENTS/ FEEDBACK (OPTIONAL):

<+— STEP 5: Click on this button to record this error annotation.

After all errors in the current paragraph have
No more errors. Go to next paragraph. ————————> been annotated, click on this button to go to
the next paragraph for annotation.

Previous Paragraph

Submit | ——— After all paragraphs are annotated click on
the Submit button to submit your annotations
for all paragraphs.

PREVIOUS ANNOTATIONS:

Remove Grammar -- Spans: ...e other man who is conversing with her her. ..., Segment: 1

Click on Remove to delete a previous annotation.

Figure 3: Annotation interface and workflow for a crowd annotator to annotate a single text span. The interface
displays the previously annotated paragraphs in the Context box. The previous annotations are displayed at the
bottom of the web page. At this stage of the task, the crowdworker annotates errors in the Current Paragraph. To
aid their annotation, crowdworkers can hover over named entities to highlight other instances of the entity (in gray).

Note that Figure 3 currently shows placeholder 4. Optional comments: The annotation interface

error types; the actual task interface will list the
error types defined by the task designer in the
previous section.

. Highlight paired text: If the error type selected
in Step 2 is of type paired, the worker is further
asked to select an additional text span. For our
repetition error type, this additional span would
be the first occurrence of the repeated informa-
tion (as shown in Figure 3). The additional text
span can be selected from either the Context

also provides the option of providing any addi-
tional free-text commentary for the annotated
text span(s) and category tuple. In our experi-
ments, we noticed that crowd workers tended to
primarily use this option to convey their confi-
dence about that particular span’s annotation.

. Add annotation: Finally, the worker clicks on

the Add button to save error annotation. This
will be instantly reflected in the Previous Anno-
tations section at the bottom of the page.

box or the Current Paragraph box. This step is
skipped if the worker selects a singleton error .

The above procedure is repeated to annotate all
errors in the Current Paragraph, after which the

354

worker clicks on the No more errors. Go to next
paragraph button to update both the Context and
Current Paragraph boxes; the Current Paragraph
will now reflect the next paragraph of the document
text. Finally, after errors in all paragraphs of the
document have been annotated, the worker clicks
on the Submit button that stores their error anno-
tations for the whole document in the server-side
database.

Coreference Cues Since the annotation interface
is designed for long documents, we found that be-
ing able to quickly find instances of entities was
very helpful during our pilot studies. The scope
of this functionality can be controlled by the re-
searchers: in our pilot study (discussed in Section
3), this was only enabled for named entities using
string match on names. Specifically, if the user hov-
ers their cursor over any named entity mention in
the Current Paragraph section, the tool also high-
lighted all other instances of that entity. Putting
the cursor over Findon in the Current Paragraph
highlights the other instance of the same character
in Figure 3. It is equivalent to searching (CTRL+F)
for the entity, but saves keystrokes.

Making Revisions Workers may make mistakes
during the annotation process or simply change
their mind about previously annotated errors. We
provide tools to address this in the FALTE inter-
face. The bottom of the web page displays the Pre-
vious Annotations section that lists all prior error
annotations by the crowd worker. The worker can
remove erroneously annotated error tuples from
this table using the Remove buttons corresponding
to each annotation.

Navigation Flexibility Furthermore, the inter-
face also provides flexibility in navigating between
the different paragraphs of the document text; work-
ers can use the Previous Paragraph button to go
back and annotate any missed errors in text spans.

This final annotation workflow and these ad-
ditional functionalities were designed based on
worker feedback in pilot studies. For example, the
pilot study asked annotators to select the error type
(step 2) before highlighting the text span (step 1).
This order was reversed based on the preference of
multiple crowdworkers.

2.3 Output Data

All error annotations displayed in the Previous An-
notation section get stored on a database when the

crowdworker clicks on the Submit button.

Each row in the database table corresponds to
a single error annotation. Our tool logs in the fol-
lowing fields: Document ID (string), Paragraph ID
(int), Text Span (string), Span Start Index (int),
Span End Index (int), Error Category (string),
Paired Text (string), Optional Comments (string).
The latter two are optional fields that may be empty
for some errors. We log the span start and end
indices in addition to the text to disambiguate be-
tween multiple instances of the same text. Addi-
tionally, FALTE generates a unique session ID for
each (document, annotator) pair to distinguish be-
tween the annotations of different crowdworkers
for the same document.

2.4 System Implementation

FALTE is a web-based annotation framework that
has been tested with Google Chrome, Mozilla
Firefox, and Safari browsers. Currently, the
crowd annotation is only supported on desktop
browsers and not on mobile or other touchscreen
devices. The client side interface is made using
HTMLS, CSS, and JavaScript. The sever side
uses the Python-based web framework Flask* and
the PostgresSQL database’ to manage and store
user annotations, both of which are open-sourced.
Our example demo website is hosted here:
https://coherence-annotation-summaries.
herokuapp.com/id=0ail.

3 Use Case

FALTE has been used to collect crowd annota-
tions for one long document evaluation task: co-
herence evaluation of long model-generated sum-
maries (Goyal et al., 2022). The annotation study
was conducted for narrative summaries of books
and movies. The study defined 7 different errors
across two categories (1) coherence, and (2) lan-
guage and fluency errors.

Table 1 outlines the statistics of the annotated
dataset in the coherence study. The study was run
for 160 summary documents. Each summary was
an average of 36 sentences long, which is approxi-
mately 12 times the length of the most common use
case in summarization research, that of evaluating
news summaries. For each document, annotations

4https://flask.palletsprojects.com/

5https://www.postgresql.org/

%See https://github.com/tagoyal/falte-tool for
the implementation of the tool.

355

Data Statistic | Count

Documents Annotated 160
Average Length (words) 480
Average Length (sentences) 36
Error Annotations Collected | 9.6K
Crowd Annotators 12
Error Categories 7
Singleton 5
Paired 2

Table 1: Statistics for texts evaluated in the coherence
evaluation study conducted using FALTE.

were collected from 3 crowd annotators, totalling
9.6K error annotations across all summaries.

The study showed that: (1) The strategy of fine-
grained annotation is better suited for long docu-
ments compared to document-level annotation. The
study showed that the inter-annotator agreement of
document-level labels for long texts is 0.19 com-
pared to 0.48 reported for news summaries that
are considerably shorter (Fabbri et al., 2021). (2)
FALTE can be used to run a large-scale annota-
tion study. In fact, the paper (Goyal et al., 2022)
shows that the collected annotations are high qual-
ity and can be used to train a strong classifier for
automatically identifying coherence errors in text.

The results also outline other benefits of fine-
grained annotation. Different annotators have dif-
ferent criterion for judging the overall quality of
text. The task design decision of explicitly break-
ing it down through a taxonomy and prompting
for rationales, i.e. the text spans, provides insight
into which errors types are more critical for each
annotator. Note that due to the nature of the task
design (identifying all error spans in a document),
we saw that annotators tend to be high precision
low recall (Dou et al., 2022; Goyal et al., 2022),
i.e. they rarely highlight non-error spans, but tend
to miss error spans. Devising techniques that can
improve recall for such task designs is a promising
research question that we leave for future work.

4 Related Work

Reference-based evaluation is the most popular
evaluation paradigm for generation models. These
include overlap-based metrics (Lin, 2004; Papineni
et al., 2002; Banerjee and Lavie, 2005), or distribu-
tional similarity metrics (Zhang et al., 2019; Kusner
et al., 2015), and others. However, recent work has
shown that these do not correlate with human judg-
ments of quality (Dhingra et al., 2019; Kry$cinski

et al., 2019; Fabbri et al., 2021).

Human evaluation of generation quality is gen-
erally considered to be more reliable, although
there do not exist any fixed protocols for conduct-
ing these studies (Celikyilmaz et al., 2020). In
recent work, both Likert scale rating and A/B test-
ing based evaluation frameworks have been widely
used (Celikyilmaz et al., 2020; Clark et al., 2021).
However, across both these frameworks, tasks are
generally designed to elicit document-level qual-
ity judgments from crowdworkers that are insuffi-
cient to measure the quality of generated text (Clark
et al., 2021; Karpinska et al., 2021; Gehrmann et al.,
2022). Particularly, Clark et al. (2021) show that
crowd annotators often conflate multiple dimen-
sions of quality, and tend to primarily focus on
surface properties like grammaticality while eval-
uating summaries. Therefore, in our task design,
we focus on fine-grained error annotations that al-
low annotators to clearly distinguish between the
different error categories and their occurrences.

The document-level task design of the prior work
discussed above is quite straightforward to set up
using the basic UI components provided by crowd-
sourcing platforms such as Mechanical Turk. How-
ever, creating a user-friendly interface for fine-
grained annotation collection is much more chal-
lenging. Dou et al. (2022) create a task interface
for fine-grained annotations of short generated text.
In contrast, our iterative tool design is motivated by
prior crowdsourcing research (Kapelner and Chan-
dler, 2010; Hauser et al., 2019) that shows that
worker performance and attention increases with
an incremental task design for longer tasks. More-
over, decomposition into smaller paragraph-level
annotations also reduces the cognitive load on the
annotator (Mayer and Moreno, 2003; Brosnan et al.,
2021).

5 Conclusion

We present FALTE, a web-based annotation tool
to collect fine-grained error annotations for text. It
provides an easy-to-use interface to annotate and
submit fine-grained annotations and is equipped
with capabilities such as navigational flexibility
and coreference highlighting that are specifically
designed for better user experience while annotat-
ing long documents. On the task designer side, our
tool is highly customizable: task designers can de-
fine their own error taxonomy, error category spec-
ifications, and annotation granularity. Therefore,

356

it can accommodate a wide variety of evaluation
objectives, e.g. different dimensions of quality like
coherence or factuality, language or task-specific
taxonomies, and more. We hope that FALTE can
support the design and launch of fine-grained hu-
man evaluation studies in the future.

Acknowledgments

This project was partially supported by Good Sys-
tems,” a UT Austin Grand Challenge to develop
responsible Al technologies, a grant from the UT
Austin Office of the Vice President for Research
through the “Creating Connections for National
Security Research Grants” program, a grant from
Open Philanthropy, NSF grants 11S-2107524, IIS-
2145479, and gifts from Salesforce, Amazon, and
Adobe.

References

Nader Akoury, Shufan Wang, Josh Whiting, Stephen
Hood, Nanyun Peng, and Mohit Iyyer. 2020. STO-
RIUM: A Dataset and Evaluation Platform for
Machine-in-the-Loop Story Generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6470-6484.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the acl workshop on intrinsic and ex-
trinsic evaluation measures for machine translation
and/or summarization, pages 65-72.

Kylie Brosnan, Bettina Griin, and Sara Dolnicar. 2021.
Cognitive load reduction strategies in questionnaire
design. International Journal of Market Research,
63(2):125-133.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey. arXiv
preprint arXiv:2006.14799.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita
Haduong, Suchin Gururangan, and Noah A Smith.
2021. All that’s ‘human’is not gold: Evaluating hu-
man evaluation of generated text. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7282-7296.

"https://goodsystems.utexas.edu/

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884-4895.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah Smith, and Yejin Choi. 2022. Is GPT-3 text
indistinguishable from human text? scarecrow: A
framework for scrutinizing machine text. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 72507274, Dublin, Ireland. Association
for Computational Linguistics.

Alexander Richard Fabbri, Wojciech Krysciriski, Bryan
McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2021. SummEval: Re-evaluating
Summarization Evaluation. Transactions of the Asso-
ciation for Computational Linguistics, 9:391-409.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sel-
lam. 2022. Repairing the cracked foundation: A sur-
vey of obstacles in evaluation practices for generated
text. arXiv preprint arXiv:2202.06935.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022.
SNaC: Coherence error detection for narrative sum-
marization. Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing.

David Hauser, Gabriele Paolacci, and Jesse Chandler.
2019. Common concerns with mturk as a partici-
pant pool: Evidence and solutions. In Handbook
of research methods in consumer psychology, pages
319-337. Routledge.

Adam Kapelner and Dana Chandler. 2010. Preventing
satisficing in online surveys. Proceedings of Crowd-
Conf.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
2021. The perils of using mechanical turk to evaluate
open-ended text generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1265-1285.

Wojciech Kryscinski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 540-551.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Wein-
berger. 2015. From word embeddings to document
distances. In International conference on machine

learning, pages 957-966. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.

357

2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871-7880.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74-81.

Ziming Mao, Chen Henry Wu, Ansong Ni, Yusen Zhang,
Rui Zhang, Tao Yu, Budhaditya Deb, Chenguang
Zhu, Ahmed Awadallah, and Dragomir Radev. 2022.
DYLE: Dynamic Latent Extraction for Abstractive
Long-Input Summarization. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1687-1698.

Richard E Mayer and Roxana Moreno. 2003. Nine
ways to reduce cognitive load in multimedia learning.
Educational psychologist, 38(1):43-52.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Alex Wang, Richard Yuanzhe Pang, Angelica Chen,
Jason Phang, and Samuel R Bowman. 2022.
SQUALITY: Building a Long-Document Summa-
rization Dataset the Hard Way. arXiv preprint
arXiv:2205.11465.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. BERTScore: Evalu-
ating Text Generation with BERT. In International
Conference on Learning Representations.

Yusen Zhang, Ansong Ni, Ziming Mao, Chen Henry Wu,
Chenguang Zhu, Budhaditya Deb, Ahmed Awadallah,
Dragomir Radev, and Rui Zhang. 2022. Summ”: A
multi-stage summarization framework for long input
dialogues and documents. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1592—
1604, Dublin, Ireland. Association for Computational
Linguistics.

358

