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In fully-inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradi-
ance, a form of many-body decay that results in a rapid release of energy as a photon burst. While
originally studied in point-like ensembles, this phenomenon persists in extended ordered systems if
the inter-particle distance is below a certain bound. Here, we investigate Dicke superradiance in a
realistic experimental setting using ordered arrays of alkaline earth(-like) atoms, such as strontium
and ytterbium. Such atoms offer exciting new opportunities for light-matter interaction as their
internal structure offers the possibility of trapping at short interatomic distances compared to their
strong long-wavelength transitions, providing the potential for strong collectively modified inter-
actions. Despite their intricate electronic structure, we show that two-dimensional arrays of these
atomic species should exhibit many-body superradiance for achievable lattice constants. Moreover,
superradiance effectively “closes” transitions, such that multilevel atoms become more two-level
like. This occurs because the avalanche-like decay funnels the emission of most photons into the
dominant transition, overcoming the single-atom decay ratios dictated by their fine structure and
Zeeman branching. Our work represents an important step in harnessing alkaline-earth atoms as
quantum optical sources and as dissipative generators of entanglement.

I. INTRODUCTION

Atoms in a cavity emit into the same electromag-
netic mode, leading to interactions between them, and
a collective interaction between light and matter. In-
teractions are well understood within the paradigm of
cavity quantum electrodynamics (QED), as the indistin-
guishability of the atoms enables their description as a
large spin coupled to a single radiative channel. An em-
blematic example of many-body physics in cavity QED
is Dicke superradiance [1–5], where fully-inverted atoms
decay by radiating light in a short bright pulse with
peak intensity that scales quadratically with atom num-
ber [see Fig. 1(a)]. Dicke superradiance has also been
observed in Bose-Einstein condensates [6–8], where a
macroscopically-occupied state couples to light. In these
scenarios, superradiance is well understood because the
permutational symmetry arising from indistinguishabil-
ity restricts dynamics to a small subspace of the full
Hilbert space.

Understanding collective light-matter interactions be-
yond the cavity QED regime is critical not only from a
fundamental point of view, but also to realize applica-
tions in quantum non-linear optics, quantum simulation,
and metrology. Potentially, one could translate concepts
such as the superradiant laser [9, 10], driven-dissipative
phase transitions [11, 12], and quantum-enhanced sens-
ing [13–15] into a much larger class of systems. For
instance, atomic arrays in the single-excitation regime
have been proposed as promising platforms for generating
novel light sources and optical components, with the re-
cent realization of an atomically-thin mirror [16, 17] as an
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example. The many-body landscape offers a far greater
toolbox, and could open up possibilities to create sources
of light with unusual statistical properties [18–23] or to
generate entangled atomic states via dissipation [24–32].
In extended systems in free space, interactions between

atoms depend on their relative positions. Theoretical
studies of Dicke superradiance in this regime have been
greatly limited, as the broken permutational symmetry
increases the complexity of the problem, which in prin-
ciple scales exponentially with atom number. However,
experiments have confirmed that superradiant bursts can
still occur. The first demonstrations occurred in thermal
molecular and atomic vapors [33–37], but observations
have since been made in several other systems [38–41].
In contrast to other phenomena (such as subradiance),
superradiance is attractive from an experimental point
of view, as it is robust under many imperfections and
does not require single photon detection.
Ordered atomic arrays [42–47] have been recently sug-

gested as a promising platform to study many-body de-
cay [27, 48–51]. In contrast to other setups that typi-
cally suffer from dephasing arising from thermal motion
or coherent (i.e., Hamiltonian) dipole-dipole interactions,
atomic arrays are supposed to experience less dephasing,
as the role of Hamiltonian dipole-dipole interactions in
the burst is significantly reduced due to the spatial order.
In these systems, atoms can decay into many radiative
channels. Nevertheless, it has been shown that signa-
tures of superradiance should persist in very extended
two-dimensional (2D) systems, of size much larger than
the transition wavelength [48–50].
Here, we propose the use of alkaline earth(-like) atoms

(AEAs) in atomic arrays to observe and control Dicke
superradiance. These atoms have favorable transitions
that enable their trapping at relatively small distances
in comparison to the wavelength of the emitted photons.
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FIG. 1. (a) Atoms at a point emit a superradiant burst, with a peak intensity that scales as the square of the number of atoms,
in contrast to uncorrelated atoms, which emit an exponentially-decaying pulse. (b) Schematics of the proposed setup: A 2D
array of N atoms with lattice constant d is held in the x−y plane with quantization axis set by a magnetic field along the z-axis.
Light is measured in the far field, at a location described by spherical coordinates { r, θ, ϕ }, where r �

√
Nd. (c) Relevant

level structure of bosonic AEAs. The atoms are optically trapped via strong transitions at short wavelengths (dashed line).
The atoms are then prepared in a 3DJ state, where they decay to 3PJ states emitting light with a (relatively long) infrared
wavelength, and then potentially decay further to the 1S0 state. Possible decay paths are indicated by solid lines. Due to the
difference in wavelengths, decay dynamics from 3DJ will be dictated by many-body effects.

While the atoms are intrinsically multilevel in nature,
we demonstrate that the internal competition presented
by the different transitions does not prohibit Dicke su-
perradiance. Via a cumulant expansion, we approximate
the dynamics and compute the superradiant bursts that
would be emitted by arrays of lattice constants that can
be achieved in state-of-the-art experimental setups. The
emitted light is nontrivially dependent on the geometry
of the array and detector location [as shown in Fig. 1(b)].
For example, as the interatomic distance is increased, the
superradiant burst is lost but then reappears. We show
that this dependence can be easily predicted by the use
of conditional two-photon correlation functions. Finally,
we show how to use Dicke superradiance to inhibit or en-
hance decay into a particular state, overcoming limits set
by fine structure and Zeeman branching. This work sug-
gests that AEAs offer significant advantages for exploring
and harnessing superradiance in atom arrays.

The paper is structured as follows. In Section II, we
introduce the full relevant structure of AEAs. In Sec-
tion III, we consider toy models of multi-level atoms at
a single spatial location. We show that Dicke superra-
diance occurs both for decay to multiple ground states
and for cascaded decay (i.e., where the excited state de-

transition wavelength (nm) decay rate (×106 s−1)
3P1 → 1S0 556 [52] 1 [53]
3D1 → 3P0 1389 [52] 2 [53]
3D1 → 3P1 1540 [52] 1 [53]
3D1 → 3P2 2090 [52] 0.03 [53]
3D2 → 3P1 1480 [52] 2 [53]
3D2 → 3P2 1980 [52] 0.3 [53]
3D3 → 3P2 1800 [52] 2 [53]

TABLE I. Wavelengths and decay rates for relevant transi-
tions in 174Yb.

cays to intermediate states before decaying to the final
ground state). This allows us to simplify the full level
structure of AEAs, keeping only relevant transitions. In
Section IV, we introduce the methods necessary to treat
these simplified AEAs in ordered arrays with finite sepa-
ration. In Section V, we show that significant bursts can
be achieved in reasonably sized arrays of AEAs, and that
this decay can be tailored via the lattice constant.

II. TRANSITIONS OF ALKALINE EARTH
ATOMS

Here, we discuss the relevant atomic transitions of
AEAs. These bielectron species have different wave-
length transitions that, in theory, allow for trapping and
cooling on a short wavelength and for realizing quantum
optics experiments on a much longer wavelength [58] [see
Fig. 1(c)]. In particular, the 1S0 and metastable 3P{0,2}
states can be trapped at an optical wavelength. If the
atoms are excited into a state in the 3DJ manifold, de-
cay occurs at infrared wavelengths, relative to which the
atoms have significantly subwavelength spacing. We con-
sider the bosonic isotopes 88Sr and 174Yb, where there is

transition wavelength (nm) decay rate (×105 s−1)
3P1 → 1S0 689 [54] 0.47 [54]
3D1 → 3P0 2600 [55] 2.8 [56]
3D1 → 3P1 2740 [55] 1.8 [56]
3D1 → 3P2 3070 [55] 0.088 [56]
3D2 → 3P1 2690 [55] 3.3 [54]
3D2 → 3P2 3010 [55] 0.79 [54]
3D3 → 3P2 2920 [55] 5.9 [57]

TABLE II. Wavelengths and decay rates for relevant transi-
tions in 88Sr.
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FIG. 2. Superradiant decay from Λ-atoms at a point. Each atom decays at a total rate Γ0 = Γeg0 + Γeh0 split between two
levels. (a) Superradiant bursts emitted by 40 Λ-atoms. Solid lines indicate emission on the brighter transition |e〉 → |g〉, while
dashed lines indicate emission on the less bright transition |e〉 → |h〉. (b) Scaling of the peak emission on each transition. Solid
lines are power-law best fits of data from N ≥ 20. Solid fit lines indicate a brighter transition, while dashed fit lines indicate
a less bright transition. The scalings are ∼ N2.01 and ∼ N2.00 for the brighter transitions with Γeg0 = 2Γeh0 and Γeg0 = 1.5Γeh0
respectively, while the less bright transitions scale as N1.56 and N1.72. In the balanced case, the scaling is N1.92 for both
pathways. (c) Fraction of photons emitted on the brighter transition. Solid lines are lines of best fit of data from N ≥ 20 of
the form A ln(N) +B. For Γeg0 = 2Γeh0 , the fit is 0.054 ln(N) + 0.630. For Γeg0 = 1.5Γeh0 , the fit is 0.046 ln(N) + 0.549.

no nuclear spin and thus no hyperfine splitting, for the
sake of simplicity. Results can be extended to fermionic
isotopes, where similar physics should be observable.

The internal structure of AEAs is well characterized
due to their excellent performance as optical atomic
clocks [59–67]. In recent years, AEA arrays have also
attracted much attention as candidates for quantum
computing [68–71], with significant advancements with
both strontium [72–74] and ytterbium [75–78]. Cur-
rent tweezer array implementations use Rydberg states
to mediate interactions, and do not require subwave-
length spacing. Nevertheless, quantum gas microscopes
of 174Yb have been demonstrated, with interatomic spac-
ings of 266 nm [79, 80].

174Yb can be operated as an optical source at tele-
com wavelengths, as the 3D1 → 3P{0,1} and 3D2 → 3P1
transitions have wavelengths of around 1.4 − 1.5 µm.
Therefore, the light emitted on these transitions is com-
patible with low-loss fiber-optic cables and devices built
with these atoms can be integrated into distributed pho-
tonic networks without need for quantum frequency con-
version [81–83]. Alternatively, two-level systems can be
found on the 3D3 → 3P2 line. In addition, lasers and op-
tical components are readily available for all these tran-
sitions. Full details of the transition wavelengths and
decay rates for ytterbium are given in Table I.

In 88Sr the ratio between trapping and science wave-
lengths is even more beneficial to realize closely-packed
arrays. In particular, atoms initialized in the 3D3 state
decay at a wavelength of 2.9 µm. However, these tran-
sitions are in the mid-infrared, where sources, detectors
and other components are less readily available. Full de-
tails of the transition wavelengths and decay rates for
strontium are given in Table II.

Longer wavelength transitions also exist in alkali
atoms, including at telecom frequencies [84–87]. How-
ever, the lack of metastable states means the needed ini-

tial state is more difficult to prepare. Furthermore, inter-
mediate states have significantly larger linewidths, such
that the simplifications we make to the level structure for
AEAs are not necessarily valid for alkalis. Additionally,
the relatively small fine and hyperfine splitting combined
with large multiplicity yields a cluttered spectrum.

III. MULTILEVEL ATOMS AT A POINT

We first consider a toy model where atoms are all at the
same spatial location and are initially in the excited state.
This endows the system with enough symmetry that ex-
act dynamics can be calculated for large atom number.
It is well established that superradiance can still occur if
there are multiple ground states [30, 88, 89]. Here, we
show how the properties of the decay change with atom
number, allowing us to simplify the level structure of the
considered AEAs in Section V.
If all atoms are at a point or, equivalently, identi-

cally coupled to a cavity mode, they are indistinguish-
able. Their indistinguishability means that there is no
Hamiltonian interaction and decay is diagonalized into
the action of symmetric spin lowering operators of the
form Ŝge =

∑N
j=1 σ̂

j
ge where σ̂jge = |g〉j 〈e|j is the lower-

ing operator between states |e〉 and |g〉 for atom j. The
complexity of this problem scales as O(Nm−1) form-level
atoms, making use of the permutational symmetry and
conserved total atom number.

A. Multiple ground states: Λ-systems

We now consider a Λ-system where the excited state
can decay to two different ground states. The frequencies
of these transitions are assumed to be far separated such
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that the channels are independent. In the limit of atoms
at a point, the dynamics follows the master equation

ρ̇ = Γeg0 l[Ŝge](ρ) + Γeh0 l[Ŝhe](ρ), (1)

where decay is diagonalized into collective lowering op-
erators Ŝge,he =

∑N
j=1 σ̂

j
ge,he and

l[Â](ρ) = ÂρÂ† − 1
2 Â
†Âρ− 1

2ρÂ
†Â. (2)

Superradiant bursts can be emitted on multiple chan-
nels at the same time, as shown in Fig. 2. Both the height
of the burst and its scaling with N depend on the rela-
tive strength of the decay channels. For channels of equal
decay rate, Γeg0 = Γeh0 , the best fit for the peaks’ scaling
is N1.92, instead of the N2 scaling for two-level systems
at a point. For imbalanced channels, Γeg0 > Γeh0 , the
larger burst scales faster than for balanced channels. For
the relative rates of decay of 2 : 1 and 1.5 : 1, the best-
fit scalings of the peak intensity emitted on the stronger
transition are N2.01 and N2.00 respectively. This implies
that in such configurations, as long as there is some bias
towards one transition, for large enough N , the peak on
that transition will always scale as the ideal two-level
case with N2. In the case of balanced channels, nei-
ther channel gains any advantage, and so the scaling
is reduced. Furthermore, the superradiant burst on the
weaker transition has a peak that scales slower than the
balanced case. For Γeg0 = 2Γeh0 , the scaling is N1.56 and
for Γeg0 = 1.5Γeh0 it is N1.72.
The percentage of photons emitted on the bright chan-

nel increases logarithmically with atom number, as shown
in Fig. 2(c). Significant population accumulates in |g〉
faster than in |h〉, and so the collective enhancement of
Dicke superradiance occurs earlier, “stealing” photons
from the weaker transition. For large atom number, if
the ratio between decay rates is strongly biased towards
the brighter transition, the impact of the weaker transi-
tion is minimal. The bias of the imbalance of photons
emitted on each transition was reported in Ref. [30].

B. Cascaded decay: Ladder-systems

We now consider a ladder system where the excited
state, |e〉, decays to an intermediate state |f〉, that itself
decays again to the ground state |g〉. In the limit of all
atoms at a point, dynamics follows the master equation

ρ̇ = Γef0 l[Ŝef ](ρ) + Γfg0 l[Ŝfg](ρ), (3)

where decay is diagonalized into collective lowering op-
erators Ŝef,fg =

∑N
j=1 σ̂

j
ef,fg.

A superradiant burst is emitted on both transitions
consecutively, as shown in Fig. 3(b). This is because
the excited state decay is extremely fast due to large
population inversion, while the decay of the intermediate
state is very small due to small inversion. By the time
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FIG. 3. Superradiant decay from ladder-atoms at a point.
Each atom decays initially at a rate Γef0 to an intermediate
state which itself decays at a rate Γfg0 . (a) Superradiant bursts
emitted by 40 ladder atoms. Solid (dashed) lines indicate
emission on the initial (secondary) transition. (b) Scaling of
the peak emission by N ladder atoms. Lines are power-law
best fits of data from N ≥ 20. In all three cases the fit scales
as approximately N2.

that the population in the intermediate state is large
enough to drive fast collective decay, the superradiant
burst from the first transition is mostly finished. In the
regime NΓef0 � Γfg0 , the scaling of the first superradi-
ant peak goes approximately as ∼ N2 regardless of the
relative ratio of decays and the two-level case is retrieved.

IV. THEORETICAL METHODS FOR
ORDERED EXTENDED ARRAYS

A. Spin model for multilevel atoms

Here we introduce the theoretical framework to inves-
tigate an array of N multilevel atoms that interact with
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each other via free space beyond the point approxima-
tion. Without permutational symmetry, atoms interact
both coherently and dissipatively. Under a Born-Markov
approximation, the atomic density matrix evolves accord-
ing to the master equation [90, 91]

ρ̇ =
∑
a

− i
~

[Ha, ρ] + La(ρ), (4)

where an excited state |e〉 decays to a set of ground states
|ga〉. Each Hamiltonian and Lindbladian read

Ha = −~ωa
N∑
j=1

σ̂jgaga
+

N∑
j,l=1

Jajlσ̂
j
ega
σ̂lgae, (5)

La(ρ) =
N∑

j,l=1

Γajl
2
(
2σ̂jgaeρσ̂

l
ega
− σ̂jega

σ̂lgaeρ− ρσ̂
j
ega
σ̂lgae

)
,

(6)

where ωa is the frequency of the transition from |e〉 →
|ga〉, σ̂jgae = |ga〉j 〈e|j is the lowering operator from state
|e〉 → |ga〉 for the jth atom, and interactions between
atoms j and l are characterized by

Jajl −
iΓajl
2 = −µ0ω

2
a

~
℘∗a ·G0(rj , rl, ωa) · ℘a. (7)

Here, ℘a is the normalized dipole matrix element of the
transition, and G0(rj , rl, ωa) is the electromagnetic field
propagator between atoms at positions rj and rl [92].
Throughout the manuscript, we consider that the tran-

sition frequencies are all sufficiently distinct such that
photons associated with one transition cannot excite any
others, and interactions of the form σ̂jega

σ̂lgbe
are heavily

detuned and can be ignored. This condition is naturally
met for transitions from an excited state to states with
different angular momentum. For transitions to different
Zeeman levels, we assume the presence of a magnetic field
to break the degeneracy. This requires the Zeeman split-
ting to be much larger than the linewidth of the emitted
light. The spectrum is maximally broadened for two-
level atoms at the same spatial location, as this situation
produces the shortest possible burst. In this case, one
requires a magnetic field with B � NΓ0/µB , where Γ0
is the bare decay rate of a single atom. This corresponds
to magnetic fields on the order of ∼ 100G for the atom
numbers considered here. For 2D arrays, the power spec-
trum is expected to scale sub-linearly with atom number,
thus requiring smaller Zeeman shifts.

B. Conditions for many-body superradiance

1. Two level systems

The emission of a superradiant burst can be predicted
using the set of eigenvalues of the dissipative interaction
matrix Γ with elements Γjl, {Γν } [48]. The minimal

requirement for a superradiant burst is an initial positive
slope in the emitted photon rate or, equivalently, that
the emission of the first photon on average enhances the
emission rate of the second. In previous work, we showed
that the necessary criterion for a superradiant burst to
be emitted from an initially fully excited ensemble of N
two-level atoms is [48]

Var.
(
{Γν }

Γ0

)
≡ 1
N

N∑
ν=1

(
Γ2
ν

Γ2
0
− 1
)
> 1. (8)

This condition assumes that all emitted light is collected.
If that is not the case, one instead has to consider the rate
of emission into the optical modes that are detected. A
superradiant burst meeting certain criteria requires that
the emission of the first photon on average enhances the
rate of photons that meet those criteria. Further detail
on these derived bounds are given in Appendix A.

2. Decay to multiple ground states

If there are multiple ground states, a superradiant
burst is emitted by the fully excited state during decay
to |ga〉 if

Var.
(
{Γaν }

Γa0

)
>

Γ0

Γa0
, (9)

where Γ0 =
∑
a Γa0 is the total decay from the excited

state. This is of the same form as Eq. (8), but the en-
hancement provided by the operators on the particular
channel needs to additionally overcome competition be-
tween different “internal” channels. If all atoms are at a
point, then the condition for a superradiant burst on a
particular transition reduces to Γa0/Γ0 > 1/(N − 1).

3. Directional decay

In experiments, light is typically only collected in a
particular direction. Directional superradiance is defined
as the rate of photon emission into a particular direction
having a positive slope, and can persist to much larger in-
teratomic separations than when the entire emitted field
is considered [50]. As shown in Appendix A, directional
superradiance occurs if

N∑
j,l=1

eika
0 R(θ,ϕ)·(rl−rj) Γajl

NΓa0
> 1 + Γ0

Γa0
, . (10)

Here we map directional photon detection to atomic
emission where R(θ, ϕ) is a unit vector in the direction
of the detector and ka0 = 2π/λa0 the wavevector of the
transition [18, 93]. We define the quantity

S =

N∑
j,l=1

eika
0 R(θ,ϕ)·(rl−rj)Γajl

N (Γa0 + Γ0) , (11)
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such that if S < 1 the photon emission rate will decay
monotonically in time, and if S > 1, the minimal condi-
tions for superradiance are met.

C. Master equation evolution by cumulant
expansion

It would be ideal to calculate the full dynamics to ver-
ify our predictions. However, the full Hilbert space scales
exponentially with atom number. We approximate the
full dynamics by means of a second-order cumulant ex-
pansion [94–96]. This method involves truncating the
hierarchy of operator expectation values such that

〈ûv̂ŵ〉 = 〈ûv̂〉 〈ŵ〉+ 〈v̂ŵ〉 〈û〉+ 〈ûŵ〉 〈v̂〉 − 2 〈û〉 〈v̂〉 〈ŵ〉 .
(12)

The complexity of this expansion scales as O(N3) rather
than exponentially. Further details are provided in Ap-
pendix B. The accuracy of this approximation is not well-
characterized for 2D arrays. We benchmark the method
in Appendix C, showing that generically the accuracy is
better for larger lattice constants.

V. SUPERRADIANCE IN 2D ARRAYS OF
ALKALINE-EARTH ATOMS

We now consider AEA arrays where atoms are ini-
tialized in either one of the 3D1 |J = 1,mJ = 0〉 or
3D3 |J = 3,mJ = {0, 3}〉 states and allowed to decay [see
Fig. 4]. Large inversion can be achieved with a short
intense pulse of duration τ � (NΓ0)−1 to prevent collec-
tive effects [97].

Decay from 3D1 |J = 1,mJ = 0〉 can be simplified
using information from Tables I and II. First, decay
to 3P2 has minimal impact on the dynamics due
to the reduced linewidth. Second, the subsequent
decay from 3P1 → 1S0 will not impact the initial
burst as the decay is not fast enough, nor, due to
the short wavelength, will it be strongly collectively
enhanced. This leads to a four-level system, as shown
in Fig. 4(a), with a bright linearly-polarized decay
channel 3D1 |J = 1,mJ = 0〉 → 3P0 |J = 0,mJ = 0〉
and two dimmer circularly polarized transitions
3D1 |J = 1,mJ = 0〉 → 3P1 |J = 1,mJ = ±1〉. Note
that the Clebsch-Gordan coefficient is zero for the
3D1 |J = 1,mJ = 0〉 → 3P1 |J = 1,mJ = 0〉 pathway.
For simplicity, we treat decay to 3P1 |J = 1,mJ = ±1〉
as split by large enough Zeeman shifts that photons
on each transition are not seen by the other, but not
by enough to significantly alter the wavelength of the
transitions. Without such Zeeman shifts, photons of one
circular polarization can drive transitions with the other,
allowing the atoms to explore the full Zeeman structure
and adding far greater complexity to the problem [98].
Similar structure of three decay channels would be
obtained for initialization in 3D1 |J = 1,mJ = ±1〉,

but here the brightest transition is circularly-polarized
which is generically less favorable than linearly-polarized
transitions for superradiance [49].
We also consider atoms initialized in the

3D3 |J = 3,mJ = 0〉 state. From here, there are also
three decay channels, as shown in Fig. 4(b). As before,
one is linearly polarized, that to 3P2 |J = 2,mJ = 0〉,
and the two decay channels to 3P2 |J = 2,mJ = ±1〉
are circularly polarized. As above, we assume that
these channels are independent due to sufficiently
large Zeeman shifts. Alternatively, atoms initialized in
3D3 |J = 3,mJ = 3〉 are effective two-level systems with
circularly polarized decay, as the only decay channel
is to 3P2 |J = 2,mJ = 2〉. To study this situation, we
rotate the magnetic field such that the dipole moment of
the two-level systems is oriented as ℘ =

√
1/2 (ŷ + iẑ),

so that the detector position is still perpendicular to
the polarization axis, enhancing the signal. Other three
(and two) decay channel systems could also be obtained
by starting in different Zeeman levels in the 3D3 line.
We thus reduce the level structure of both atomic

species to those shown in Fig. 4. Starting from states
with mJ = 0, the master equation in Eq. (4) reduces to

ρ̇ = − i
~

[Hf +Hg+Hh, ρ]+Lf (ρ)+Lg(ρ)+Lh(ρ), (13)

where |e〉 is the excited state and |f, g, h〉 are the three
ground states. For the two-level system we instead have

ρ̇ = − i
~

[Hg, ρ] + Lg(ρ). (14)

A. Many-body decay vs distance

We first investigate atoms initialized in the
3D1 |J = 1,mJ = 0〉 state. We consider the condi-
tion given in Eq. (10) for the specific case of a square
array of 12 × 12 atoms. The detector is placed along
the x-axis, which should see significant emission as it is
perpendicular to the dipole moment. For 174Yb atoms,
this detector would measure a superradiant burst on the

-1 0 +1 -1 0 +1-3 -2 -1 +2 +3

(a) (b)

FIG. 4. Considered level structures. Atoms are initialized
in the (a) 3D1 |J = 1,mJ = 0〉 or (b) 3D3 |J = 3,mJ = 0, 3〉
state. In both mJ = 0 cases, the internal structure is simpli-
fied into a toy model with three decay channels: a dominant
linear π-polarized channel and two circularly polarized chan-
nels. In (a), the 3P1 |J = 1,mJ = 0〉 state is not considered
as the transition is forbidden.
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FIG. 5. Predictions of a burst versus lattice constant in 12× 12 arrays of (a,b) 174Yb and (c,d) 88Sr. The atoms are prepared
in the 3D1 |J = 1,mJ = 0〉 state initially and allowed to decay, with the linear transition polarized perpendicular to the array.
Light is detected along the x-axis. (a,c) The shaded areas indicate a burst on the 3D1 |J = 1,mJ = 0〉 →3P0 |J = 0,mJ = 0〉
transition (red line), as the quantity S in Eq. (11) is larger than 1 (black dashed line). The 3P1 |J = 1,mJ = ±1〉 transition
(orange dashed line) is never superradiant. (b,d) Approximations of the full dynamics via a second-order cumulant expansion
(on the 3D1 →3P0 transition) at three particular distances. As predicted by the superradiance condition, as the distance
increases, the superradiant burst disappears and then reappears.

dominant transition for any interatomic separation sat-
isfying d < 0.6µm, as shown in Fig. 5(a). This distance
would be challenging for tweezer array experiments, but
is achievable in an optical lattice [16, 17].

Superradiance can also be observed at particular “is-
lands” where the set of decay operators combines to real-
ize a sudden revival in emission in a particular direction.
For this detector position, this occurs in regions centred
on d = 0.7µm and d = 1.4µm, corresponding to a half
and full wavelength of the brightest transition respec-
tively. These revivals are due to geometric resonances
where a mode that emits in this direction suddenly in-
creases in amplitude due to Umklapp scattering, and thus
becomes significantly brighter [99, 100]. While these pro-
cesses can also revive global superradiance [48, 49], the
effect is much more pronounced for directional superra-
diance [50]. This type of superradiance is highly depen-
dent on the detector position, so the predicted distances
change as a function of detector angle. The approxi-
mated full dynamics (via second-order cumulant expan-

sion) agrees with our predictions, as shown in Fig. 5(b).
Superradiance can also be observed in 88Sr. The

dominant decay channel from 3D1 |J = 1,mJ = 0〉 has a
smaller branching ratio than that in 174Yb, but due to its
much longer wavelength, the constraints on interatomic
distance are less tight. Figure 5(c) shows that a superra-
diant burst is always observed for d < 1µm. In addition,
superradiance could be observed at the revivals with in-
teratomic spacing 1.3µm and 2.6µm. Therefore, as in
174Yb, as the interatomic spacing is increased, directional
superradiance disappears and reappears. Strontium thus
also offers a suitable platform for the direct observation of
Dicke superradiance, despite the less favorable branching
ratios to each state (see Tables I and II).

B. Collective “closing” of the atomic transition

Once a transition starts decaying superradiantly, it
proceeds quickly, “stealing” photons from the other tran-
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sition (as was discussed for the toy model described in
Sec. III). The effect is stronger for smaller interatomic
distances, because the superradiant burst is much faster
in that regime. In Fig. 6, we plot the total photon share
scattered on the dominant transition during superradi-
ance. For 88Sr, starting in the 3D3 |J = 3,mJ = 0〉 state,
a single atom scatters 60% of light on its brightest transi-
tion. By contrast, a 12×12 array overcomes the Clebsch-
Gordan coefficient and scatters almost 70% on that tran-
sition. We see a similar improvement at telecom wave-
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FIG. 6. Manipulation of branching ratios by collective emis-
sion. (a) Scaling of total share of light emitted on the
brightest linearly-polarized transition (polarized perpendic-
ular to the array) with atom number for square arrays of
spacing d = 0.2λ0, obtained by second-order cumulant expan-
sion simulations. Simulations for 174Yb (88Sr) are plotted in
red (blue), with atoms initialized in the 3D1 |J = 1,mJ = 0〉
(3D3 |J = 3,mJ = 0〉) state. Horizontal dashed lines rep-
resent the branching ratio for independent atoms. Solid
lines are best fits to data from N ≥ 25 of the form
A ln(N) + B. For 174Yb (88Sr), the fit is 0.026 ln(N) + 0.622
(0.030 ln(N) + 0.545). (b,c) 12 × 12 atoms are initialized
in the 3D3 |J = 3,mJ = 0〉 state. (b) The condition given
by Eq. (9) in the form Var.

(
{Γcdν } /Γcd0

)
− Γ0/Γcd0 + 1; a

global superradiant burst will be measured on the transition
to 3P2 |J = 2,mJ = 0〉 where the solid line is above the dashed
line. (c) Total share of light emitted on the brightest linearly-
polarized transition as the interatomic distance is changed.

lengths for 174Yb initialized in 3D1 |J = 1,mJ = 0〉. As
for the idealized case of atoms at a point, the light share
increases logarithmically with atom number.
The geometry of the array dictates the relative scatter-

ing on each channel and how much one can go beyond the
ratio dictated by the single-atom Clebsch-Gordan coeffi-
cients. As the interatomic distance is increased, generally
the transition is reopened, as shown in Fig. 6(c). How-
ever, revivals due to the geometric resonances can be seen
by comparison to the variance of the set of decay rates
[see Fig. 6(b)]. The revivals appear relatively minor but
are capable of strongly impacting the decay dynamics. It
should be noted that the condition for global superradi-
ance is not met in the arrays of larger lattice constants,
yet the closing of these weaker channels still occurs de-
spite the fact that the avalanche is relatively weak.
The share could be further increased by intentionally

seeding the transition with a small fraction of the atoms
deterministically placed in the desired ground state, or
an incomplete initial excitation from a particular ground
state. Instead of relying on a quantum fluctuation to
drive the start of the superradiant burst, these atoms
would provide an artificial fluctuation. This would ac-
celerate the superradiant burst on that seeded transi-
tion and generate a large atomic population in that
state [30, 101, 102]. Nevertheless, how effectively this
fluctuation will trigger the avalanche depends on its spe-
cific spatial profile and phase. We will thus not explore
this avenue here.

C. Scaling of the burst

The largest possible burst occurs for atoms initialized
in the 3D3 |J = 3〉 manifold. The transition wavelength
is λ0 = 1.80 µm for 174Yb and λ0 = 2.92 µm in 88Sr.
To minimize the interatomic distance, both species are
assumed to be trapped in an optical lattice with 244 nm
lattice spacing, corresponding to a wavelength of 488 nm
for which Yb and Sr are trapped in the relevant states
and high power lasers are available. This yields an inter-
atomic spacing of d = 0.136λ0 for 174Yb and d = 0.084λ0
for 88Sr. We consider two initial states: |J = 3,mJ = 0〉
and |J = 3,mJ = 3〉. In the former case, decay is to
three states, with a dominant transition that is linearly
polarized. In the latter case, the atoms become effec-
tive two-level systems, decaying by circular σ+-polarized
light. This closed two-level transition can be accessed in
all AEAs, including fermionic isotopes.
The largest possible burst is emitted by the simplest

system operating at the longest wavelength, as shown
in Fig. 7. For the effective two-level system, the peak
intensity is more than three times greater than the initial
intensity emitted by an array of 12×12 174Yb atoms, and
more than six times greater for 88Sr. The peak scales as
∼ N1.38 and ∼ N1.47 for 174Yb and 88Sr respectively.
The smaller peak emitted from the |J = 3,mJ = 0〉 state
is still significant, and scales as ∼ N1.29 for 174Yb and
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FIG. 7. Largest superradiant burst in ordered 2D arrays of AEAs. (a) 174Yb and (b) 88Sr atoms are initialized in
3D3 |J = 3,mJ = 0〉, with the dominant linear transition polarized perpendicular to the array, or 3D3 |J = 3,mJ = 3〉, with the
only possible decay having

√
1/2 (ŷ + iẑ) polarization. Second-order cumulant expansion simulations of the superradiant burst

emitted on the (dashed) 3D3 |J = 3,mJ = 0〉 →3P2 |J = 2,mJ = 0〉, with parasitic decays to |J = 2,mJ = ±1〉, and (solid)
3D3 |J = 3,mJ = 3〉 →3P2 |J = 2,mJ = 2〉 transition. (c) Scaling of the peak intensity with atom number. Lines are power
law fits of data with N ≥ 25. For the effective two-level system, the scaling of the peak is N1.38 for 174Yb and N1.47, while the
four-level system scales as N1.29 for 174Yb and N1.37 for 88Sr. In all plots, the lattice constant is d = 244 nm.

∼ N1.37 for 88Sr. A word of caution is needed though,
as the validity of the second-order cumulant expansion
is not well characterized for these large atom numbers
at such small distances, and may overestimate the burst
due to significant multipartite correlations [96].

VI. CONCLUSIONS

We have presented results on collective decay in realis-
tic arrays of alkaline earth atoms. Building on previous
work, we calculate conditional correlation functions to
predict the nature of the collective decay. We predict
highly non-trivial many-body decay through control of
the interatomic spacing of the array and position of the
detector. Focussing on the particular cases of 88Sr and
174Yb, we show that the observation of Dicke superradi-
ance should be feasible in such systems. Furthermore, we
show that by increasing the interatomic separation, Dicke
superradiance is attenuated and lost, but is then revived
at a larger distance. We show that this understanding
can be used to manipulate how much population ends up
in each possible ground state.

Experiments are critical to understand many-body de-
cay, as full dynamics are only obtained via approxima-
tions. We have focused on strontium and ytterbium due
to the recent progress in implementing atomic arrays
with these species, and the favorable set of transitions
to achieve subwavelength interatomic spacing. However,
similar results should also be possible with other alkaline
earth elements, which have the same structure, but where
progress in cooling and trapping is less advanced [103–
106]. The relative spacing (and order) of levels is differ-
ent in all these atoms. For example, in radium, there is a
two-level linearly-polarized transition - as the 3D1 state
can only decay to 3P0 - at a far-infrared wavelength of

∼ 16µm [107]. Rare earth elements also have infrared
transitions from the ground state, and can be similarly
trapped in short wavelengths due to strong blue transi-
tions [108–111].

Our results may be relevant in the context of Ryd-
berg quantum simulators [112–114]. Excited Rydberg
states can decay via a fast short-wavelength transition
(and therefore not collectively enhanced) or via much
slower but very long-wavelength transitions. Our work
implies that the amount of light scattered on these long
Rydberg-Rydberg transitions could be significantly en-
hanced by collective decay [89, 115, 116]. Furthermore,
understanding the collective enhancement of coupling be-
tween black body photons and the 3P0 state in atomic
optical lattice clocks is key to achieving high precision in
compact devices [117–119].

The control of the atoms is translated into control
over the emitted light. For example, initial superposi-
tion states will emit superpositions of different pulses,
with the potential for generation of macroscopic super-
position states of light. In particular, the potential for
174Yb arrays to produce non-classical light at telecom
frequencies is tantalizing. While we have focused on the
interatomic spacing of the array and the relative position
of the detector to control the decay, there are additional
tuning knobs that could be harnessed. The dynamics,
and in particular the directionality, could be altered by
changing the geometry of the array, either by modifying
the lattice or the global shape. Manipulation of the initial
state, adding coherent or incoherent drives, or manual
addition of site-specific inhomogeneity [120]; all of this
will impact the dynamics and steady state of the system.

Understanding the various decay processes - and freez-
ing out coherent dynamics - opens up possibilities to har-
ness them. For instance, the complex dissipative dy-
namics provides a method to access highly entangled
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dark states that completely decouple from the environ-
ment. The deterministic production of these states, and
their potential as resources for quantum computing and
metrology [121, 122], remains an exciting open problem.
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APPENDIX A: DERIVATION OF DIRECTIONAL
CONDITION FOR SUPERRADIANCE ON A

PARTICULAR CHANNEL

The dissipator of Eq. (6) can be expressed in terms of
a set of collective lowering operators { Ôν,a }. These are
generically superpositions of the form

Ôν,a =
N∑
j=1

αν,a,j σ̂
j
gae. (15)

The coefficients αν,a,j are found as the eigenstates of the
dissipative interaction matrix Γa with elements Γajl, with
their rates, {Γaν }, given by the corresponding eigenval-
ues. Each Lindbladian term is thus recast as

La(ρ) =
N∑
ν=1

Γaν
2

(
2Ôν,aρ Ô†ν,a − Ô†ν,aÔν,aρ− ρ Ô†ν,aÔν,a

)
.

(16)

Dissipation can thus be understood as the emission of a
photon into one of the N possible decay channels.

Appendix A.1: Multiple ground states

The derivative of the intensity emitted on a specified
transition |e〉 → |ga〉 is positive if

N∑
µ=1

∑
b

N∑
ν=1
〈Ô†ν,bÔ†µ,aÔµ,aÔν,b〉(∑

b

N∑
ν=1
〈Ô†ν,bÔν,b〉

)(∑
µ=1
〈Ô†µ,aÔµ,a〉

) > 1, (17)

On a fully excited initial state, this expression reads

1 +

N∑
ν=1

(Γav)2

N2Γa0Γ0
− 1
N
− Γa0
NΓ0

> 1, (18)

which simplifies to

Var.
(

Γaν
Γa0

)
≡ 1
N

N∑
ν=1

[(
Γaν
Γa0

)2
− 1
]
>

Γ0

Γa0
(19)

where Γ0 =
∑
a Γa0 is the total excited state decay rate.

Appendix A.2: Directional decay

Detection of a photon from a given transition in far-
field in a direction governed by spherical angles { θ, ϕ }
can be mapped to the collective lowering operator [18, 93]

D̂a(θ, ϕ) =
√

3Γa0
8π

[
1− (℘a ·R(θ, ϕ))2

]
dΩ

×
N∑
j=1

e−ika
0 R(θ,ϕ)·rj σ̂jgae, (20)

where R(θ, ϕ) is a unit vector in the direction of the
detector, dΩ is a solid angle increment and ka0 is the
wavevector of the transition. Using these, the derivative
of the intensity emitted on a specified transition |e〉 →
|ga〉 in a direction {θ, ϕ} is positive if

∑
b

N∑
ν=1
〈Ô†ν,b D̂†a(θ, ϕ)D̂a(θ, ϕ)Ôν,b〉

∑
b

(
N∑
ν=1
〈Ô†ν,bÔν,b〉

)
〈D̂†a(θ, ϕ)D̂a(θ, ϕ)〉

> 1. (21)

On a fully excited state, this expression reads,

1 +

N∑
j,l=1

eik0R(θ,ϕ)·(rl−rj)Γjl

N2Γ0
− 1
N
− Γa0
NΓ0

> 1 (22)

where we have employed that

N∑
ν=1

Γavα∗ν,a,jαν,a,l = Γajl. (23)
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This simplifies to

N∑
j,l=1

eika
0 R(θ,ϕ)(rl−rj) Γajl

NΓa0
> 1 + Γ0

Γa0
. (24)

APPENDIX B: SECOND-ORDER CUMULANT
EXPANSION FOR FOUR-LEVEL SYSTEMS

We consider four-level atoms that can decay to three
ground states |f, g, h〉 from an excited state |e〉. Pho-
tons associated to each transition |e〉 → |f, g, h〉 are suffi-
ciently distinct in frequency to not excite one another. To
calculate the directional intensity on a channel |e〉 → |f〉,
we require the evolution of the expectation values of the
set {σ̂ief σ̂

j
fe}, requiring at least a second-order cumulant

expansion. Generically, the evolution of these expecta-
tion values depends on the expectation values of sets of
three of the population operators, e.g. {σ̂iee} (the fourth
can be related to the other three as the total single atom
population is always unity), all six coherence operators,
e.g., {σ̂ief}, and all 66 two-operator products, noting that
the complex expectation value of the coherence operators
leads to extra operators such as {σ̂ief σ̂

j
fe}.

If the initial state has no coherence, such that initially

{〈σ̂iab〉} = 0 ∀ a, b and {〈σ̂iabσ̂
j
cd〉} = 0 ∀ a, b, c, d, (25)

then the equations are greatly simplified. This condition
is met by the fully excited state, or any state where all
single atom states are the ground or excited state. In
this case, the single atom coherences are never different
from zero in the second-order cumulant expansion and
the expectation values of all two-operator products of
the form {σ̂iabσ̂

j
ad} are always zero, and those of the form

σ̂iabσ̂
j
da are zero ∀ b 6= d. The two-operator products of

the form {σ̂iaaσ̂
j
bb} and {σ̂iabσ̂

j
ba} do become non-zero, but

only those where one of a or b represents the excited state
impact the evolution of the terms needed to calculate
directional intensity. As such, there is a closed set of
operators with expectation values defined as

aj = 〈σ̂jee〉 , bj = 〈σ̂jff 〉 , cj = 〈σ̂jgg〉 , (26a)

ejl = 〈σ̂jeeσ̂lee〉 , fjl = 〈σ̂jeeσ̂lff 〉 , gjl = 〈σ̂jeeσ̂lgg〉 , (26b)

qjl = 〈σ̂jef σ̂
l
fe〉 , pjl = 〈σ̂jegσ̂lge〉 , rjl = 〈σ̂jehσ̂

l
he〉 . (26c)

The expectation values evolve according to

ȧj = −Γ0aj + i
N∑
m=1

[
−Ajmqjm +A∗jmqmj −Bmjpjm +B∗mjpmj − Cjmrjm + C∗mjrmj

]
, (27a)

ḃj = Γef0 aj + i
N∑
m=1

[
−A∗mjqmj +Ajmqjm

]
, (27b)

ċj = Γeg0 aj + i
N∑
m=1

[
−B∗mjpmj +Bjmpjm

]
, (27c)

ėjl = −2Γ0ejl + i
∑
l

[
−Ajm 〈σ̂jef σ̂

l
eeσ̂

m
fe〉 −Ajm 〈σ̂jeeσ̂lef σ̂mfe〉 −Bjm 〈σ̂jegσ̂leeσ̂mge〉 −Bjm 〈σ̂jeeσ̂legσ̂mge〉 − Cjm 〈σ̂

j
ehσ̂

l
eeσ̂

m
he〉

−Cjm 〈σ̂jeeσ̂lehσ̂mhe〉+A∗mj 〈σ̂
j
feσ̂

l
eeσ̂

m
ef 〉+A∗ml 〈σ̂jeeσ̂lfeσ̂mef 〉+B∗mj 〈σ̂jgeσ̂leeσ̂meg〉+B∗ml 〈σ̂jeeσ̂lgeσ̂meg〉+ C∗mj 〈σ̂

j
heσ̂

l
eeσ̂

m
ef 〉

+C∗ml 〈σ̂jeeσ̂lheσ̂mef 〉
]
, (27d)

ḟjl = −Γ0fjl − iAjlqjl + iA∗jiqji + ΓA0 ejl + i
∑
l

[
−Ajm 〈σ̂jef σ̂

l
ff σ̂

m
fe〉 −A∗ml 〈σ̂jeeσ̂lfeσ̂mef 〉 −Bjm 〈σ̂jegσ̂lff σ̂mge〉

−Cjm 〈σ̂jehσ̂
l
ff σ̂

m
he〉+A∗mj 〈σ̂

j
feσ̂

l
ff σ̂

m
ef 〉+Ajm 〈σ̂jeeσ̂lef σ̂mfe〉+B∗mj 〈σ̂jgeσ̂lff σ̂meg〉+ C∗mj 〈σ̂

j
heσ̂

l
ff σ̂

m
ef 〉
]
, (27e)

ġjl = −Γ0gjl − iBjlpjl + iB∗jipji + ΓB0 ejl + i
∑
l

[
−Bjm 〈σ̂jegσ̂lggσ̂mge〉 −B∗ml 〈σ̂jeeσ̂lgeσ̂meg〉 −Ajm 〈σ̂

j
ef σ̂

l
ggσ̂

m
fe〉

−Cjm 〈σ̂jehσ̂
l
ggσ̂

m
he〉+B∗mj 〈σ̂jgeσ̂lggσ̂meg〉+Bjm 〈σ̂jeeσ̂legσ̂mge〉+A∗mj 〈σ̂

j
feσ̂

l
ggσ̂

m
ef 〉+ C∗mj 〈σ̂

j
heσ̂

l
ggσ̂

m
ef 〉
]
, (27f)

q̇jl = −Γ0qjl − iAjifjl + iA∗jifji + ΓAjiejl + i
∑
l

[
−A∗mj 〈σ̂jeeσ̂lfeσ̂mef 〉 −Ajm 〈σ̂

j
ef σ̂

l
ff σ̂

m
fe〉+A∗mj 〈σ̂

j
ff σ̂

l
feσ̂

m
ef 〉

+Ajm 〈σ̂jef σ̂
l
eeσ̂

m
fe〉
]
, (27g)

ṗjl = −Γ0pjl − iBjigjl + iB∗jigji + ΓBjiejl + i
∑
l

[
−B∗mj 〈σ̂jeeσ̂lgeσ̂meg〉 −Bjm 〈σ̂jegσ̂lggσ̂mge〉+B∗mj 〈σ̂jggσ̂lgeσ̂meg〉
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FIG. 8. Benchmarking of second-order cumulant expansion against exact dynamics. Light emitted by a (a) 3× 3 and (b) 4× 4
array of two-level systems prepared initially in the excited state with polarization axis perpendicular to the array. Light is
detected along the x-axis. Cumulant expansion dynamics (solid lines) are compared to exact dynamics (dashed lines), which
are obtained from the master equation in (a) and from an ensemble average of 10,000 quantum trajectories in (b).

+Bjm 〈σ̂jegσ̂leeσ̂mge〉
]
, (27h)

ṙjl = −Γ0rjl − iCji (ai − ejl − fjl − gjl) + iC∗ji(aj − eji − fji − gjl) + ΓCjiejl + i
∑
l

[
−C∗mj 〈σ̂jeeσ̂lheσ̂mef 〉

−Cjm 〈σ̂jehσ̂
l
hhσ̂

m
he〉+ C∗mj 〈σ̂

j
hhσ̂

l
heσ̂

m
ef 〉+ Cjm 〈σ̂jehσ̂

l
eeσ̂

m
he〉
]
, (27i)

where we have defined that

Ajl = Jefjl − i
Γefjl
2 , Bjl = Jegjl − i

Γegjl
2 , Cjl = Jehjl − i

Γehjl
2 ,

(28)

and three-operator product expectation values are ap-
proximated by the second-order cumulant expansion as

〈ûv̂ŵ〉 = 〈ûv̂〉 〈ŵ〉+ 〈v̂ŵ〉 〈û〉+ 〈ûŵ〉 〈v̂〉 − 2 〈û〉 〈v̂〉 〈ŵ〉 .
(29)

APPENDIX C: BENCHMARKING
SECOND-ORDER CUMULANT EXPANSION

To benchmark the second-order cumulant expansion
we compare the approximated dynamics to the exact dy-
namics for small system sizes, as shown in Fig. 8. Here,
we consider two-level atoms as calculating exact dynam-
ics for four-level atoms is not computationally tractable
for even 16 atoms. Exact dynamics are found as the en-
semble average of quantum trajectories [123]. At short
times, and for modest separations, the cumulant expan-
sion is an excellent approximation of the dynamics. As
the distance decreases, the error becomes more signifi-
cant. For d = 0.1λ0, the peak is overestimated by 12%
for a 4 × 4 array, and by 9% for a 3 × 3 array. The rel-
ative error is much larger at later times as the cumulant
expansion is unable to capture the subradiant tail [95].
This is also true for d = 0.2λ0, where the burst is cap-
tured more accurately (overestimated by only 1% for a
4× 4 array), but large relative errors occur in the tail.
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