PLANAR MINIMAL SURFACES WITH POLYNOMIAL GROWTH

IN THE Sp(4,R)-SYMMETRIC SPACE
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ABsSTRACT. We study the asymptotic geometry of a family of conformally planar
minimal surfaces with polynomial growth in the Sp(4, R)-symmetric space. We
describe a homeomorphism between the “Hitchin component” of wild Sp(4, R)-
Higgs bundles over CP* with a single pole at infinity and a component of maximal
surfaces with light-like polygonal boundary in H?2. Moreover, we identify those
surfaces with convex embeddings into the Grassmannian of symplectic planes of
R*. We show, in addition, that our planar maximal surfaces are the local limits
of equivariant maximal surfaces in H>? associated to Sp(4,R)-Hitchin represen-
tations along rays of holomorphic quartic differentials.
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Let S be a surface of finite type and let GG be a real semisimple Lie group. Higher
Rank Teichmiiller theory is a quickly growing area of research that studies dynami-
cal, geometric and algebraic properties of representations of m1(S) into G (|[Wiel8]),
whose origins can be traced back to the pioneering work of Hitchin on Higgs bundles
(|[Hit87]), and to the foundational work of Corlette (|Cor88|), Donaldson ([Don87]),
and Simpson (|Sim90]). In brief, they developed a theory, generally referred to as
nonabelian Hodge correspondence, that provides homeomorphisms between three
natural objects: the character variety x(I',G), the de Rahm moduli space of flat
connections on principal G-bundles over a Riemann surface X = (S,J); and the
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Dolbeaut moduli space of G-Higgs bundles on X. A fundamental role in this theory
is played by equivariant harmonic maps from the universal cover of X to the sym-
metric space G/K (|Lil9a]). In particular, when G is (non-exceptional) real split
of rank 2 the theory is very rich and well-understood: by work of Hitchin (|Hit92|)
there is a connected component in the character variety that generalizes Teichmiiller
space; there is a unique preferred choice of conformal structure on S that makes
the associated equivariant harmonic maps conformal, and thus (branched) minimal
immersions (|Labl7]); and representations in this connected component all arise as
holonomy of geometric structures on (bundles over) S (|[Barl0], [CTT19], [Lab07],
[Lof01], [Mes07], [GWO08]).

More recently, the nonabelian Hodge correspondence has been extended to include
surfaces with punctures and Higgs bundles with meromorphic Higgs field with tame
or irregular singularities at the punctures (|[BB04|, [Boal4|, [Sim90]). The main aim
of this paper is to describe harmonic maps arising from Higgs bundles over CP!
with polynomial Higgs field for the Lie group Sp(4, R) and the associated geometric
structures. In particular, we aim to unite (see Theorem C) two perspectives: the
complex values of the polynomial in the plane with the synthetic pseudo-Riemannian
geometry of polygons in the boundary of H*2. The latter naturally reflects some com-
binatorics of flats in the symmetric space of Sp(4, R).

In turn, the study of these planar Higgs bundles provides tools for studying fam-
ilies of representations that leave compacta in a character variety. In particular,
and in the setting of the Hitchin component of Sp(4,R) representations of surface
groups, consider a family of representations that has associated harmonic maps from
a Riemann surface X that are conformal and of energies growing without bound. In
that case, we show that the high energy harmonic maps localize in the sense that
the restriction of global harmonic maps of the surface to a small neighborhood on
the surface is well-approximated by the harmonic maps associated to a Higgs bundle
over CP! with polynomial Higgs field (for the Lie group Sp(4,R)).

Let us introduce some notation and terminology. Let f : C — SL(n,R)/SO(n) be
a harmonic map. We can interpret the differential df of f as a 1-form with values
in the vector space m = {A € sl(n,R) | A = A'}. The harmonicity of f implies that
the (1,0)-part ¢ = Of of its differential is holomorphic. We can thus associate to f
holomorphic k-differentials ¢ on the complex plane defined by qr = tr(gok). Notice,
in particular, that g1 = 0 and g2 is the Hopf differential of the harmonic map f. We
say that f has polynomial growth if ¢; are all polynomials. One naturally asks,

Question A. Given holomorphic polynomial k-differentials (qo, ..., qy), is there a
harmonic map f : C — SL(n,R)/SO(n) such that g = tr((0f)*)? Moreover, can
we describe its image?

In this generality, the above question is still open. The first work in this direction
is due to Han, Tam, Treibergs and Wan ([HTTW95|) who studied harmonic maps
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from the complex plane to the hyperbolic plane with polynomial Hopf differential,
showing that the quadratic differential determines a harmonic diffeomorphism from
C to an ideal polygon in H? with m + 2 vertices if m is the degree of the polynomial.
Recent work of Li ([Li19b]) shows, in addition, that such a harmonic diffeomorphism
is unique. A simple dimension count, however, shows that there cannot be a one-to-
one correspondence between polynomial quadratic differentials of degree m on the
complex plane and ideal polygons in H? with m + 2 vertices. Gupta ([Gup21]) ex-
plained this phenomenon in terms of rate in which the harmonic maps take the end
of C into the cusps and obtained a homeomorphism between these moduli spaces by
prescribing the principal part at infinity of the Hopf differential. Another interpre-
tation was given by the first author (|[Tam19]|), who, using anti-de Sitter geometry,
showed that there is actually a homeomorphism between polynomial quadratic dif-
ferentials on the complex plane and pairs of ideal polygons in H? with the same
number of vertices.

An answer to Question A is also known for n = 3 in case of conformal harmonic
maps. In joint work with David Dumas (|[DW15]), the second author used tech-
niques from affine differential geometry to show that there is a conformal equivariant
harmonic map from C to SL(3,R)/SO(3) with prescribed polynomial cubic differen-
tial g3. Moreover, they constructed a homeomorphism between the moduli space of
polynomial cubic differentials of degree m and convex polygons in RP? with m + 3
vertices, exploiting the fact that these harmonic maps arise as Gauss maps of hyper-
bolic affine spheres in R?, which project to convex sets, in this case polygons, in RP2.
In terms of the geometry of the minimal surface in the symmetric space, this result
can be interpreted as the solution of an asymptotic Dirichlet problem for minimal
surfaces in SL(3,R)/SO(3): the minimal surfaces found in [DW15] are asymptotic
to 2(m+ 3) flats at infinity with the property that each consecutive pair shares three
adjacent Weyl chambers at infinity.

In this paper we extend this last result to conformal harmonic maps with polyno-
mial growth into Sp(4,RR)/U(2). We prove the following:

Theorem B. Assume that q4 is a polynomial holomorphic quartic differential of
degree n. Then there exists a conformal harmonic map f : C — Sp(4,R)/U(2) such
that qu = tr((0f)*). Moreover, the associated minimal surface f(C) is asymptotic
to 2(n + 4) flats as |z| — +oo, with the property that any consecutive pair shares
four adjacent Weyl chambers at infinity. Such a collection determines the minimal
surface and qq uniquely.

Although the general idea of the proof resembles that in [DW15], the techniques
used are very different for two main reasons. First of all, we construct the harmonic
map using Higgs bundles: we associate to g4 an irregular Higgs bundle over CP! and
find the solution to Hitchin’s self-duality equations. We then obtain the minimal
surface by parallel transport of a unitary frame using the associated flat connection.
In particular, the study of the geometry at infinity of the minimal surface requires
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precise estimates on the parallel transport as |z| — +o0; this in turn involves the
study of the asymptotic behavior of solutions of a (coupled) system of elliptic PDE
on the complex plane (unlike the SL(3,R) case where the equation can be reduced to
a single scalar PDE). These techniques have the advantage that they might be easily
adapted to every cyclic Higgs bundle and thus used for the study of the asymptotic
geometry of planar minimal surfaces into SL(n,R)/SO(n) with only the requirement
that ¢, does not vanish identically.

The other main difference is that, in order to prove the second part of Theo-
rem B, we use techniques from pseudo-Riemannian geometry. Exploiting the low-
dimensional isomorphism PSp(4,R) = SO(2,3), we interpret the harmonic maps
found before as Gauss maps of maximal surfaces in the pseudo-hyperbolic space
H?? bounding a future-directed negative light-like polygon in the Einstein Universe
Ein'2, which we view as the Lorentzian conformal boundary at infinity of H22. We
show the following;:

Theorem C. There is a homeomorphism between the moduli space of polynomial
quartic differentials of degree n on the complex plane and a connected component of
the moduli space of future-directed negative light-like polygons with n + 4 vertices in
the Einstein Universe.

One cannot ignore the theme running through Theorem C, [DW15] and even
[HTTWO95| (compare [Wol91]). All of these works identify a “Stokes phenomenon”
in which certain cyclic Higgs bundles on CP! (with wild singularity at co) define
geometric shapes — ideal polygons in H?, convex real projective polygons in RP?, or
future-directed negative light-like polygons in Ein'? — which arise in a common way.
In particular, the associated harmonic maps from C to the symmetric space which
have a constant holomorphic differential, and (hence) map onto a flat, provide as-
ymptotic solutions (for the solutions of the Hitchin equations under study) in a region
of the plane defined by the geometry of the quadratic, cubic or (in the present case)
quartic differential; passing from one of these regions to another through a Stokes
direction in the plane provides that the solutions transition to be asymptotic to a
different flat in the symmetric space (typically sharing a collection of Weyl chambers).

However, unlike [HTTW95| or [DW15]|, we have reasons to believe that in our
case this moduli space of geometric structures that cyclic Higgs bundles on CP! in-
duce is not connected. Note that in both [HTTW95| and [DW15|, the geometric
objects under study (harmonic diffeomorphisms onto ideal polygons in H? and affine
spheres projecting onto convex polygons in RIP?) can arise only from one family of
wild (SL(2,R) or SL(3,R)) Higgs bundles on CP! with singularity at infinity that are
themselves reminiscent of the Higgs bundles in the Hitchin component in the case of
surfaces with negative Euler characteristic. In our context, however, already in the
classical setting of closed surfaces of genus at least 2, complete maximal surfaces in
H?2 can be obtained from families of Higgs bundles (JCTT19]) belonging to different
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connected components in the moduli space. This suggests that there should be a one-
to-one correspondence between the connected components of the moduli space of wild
Sp(4, R)-Higgs bundles over CP! and the connected components of future-directed
negative light-like polygons in Ein™2. In support of this idea, we find an explicit
parametrization of the moduli space of future-directed negative light-like hexagons
in Ein"? and show that this has two connected components. Our Theorem C gives
a homeomorphism with the component that does not contain the unique (up to the
action of SOg(2,3)) future-directed negative light-like hexagon in Ein'! ¢ Ein%?.
This is consistent with our conjecture as the family of wild Sp(4,R)-Higgs bundles
over CP' that we consider in this paper are those belonging to the Hitchin section
(cfr. [FN17]) that can never be reduced to SOq(2, 2)-Higgs bundles.

We believe that this study is also relevant to developing a harmonic map com-
pactification of the Hitchin component in the spirit of [Wol89|. By work of Labourie
(|[Lab17]) the Sp(4, R)-Hitchin component of a closed surface S may be parametrized
by the bundle Q* of quartic differentials over the Teichmiiller space of S. A nat-
ural question is to understand the asymptotic behavior of the representations pq
and of the associated ps-equivariant harmonic maps gs : S — Sp(4,R)/U(2) along
a ray qs = sqo of quartic differentials. Works of Collier-Li (|CL17]) and Mochizuki
([Moc14]) give a precise picture away from the zeros of the quartic differential gy (as
well as for general n-differentials). A consequence of Theorem B is an initial study
of the asymptotics of the harmonic maps g5 on all neighborhoods of the surface S in
this case of quartic differentials. In particular, we imagine rescaling the coordinate
chart in a neighborhood so that ¢gs converges to the polynomial quartic differential
2*dz* over C. We can then use the solution of Hitchin’s equations on the plane,
found in Theorem B, to give the following asymptotic estimates, which extend the
ones found in [DW22] (see also [LTW22b]) for the Blaschke metrics along rays of
cubic differentials to the present Sp(4,R)/U(2) setting:

Theorem D. Let g5 = sqg be a ray of holomorphic quartic differentials on a closed
Riemann surface X = (S,J). Let o be the conformal hyperbolic metric on X and
let gs = diag(gl,s,gisl,gl_,;,gg,s) be the harmonic metric on the Higgs bundle (&, ps)
over X, where

0 0 ¢gs O

3 _1 _3 1 00 0 1
E=K2pK 20K 206Kz and ¢s= 01 0 0
1 0 0 O

Let p be a zero of order k for qo. Then, as s — +00, there exists a sequence of radii

rs — 0 such that
3 3 _ 11
gt =O(s*¥ig2) and g+ = O(s¥+ig2) .
’ ‘B(Pﬂ“s) ’ |B(P77‘s)

As a consequence, we deduce (see Corollary 7.8) that the family of maximal sur-
faces in H?? arising from the Higgs bundles described above (|[CTT19]) converge in
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the pointed Gromov-Hausdorff topology to the planar maximal surfaces of Theorem
C with polynomial quartic differential z*dz*, where k is the vanishing order of qo at
the chosen base point. This “localization” result mirrors the result in [DW22| that
rays of affine spheres in the Labourie-Loftin coordinates converge to affine spheres
over regular polygons. We believe also that these estimates should play a role in
the study of the asymptotic holonomy along paths that go through some zeros of ¢
(cf. [LTW22b]) and in the description of the (rescaled) limiting harmonic map to a
building ([KNPS15]). We leave these aspects to future work.

Finally, we compare the present work to another recent response to [CTT19|.
Labourie, Toulisse and the second author [LTW22a| study the case of spacelike max-
imal surfaces in H2" with positive boundary on Ein"" and no specification of the
conformal type of the maximal surface (instead, their focus is on removing the restric-
tion in [CTT19] to a cocompact group action). In contrast, Theorems B and C in the
present work study boundary maps which are polygonal, hence only semi-positive,
on planar surfaces.
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1. BACKGROUND MATERIAL

1.1. Lie theory for Sp(4,RR). We recall briefly the relevant Lie theory for the Lie
group Sp(4,R). In particular, we fix once and for all an identification of sp(4,R) as
subalgebra of s((4, C).

We consider on C* the symplectic form given by

(1.1) Q= (-?m Iod> .
The complex symplectic group Sp(4,C) consists of all linear transformations ¢ in
GL(4,C) such that g'Qg = Q. Hence, its Lie algebra is
sp(4,C) = {X € gl(4,C) | X'Q+ QX =0} .
A simple computation shows that X € sp(4,C) if and only if it can be written as

A B
=@ )
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for some A € GL(2,C) and B,C € Sym(2,C). The anti-linear involution
p:Sp(4,C) — Sp(4,C)
g (g1

fixes a maximal compact subgroup isomorphic to SU(4).
We identify Sp(4,R) with the fixed points in the complex group Sp(4,C) of the
anti-linear involution

A:Sp(4,C) — Sp(4,C)

(0 Idy_(0 Id
g d 0 )9\1d o)

Remark 1.1. This group is conjugate via

10 ¢+ 0
1101 0 4
A_E 10 —i o0 € SU(4)
01 0 —i

to the standard Sp(4,R), consisting of matrices with real coefficient preserving the
symplectic form €.

At the Lie algebra level, this identification of Sp(4,R) provides for the identifica-
tion

ap(4,R) = {(% _%t) | Ceu®): De Sym(Q,C)} .

The involutions p and A commute and the composition o = o p acts on sp(4,R) as

¢ D\ (C -D
9\D -ct) = \-D -ct) -
We deduce that o is a Cartan involution for sp(4,R) and induces the (Cartan)
decomposition

sp(4,R) = u(2) & (Sym(2,R) & Sym(2, R)).
By complexifying, we obtain the splitting
sp(4,C) = gl(2,C) & (Sym(2,C) & Sym(2, C)).

1.2. Sp(4,R)-Higgs bundles. We recall here the definition of Sp(4, R)-Higgs bun-
dles over closed Riemann surfaces and their connection with harmonic maps in the
symmetric space Sp(4,R)/U(2).

Definition 1.2. An Sp(4, R)-Higgs bundle on a closed Riemann surface ¥ is a triple
(V,B,7), where V is a holomorphic vector bundle of rank 2, and the forms g €
H(Z,Sym(V)® K) and v € H(Z, Sym(V)*® K ), where K is the canonical bundle
over X.
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The associated SL(4,C)-Higgs bundle is given by the holomorphic vector bundle
E=V @ V*on X and the Higgs field ¢ : € - € ® K represented by the matrix

)

This bundle comes equipped with a symplectic form €2 and an orthogonal structure
Q : &€ — & which, in the above splitting € =V @ V*, are given by

0 Id 0 Id
Q-(_Id O) and Q_<Id O>'
More generally, we will say that a frame for € is Q-symplectic and @Q-adapted, if the
symplectic form and the orthogonal structure are represented by the above matrices.
We are interested in Higgs bundles in the Sp(4, R)-Hitchin component. Those are

parameterized [Lab17] by a point in Teichmiiller space (corresponding to the complex
structure on ) and a holomorphic quartic differential ¢, and they are given by the

triple
3 1 (01 _(a O
V=K:@K 3 7_(1 o) ,B_<0 1).

Hitchin’s equations look for a (harmonic) hermitian metric H on € such that the
Sp(4, R)-connection
V=Dy+e+eh

is flat, where Dy denotes the Chern connection of H. It is well-known that the so-
lution is unique [Sim88] and diagonal [Sim09] of the form H = diag(hy, hy ', Ayt ho)
in the above splitting € = V @ V*. Notice that the hermitian metric is compatible
with the symplectic structure 2 and the orthogonal structure () in the sense that
H'QH = Q and H'QH = . The monodromy of the flat connection V defines then
a representation p : m1(S) — Sp(4, R).

Moreover, the metric H induces a p-equivariant harmonic map
fo: 3 = Sp(4,R)/U(2)

as follows. Fix a point py € ¥ and fix a holomorphic, Q-adapted, Q-symplectic and
H-unitary frame N(p) for the bundle € at every point p € Y. For every p € i], we
denote by N(p) the parallel transport (relative to the connection V) of N(pp) at p.
Notice that in general (i.e. when ¢ # 0), the frame N(p) will not be unitary. If we
identify the symmetric space SL(4,C)/SU(4) with the space of hermitian metrics on
C*, the harmonic map is given by

fy: ¥ — SL(4,C)/SU(4)
P HN®)
Here HN®) is the metric H expressed in the frame N(p). We then notice that the

image of fp is actually contained in the copy of Sp(4,R)/U(2) consisting of hermitian
metrics H on C* that are Q-symmetric (i.e. H'QH ! = Q) and Q-symplectic (i.e.
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H'QH = Q). In fact, if we denote by g(p) € Sp(4,R) the family of matrices such
that N(p)g(5) = N(5), then

(1.2) Fo®) = (9(®)Hlg(B) "

and an easy computation shows that g(p) € Sp(4,R) is equivalent to the hermitian
metric f,(p) being Q-symplectic and @-symmetric. In addition, noting that tr(¢?)
vanishes, we see that the map f, is conformal [Cor88| and thus parameterizes a
minimal surface in the symmetric space.

1.3. Planar minimal surfaces with polynomial growth. In this paper we are
interested in the study of a particular class of minimal surfaces in Sp(4,R)/U(2)
which are described by conformal, harmonic maps f : C — Sp(4,R)/U(2) with poly-
nomial growth.

Given amap f : C — Sp(4,R)/U(2), we recall (|[Cor88|) that if f is harmonic then,
for a lift f : C — Sp(4,R), we have that ¢ = (f)" is holomorphic, where (8f)+
denotes the component of the (1,0)-part of the differential of f, which is orthogonal
to u(2) with respect to the Killing form

B :sp(4,R) x sp(4,R) — C
(X,Y) — tr(XY) .

In particular the quadratic differential

g2 = tr(p?)
and the quartic differential
(1.3) qa = tr(p?)

are holomorphic. The Killing form B induces a Riemannian metric g on the sym-
metric space, and its pull-back via f is

Frop(X,Y) = B((¢ + ") (X), (¢ + 0")(Y))

where H = f(p). Therefore, ¢o is the Hopf differential of the harmonic map f and
the vanishing of ¢o is equivalent to the map f being conformal. In this case the
pull-back metric reduces to

Frgp = tr(pe™) .
Finally, we say that f has polynomial growth if the quartic differential g4 = ¢ is a

polynomial over C.

We can actually interpret the harmonic map f as the harmonic metric induced by
some Higgs bundle over CP! with singularity at infinity. It is sufficient to consider
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the holomorphic bundle & = 69?:1(9(%) over CP! endowed with the Higgs field

00 q O
oo 01
=101 0 0

1000

The Higgs bundle (&,¢) is the SL(4,C)-Higgs bundle associated to an Sp(4,R)-
Higgs bundle with singularity at infinity. Here, we consider (€, ¢) as a good filtered
Higgs bundle ([Mocl4|,[FN17|) with weights (a1, a2, a3,a4). In particular, for a
meromorphic section s = (s1, s2, 53, 54) of €, we define v (s) = max;—1,.. 4{voo(s;) +
a;}, where vy (s;) € Z is the order of singularity at infinity of the section s;. We
then seek a hermitian metric H on & satisfying the self-duality equations
(1.4) Fu+[p, ¢ =0,
which is compatible with the filtration in the following sense: for every meromorphic
section s of & we require that

H(s(2),5(2)) = O(|2[**>*)) as |2] = 400 .

If such H exists, then the map f coincides with the conformal harmonic map induced
by H via the procedure described in the previous subsection.

In the section 2, we will find a solution to Equation (1.4) for the Higgs bundle
(€, ) with weights

3n _n _3non
8 8 8'8)"

where we assume that ¢ is a polynomial quartic differential of degree n.

((117(12,0137(14) = (

1.4. Moduli space of polynomial quartic differentials. A polynomial quartic
differential is a holomorphic differential on the complex plane of the form q(z)dz*,
where ¢(z) is a polynomial function. We denote by Q,, the space of polynomial
quartic differentials of degree n. The group Aut(C) of biholomophisms of C acts on
this space by push-forward. Let MQ,, be the quotient of Q,, by this action. The
geometry of the resulting moduli space is analogous to that described for polynomial
cubic differentials in [DW15].

Proposition 1.3. The moduli space MQ,, is a complex orbifold of real dimension
2(n—1) ifn>1.
Proof. Every polynomial quartic differential may be written as
q=(anz" + an_12""1+ - +ag)dz*

for some a; € C and a,, € C*. An element T'(z) = bz + ¢ € Aut(C) acts on q via

Toq = (anb" ™ (2 4 ¢/b)" 4 an_1b" 3 (2 + ¢/b)" L + - - - 4 brag)dz?.
Hence by choosing b = a,, V() e may make T%q monic (i.e. with leading coefficient
equal to 1); then a suitable choice of the translation component ¢ allows us to assume
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that T.q is centered (i.e. with a,—1 = 0). Notice that these choices are unique up
to multiplying b by an (n + 4)-root of unity. Thus we can describe the moduli space
MQ,, as the quotient

MQ,, = {‘TQYL/ZTH—4

where JQ,, is the space of monic and centered polynomials of degree n and Zj,44

denotes the cyclic group of order n + 4 generated by T'(z) = ;le for a primitive
(n + 4)-root of unity (,14. Since TQ, is naturally identified with C*~! by
T7Q,, — C 1
(2" + ap_22"" 2 +---ag) = (an_2,...,a0) ,
it follows that MQ,, is a complex orbifold of real dimension 2(n — 1). O

Remark 1.4. If n = 0, the space MQq consists of only one point, represented by the
quartic differential ¢ = dz*.

We put on MQ,, the topology induced by the identification
MQ,, = TQ,/Znt4a

found in Proposition 1.3.

2. EXISTENCE
In this section we prove the existence of a conformal harmonic map f : C —
Sp(4,R)/U(2) with given polynomial quartic differential g4 = ¢ (cfr. Equation (1.3)).
We will provide also precise estimates of the behaviour of the associated harmonic
metric H when |z| — oo.

Theorem 2.1. Let q be a polynomial quartic differential of degree n. Consider the
good filtered Sp(4,R)-Higgs bundle (€,¢) over CP' where

c=o(%)s0(3)eo(-%) s (3)

and

0

1

0

0

Then there exists a unique diagonal harmonic metric H satisfying Hitchin’s self-

duality equation Fy + [p, o*H] = 0.

Inspired by the solution of Hitchin’s equations for Sp(4,R)-Higgs bundles over
closed Riemann surfaces (see Section 1), we look for a diagonal metric of the form
H = diag(hq, h2_1, hl_l, hs). Under this assumption, the equation Fy + [¢, *f] =0
simplifies into the following coupled system of elliptic PDE

Alog(h1) + hitha — h3g|> =0
Alog(he) + hy% — hithe = 0.
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Note that here we adopt the convention that A = 0,03; while this convention is
more common for authors writing on Hitchin equations, it differs from that invoked
often by authors writing from a harmonic maps or conformal variational problem
viewpoint.

It is convenient to define u; = log(%) and study the system in the following form

7

A — pUl1—u2 _ 721!,1 2
(2.1) { up =e€ e q]

2us UL —ug

Aug = e“¥2 — ¢
Namely, if we define
F:R?* - R?
F(uyg,up) = (1742 — g7 2U1|g|? 242 — gu17u2) — (Fy, F)
the above system may be written as
Au = F(u)
where v = (u1,u2) and the map F satisfies a monotone condition

OF;
L <0 for i#j.
8ui

In this setting we can apply a super- and sub-solution method to prove the existence
of a smooth solution defined over all C.

Since we did not manage to find a precise reference for this method applied to a
system of PDE, we provide a detailed description of its application to Equation (2.1).

Let Bp be the ball of radius R centered at 0. We start by proving the existence of
a solution to Equation (2.1) on the domain Br with some smooth boundary values
(w1, w9) and for R sufficiently large.

Definition 2.2. We say that u™ is a super-solution of Equation (2.1) with boundary
values (wy,wsg) on the ball By if it is continuous and satisfies

Auf < Fy(u) for i =1,2
u:“ > w; on OBpgr

in the weak sense. Similarly v~ is a sub-solution if it is continuous and satisfies
Au; > Fi(u™) for i=1,2
u; < w; on OBpgr

in the weak sense.

Our sub- and super-solution for System (2.1) will be slightly modifications of
1

(ur,2) =  § 1oe(ll). 3 o(a)
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which is the exact solution of the system if g is a non-zero constant quartic differential
(or an exact solution in regions where ¢ does not vanish). We will also choose the
boundary values

(w1,u2) = (oo, owla))

which are smooth on dBpR as soon as it does not contain any zeros of q.

Lemma 2.3. The following function v~ = (uj ,uy ) s a sub-solution of Equation
(2.1):
3 .
_ {log(IQ\4) if |zl >d
Uy = 3 3 .
max(log(gy,),log(lq|7))  if |z[ <d
1 .
B {log(lq\z) 1 if |z[>d
= 1 . .
max(log(gy,),log(lq|1))  if |z2[<d

where gog denotes the density of the metric with constant curvature —2 on the ball
B(0,2d) centred at the origin with radius 2d

1 ad
P24 =5\ 4d? — |22

and d is a positive real number that depends only on the quartic differential q.

Proof. Let us verify first that u; are continuous. We can choose d sufficiently large
such that {z | [¢(z)| < 1} C B(0,d) and we can suppose that d > % in such a way that
log(g24) is negative for |z| < d. This implies that the functions u; are continuous in
a neighbourhood of |z| = d. Moreover, they are continuous in a neighbourhood of
the zeros of ¢ because log(|q|) tends to —oco at the zeros of ¢, whereas go4 is bounded
away from 0. We notice also that the functions u; are piece-wise smooth and thus
locally Lipschitz.
Let us now verify that 4~ is a sub-solution of the system. Since

3 3 3 i 1 1
max(log(gs,), log(|q|7)) = log(|q|1) < max(log(g3,),log(l¢|7)) = log(lq|7)

3 1
it is sufficient to verify that the pairs (log(\qﬁ), log(|q| i)) and (log(g3,),log(g5,)) are
sub-solutions. Away from the zeros of ¢, the pair (log(|q\%)7 log(lqﬁ)) is a solution

of the system, hence in particular it is a sub-solution. As for the second pair, the
density of the metric with constant curvature —2 satisfies the differential equation

Alog(gad) = 924

therefore,
3
5

g2q = Alog(gs,)

3
2

1
Fi(log(93,),10(93,)) = g2a — 9o la* <

N w

3
2

1 1 1
Fy(log(944),10g(944)) =0 < 5924 = Alog(g4;)
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We deduce that at every point the function u~ is a sub-solution or the maximum of
two sub-solutions, hence it is a sub-solution. Notice also that the boundary conditions
are satisfied as soon as R > d. O

Lemma 2.4. There exists a constant C' > 1 such that, for any choice of R and
consequent boundary values (w1, w2) on OB, the pair

3 1
(ut ) = (G108l + ©), g 1os(la? + 30))
is a super-solution of System (2.1) with those boundary values (w1, ws).

Proof. Of course, as soon as C' > 0, we have that uj > w;, so the boundary conditions
for a supersolution are satisfied on 0Bpg for any R sufficiently large. Then to find
a constant C for which (uj,uj) is a supersolution of equation (2.1), we begin by

noting that a simple computation shows that

3 lg]*C
Aut = —F —
TR r o)
and | |2
3 q.|*C
Aul = ——7— .
2 T8 {qP +30)
Moreover,

3 _1 _3
(la> + C)3(lgl* +3C) 75 — (la* + C) " 7[qf?
BEy(uf uf) = (lal” +3C)7 — (lg* + )3 (lgl* + 30)75 .
Therefore, we need to show that there exists a constant C' > 0 such that
19 1 5
(lal* + €)= (Ja]* +3C) " (lgl* + C)ilg* > §la:IPC
9 15
(lal* +3C)% — (la]* + O)5 (|gI* + 30) % = la:*C

Let us consider the following one-parameter family of functions:

19 _1 5 3
fo(2) = (af* + )% (g +3C) 7% — (laf + O)¥laf* ~ Za:l*C

Fy(uf, uy)

9 3 15 3
go(z) = (|g* +3C)1 — (|g* + C)3(|g|* + 30) s — g\qz\QC-

We will show that fo and go diverge uniformly to infinity when C' — +4o00.

We first remark that for every C' > 0 the functions fc and go admit a global
minimum. Namely, since |¢| — 400 when |z| — 400 and ¢ is a polynomial, the
leading terms of the asymptotic expansions of fo and g¢ for |z| — 400 are given by

fe(2) = 20(1aP)} +o(laP)

3 5

= 3Ca)7 + o(lal*)

and thus, for C fixed, they are unbounded when |z| — 4o00. Let us denote by z;(C)
and z4(C') the point of global minimum of fc and gc, respectively. It is sufficient to

g9c(2)
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show that fo(z7(C)) and go(24(C)) tend to infinity when C' — +o00. Since it seems
difficult to find an explicit expression for z;(C') and z,(C), we give an abstract
argument by considering two different cases. We explain the complete argument for
the function fo, the other being analogous.

Suppose first that z;(C) is uniformly bounded when C' — +o00. In this case, there
exists a ball B, of radius r centred at the origin such that z;(C) € B, for every C.
Let us denote M’ = maxp,_(|¢.|?) and M = maxp,_(|q|?). Then,

fo(z7(C)) > CF (M +3C)"8 — (M + C)s M — %CM’

and it is clear that the right-hand side tends to infinity when C — +o0.

Let us then suppose that z;(C) is unbounded. This implies that |g(z7(C))| is di-
verging as a function of C. Assume that |g(zf(C))|? has super-linear growth as a
function of C, i.e. |q(z;(C))[*> = O(C™) for some n > 1 as C — +oo. Since ¢, is
a polynomial of lower degree than ¢, we deduce that |g.(z;(C))| = o(|q(z¢(C))]|) as
C — +00, hence the asymptotic expansion of fo(zf(C)) reads

fe(z(C) =0(C-Cim).

Therefore, we can conclude that fo diverges to +o00 as C tends to +00. The argument
is similar if |¢(z;(C))|? has linear or sublinear growth as a function of C. O
Theorem 2.5. Let d > 0 be the constant appearing in Lemma 2.53. For every
R > d, there exists an analytic solution u® = (uf,ul) of the following boundary
value problem

AU:IL% — eu{%—ug _ €—2u{2|q‘2

Ault = e2us — euf —uf
uft = 2log(|q|) on OBpr
ufl = Llog(|q|) on OBp

Moreover, u; < uf < u:r

Proof. For this proof we remove the dependence on R in the notation. Let us define
the sequence of functions u* = (uf,u) by

Aub = —Qlulf? + Fl(u]ffz,ugd) + Qub

Auk = —Qub ™% 4 Fy(ulf ub =) + Qoul

uf = flog(lgl)  on OBg

uh=llog(lg)  on  9Bg

gif’ | u e [uo,u_l]} and u°, u~! are a sub-solution and a super-

(2.2)

where ; = sup{

solution of Equation (2.1), respectively.
We claim that

for every k > 1. Then the result follows from the Schauder fixed point theorem
[Ama76, p.660| applied to the differential operator defined by (2.2) on the Banach
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space of pairs of Holder functions on B, standard bootstrap arguments and Morrey’s
regularity theorem [Mor58, p.198]. Moreover, the above inequalities imply that the
solution is bounded from above by (any of) the super-solution(s) and from below by
(any of) the sub-solution(s).

Let us now prove the claim (2.3). We first show that

u(l) < u% < ul_1 .
By definition and the monotonicity properties of the function F}, the following equa-
tions hold
Aut = —Quuit 4+ Quut + Fr(uptuyt)
Auf > Fy(uf, uf) > Fi(uf,uy') — Quf +
Aurt < Fy(uitugt) — Quupt 4+ Qqupt

and the claim follows from the maximum principle (for Sobolev functions, at this
first iteration of the process) applied to differences of the above equations. Namely,

Aug —up') = Q(uj —up)
and the maximum principle implies that u; — ul_l < 0. Similarly,
Auy —uf) < Qi (ug —ud) + Fi(up ' ug ) = P, up') = @ (ug —u}) < Qauj —ud)

by definition of Q1, and from the maximum principle we deduce that u} —u{ > 0.
The reasoning is similar also for the second components. In this case we have

Auy = —Qouyt + Fo(ud,uy ) + Qoud
Aug > Fg(u?,ug) > Fg(u%, ug) — qug + qug
Au;l < Fz(ufl,ugl) < Fg(u%,ugl) — qugl + Qzugl

and the inequalities u3 < ud < uy?! follow from the maximum principle as above.
With the same argument, one can show that
u° < u? < ut
and the chain of inequalities (2.3) follows then by induction. (Note that elliptic
k

regularity implies that the functions u; are increasingly smooth, so that for k > 2,

uk € C?.) O

We now deduce the existence of an analytic solution u = (u1,u2) to Equation (2.1)
defined on the whole complex plane, via a limiting argument.

By Theorem 2.5, we obtain a sequence of analytic functions uf‘ defined on the ball
Bp, for every R > d. By using the fact that ulR is bounded between the sub-solution
and the super-solution for every R, we deduce a uniform bound on AuZR on every
compact set, which is independent of R. By elliptic regularity, the functions uZR
are bounded in the C® norm, uniformly on every compact set. By Ascoli-Arzel4,
this implies that the sequences uf’ converge in the C! norm on compact sets for
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every ¢ = 1,2. In particular, the limit functions wu; are defined over all C and are
weak solutions of the system. By elliptic regularity of Poisson equations (applied to
each single equation), we deduce that u; are smooth and hence are strong solutions of
Equation (2.1). By Morrey’s results [Mor58]|, the functions u; are analytic. Moreover,
by construction we have

3 3
(2.4) 5 log(lal®) < wi < Slog(|g* +C)

1 1
(25) S log(lal) < uz < Slog(lal* +30)

Of course, here it is important that we found in Lemma 2.4 a single constant C' for
which the right-hand sides were supersolutions on Bp for all R sufficiently large.

Corollary 2.6. There exist constants A, R > 0 and an exponent o > 1 as follows.
1
If the |q|2 -distance of a point p € C from the zeros of q is r > R, then

3 —«
0 < wi(p) — g log(lal) < Ar

1
0 < ua(p) — 5 log(lal?) < Ar

Proof. Outside a disc D containing the zeros of ¢, the polynomial ¢ is comparable
to z™ up to multiplicative constants, where n is the degree of ¢q. As a consequence,
the |q\%—distance r of a point p ¢ D from a zero of ¢ is bounded from above by a
multiple of the |z|Z-distance of p from the origin. We deduce that there exists a
constant ¢ > 0 such that

(n+4)
4
;

r < c|p|

where |p| refers to the norm of the complex number p € D. Since |g| is bounded also
from below by a multiple of |z|™, we have

4n
lq(p)| > c|p|* > "r0ED

From the previous theorem, we obtain that

3 3 M A
up — < log(lgf*) < uf — Slog(lgf*) < 5 < —5
8 8 |q‘ rntd
1 1 M A
us — 2 log(|g|?) < uf — Zlog(laf*) < T3 <
8 8 |Q| rntd
By noticing that a = ng_& > 1 for every n > 1, the result follows if we fix R big
enough such that » > R implies p ¢ D. O

Remark 2.7 (On uniqueness). By work of Mochizuki (|[Mocl4]), the solution H =
(hi,hy L hl_l, hg) found above is the unique diagonal solution of the self-duality equa-
tion
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on the Higgs bundle (€,¢) on CP!. Moreover, in recent work ([LM20]), Li and
Mochizuki applied similar sub- and super-solution techniques to show existence and
uniqueness of diagonal solutions of Hitchin’s self-duality equation on every cyclic
Higgs bundle with wild singularities over non-compact Riemann surfaces.

3. GEOMETRY OF THE MINIMAL SURFACE

In this section we study the geometry of the minimal surface with polynomial
growth induced by the harmonic metric found in Section 2.

In particular, the results in this section will imply Theorem B. Moreover, for
S the minimal surface in the symmetric space Sp(4,R)/U(2) associated to a monic
polynomial g of degree n > 1, we find in Theorem 3.9 that S is asymptotic to 2(n+4)
maximal flats in Sp(4,R)/U(2); two consecutive flats that are asymptotic to S share
four adjacent Weyl chambers (Proposition 3.10). Intrinsically, by Proposition 3.11,

the metric on S induced by this immersion is asymptotically 4|q| %, up to an (additive)
error that decays at a rate of O(|q|72).

We organize the argument as follows. After some preliminaries, we display the
solution for the case of gy = dz*. Then we choose good charts away from a compact
set which contains the zeroes that respect the geometry that ¢ imposes on the plane
C: each such plane cuts off a region in C which is roughly a half-plane in the |g|
metric, positioned to develop in a controlled manner, with overlaps that also develop
in a controlled way. In those charts, we find, roughly, that the minimal surface
in the symmetric space Sp(4,R)/U(2) may be well-approximated by an isometric
image of the flat defined by gy. Describing those asymptotics carefully, up to some
estimates deferred until the end of the section, occupies the first half of this section,
and culminates in the proof of Theorem 3.9, Proposition 3.10 and Proposition 3.11.
A careful treatment of the error estimates completes the section.

3.1. Construction of the minimal surface. In Section 1, we recalled how a so-
lution to Hitchin’s equation induces a harmonic map into a symmetric space. The
construction goes as follows. Let H denote the associated Hermitian metric on &
(guaranteed by Theorem 2.1). Let {N(z)}.ec be a holomorphic, Q-symplectic, Q-
adapted and H-unitary frame for the bundle €. The frame {N(z)},ec is not parallel
for the Sp(4, R)-connection V = Dy + ¢ + ¢*f. Fix a base point z5. We denote
by {N(2)}.ec the parallel transport of the frame N(zp) via the connection V. By
expressing the metric H in the frame {N(2)}.cc, we obtain a map

f:C—SL(4,C))/SU(4)
2z HYG)
We then notice that the image of f is in fact contained in the copy of Sp(4,R)/U(2)
inside Sp(4,C)/SU(4), consisting of 2-symplectic and @Q-symmetric hermitian ma-
trices with determinant 1.

Let us now find an explicit expression for H¥() (cfr. Equation (1.2)). Let
{F(2)}.cc be the standard holomorphic frame of & where H*'(?) = diag(hy, hy *, h{*, ha).



PLANAR Sp(4,R)-MINIMAL SURFACES WITH POLYNOMIAL GROWTH 19

We denote by {F(z)}.cc the parallel transport of F'(zp) with respect to V. For every
z € C, we can find a matrix ¢ (z) such that

F(2)9(2) = F(z)

i.e. 1(z) expresses the change of frame from F(z) to F(z) at every point. Let
v(s) = 2o + se? be a path connecting the base point zg with z. We observe that the
one-parameter family of matrices 1)(s) = 1(7(s)) satisfies the ordinary differential
equation

51) {%w) = Y(s)(e U +e7V)

¥(0) =1d ’
where we denoted by
U=Dyg+¢ and V=

the (1,0)-part and the (0, 1)-part of the connection V, respectively. To see this, note
that equation (3.1) is a direct consequence of the fact that {F(z)}.ec is parallel.
Namely,

= T(1())e(y()(’U +e V) .

Moreover, since the connection V is flat, there exists a constant matrix P € SL(4,C)
such that N(z) = F(z)P. In fact, P is the change of frame between N(zy) and F(zp),
i.e. N(z9) = F(z0)P. We thus deduce that

§(2) = HNG) = gIOF = gFEvTOF S PIGETHT S () 1P
= PI(() Diding(tu (), by (2), ™ (2), ha(2) (6(2) TP

We notice in particular that the geometry of the minimal surface will depend not
only on the functions h;(z), but also on the solution to the ODE (3.1). This will
play a fundamental role in Section 3.3.

3.2. The case of constant quartic differential. In the special case, when the
quartic differential ¢ is constant, the solution of the ODE (3.1) can be written ex-
plicitly and the minimal surface turns out to be a flat in Sp(4,R)/U(2).

Up to biholomorphisms of C, we can suppose that ¢ = dz*. As mentioned in
Section 2, the solution to Hitchin’s equations in this case is

H = diag(1,1,1,1) .
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As a consequence, the system of ODE (3.1) simplifies into

(3.2) () = Yo(s) (Vo + e Vh)
' Yo(0) =1d

where we are using the notation 1)y to indicate that we are dealing with the special
case of constant quartic differential. Moreover, the (1,0)-part and the (0, 1)-part of

the connection Vo = Dy + ¢ + ¢* are respectively

0010 0001
000 1 0010
=101 0 0 Vo=11 00 of
1000 0100

as the Chern connection Dy of H vanishes in these coordinates, since H is constant.
Therefore, equations (3.2) become a system of ODE with constant coefficients, that
can be explicitly integrated:

0 0 e e
0 6—1’9 610
wo(s) =exXp|Ss e—i0  gif 0 0
e e 0 0
By observing that
0 0 ei? efio 2 cos(0) 0 0 0
g1 0 0 e ¢if 5 0 —2sin(#) 0 0
e ef 0 N 0 0 —2cos(6) 0
e e 0 0 0 0 0 2sin(6)
for a constant unitary matrix
1 1 1 1
111 -1 —i
-1 _ +
STl 1 1 1
1 -1 ¢ —i
we obtain that
e2s cos(6) 0 0 0
0 e—2ssin(0) 0 0 .
17b0(‘3) =S 0 0 6—23003(9) 0 S :
0 0 0 e2s sin(0)

If we fix the origin as base point zp in the definition of the harmonic map fo (see
Section 1), and write z = se?®, then fo : C — Sp(4,R)/U(2) is given by

fo(z) = (o(2)~1)'diag(1, 1,1, 1)(2) "
— Wdiag(e—@?(z)’ 648(,2), 649?(2)7 e—4%(z))s—1

- 9. diag(e—éléR(z)’ €4S(Z), 64%(2), 6—4%(2)) ’
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where we denoted with - the action of an element g € SL(4,C). This shows that the
image of fy is a maximal flat in the symmetric space.

3.3. The general case. In order to study the general case, i.e. when the quartic
differential ¢ is an arbitrary polynomial ¢(z) of degree n > 1, the main idea is
to estimate the solution to Equation (3.1) by comparing it with the solution to
Equation (3.2). In fact, the complement of a compact set containing the roots of
q(z) is covered by (n+4) charts, which are conformal to the upper-half plane, where
the quartic differential ¢ is constant. This suggests that in each chart the solution
to Equation (3.1) should look like the solution to Equation (3.2), at least when
we are far enough from the zeros of the polynomial ¢(z). We will thus describe
the asymptotic geometry of the associated minimal surface and we will focus, in
particular, on studying an interesting “Stokes phenomenon”, that already occurred
for affine spheres with polynomial Pick differential ([DW15|) (and indeed implicitly
in [HTTWO5]).

3.3.1. Standard half-planes and rays. Given a quartic differential ¢, a natural coor-
dinate w for ¢ is a local coordinate on an open set of C in which ¢ = dw*. Such a
coordinate always exists locally away from the zeros of g, as it is possible to choose
a holomorphic fourth root of ¢ and define

Notice, in particular, that a natural coordinate is not unique, but every two natural
coordinates for ¢ differ by a multiplication by a fourth root of unity and an additive
constant.

Definition 3.1. We define a g-half-plane (or a standard half-plane, when the refer-
ence to the differential ¢ is obvious) as a pair (U, w), where U C C is open and w
is a natural coordinate for ¢ that maps U diffeomorphically to the upper-half plane
{S(w) > 0}. Note that U then determines w up to addition of a real constant.

A path in C whose image in a natural coordinate for ¢ is a Euclidean ray with
angle 6 is called a g-ray of angle 6. (Note that the angle is well-defined mod 5.) This
means that in a suitable natural coordinate, a ¢-ray is parameterized by t — b+ et
Similarly, a q-quasi-ray with angle 0 is a path that can be parameterized so that its
image in a natural coordinate w is t + et + o(t).

It turns out that every monic polynomial quartic differential ¢ admits a finite
number of ¢-half-planes that cover the complement in C of a compact set containing
the zeros of q.

Proposition 3.2 (|[DW15|). Let ¢ be a monic polynomial quartic differential and let
K be a compact subset of C containing the zeros of q. Suppose q has degree n > 1.
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Then, there exist a compact subset K' O K and a collection of (n + 4) q-half-planes
{(Ug,wi) }=1.... nta with the following properties:

i) the complement of U, Uy is K';

i) the ray {arg(z) = %} is eventually contained in Uy;
iii) the rays {arg(z) = Qﬂéﬁl)} are disjoint from Uy;

iv) on Ug N Ugy1 we have wiy1 = iwy + ¢ for some constant ¢ and each wy, w11
maps this intersection onto a sector of angle 5 based at a real point.

v) any Buclidean ray in C is a q-quasi ray and 1s eventually contained in Uy for
some k.

Let r : C — R™ be the |q\%-distance from the zeros of q. We recall the following
result that will be used in Section 3.3.5.

Proposition 3.3 (|[DW15|). Let ¢ be a monic polynomial quartic differential and let
K be a compact set containing the zeros of q. Then there are constant A, a, Ry with
a > 0 so that for every point p € C with r(p) > Ry, there exists a q-half-plane (U, w)
with UN K =0 such that S(w(p)) > r(p) — A. In addition, on the boundary of this
half-plane we have r(x) > a|R(w(x))|, for x large.

We remark that the monic condition in the above propositions is not restrictive,

as every polynomial can be made monic via a biholomorphic change of coordinates
on C.

3.3.2. Comparing 1o and 1. Let us fix the origin of C as base point zy in the con-
struction of the harmonic map (see Section 3.1). By Proposition 3.2, any point z far
enough from z is connected by a ray v(s) = se?, which is definitely contained in a
standard half-plane. Therefore, there exists a time sg > 0, such that the ray v(s) lies
in a standard half-plane for every s > sg. We can write thus a differential equation
satisfied by ;' (s) for s > so using Equation (3.1) and Equation (3.2):

(33) {C“"% () = v () o (s) Rebo(s) 1)
Py (s0) = Ao

for some matrix Ay € Sp(4, C), which represents the difference between vy and 1 at
the point sp. In Equation (3.3) we have denoted
dipo

R =47(5) 52 9) 5 () 2 s)
= (U - Up) 4+ eV - V) + €Dy

the error between the connection Vi and V. Let us denote by @; the functions

. 3 . 1
U] = U — 3 log(|q|2) and  Ug = ug — 3 log(|q|2) ,

which represent the error between the solution to Equation (2.1) and the particular
solution in the case of constant quartic differential. By Corollary 2.6, the function
@j decays as |z| — 400. We can now write the error R in terms of the function
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in the natural coordinate chart w of the half-plane.
First, since ¢ = dw?*, the term U — Uy vanishes. Moreover, since the metric H is
diagonal, it is easy to verify that the Chern connection Dy is

—ou; 0 0 0
0 Oug 0 0
0 0 0w 0 ’
0 0 0 —Ouq

Dy =H '9H =

because in a natural coordinate #; = ;. Finally, by definition of V' and V4, we have

0 0 0 eii—t2 _ 1

0 0 elii—tz _ 1 0
V=Vo=1 2 4 0 0 0

0 e2i2 _ 1 0 0

Let us denote D = diag(e?$¢0s(0) g=2ssin(0) o=2sc0s(0) o2ssin(0)) and R = S~'RS,
where S is the unitary matrix introduced in Section 3.2. We can then write the error
term as

O(s) = 1o(s)Ripo(s) ™t = SDST'RSD™1S~ = SDR'D™'5~!
= SD(R} + Ry) D151

with
(3.4) R} = €S diag(—duy, diin, Diiy, —iin)S
0 0 (1 —4)0( + t2) 20(ay — u2) (14 4)0(T + 1ia)
_6_ (1 + Z)a(ﬁl + ﬁg) 0 (1 — Z)a(ﬁl + ﬁz) 28(’&1 — ﬁQ)
Y 20(1 — Up) (1+4)0(a1 + a2) 0 (1 —4)0(uy + u2)
(1 —4)0(u1 + u2) 20(iy — z) (L4 1d)0(a1 + u2) 0
and
Ry =e STV = 1p)S .
If we introduce the notation us = —ug and ugy = —uq, an elementary but tedious
computation shows that
) it 3 oy o—i0;1—k (b=D)j T,
W= 2t Jauj+1+TZz JetimUitt for k #1
Jj=0 J€Zy
and
—if(_\k—1 . o .
Ry = A (42) (€720 y 2etu2 4 22 _ 4y

In Section 3.3.5 we will prove the following:

Proposition 3.4. Let r be the distance from the zeros of q. Then for r — +o0

—2|1—ik=t)p

R;,=O<€T> ifk#1,
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, 6—2\/51”
kk — O 7 .

These exponential decays allow us to find a limit of ¥y L(s) along rays in any
“stable direction”, which we now define.

and

Definition 3.5. Let v(t) = b+ ¢ be a ray in a standard half-plane. The direction

of the ray is the angle 6 € [0, 7]. We say that the ray is stable if 6 ¢ {0, T, %, %Tﬂ’ 7}

Similarly, a quasi-ray is stable, if the direction of the associated ray is stable.

The possible directions of stable rays form four intervals of length 7 which we
denote by

) 2 (D) (55 ()

The stability of rays and quasi-rays is related to the convergence of 11! (v(s)):

Lemma 3.6. If v is a stable ray or quasi-ray, then the limit limgs o wwal(’y(s))
exists. Furthermore, among all such rays only four limits are seen, i.e. there exist
Lyy,Ly,L_,L__ € Sp(4,C) such that

Liy if € iy
. _ L. if 6eJ,
1 1 _ )L
Jm vy () =3 7 if 0eJ_
L. if0eJ _

Proof. First we consider rays, and at the end of the proof we show that quasi-rays
have the same behaviour.
Let 7 be a ray and let us write G(s) = ¢y (y(s)). It satisfies the ODE

{%(s) — G(s)0(s)
G(0) = Ao

for some Ay € Sp(4, C). Recalling the definition of ©(s) = SDR'D~1S~!, the decay
of the error O(s) is determined by comparing the decay of R’ and the growth of the
diagonal matrix D = diag(e?0s(0) ¢=2ssin(0) o=2scos(0) o2ssin(0))  Conjugating R’
by the diagonal matrix D(s) multiplies the entry R}, by

b= (35 (s (5 E517)) s (- 507

Combining this with Proposition 3.4, we deduce that for any stable ray, we have a
definite exponential decay in the equation satisfied by G, i.e.

e

Gls)~1G(s) = O ( \_/;)
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for some o > 0 (where a = «(f) depends on #). Standard ODE techniques (see
[DW15, Appendix B|) then show that the limit lims_, 4, G(s) exists.

Now suppose that 1 and =9 are stable rays with angles #; and 65 that belong to
the same interval (J44, J4, J—, or J__). We will show that G1(s)Ga(s)~! — Id as
s — +o0, where G;(s) = 1105 ' (7i(s)). This means that the limit does not depend
on the direction of the ray in a same interval, thus concluding the proof.

For any s > 0, let ns(t) = (1 —t)y1(s) +ty2(s) be the constant speed parameteriza-

tion of the segment from 71(s) and 42(s). Let gs(t) = (¥ ' (ns(0))) by (ms(1)),

which satisfies

95 1 (1)ge(t) = O(ns(1))114(t)

9s(0) =1d

9s(1) = G1(s) ' Ga(s)
Since |n%(t)] = O(s), the analysis above shows that g;'g.(t) = O(y/se=%%), for some
a > 0, because the path 7,(t) never crosses an unstable direction. In particular, by

making s large enough we can arrange for gs(t)~'g.(t) to be uniformly small for all
t € [0,1]. Once again standard ODE methods ([DW15, Lemma B.1 (i)]) give the
desired convergence,

G1(s)71Ga(s) = gs(1) = Id as s — +oo .

Finally, suppose that ~; is a stable quasi-ray, and - is the ray that approximates
~1 with direction #. We can study as above the homotopy 7s(t) = (1—1%)v1(s)+ty2(s)
between the ray and the quasi-ray. Since we have a bound |7’ (t)| = o(s), the previous
argument applies, thus G(s) has the same limit along the stable quasi-ray 7 and
along the associated stable ray 7o. O

We now investigate how limits along rays in different intervals are related.

Lemma 3.7. Let Ly, Ly, L_,L__ be as in the previous lemma. Then there exist
unipotent matrices Uy, Uy, U_, such that

LiLy=SU;S™Y, L7'L_=8SUpS™ and LT'L__=SU_S'.

Proof. We give a detailed proof for L;lL_, the other cases being analogous.

Consider the rays v4(s) = e'¥ s and v—(s) = e'¥s. By the previous lemma
G1(s) = ¥y ' (v4(5)) and G—(s) = ¢y5 " (v-(s)) have respective limits Ly and L_.
For any s > 0, we can join v4(s) and v_(s) by a circular arc

— i) il
ns(t) =e""s)s for te [0,4} .

Let gs(t) = (g 1 (1s(0))) " ababy H(ns(t)), which satisfies
951 (1)gs(t) = O (ns(t) )3 (t)
gs(0) =1d
9s(m/4) = G4(s)7'G—(s) -
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Unlike the previous case, however, the coefficient O(7s(t)) is not exponentially small
in s throughout the interval. At ¢t = %, conjugation by the diagonal matrix D
multiplies the (4,2)-entry of R’ by a factor e**, exactly matching the exponential
decay rate of R’ and giving

0 (0 (3)) 0o

However, this potential growth is seen only in the (4,2)-entry, because the other

entries are scaled by smaller exponential factors. In fact, for ¢ € [O, %], we have

v = exp (100 (1= ) <ep (4 (1= 5)7)

We can thus separate the unbounded entry in O(n;(t)) and write
O(ns(t)) = ©°(ns () + s (1) SEa2S ™
where ©%(t) = O(e~?*) for some o > 0, Ej is the elementary matrix, and
6—48
)= 0 (0= ) = OB exp(~(x/8 - %))

This upper bound is a Gaussian function on ¢, renormalized such that its integral
over R is independent of s. Therefore, the function pus(t) is uniformly absolutely
integrable over t € [O, ﬂ We can apply [DW15, Lemma B.2] and conclude that

gs(m/4) — Sexp (E42/04

—0 as s— +oo.

us(t)dt) S

Since gg(mw/4) — LjrlL_ as s — 400, we obtain the desired unipotent difference. [

3.3.3. Asymptotic behaviour of the minimal surface. We can now describe the as-
ymptotic geometry of the minimal surface S = f(C) in the general case. We begin
with the definition of “asymptotic” minimal surfaces adapted to our setting.

Definition 3.8. We say that two minimal surfaces S; and S5 in a Riemannian
manifold Y are asymptotic if there is a domain Riemann surface X and conformal
harmonic parametrizations u; : X — Y of S; so that ui(z) = A(x)uaz(z) for some
isometries A(x) of Y such that A(x) — Id as = leaves compacta in X.

Theorem 3.9. Let g be a monic polynomial quartic differential of degree n > 1.
Then the associated minimal surface S is asymptotic to 2(n + 4) mazimal flats in

Sp(4,R)/U(2).

Proof. We start by proving that in each standard half-plane (U, w) given by Propo-
sition 3.2 the surface S is asymptotic to four maximal flats, one for each interval of
stable directions.

We give the detailed proof for the sector J,, the other cases being analogous. We
recall that S is parameterized by the map

f(w) = P'((w) 1) diag(hy (w), hy " (w), hi * (w), he(w))d(w) P
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for some P € Sp(4,C). We compare f(w) with the flat parameterized by

fo(w) = (o(w)=Hpo(w) "
by Corollary 2.6 and Lemma 3.6, the limit
lim P~ (w) H ™2 (w)o(w) ™" = My

|w| =400
weJ

exists for some M, in the standard copy of Sp(4,R) fixed in Section 1. We now
claim that S is asymptotic to the flat parameterized by

fo(w) = (M) (o (w) 1) tepo(w) M.

Namely, the map g(w) = P_I@b(w)H(w)_%wo(w)_lM;l is an isometry sending
fo(w) to f(w) such that

lim g(w)=1d.
|w|—4o00
weJ
This would give a total number of 4(n + 4) maximal flats to which S is asymp-
totic, but we can actually see that in two overlapping standard half-planes U, and
Uk41 two of the four flats coincide. In fact, by the above discussion, we can notice
that the asymptotic flat depends only on the limit of 1(2)1; ' (2), which itself only
depends on the half-plane Uy in which z eventually lies and on the specific sector
J _’f_ o _’f_, Jk . Jk _in which z is approaching infinity. Since in the intersection of the
two charts Uy and Uy the natural coordinates differ by a multiplication by 4 and
by an additive constant, a quasi-ray of angle 6 in the wg-coordinate has direction
¢+ 5 in the wy1-coordinate. Therefore, the sector Jkt1 gets identified with J _’ﬁ and
the sector JF*! gets identified with Jfﬁ . by the change of coordinates. Hence, the
limits in those directions coincide and it follows that we only have a total number of
2(n + 4) maximal flats. O

The theorem, and especially the discussion in the final paragraph of the proof,
provides a natural meaning to a pair of “consecutive flats asymptotic to the minimal
surface S”.

We can also describe precisely the combinatorics of the collection of flats at infinity.

Proposition 3.10. Two consecutive flats asymptotic to the minimal surface S share
four adjacent Weyl chambers at infinity.

Proof. Recall that a Weyl chamber at infinity is the stabilizer of a minimal parabolic
subgroup P C Sp(4,R) acting on the boundary at infinity of the symmetric space. In
our case, a Weyl chamber at infinity can thus be described by a complete Lagrangian
flag, that is by a collection of vector subspaces of R*

F={{0}ctcLctcR}

where ¢ is a line, L is a Lagrangian plane and ¢~ denotes the hyperplane orthogonal
to ¢ with respect to the symplectic form w on R* that Sp(4,R) preserves. Notice
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that the data of £ and L already determine the flag uniquely.
We are going to show that the intersection of the two consecutive flats

Fi(w) = (M1 (go(w) =) tapo(w) ' M"

and

Fy(w) = (M) (o (w) =) o (w) M
constructed in Theorem 3.9 share four Weyl chambers at infinity; the proof for the
other cases in analogous. Recall that in Section 1, we identified Sp(4,R) as the
subgroup of Sp(4, C) fixed by the anti-linear involution A, and we pointed out that
the map

Sp(4,C)/SU(4) — Sp(4,C)/SU(4)
9] = (g~ 1)g™"
induces an isometry between two models of the Sp(4, R)-symmetric space: as cosets
and also as the space of Q-symmetric and Q-symplectic hermitian metrics on C*.

Using such correspondence, the flats 1 and F5 can equivalently be described by the
matrices

Fi(w) = M_¢(w) and Fy(w)= Miip(w) .
Moreover, from Lemma 3.6 and Lemma 3.7 we know that M_ = P~'L, SU;S~! and
M, = P7'L,, so, together with the fact that

1#0(’[1)) — Sdiag(62§R(z), 6—23(,2)’ 6—2§R(z), 62%(,2))5—1 ;

we deduce that the intersection at infinity of the flats F} and F5 only depends on how
the matrix Uy acts on the Weyl chambers at infinity of the maximal flat of diagonal
matrices. Since Uy = Id 4+ pFy4o, for some p # 0, it is straightforward to check that
Up does not preserve the Weyl chambers at infinity corresponding to the Lagrangian
flags (that involve eg)

{0} C Span(e3) C Span(es, e2) C Span(es, ez, e4) C R*

{0} C Span(es) C Span(es,ez) C Span(es, es,e1) C R?

{0} C Span(es) C Span(ey,ez) C Span(es, e, 1) C R*

{0} C Span(e;) C Span(ey,ez) C Span(ey, ez, e;) C R .
Therefore, F} and F» share four adjacent Weyl chambers at infinity because Sp(4, R)
is a Lie group with root system of type Bs. O

3.3.4. The induced metric on the minimal surface. Using the bounds (2.4) and (2.5)
we prove that the harmonic map f : C — Sp(4,R)/U(2) is a quasi-isometric embed-

ding if C is endowed with the flat metric with cone singularities \q|%

Proposition 3.11. The induced metric on the minimal surface S = f(C) is quasi-

isometric to 4|q\%, with quasi-isometric constant 1+ O(|q|™2) on the end of S. In
particular, it is complete.
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Proof. Recall that the induced metric gy on S can be expressed in terms of the Higgs
field ¢

g5 = tr(pp*) = BIlq|* + 2hahy " + h3” .
Moreover, the sub-solution and super-solution found in Section 2 provide the follow-
ing upper- and lower-bounds for the metric H satisfying Hitchin’s equations

3 3
(lg?+C)"8 <hy <lg|77

1 1
(lg/*+3C)78 < hy <|q|71

for some positive constant C. We deduce that, as |z| — oo, we have
3 1 3 1
g5 = hilal® + 2hahit + b3 > (lgI* + C)7[qf* +2(|g|* + 3C) 75 gl 7 + gl
1 1 1
> lq[2 (1 =€) + 2|g|2 (1 — 3¢) + [q]2
1
> 4lq[2(1+¢) .

where the terms e stand for terms that satisfy € =< |q|~2. As for the upper-bound, a
similar argument shows that

_ _ 1 _1 3 1
g5 = W3l +2hahyt + hy? < q|2 + 21|71 (ja* + O)F + (Igf* +3C)1
1 1 1
<lqlz +2|g[>(1 +€) + |q[> (1 + 3¢)
1
<d4lgl2(1+e€) .
where again the terms e represent terms of the comparability class € < |g|~2. Tt thus
follows that outside a compact set K the induced metric is controlled by a multiple of
1
4|q|2, and decays to that quantity at a rate comparable to |¢|~2. The quasi-isometry

between 4]q\% and gy is then obtained by noticing that, since K is compact, the

metrics 4|q]% and gy are trivially quasi-isometric on K; the claimed asymptotics of
the quasi-isometric ratio is immediate. In particular, the induced metric gy on the

minimal surface S is complete because the metric |q\% is complete. O

3.3.5. Estimates of the error term. This section is dedicated to the proof of Propo-
sition 3.4. Let us define the following auxiliary functions

1 o - -
wr =3 > i (1l — ij41) = iy + T = —ws
JEZLs

1 — N 5 -
w2 = -3 Z (=17 (@ — 1) = 2(01 — U2) ,
JE€EZy
where we are using the notation w3 = —u9 and 44 = —u;. We recall that in a natural

coordinate w on a half-plane, the functions % and o satisfy the following system of
PDE

Aty = etz — =20
(3.5) ~ 24 @~
Aty = e“"2 — 1742 |
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Therefore, a simple computation shows that the error term R}, (cfr. Equation (3.4))
can be written in terms of the derivatives of wy_;, when k > [. In fact,

il_k il_k

/ e —
(3:6) B Ty R O T ST Ry T =

Awk_l .

Notice that the symmetries of the matrix R’ imply that the asymptotic behaviour
of R}, depends only on k—1I and it is sufficient to estimate the cases where k—1 = 1, 2.

Proposition 3.4 will then be a consequence of the following estimate:

Lemma 3.12. Let r be the distance from the zeros of q. Then for r — +o0o we have

6—2\/57’ e—4r
wr =0 | —=— ,’LUQZO( ) and  Aw; = O(wj) for j=1,2.

v vr

Proof of Proposition 3.4. Let us start with the terms R}, for k # [. In view of
Equation (3.6), it is sufficient to estimate Awg_; and Qwy_;. Lemma 3.12 asserts
that Awy_; = O(wg—;) for r — +00, hence

e 21— H|r
Awk_l =0 T

by Lemma 3.12. The bound on dwy_; follows then from the Schauder estimates
applied to Awy_; in a ball of radius rg < 1 about a point at distance comparable to
r from the zeroes of q.

As for the terms on the diagonal,

Rl o e—’i@(_i)k—l —2u1 ) U1 —1uo 2o 4

k= T(e + 2e +e*"2 —4) |

since i; and @y are infinitesimal as 7 — 400, we deduce that R}, = o(%;) for j = 1,2.
In particular, R}, = o(wi) and the estimate follows. |

The proof of Lemma 3.12 relies on some results already proved in [DW15].

Lemma 3.13. Let g € CO(R)NLY(R) be a positive Junction. Then for every positive
constant k there exists a function h € C*°(H) N C°(H) such that

Ah = kh
{MR—Q
Moreover, h satisfies
0 <h <sup(g)
oe—2Vky

h=0 (Hg\h

) for y=S(2) = +o0 .

VY
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Lemma 3.14. Let g € C°(R) N LY(R) be a positive function satisfying g < 4%, for
some k' > 0. Then, there exists a function v € C®(H) N CO(H) such that

Vg 2 9

Av < kv — kk'v?

e—2Vky
v="0lglh

VY

Proof. Consider an arbitrary solution h of the equation Ah = kh. The function
v = h — k'h? satisfies

Av — kv + E'kv? = Ah — E'Ah? — kh 4+ kE'h® + kk/(h — K'h?)?
= —k'(2hARh + 2|Vh|?) + 2kE'h? + EEPh* — 2kER3
= —2k'|Vh|? + kE3n* — 2kE"R3
< kKPRt — 2kK?R? <0

) for y=S(z) > 400 .

provided h < % This condition is satisfied if we take as h the solution provided by
Lemma 3.13 with boundary value 2g, as

2
< h<2 < — < — |
0 <h<2sup(g) < TR

Therefore, v = h — k'h? satisfies
O<v<h
Av < kv — kk'v? .

e—zx/Ey
VY
Moreover, the condition g < 4%, implies that v, > g. O

In particular, by Lemma 3.13, we deduce that v = O (Hg”l ) for y — +o0.

Proof of Lemma 3.12. Let us start with w;.
By Corollary 2.6, there exists a compact subset K, outside of which

3 1 1
Uy =up — 3 log(|q|?) < T and U2 = ug — élog(\qP) < e
By Proposition 3.3, every point p sufficiently far from K lies in a half-plane (U, w)
with UN K = 0 and S(w(p)) > r(p) — C for some C' > 0 independent from p. We
identify (U,w) with H? and we work in the w-coordinates. In particular, in these
coordinates the functions @; satisfy the system of PDE (3.5). Moreover, again by
Proposition 3.3, the function wy = 41 + g is positive and the restriction of w; to
the real axis is integrable. Moreover, its L'-norm can be bounded by some constant
that depends only on the coefficients of q. We can thus apply Lemma 3.14 with

boundary condition g = wy and k = k' = 2, thus getting a function v which satisfies

—2v/2r . . .
v =0 (e \2/; > It is now sufficient to prove that wy; < v, or, equivalently, that
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m = w; — v is always non-positive. Notice that n; € C*(H?) N C’O(ﬁz), and, since
11 and g are positive, the following inequality holds
Awy = 2% — e72U > %) + 2(03 — 42) > 2wy — 2w? .

Suppose by contradiction that 7; is positive in some point, so that the set @ =
n; (e, +00)) # 0. Since 11 < 0 on JH? and 7, decays to zero for |z| — +oo, the set
Q@ is compact and 77 has a maximum at some p € . In this point, we have

0> Ani(p) = Awi(p) — Av(p)
> 2wi(p) — 2wi(p)? — 2u(p) + 4v(p)?
> 2m(p) — 2m(p)(wi(p) + v(p))
> 2m1(p) —m(p) = m(p)

and this contradicts the fact that p € Q.

We now use the estimate for w; to deduce the asymptotic behaviour of ws. Since
we do not know if ws is positive, we work with the function wh = |wy| € C°(C) N
H} (C). Let K be a compact set containing the roots of the quartic differential
q such that wh < 1 on C\ K: this is possible because w) < w;, and we proved

that wy decays to zero. By Proposition 3.2, we can cover the complement of a
neighbourhood of K with a finite number of standard half-planes (U, ¢;). In each of
these, the function wo satisfies the following PDE

Awy = 2(2e™M 712 — 7201 _ 22y
Now, where wo > 0, we have that
72 > 4@y —
e 2 <1 — 20y + 2a?
"2 < 1+ 20y + 33
where the last inequality is true for |(;| large, since the functions 4y and @9 decay to
zero. Therefore, if wo > 0, we have
Awy > woy — 33 + 13) > 4wy — 4w?
for |(;| large enough. Similarly, when wy < 0 we have
e 24 >1 27 for || large enough
€212 > 1 + 24

(@ — ti2)”

eI <14 @y — g + 5

for |(;| large enough

thus
A(—wsz) > 4(—w2) — (—wg)2 > 4(—ws) — 4w% .
We deduce that, in each standard half-plane (U;, (;), outside a compact set, the
function wh = |wy| satisfies
Awh > 4wl — dw? .
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Moreover, from the estimates for w1, we know that, for (; sufficiently large, we have

—4v/2|¢4
e
Wt <o

|l
Let v be the solution of the boundary value problem
{Av = 4y — dw?

_ /
UlR - w2

By a similar argument as that used for w;, we have that w) < v and the estimate
for w} is then a consequence of the following lemma. O

Lemma 3.15. Let g € CO(R) N L*(R) be a positive function such that g < 1 and

let ¢ € C°(H) be such that ¢ = 0(6_4\/§r/r) when r goes to infinity. Then, the
solution v € C°°(H) N CO(H) to the boundary value problem

Av—4v=—¢
Y =9
satisfies v = O (Hnge\_/;T) for r — 400.

Proof. Tt is sufficient to prove that there exists a constant C' > 0 and 1 < a < v/2 so
that, n = (C' + 1)h — Ch® is a super-solution, where h is the function provided by
Lemma 3.13 with £ = 4. First notice that, by our assumption on g, we have

M =(C+1)g—-Cg*>(C+1)g-Cg=g
Moreover,
An—4dn+ g =4(C +1)h — CA(R*) —4(C + 1)h +4Ch* + ¢’
= —Cala —1)|Vh|?h*™2 — Cah® ' Ah + 4Ch® + ¢/
< —4aCh® +4Ch* + ¢’ =4Ch*(1 —a) + ¢’
is negative for r sufficiently large by our assumption on the asymptotic decay on ¢’

and by Lemma 3.13. We can thus choose C sufficiently large so that it is negative
everywhere, and 7 is a super-solution as claimed. O

4. IMMERSIONS INTO THE (GRASSMANNIAN OF SYMPLECTIC PLANES

In this section, we begin the proof of Theorem C. We need to relate the solutions
of the Hitchin equations (2.1) to boundary values of maximal surfaces in H>?. We
accomplish this association via an intermediary identification (Proposition 4.2 and
subsequent remarks) of solutions of the Hitchin equations to convex embeddings of
the plane C into a Grassmannian Gry(Eg). We then relate (Proposition 4.5) such a
convex embedding to a maximal surface in H?2.

Notation. From this point on, we will denote by Sp(4,R) the group of real matrices
preserving the symplectic form €. Recall that this differs by conjugation by A €
SU(4) from the group that we have used so far (see Remark 1.1).
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4.1. Surfaces in the Grassmannian of symplectic planes. Let us start with the
data of an Sp(4,R)-Higgs bundle (€, ¢) over C with polynomial quartic differential
q = q(z)dz* (see Section 1 for the definition). We denote by W the (trivial) circle
bundle over C and with 7 : W — C the canonical projection. We define a global
section of the pullback bundle 7*& — W by

0 0
* héeie * héeig
(4.1) s(z,0)=m 2 + | 2 ,
0 0
0 0

where 7 : & — € is the real involution preserved by the flat connection V and
the coordinates are expressed with respect to the frame {F(z)},cc constructed in
section 3.1. Recalling that 7(v) = H~'Qv (|[Bar10]), with Q defined in Section 1.2,
we obtain

Define Er to be the fixed point set of 7 in €.
Notice that by equation (4.1), we have that the image of s lies in the real sub-
bundle 7*Egr = Fix(7*7), which is preserved by V = 7*V. Then we compute

V%V%S(Z,e) = —s(z,0) .

to conclude that the fibres of W are developed onto real lines.

Therefore, if we denote by Gra(Er) the bundle over C, whose fibre over each
point z € C is the Grassmannian of 2-planes in (€g),, the independence on 6 of the
development of s implies that the map

f(z) =s(z,0) A @% s(z,0)

is a well-defined section of Gra(Er); here we are identifying fiber-wise the Grassman-
nian of 2-planes with the space of decomposable tensors in A2Er via the Pliicker
embedding. If we introduce the following H-unitary, real, global frame of Er

01 h;i
1 h2 1 0
u(z) = —=| 2 u(z) = —= | 1
0 =
V2 v V2 | p2
0 _1
' h% ' thy ?
7 0
u3(z) = ﬁ 02 U4(Z) = E h% )
_ Uy
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it is straightforward to verify that f(z) = u1(z) Aus(z), hence f selects in each fibre
of Er the plane generated by u;(z) and us(z). Now, recall the definition of Q in
Equation (1.1): the V-parallel symplectic form € induces a V-parallel symplectic
form on Eg, which, in the above frame, is expressed by the matrix

00 —1 0
|00 0 -1],
R 10 0 01"

01 0 0

thus the image of f entirely lies in the space of symplectic 2-planes of Ep.

Let us now underline some properties of this map that will allow to recover the
minimal surface in the Sp(4,R)-symmetric space. We learned the following from
Francois Labourie.

Definition 4.1. Let ¥ be a Riemann surface. An immersion f : ¥ — Gro(R?) is
convex if for any point p € ¥ and any tangent vector X € 7,% the map

B(X) = dpf(X) € Ty, Gra(RY)
is invertible.

We develop next an interpretation of TGra(R*). We recall that given a plane
L € Gra(R?*), the tangent space Ty Gra(R?*) is identified with the vector space of
linear homomorphisms Hom(L,R*/L) in the following way. Let L = Span(v,w) and
let 7 : [0,1] — Gra(R*) be a smooth path such that v(0) = L. For every t € [0, 1] we
choose smoothly two vectors v(t) and w(t) so that v(¢) = Span(v(t),w(t)). Using the
Pliicker embedding, we can thus write v(¢) = v(t) A w(t). Now, the tangent vector
at £ = 0 is given by

V(o) =4

= %h:ov(t) A w(t) = U’(O) A w((]) + U(O) A w'(O) ‘

The variation of the plane L is expressed only by the components of v'(0) and w’(0)
that do not lie in the plane L. Thus the tangent vector 4/(0) is completely determined
by the linear map

B(X):L - RY/L
where we construe X € T,¥ as tangent to a curve 7 (as described above) with

f o~ C Gra(R?*), and suppressing some of the notation, we take B(¥)v = v'(0) (mod
L) and B(¥)w = w'(0) (mod L).

Proposition 4.2. The immersion f : C — Gra(R*) defined above is conver.

Proof. Recall that the flat connection V& on Gra(€g) may be defined in terms of
the connection V = H™Y0H + ¢ + ¢* on &: in particular V& (v A w) is defined
in terms of Vv and Vw. To that end, suppose we have a basis {u1(z),us(z)} of
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f(z) and {uz(2),us(2)} of R*/f(2): to compute V& u; A u; for i # j, it suffices to
compute Vuy for k =1 and k£ = 3. For these particular vectors, we thus compute

1 _1 1
Va%ul(z) = hytui(z) + §h2_18yh2u3(z) + hy 2h3ua(z)

1. _ _ _1 1
Va%u?,(z) = —§h2 L0, houy (2) — hytuz(2) — hy 2h3 ua(2)
(4.2) 1 L
Vagul(z) = (hy! - ihglamhg)ug(z) — hy 2h3 ua(z)
Yy
1 11
Vaiug(z) = (hy' + ihglamhg)ul(z) — hy 2h3 uz(z)
Yy
and deduce that the homomorphisms B (a%) and B (6%) are represented by the ma-
trices
O\ _,-5,5(1 0 o\ _ -5, 4(0 -1
p(5) = o 5) 2 ()i (5

with respect to the basis {u(z),us3(2)} of f(2) and {ua(2),us(2)} of R*/f(2). Since

0 0 _
det B (CL% + b8_y> = _hl 1h2(a2 + b2)
vanishes only for a = b = 0, the result follows. O

Lemma 4.3. Let f : C — Gra(R*) be the convexr immersion constructed above.
Then there exist complex structures Ji on f(z) and Jy on R*/f(z) such that, for
every z € C, the map B : T,C — Homc(f(z),R*/f(2)) is an isomorphism that
intertwines with Ji and Js.

Proof. Let us choose the basis {u1(z),us(z)} for f(z) and let us identify R*/f(z)
with the plane generated by {ua(z),us(z)}. We define the complex structures on
these planes as follows

Jl(z):((l) ‘01> and Jg(z):<_01 (1))

Using the explicit formulas for B found in the previous proposition, it is easy to check
that for every X € T,C the map B(X) is C-linear, i.e. B(X)Ji(z) = Ja(2)B(X).
Moreover, if J denotes the standard complex structure on C, we notice that

B (J(%) = J»(2)B <%) and B (J%) = J»(2)B (%) :

which implies that the linear map
B : T.C — Homg(f(2),R*/f(2))
X — B(X)

is well-defined and C-linear for every z € C. Since it is not trivial, it is an isomor-
phism. O
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Remark 4.4. We note that the convex embedding of C into Grz(R*) contructed above
induces a minimal immersion of C into the symmetric space Sp(4,R)/U(2). Indeed,
since R* = f(2) @ R*/f(2) for every z € C, the complex structures provided by the
previous lemma enables us to define a complex structure .J on R*, depending on the
point z € C. Precisely, J(z) = Ji(z) @ —J2(z). We can also define a family of metrics
on R* depending on the point z € C by
Hy,. 7(2)(v,w) = wr(v, J(2)w) .

It follows that the H-unitary frame {u1(z),u2(2), u3(2),ua(2)} is Hyp, s(2)-unitary
at every point, thus H,, j(z) coincides with the harmonic metric H, and thus the
V-parallel transport of H,y j, or equivalently of the complex structure J, produces
the minimal surface in Sp(4,R)/U(2) associated to the given Sp(4, R)-Higgs bundle
data.

4.2. Explicit parameterization for ¢ = dz*. In the special case when the quar-
tic differential is constant we can write explicitly a parameterization of the surface
constructed previously. In analogy with affine spheres (|[DW15|), we will refer to it
as the standard flat maximal surface Tj.

To this aim, it is convenient to work in the global frame, say {w;(z)}’;, for
& in which the matrix connection of the flat connection Vj is diagonal (see Section
3.2). The change of frame is expressed by the constant unitary matrix S introduced
in Section 3.2. We obtain, for the section s in (4.1),

5(2,0) = %eig(wl(z) — w(2) + ws(2) — wa(2))

67:0 6i9

L 1| —e 1 [ —e®

+ o€ (wi(z) —wa(2) +ws(z) —wal2)) =5 | o [ +57| Lo
_eig _610

where the coordinates are now expressed with respect to the frame {w;(2)}i=1,. 4.
In this frame the real involution 7 = H~1'Q is given by

Z1 Z1
29 —1Z9
T = e
z3 —Z3
24 1Z4
thus the frame {e1(z) = wi(z), e2(2z) = (1\;—;) wa(z), e3(z) = iws(z),ea(z) = %UM(Z)}

is real and still diagonalizes the flat connection Vj. Since we know that s(z, ) will
take value in g, we will use coordinates with respect to this frame from now on.
Moreover, the restriction of the V-parallel symplectic form € induces a Vy-parallel
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symplectic form on Eg, that is given by the matrix

00 -1 0
oo 0o -1
“R=110 0 o
01 0 0

We can thus identify R* endowed with the above symplectic form, with the fibre of
Er over a base point 0 € C. By Vy-parallel transporting s at (z,6) to this fibre over
0 € C, we can first parameterize the image of s (as images in the fixed R*) as

5(2,0) = %e’pD(z)(wl(z) — wn(2) + wa(2) — wa(2))

1 .
+ ET(eZHD(z) (w1(z) — wa(z) + wsz(z) —wa(2)))
=1(2 cos(0)e*™(2) | /2(sin(f) — cos(8))e25() 25in(h)e 2R(=) | \/2(—sin(f) — cos(8))e>(3))

where D(z) = diag(e?R(?), e=3() ¢=2R(2) ¢23(2)) for » € C. Consequently, the stan-
dard flat maximal surface Ty = f(C) in the Grassmannian of symplectic planes

(identified with a submanifold of P(A?R*) via the Pliicker embedding)
f(z) =s(z,0) A V%s(z, 0)

2R(2)—2S(z) 2)+2S(z)

1
=ei1 Neg+es Neg+ —e
1 3 2 4 \/i
L on(z)+23(2) L omz)—23(2)
+ —e e3 N\ eg — —e
V2 so T

V2

where ¢; = €;(0) for i = 1,...,4. We observe from this explicit formula that Tj
coincides with the orbit of the point f(0) € Gra(R*) under the action of the diagonal
matrices D(z) = diag(e?(?), e=S(2) ¢=2R(3) 23(2)) for 2 € C.

1
er N\ ey — ﬁe%e( e1 N\ ey

ex Nes,

Moreover, by looking at limits along (quasi)-rays, we can describe the bound-
ary at infinity of Ty as a quadrilateral in the space of Lagrangians of R*, as Table 1
shows.

4.3. Relation with the maximal surface in H*2. Exploiting the low-dimensional
isomorphism PSp(4,R) = SO (2, 3), we can relate the convex surface ¥ in the Grass-
mannian of symplectic planes in R* with a unique maximal surface in H?2. We will
see, in particular, that under the identification between the boundary at infinity of
H?2 (i.e. the Einstein Universe Ein'?) and the space of Lagrangians of R?, the two
surfaces share the same boundary at infinity.

Let us first recall how the low-dimensional isomorphism PSp(4,R) = SOg(2, 3)
is accomplished. We denote by {e;}i=1, . 4 the canonical basis of R* and we consider
the symplectic form w = dx1 Adzs +dxo Adxy. Let V = A2R* be the vector space of
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Type of path v Direction # Projective limit p, of fy(v)

Quasi-ray 6ec(0,5) Dy = €1 A e4]

Ray (of height y) 6= 73 Py =[—e1 Nes+ e ez A ey)
(py — [e1 A es] as y — 00)

Quasi-ray 0e(5,m) Py = [e3 A e4]

Ray (of height iy) 6 =m Py =les Aes — e Weg A ey
(py — [e3 A es] as y — 00)

Quasi-ray 0e(m2)  py=leaNes

Ray (of height y) 6 =2F py = [e1 Aea — e Weg A ey

(py — [e1 N eg] as y — 00)
(3,2m)  py=[e1 Ae
0 Py = [eer Aex —e1 Aey)
(py — [e1 A es] as y — 00)

Quasi-ray 0
Ray (of height iy) @

TABLE 1. Limits of the standard flat maximal surface along rays

skew-symmetric 2-tensors on R*. A standard basis for V is given by {e; Ae;j}i<icj<a.
The symplectic form w induces an inner product on V' via the relation

(4.3) —2(p,p)er Nea NesNeg=d N .

It turns out that (-, -) is non-degenerate and has signature (3,3). The non-degeneracy
allows us to define a canonical 2-tensor w* dual to the symplectic form w by requiring
that

—2(w*, v Aw) = w(v,w)
for every v,w € R*. In our case, we have
w*=e1 Neg+eNey ,

and we notice that (w*,w*) = 1. The group Sp(4,R) acts naturally by isometries
on (V,(-,-)), and preserves w*. Therefore, it acts isometrically on (w*)*, which
is a five-dimensional real vector space endowed with an inner product of signa-
ture (2,3). Tracing this action, we can define a continuous group homomorphism
Sp(4,R) — SOg(2,3), whose kernel only contains {£+Id}, thus giving the aforemen-
tioned isomorphism.

We emphasize that inside the projective space P(V') we can embed:

e the Grassmannian of 2-planes in R*, which correspond to the submanifold of
decomposable 2-tensors;

e the Grassmannian of symplectic planes in R*, which can be characterized as
those decomposable tensors ¢ such that (¢, w*) # 0;

e the Lagrangians of R* which are in bijection with decomposable 2-tensors
orthogonal to w*;
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e the Einstein Universe Ein%? can be identified with the points p € P((w*)*)
such that p A p = 0;

e the pseudo-hyperbolic space H?2, as the projectivization of the vectors ¢ € V
such that (¢, ¢) < 0.

We notice, in particular, that this identifies Lagrangians planes in R* with points of
the Einstein Universe.

We wish to interpret our embedding f : C — Gra(R*) in terms of pseudo-
Riemannian geometry.

Let f : C — Gra(R*) be the (convex) embedding, depending on a choice of quartic
differential g, constructed in Section 4.1. Since it takes values in the Grassmannian
of symplectic planes, there exists a unique lift f : C — V such that (f(z),wr) = 3

S -7
We define 6 : C — (wg)® by 5(2) = 2f(2) — wk, and we denote by o its projection
into P(V'). By construction (6(z),(z)) = —1 for every z € C, hence o defines an

embedding of the complex plane into H??2. Of course, the map o still depends on
the choice of quartic differential q.

Proposition 4.5. The map o : C — H*? is harmonic and conformal, hence o(C)
is a maximal surface in H>2.

Proof. Since wg is V-parallel, we can write, using that f(z) = u1(2) A us(z) and
wh = u1(2) Aus(z) + ua(2) Aua(z), *
o(z) =2f(2) —wp = u1(2) ANus(z) — ua(z) Aug(z) .

Using Equation (4.2) and the following covariant derivatives of ua(z) and u4(z)

11 1 _
V%UQ(Z) = h22 hl 2'LL1(Z) + %(q)hlm(z) + (%(q)hl — §h1 16yh1)u4(z)

WERCCE i by (=) — R@)hrua() + (S + 5ht b 2)

1

11 1
V%Ug(Z) = —h22 hl 2U3(2’) — %(q)hluQ(z) + (?R(q)hl + ihflﬁxhl)m(z)
Y

1

11 1
V(%U;;(Z) = —h22 hl 2’LL1(Z) + %(q)h1u4(z) + (?R(q)hl — §h1_181h1)uQ(z)
we deduce that
(Voo,Vao)=0
ox dy
(Voo,Voo)=(Vaoo,Vaoo) :4h1_1h2
oz oz 9y 9y

which means that the embedding is conformal.
As for the harmonic condition, since H?? is umbilical in R?3, it is sufficient to check
that

V%V%JZO (mod o) .

Lthe definition of wy is correct based on formula (4.3) and the one below
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Again, using Equations (4.2) and (4.4), a direct computation shows that
VoVoo=4hi'hyo
0z Oz

and the proof is complete. O

Remark 4.6. The proof of the proposition above also shows that the induced metric
on the maximal surface is 4h~'hs|dz|?>. In particular, following the argument of

Proposition 3.11, it is quasi-isometric to (C, 4]q\%), hence complete.

We remark that, viewing o(C) and f(C) as embedded inside P(V'), since we can
choose lifts to V' that differ only by a translation by wg, they share the same boundary
at infinity, which is a curve in the Einstein Universe, or, equivalently, in the space of
Lagrangians. We will study the properties of the boundary curve in the next section.

Remark 4.7. The maximal surface in H>? with constant quartic differential coincides
with the horospherical surface, described in [Tam19|, embedded in a copy of anti-de
Sitter space inside H?? . In particular, its boundary at infinity is a future-directed,
negative, light-like polygon in the Einstein Universe (see next section).

Moreover, the proof of Proposition 4.5 shows that the embedding data of the max-
imal surface o(C), which determines it up to post-compostion by global isometries,
only depend on the quartic differential ¢ on the complex plane and on the solution
to Equation (2.1). We record this remark for future use as a proposition.

Proposition 4.8. Two planar mazimal surfaces o : C — H*? and o9 : C — H?2,
defined as in Proposition 4.5, which share quartic differential and solutions h to (2.1)
agree up to post-composition by a global isometry.

5. MODULI SPACE OF FUTURE-DIRECTED NEGATIVE LIGHT-LIKE POLYGONS IN
Ein'?

As we will see in the next section, a future-directed, negative, light-like polygon
will appear as a boundary at infinity of a maximal embedding of the complex plane
in H*? with an associated polynomial quartic differential. In this section we define
these geometric objects and parameterize their moduli space under the conformal
action of SOg(2, 3).

Definition 5.1. A light-like polygon in the Einstein Universe Ein'? is an oriented
embedded one-dimensional simplicial complex A with a finite number of vertices
such that every edge is a photon (i.e. contained in the projection of an isotropic
plane of R?3). We will also assume that A is a generator of w1 (Ein'?) = Z. We say
that a light-like polygon is negative if it can be lifted to a cone A in R?3 \ {0}, such
that the inner product of any two non-collinear points is non-positive and vanishes
if and only if their projections belong to the same edge of A.

In the above definition, a cone in R%?\ {0} is intended as subset of R?3 that is
invariant under multiplication by positive scalars. There are two cones that occur as
possible lifts, but the condition of being negative is unaffected by the choice of cone.
Moreover, an orientation of A will be given by an enumeration in the set of vertices.
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Remark 5.2. Tt is sufficient to check the negativity condition between pairs of non-
consecutive vertices. Namely, if {vi}i:17.__’n are vectors that generate the half-lines

of the cone A that project to vertices, then every other point in A can be written as
p = A(tv; + (1 —t)vi41) for some i € {1,...,n} (where the indices are to be intended
modulo n), A > 0 and ¢ € [0, 1]. Therefore,

(P, @) = A(tvi + (1 = O)vig1), p(sv; + (1 = s)vj41)) <0
as soon as p and g do not project onto the same edge, under the assumption that
the inner product between any pair of non-consecutive vertices is negative.

Definition 5.3. Fix an oriented time-like 3-plane W = Span (w1, w2, ws3) in R?3. A
negative light-like polygon is future-directed if for every pair of vectors v;, v;41 € A
that project to consecutive vertices of A, we have

dVOl(Ui, Vit1, W1, W2, U/3) >0,
where dVol denotes the standard volume form in R?3.

We observe that this definition is independent of the initial choice of plane W.

We will denote by £P,, the space of future-directed negative light-like polygons
in Ein’? with k vertices. The group SO¢(2,3) acts on LP,, since its conformal
action on the Einstein Universe sends photons into photons, preserves the sign of the
inner products and preserves the orientation and the time-orientation of R?3. We
indicate with MLP, the quotient by this action. We note that we can see MLP,
as the quotient TLP, /Zj, where TLPE denotes the moduli space of future-directed
negative light-like polygons with a marked vertex and Zj, acts by change of marking,.

Proposition 5.4. There exists a unique future-directed negative light-like quadrilat-
eral in Ein'?, up to the action of SOy(2,3), i.e. the space MLP, consists of only
one point.

Proof. Let A be a future-directed negative light-like polygon in Ein?! with vertices
{p1,p2,p3,pa}. Let A be the cone in R?3\ {0} given by Definition 5.1. We denote by
{v1,v9,v3,v4} some light-like vectors in R?? that generate the lifts of the vertices,
i.e. the half-line that projects to the vertex p; is given by {tv; | t > 0}. We can
arrange v; so that

<Ul,’U3> = <U2,’U4> =-1.
In particular, the vectors v; are linearly independent.
Let us denote by {e1,es,e3,e4,e5} a basis of R%3 such that the inner product in
these coordinates is given by

(z,y) = T1y3 + T2ys + T3Y1 + Tay2 — T5Y5 -
We fix the orientation on R?3 given by the volume form
dVol = dx1 A dxo A dxs N\ dxg N\ dzs
and the time-like orientation induced by the time-like 3-plane

W = Span(e; — e3, ez — ey, €5) .
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Now, the linear map

Span({vi}i:1,...4) — Span({ei}izl,...,Al)
v; — €(i)e;  with e(i) =1if i = 1,2 and —1 otherwise

preserves the inner product and the time-orientation, hence it can be extended to an
element of SOy(2,3). We thus deduce that every future-directed negative light-like
polygon with 4 vertices is equivalent to the standard quadrilateral A4 with vertices
(le1], [e2], [es], [e4]) and associated cone

Ay =R ([e1, 2] U [ea, —e3] U [—e3, —ea] U [—eq, e1])
where [e;, te;] denotes the Euclidean segment joining e; and =+e;. 0

Proposition 5.5. There exists a unique future-directed negative light-like polygon in
Ein? with 5 vertices, up to the action of SOy(2,3).

Proof. We use the same notation as in the previous proposition. It follows from the
proof of Proposition 5.4 that we can assume that v1 = ej,v9 = e2 and vy = —es.
Now the lift of the fourth vertex satisfies:

(va,v4) =0 (vg,v5) =0 (vg,e3) =0
and
(e1,v4) <0 (eg,v4) <O,
hence it must belong to the set
U={zxcR* | 2x123 + 2x9m4 — 22 = 0,27 = 0,24 < 0,23 < 0}.

We claim that the subgroup H = Stab(pi1) N Stab(p2) N Stab(ps) < SOp(2,3) acts
transitively on this set. Namely,

i) if x9 = 0, then necessarily x5 = 0, leaving x3 and x4 to be specified arbitrarily
— yet these are in the orbit of the action of the diagonal matrix subgroup of
H;

ii) if x9 # 0, then we must have x5 # 0 and we can choose a representative of
vy such that x5 = 4+/2. It is easy to check that diagonal matrices (which
we recall to be of the form diag(\, u, A=1, p=1,1)) act transitively on points
with x5 = V2 and on those with T5 = —+/2. We then notice that if v € U
with z5 = v/2 and v/ € U, which differs from v only in the sign of the last
component, then the polygon A with vertices p1,p2, p3 and [v] is the image
of the polygon A’ with vertices p1, p2, p3 and [—v'] under the diagonal matrix
D = diag(—1,—-1,—-1,-1,1) € H.

Therefore, it is enough to show that there exists an element A € H that sends a point

satisfying i) to a point satisfying ii). Now, the linear transformation A determined
by

Ale;)) =e; fori=1,2,3 Ales) =ea+es+ V2e5 and Ales) = V2ey + €5
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preserves the inner product and sends es + e4 to e + e3 + e4 + v/2e5. Moreover, it
lies in SOp(2,3), an explicit path connecting A to the identity being given by the
linear transformations {A;}c[o,1 such that

Ai(e;)) =e; fori=1,2,3 Ailes) =tea+eq+ V2te; and Ai(es) = V2tes + e .

Hence it fulfills all our requirements. As a consequence, we can suppose that the
fourth vertex is py = [e3 + eq4].
By a similar reasoning, the lift of the last vertex belongs to

W = {xe]R5 \ 2x1x3—|—2:c2w4—x§ =0,23 =0,21 + 22 = 0,21 > 0,24 < 0}.

As before, we can suppose that x5 = /2 and it is clear that the diagonal matrices
of the form diag(a,a,a™',a~%,1) with a € RT act transitively on W.

We thus deduce that every future-directed, negative light-like polygon with 5 vertices
is equivalent to the standard light-like penthagon A with vertices ([e1], [ez], [es], [e3+
e4],[e1 — e2 — eq + V/2e5]) and associated cone

As =Rt (Je1, e2] U [ea, —es] U [—es, —e3 — e4]U
[—e3 — eq,e1 — ea —eq + V23] U fer — ea — eq + V2es5,€1]) .
O
Let us now consider the first non-trivial case of hexagons. We find an explicit

parametrization of TLPy that surprisingly shows that this moduli space has two
connected components.

Proposition 5.6. The moduli space of marked future-directed negative light-like
hezagons in Ein*? is a topological manifold homeomorphic to

{(s,t) €eR? | s >0, st #2}/(0,t) ~ (0, —t)
Proof. Tt follows from the proof of Proposition 5.5 that, up to the action of SOq(2, 3),

we can assume that v1 = e1, vo = e, v3 = —eg and vg = —e3 — e4. The lift of the
fifth vertex vs must now satisfy
(v1,v5) <0 (vg,v5) <0 (v3,v5) <0
and
<U47U5> =0 <'U5"U5> =0 )
hence v5 belongs to the set
U:{$€R2’3 | 21 >0, 21 = —x9, 23 <0, x4 <0, 23:19:3+23:2$47x§:0} .

We can still renormalize partly the position of v5 acting by the group H = Stab(p;)N
Stab(pz)NStab(ps)NStab(py) which, by our conventions on the p;, consists of diagonal
matrices of the form diag(a,a,a™t,a=!,1) with a # 0. Because 21 > 0 and x3 < 0,
we can find a > 0 such that a? = _x—:’f” This implies that axz; = —a~'a3. Therefore,
after renormalizing by the action of H we can assume that v has coordinates

vy = (z1, —21, —x1, T4, T5)
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for some x1 > 0. Since we are interested only in the projective class of vs we can
assume that z; = 1. Moreover, because v5 must be isotropic, we deduce that

73
Ty=—-1-—=.
2

The lift of a generic fifth vertex has thus coordinates

2
v = (1, 11,1 %:::5)

for some x5 € R. However, we notice that the matrix diag(—1,—1,—1,—-1,1) €

SO¢(2,3) fixes the vertices p; = [v;] for i = 1,...,4 and sends [vs] to [v}] where v}

only differs from vy by the sign of the last component. Hence, we can assume x5 > 0.
The lift of the sixth vertex vg must be chosen so that

(va,v6) <0 (vg,v6) <0 (vg,v6) <O
and

(v1,v5) =0 (v5,v6) =0 (ve,v6) =0,
hence vg belongs to the set
U={yecR?»

Because y4 < 0 and we are only interested in the projective class of vg we can

2
assume that y4 = —1. In particular, we deduce that vg is isotropic only if yo = —%5.

Moreover,

y1 >0, y1 > —y2, y3 =0, ya <0, 2y1y3+2y2ya—y2 = 0, (v5,v6) = 0} .

2 2
T
0=<1}5,1}6>:1—y1_y?5 <_1_75) — T5Y5

implies that
2 2,2

Ys | Ys57T5
=14+=+==—x5y5 .
Y1 B 1 5Y5
On the other hand, we must have y; > —yo, and, imposing this condition, one finds
2,2
x
5Ty5 —x5y5 +1 >0

which gives the constraint x5ys # 2. Therefore, a generic sixth vertex has coordinates

2 2,..2 2
Y5 | YsTj Ys
(148 4 By 0,1
Vg < 9 4 T5Ys5, 25 ) 7y5)

with x5 > 0 and x5y # 2. It can be easily verified that for every such choice of x5
and y5 the associated polygons are future-directed.

Moreover, we observe that, if 5 = 0, the matrix diag(—1,—1,—1,—1,1) € SOq(2, 3)
stabilizes the first five vertices and sends pg = [vg] to [vs] where vg only differs from
vg by the sign of the last component. Therefore, we conclude that

TLPy = {(s,t) €R?* | s >0, st #2}/(0,t) ~ (0,—¢)

which has two connected components. O
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Remark 5.7. The special point in TLPg with s = ¢ = 0 coorresponds to the unique
light-like hexagon in Ein'! € Ein!? (cfr. [Tam19]).

In general, we can prove the following

Theorem 5.8. The moduli space of future-directed negative light-like polygons with
k > 6 wvertices is a (possibly disconnected) real orbifold of dimension 2(k —5).

Proof. Recall that we can see the moduli space as the quotient
MLP, = TLP, [Zy

where TLP, denotes the moduli space of future-directed negative light-like polygons
with a marked vertex. Thus it is enough to show that TLP, is a (topological)
manifold of dimension 2(k — 5).
The marking on the polygon induces a natural enumeration of the vertices that is
compatible with the orientation. From the proof of Proposition 5.6, we learn that, up
to the action of SO(2, 3), we can assume that (p1, p2, p3, P4, p5) = ([e1], [e2], [es], [es+
eq), le1 — ez — e3 — (1 + s%/2)eq + ses]) with s > 0. Now, all other vertices p; with
6 < j # k — 1 must be chosen in an open subset of the light-cone of p;_; (the
open subset is determined by the negativity conditions of the inner product with the
previous non-consecutive vertices, which is sufficient to obtain a negative light-like
polygon by Remark 5.2, and by the future-directed condition). The only exception
is given by pr which must lie in the intersection between the light-cone of pp_; and
p1, which is a real manifold of dimension 1. Therefore, the moduli space of marked
future-directed negative light-like polygon in Ein'? with k vertices is a manifold of
dimension
dimp TLP, =14+2(k—6) +1=2(k—5) .
Ol

Remark 5.9. As shown in the case of hexagons (Proposition 5.6), the open sets where
the vertices p, with k > 6 can be chosen may not be connected, hence TLP,” may
be disconnected.

6. FROM POLYNOMIAL QUARTIC DIFFERENTIALS TO LIGHT-LIKE POLYGONS

We define a map
a:T9, — TLP,
between the space TQ,, of monic, centered polynomial quartic differentials of degree
n and the space TLP, , of future-directed negative light-like polygons with (n + 4)
vertices (and a marked vertex) by associating, to a polynomial quartic differential,
the boundary at infinity of the maximal surface in H?? constructed in Section 4.3.
Equivalently, we could imagine the target as the boundary at infinity of the convex
immersion in the Grassmannian of symplectic planes of R* described in Section 4.1.
This map & is equivariant with respect to the Z, 4 action and so induces a map

a:MQ, — MLP;,,,
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between the moduli space of polynomial quartic differentials of degree n and future-
directed negative light-like polygons in the Einstein Universe with (n + 4)-vertices.

The aim of this section is to show that this latter map « is a homeomorphism
onto a connected component of MLP, ", 4. This is the content of Theorem C.

The section begins by showing that the maximal surface defined by a polyno-
mial quartic differential has the asymptotic geometry we claim above: this requires
demonstrating a ’Stokes’ phenomenon for solutions to (2.1). The proof of Theorem C
then proceeds as a succession of results of properties of the map a: we prove « is
continuous (Proposition 6.6) and proper (Corollary 6.9), while & is injective (Propo-
sition 6.13). These properties together then imply Theorem C, which appears here
as the summary Theorem 6.14.

6.1. The boundary at infinity of a maximal surface in H?>? with polynomial
growth. Given a polyonimal quartic differential ¢, in Section 4.1, we constructed a
convex embedding of C in the Grassmannian of symplectic planes, and showed that
it shares the same boundary at infinity of a complete maximal surface ¥ in H%*2. We
will refer to ¥ as the maximal surface in H?? with polynomial growth ¢.

We recall some general facts about maximal surfaces in H?2. We denote by H22
the space of unitary time-like vectors in R?3, which is a double cover of H?? under

— 1,2
the natural projection 7 : R%3\ {0} — RP?. Similarly we denote by Ein "~ the space
of isotropic vectors of R?3 up to positive scalar multiples. Again the projection

—1,2

; . . . P = P
7:Ein = — Ein"? is a double cover, and we can identify Ein =~ with the boundary
at infinity of H?2. The map

F:D*x §% - H*?

(z,w) — ( 2 z LS H2H2w)
1—z[]> 71—

is a diffeomorphism, hence D? x S? is a model for ]ﬁlw, if endowed with the pull-back

metric )
4 1—|—HzH2
Frgayy = ——|dzf? — [ — 1201 .
92 = T 4 (1—||z||2 9s*

Here gg2 is the standard round metric on the unit sphere. The map F' extends to
homeomorphism of the boundary

—1,2
O F : S' x §? — Ein
(z,w) = (z,w) .
Lemma 6.1. Under the homeomorphism O F', graphs of parameterized geodesic arcs
1,2
in S? correspond to light-like segments in Ein

Proof. Let v :[0,600] C S' — S? be a unit-length parameterization of a geodesic. We
can suppose that v(0) = (0,0,1) and v(6) = (sin(f) cos(«), sin(#) sin(«), cos(d)) for
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some « € [0,27] for every 6 € [0,60y]. Now, the graph of ~ consists of points of the
form

(cos(8), sin(h), sin(6) cos(a), sin() sin(c), cos(d)) € St x §% |
for § € [0,6p]. On the other hand, the light-like segment joining (1,0,0,0,1) and
(cos(bp),sin(fp), sin(fy) cos(a), sin(fp) sin(«), cos(hy)) € Ein " is given by

1—1t)+tcos(fy),tsin(bp), tsin(fy) cos(w), tsin(fp) sin(a), (1 — t) + tcos(fy)) t € [0,1]

1
Ve
and this coincides exactly with the graph of « if we define 6 so that

(1 —1t)+ tcos(bp) and  sin(8) = tsin(6p)

2+ (112 NCESOEDER

—12 i
Notice that this is the correspondence between points in Ein =~ and S x S? given by
the homeomorphism O F'. O

cos(f) =

Lemma 6.2. Let v,v" € B such that (v,0") < 0. Then O F~1(v) = (0,p) and
O F7L(W') = (0',p') with dg=(p,p’) < ds1(6,6").

Proof. Without loss of generality we can suppose v = (1,0,0,0, 1), so that § = 0 and
p=(0,0,1). A general point v' € Ei?lm can be written as
v' = (cos(#'), £ sin(#'), sin(a) cos(B), sin(a) sin(B), cos(a))
for some 3 € [0,27] and @', « € [0, 7]. By assumption
{(v,v") = cos(0") — cos(a) < 0
hence a < 6/ < . By construction
O F 1 (V') = (0.1),
with p’ = (sin(«) cos(B), sin(a) sin(3), cos(«x)). Therefore,
de2(p,p) =a <0 =ds:(0,0) <
as claimed. o

This model is also useful to understand complete space-like surfaces in H22,

Proposition 6.3. Let S be a complete, connected, space-like surface in H22. Then
Y is the graph of a 2-Lipschitz map f : D?> — S2.

Proof. Let pry : 3 — D? denote the restriction of the projection onto the first factor.
Let gx be the induced metric on . Then

4 2
gy < pr] ( |dz| ) .
(1—l2[1*)?

Since gy, is complete, we deduce that pry : S > D?isa proper immersion, hence a
covering. Since D? is simply connected and ¥ is connected, pr; is a diffeomorphism.
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Therefore, 3 is the graph of a function f : D? — S2. Since S is space-like, for every
z € D? and v € T,D? we must have

4 2 (Ll )
—_ | ——= d >0
T - () 1o
which implies that
2
df,(v)|| < ————=||v|| < 2||v|| ,
laf=()l < = ||Z||2H | < 2o
so f is 2-Lipschitz. O
In particular, it follows from the proof of the above proposition, that the boundary
at infinity of ¥ is the graph of a 1-Lipschitz map 9f : ST — S2.

Proposition 6.4. The boundary at infinity of a mazimal surface ¥ in H>? is always
non-positive. Moreover, the boundary is negative if and only if it does not contain
any light-like segments.

Proof. Consider a lift ¥ of ¥ in H22. By the previous discussion, the lift S is the
graph of a 2-Lipschitz map, and its boundary at infinity A is the graph of a 1-
Lipschitz map 0f : St — S2. Let vg = (6o, po = 9f(6p)) € A. Let v € A which
corresponds to a point of the form (0,0f(8) = p). The positivity condition on the
inner-product is equivalent to (Lemma 6.2)

dg2(po,p) > dg1(6,60).
But on the other hand, since 0f is 1-Lipschitz we know that

ds2(po,p) = ds2(9f(60),0f(0)) < ds1 (6, 600).
with the equality if and only if the restriction of df to the arc between 6y and 6 is
the parameterisation of a geodesic between pg and p. Therefore, the boundary at
infinity of ¥ is always non-positive and fails to be negative if and only if it contains
light-like segments.
O

Proposition 6.5. If q is a polynomial quartic differential of degree n, the boundary
at infinity of ¥ is a future-directed, negative, light-like polygon with n + 4 vertices.
Proof. By Proposition 6.4, we only need to show that the boundary at infinity is a
future-directed light-like polygon of n + 4 vertices. For simplicity we describe the
boundary at infinity of the embedding in the Grassmannian of symplectic planes.
Recall that this is obtained by V-parallel transport of the section

f(2) = ua(2) ANus(z)
of P(A%2ER) to the fibre over a base point 0 € C. Let A € SU(4) be the following
unitary matrix

10 7 0
L o1 0
A‘ﬁl@—io
01 0 —i
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expressed in the frame F'(z) = {v;(2) }i=1,...4 introduced in Section 3.1. By definition
(see Section 4.2),

ur(2) = H(z) 7 Ava(2) and  us(z) = H(z) 77 Ava(2) .
The parallel transport 7'(z) : (Er). — (Er)o expressed in the real frame {w;(2)}i=1,..4
is given by
T(z) = A H(0)24(2)H(2) 2 A .
Now, recall from Theorem 3.9 that in each standard half-plane (U, w) and in each
stable direction J,, the limit M, ofH(O)%@b(w)H(w)_%q/Jo(w)_l exists as |w| — +o0.
Note that we may write
lim A~ H(0)24(w)H(w) 2 A

|w|—o00

(6.1) lim = A~ H(0) 7 (w) H (w) ™= (w) " A[A™ o (w) A]

|w|—00

=AM A lim A" Npp(w)A
|w|—o00
Therefore, working in this coordinate chart, we deduce that as |w| — +oo along
a stable direction, the embedding f(w) has a limit point p,, given by the image
of the limit point of the standard flat maximal surface, under the composition of
M! = A"'M,A and A~1S" € Sp(4 R), where M, is the limit found in the proof of
Theorem 3.9 and S’ = Sdiag(1, 12, i, 1£). We thus obtain the limits described in

V2 bR
Table 2.

Type of path v Direction § Projective limit p, of o(v)
Quasi-ray 9 €(0,%) Pt = ML A71Ser Aed]

Quasi-ray (% ?) py = ML ATIS [eq A ed]
Quasi-ray (%, ) _ = M"A71Se3 A e4]
Quasi-ray €(F,m) p_ =M _A1Yes Ney

TABLE 2. Limits of the maximal surface ¥ in a standard half-plane

Using that M, = H(0)2 La, with L being the limit of 9 (w)H (w) ™24 (w) ! for
|lw| — 400 along a stable direction in the sector J,, as well as the relations between
the matrices My, M, M_, M__ displayed in Lemma 3.7, we obtain that

M _A7 S leg Neq) = ML AT S leg Aeq) = ML ATS [e3 A ed]
M\ A7 S le1 Nea) = MLATIS [er Aed
the key point in this computation is that the unipotents U, that appear when one
expands the expressions fix the planes on which they are acting. (For example, one

sees from the proof of Lemma 3.7 that Uy fixes the plane ez A e4, concluding the
second inequality on the first line displayed above.)
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A summary of the computation is that only two different points appear as limits
along stable directions in each standard half-plane and those are obtained as images
of the Stokes matrix M/ .

Since M, being an element of Sp(4,R), preserves the symplectic form

w* =€ Nes+exNey

the two points p__ = p_ and py = p4+ lie on a common photon: from the relation-
ships above and equation (4.3), we find that

(-, p+) = (ML ATES [es Aea], MLATES [er Aea])

= ([es A eq], [e1 N ea])
=0.

Here the middle equality follows from the invariance of the bracket by an action of
an element M, A~1S" € Sp(4,R).

The displayed computation of course expresses that p_ and py are orthogonal and
so we deduce by the proof of Proposition 6.4 that the light-like segment joining them
is contained entirely in the boundary at infinity of ¥. Therefore, the asymptotic
boundary of ¥ in each standard half-plane consists of a light-like segment with ex-
treme points M/, A~1S"[e3 A eq] and M} A71S"[e1 A ed] .

Now, two segments belonging to two consecutive standard half-planes share a com-
mon vertex, because two standard half-planes intersect in only an open sector of
angle m/2. (It is critical here that the intersection is restricted to but a single open
sector angle 7/2; a more relaxed definition of standard half-plane would likely not
permit us to conclude that the intersection is but a single vertex.) Since there are
n + 4 standard half-planes, we conclude that the boundary at infinity of X is a neg-
ative light-like polygon A with n + 4 vertices.

Moreover, A is future-directed because, by definition, the time-orientation of the
polygon depends only on the positions of two consecutive vertices and these are
inherited from the standard flat maximal surface. O

6.2. Definition of the map and continuity. The previous propositions allow us
to define a map
a:JQ9, — TLP, 4

that associates, to a polynomial quartic differential of degree n, the boundary at
infinity of the maximal surface in H?? with polynomial growth ¢. In order to show
that & induces a map a between the moduli spaces, we need to check the equivariance
of & with respect to the Z,4-action. First of all, let us describe how to encode the
Zpy4-action. Given a monic polynomial quartic differential ¢ of degree n in the
complex plane, there are n 4+ 4 canonical directions corresponding to the set

21y
n+4

D:{zE(C|arg(z): j:0,...,n+3}.

Those can be understood as follows: if ¢ = 2"dz*, these are exactly the directions
in which the quartic differential takes positive real values; in the general case, these
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directions are characterized by the fact that they are contained eventually in a unique
standard g-half-plane, where they correspond to quasi-rays with angle 0. If we fix
one direction 0y = arg(zg) + € with zp € D and € > 0 small, we can see the action of
the cyclic group Zy+4 as a rotation in this set.

Let 0 : C — H??2 be a maximal embedding associated to ¢. Let A denote the
future-directed negative light-like polygon in the boundary at infinity of ¥ = o(C).
The direction 6y gives a marking on A as follows: the path o(e??t) converges to a
point in A as t — +o0o. By Proposition 6.4, the limit point is a vertex vg € A. We
can then define

G:TQ, - TLPL,,
q— (Aa UO) .

If we change o to o’ by post-composition with an isometry g of H*?, the boundary
at infinity becomes A’ = g(A), hence the two marked light-like polygons (A, vy) and
(A, v()) are equivalent under the action of SOg(2, 3), hence the map & is well-defined.
Moreover, if we change o by a pre-composing with the generator of the Z,4-action
T(z) = C;_hz, then o’ = 0o T is a maximal embedding with polynomial growth T.q.
Its boundary at infinity remains A, but the limit point of the ray ¢’(e?t) changes
to vj, which coincides with the limit point of the ray o(e!®+27/(n+4)4) By the
description of the limit points along rays, given in Proposition 6.4, we find v{, = v1,
hence the map & is Z,4-equivariant. Notice, moreover, that if TY(q) = ¢ for some
j=1,...,n+4, then 0 and ¢’ = 0 0 TJ are maximal embedding of C into H?*? with
the same embedding data, hence they differ by post-composition with an isometry
of H?2. Therefore, &(q) = &(T%(q)).

Proposition 6.6. The map & is continuous.

Proof. Let ¢, be a sequence of monic and centered polynomial quartic differentials
converging to q. Let (A,,v,) and (A, v) be marked future-directed, negative, light-
like polygons representing «(q,) and a(q), respectively.

We need to show that (A, v,) converges to (A, v) up to the conformal action of
SO0(2,3). We claim first that the maximal surfaces ¥,, = 0,,(C) in H?? associated
to g, converge to the maximal surface ¥ = o(C) associated to ¢, up to isometries. In
fact, since ¢, is convergent, the supersolution estimates of Lemma 2.4 and standard
Schauder estimates give a uniform bound on the C%® norm of the functions (u1)y
and (u2)n, solutions to Equation (2.1) on compact sets. Hence they weakly converge
to a weak solution (up,us) of

{A’U/l — eul—ug _ 6—21.1,1 ‘q‘2

2us U1 —u2

Aug =2 —¢

By elliptic regularity, the limits are strong solutions, and by uniqueness they must
coincide with those found in Section 2. Therefore, (u1), and (us3), actually converge
smoothly on compact sets to u; and us. Recalling that the induced metric on the
maximal surface ¥ is given by 4e“1~%2|dz|? and the second fundamental form only
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depends on ¢, we deduce (cf. Proposition 4.8) that the embedding data of X, con-
verge to the embedding data of X, thus 3, converges to X up to global isometries of
H22,

Since ¥, and ¥ are space-like surfaces, they can be seen, together with their
boundary at infinity, as graphs of 2-Lipschitz functions f,, f : D?> — S2. In par-
ticular, uniform convergence on compact sets of ¥,, to ¥ implies that A, converges
to A. Moreover, we remarked, just prior to the statement of Proposition 6.4, that
these graphs extend to uniformly Lipschitz maps of the closed disk. Thus the limit
points of the rays o, (e?t) converge to the limit point of the ray o(e?t), hence v,
converges to v. O

6.3. Properness. Let [¢;] be a sequence of polynomial quartic differentials of degree
n that leaves every compact set in the moduli space MQ,,. We consider a represen-
tative ¢; € [¢;] that has a root at the origin. Therefore, we can write

g = qi(2)dz* = (2" an_1,2" "+ Fapiz)de?

for some a;; € C, and we must necessarily have that |a;;| — 400 as i — 400, for
some j = 1,...,n — 1, up to subsequences. The idea now is to re-scale the variable
z appropriately, so that ¢; converges to a polynomial quartic differential of lower
degree.

Lemma 6.7. There exists a unique sequence of complex numbers \; such that
qi(/\i_lw)/\l-_4dw4

converges, up to subseqeunces, to a monic non-constant polynomial quartic differen-
tial oo of lower degree.

Proof. We describe an algorithm to find such a sequence A;. Let j be the largest
index such that |a;;| diverges as i — +oo and define A; so that A;”’ _4aj,i = 1. Let
us then consider the index 5 — 1. Two things can happen:
(1) if )\i_j _3aj_1,i is uniformly bounded, we keep the same sequence A; and we
move to the index j — 2;
(2) if )\i_]_g’aj_l,i is unbounded, we replace \; with A, such that (X)) ™/ 3a;_1,; =
1. Notice that we must necessarily have

therefore )\i_j _4aj’i (where we use the new );) tends to 0. We then move to
the index j — 2.

When we arrive at the index 1, the sequence A; that we end up with has the property

that the product Ai_]_4aj7i is uniformly bounded for every j = 1,...,n—1, and every
subsequential limit of g;(\;” 1w))\i_ 4dw* is monic, non-constant and of degree strictly
less than n. ]

We will say that g is a re-scaled limit of ¢;. We will show the following;:



PLANAR Sp(4,R)-MINIMAL SURFACES WITH POLYNOMIAL GROWTH 54

Proposition 6.8. Let [¢;] € MQ,, be a diverging sequence. Let 1 < m < n —1 be
the degree of its rescaled limit qo. Let A; be the boundary at infinity of the maximal
surface 3; corresponding to [q;]. Then there is a sequence A; € SO(2,3) such that
A;\; converges to a future-directed, negative, light-like polygon in Ein? with m + 4
vertices.

In particular, we deduce
Corollary 6.9. The map « is proper.

Proof. We have to show that, if [¢;] € MQ,, is a diverging sequence of polynomial
quartic differentials of degree n, then «a([g;]) is a diverging sequence in MLP, .
Let A; be polygons representing «([g;]). By Proposition 6.8, there is a sequence
A; € SO¢(2,3) such that A;A; converges to a future-directed negative light-like
polygon in Ein'? with fewer vertices that is not a quadrilateral. The following
lemma shows that [A;] cannot be contained in a compact set of MLP, . g

Lemma 6.10. Let [A,] be a sequence of equivalence classes of future-directed nega-
tive light-like polygons in Einb? with k-vertices converging to [A] € MLP, . Let B,
be any sequence in SOy(2,3). Then, the only light-like polygons that can appear as
limits of subsequences of Bp,A\, are

e cither equivalent to A in the moduli space MLP, ;
e or quadrilaterals.

Proof. For this proof, it is convenient to use the quadratic form in R with signature
(2,3) given by
(x,2) = 21125 4 2w914 — 23

with respect to the canonical basis {e1,...,e5} of R3. We denote by A the group of
diagonal matrices in SOg(2,3) and by AT C A the semigroup of diagonal matrices
with eigenvalues \; > Ao > 1 > /\% > /\—11 in this order. This choice induces a KAK-
decomposition, where K is a maximal compact subgroup of SOy(2,3). We can thus
write B, = K| D,K, with D, € A" and K,, K], € K. Up to subsequences, we
can assume that K, and K converge to K and K’ respectively. Moreover, we can
assume that the vertices of A, converge to the vertices of A. We will see that the
subsequential limits of B,A,, depend on the behaviour of the eigenvalues \;,, of D,,.

Let us first assume that A1, is uniformly bounded. Then, up to subsequences,
we can assume that D,, converges to a diagonal matrix D so that the isometries B,
converge to B = K'DK. It is clear then that B,A, converges to BA. This, in
particular, means that acting on A,, by a converging sequence of isometries does not
change the equivalence class in MLP, of the limit.

Let us now consider the case of A2, unbounded and choose a subsequence so that
A2y — 400 as n — 400. By the previous remark, it is sufficient to understand the
behaviour of D,, on the polygons A!, = K,A, which converge to A" = KA. Let
us choose vectors v;,, and v; fori =1,...,k in R® such that each v, Projects to a
vertex p;, € Al,, the vector v; projects to the vertex p; € A’ and v;,, converges to
v; as n — 4o00. This means that if we denote by a;;, (resp. a;;) the component



PLANAR Sp(4,R)-MINIMAL SURFACES WITH POLYNOMIAL GROWTH 55

of vi, (resp. v;) along ej, we have lim, o ajin = a;; for every j =1,...,5. We
then note the following;:

(i) if A pa1in and Agpa2;y, are not both uniformly bounded, then D,v;, limits

to a point on the photon P(Span(ey, e2));
(ii) if both A1 paiiyn and Ag pag .y, are bounded, we denote by g; the projective limit
of Dnvim.
We notice that (ii) can only happen for those indices 1 < ¢ < k such that a;; =
az,; = 0. Since the vectors v; project to vertices of a negative light-like polygon, they
are isotropic, thus necessarily az; = 0 as well. This implies that such vectors v; are
orthogonal to each other, so there can be at most two of them in A’. This shows
that, the only light-like polygon that can be the limit of Al is a quadrilateral.

The argument is similar if A2, is bounded but Aq, tends to +oo. In this case, up
to subsequences, all vertices [v; ] that do not converge to [es] (so all vertices, except
at most one) necessarily limit to a point in the light-cone of e;. The only light-like
polygon with this configuration of vertices is a quadrilateral. O

Proof of Proposition 6.8. Consider the change of coordinates on C given by w = \;z,
where ); is the sequence found in Lemma 6.7. In the w-plane, the quartic differential
can be written as

g = (ji(w)dw4 where §;(w) = /\Z-_4qi()\i_1w),

hence it subconverges uniformly on compact sets to some g, of degree 1 < m < n—1.
Recall that the induced metric on the maximal surface ¥; is given by 4e¥t:i ~42i|dz|?
where u1; and ug; are the solution of the system of PDE

Buyi(z) = 1D =0s(e) — =2us(2) gy ()2
AU/Q 1(2) — e2u2,i(z) _ eulli(z)—uZi(z) X

Changing to the w-coordinates, the functions
vii(w) = ui (A w) = 3log(INil)  and  vai(w) = uzi (A w) — log(|\i])
satisfy the differential equations

{A’Ul Z(w) — evl,i(w)_UQ,i(w) _ e—2v1,i(w)|qi(w)‘2

(62) A’UQZ'(UJ) — 62@2,i(w) _ evlyi(w)—vgyi(w) ]

Because the coefficients of polynomial §;(w) converge, the sub-solution and super-
solutions found in Section 2 show that

glog(@(w)‘) < vii(w) <

< 10g(1d:(w)]) < va4(w) < 3 log(1d:(w)| +3C)

hence vy ; and vy ; are uniformly bounded on compact sets, and from Equation (6.2)
we also have a uniform bound on their laplacian. Therefore, standard elliptic theory

log(|g:(w)| + C)

co| — Cco| W
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tells us that vy ; and v ; converge smoothly to solutions v o and v2 o of the limiting
system of PDE

Avl,oo(w) — evl’oo(w)—vgyoo(w) . 6_2U1’°°(w)‘QOo(w)‘2
AUQ oo(w) = 621)2,00(11)) — evl,oo(w)_v2,oo(w) .

On the other hand, by uniqueness (Remark 2.7) of the solution to (2.1), the pair
(V1,00, V2,00 ) defines the embedding data of a maximal surface X in H?? with poly-
nomial quartic differential ¢, and hence polygonal boundary with deg(go) + 4
vertices. It follows that the sequence of maximal surfaces ¥; converges smoothly on
compact sets to Yoo, up to global isometries of H?2. In particular, as in the proof
of the continuity of «, the boundary at infinity of ¥; converges to the boundary at
infinity of ¥, which is a light-like polygon with m + 4 vertices, up to the conformal
action of SOg(2, 3). O

6.4. Injectivity. The following lemma is crucial in order to prove the injectivity of
the map a:

Lemma 6.11. Let I' C Ein'? be the graph of a 1-Lipschitz map. If there exists a
complete mazimal surface ¥ C H?? spanning T, then it is unique.

The proof will be an adaptation "at infinity" of the argument used in |[CTT19|
in the case of boundary curves invariant by a cocompact group, which consisted
of an appplication of the maximum principle to a carefully chosen function defined
on ¥ x 3. In our non-compact context, we will need the following version of the
maximum principle:

Theorem 6.12 (|Omo67|). Let M be a complete Riemannian manifold with sectional
curvature bounded below. If g is a smooth function on M with sup(g) < 400, then
there exists a sequence of points xi € M such that

. 1 w|?
lim g(rg) =suple)  Jerad(9)e,| <+ Hess(g)e, (wow) < VO vy € 7, 11

Proof of Lemma 6.11. Suppose, by contradiction, that there exists another complete
maximal surface ¥’ with boundary at infinity I'. We choose their lifts $ and ¥/ to
H22 in such a way that they share the same boundary at infinity. As a consequence,
the function

B:Yx¥Y SR
(u,v) = (u,v)

is always non-positive ([CTT19, Lemma 3.24]). Moreover, if & and ¥’ are distinct,
then we can find a pair of points (ug, vg) € % x ¥’ such that B(ug, vg) > —1 (|CTT19,
Lemma 3.28|). In particular, —1 < sup(B) < 0 (|CTT19, Lemma 3.25]). Notice that
by a general result of Ishihara (|[Ish88]), maximal surfaces in H*? have uniformly
bounded second fundamental form, thus the Riemannian manifold M = xS
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has bounded sectional curvature. By the Omori maximum principle, we can find a

sequence of points (uy,vy,) such that
1 2
n

lim B(up,v,) = sup(B) lgrad(B) 1]

k—o00

< HeSS(B)(un,vn)(;Yna ’Yn) <

(un,vn) |

for every geodesic path 7, : [—€,¢e] = M with v,(0) = (up,v,). We will follow the
construction of ([CTT19]) in order to find a sequence of paths +, which will give a
contradiction.

The second derivative of B along a geodesic path v(t) = (u(t),v(t)) is given by

. d
Hess(B) (1, 0) (u(0),0(0)) = a2 OB(u(t),v(t))
t=

= 2(i, 0) + [[a]*(u(0), v(0)) + [[9[|*(u(0), v(0))
+ (I1(w,u),v(0)) + (IT'(0,0),u(0)) ,

where I1 and IT' denote the second fundamental form of & and respectively.
Since ¥ and 3’ are maximal surfaces, the quadratic forms B(i) = (II(w,1),v(0))
and p'(0) = (II'(0,0),u(0)) are traceless. Let A and X' be their positive eigenvalues.
Let (un,vy,) be the sequence of points given by the Omori maximum principle. We
explain how to choose 7, assuming that the positive eigenvalue A, of 5 is larger than
the positive eigenvalue A, of 3’ at the point (uy,v,); for the other case it will be
sufficient to interchange the role of w, and v, described below.

We choose tangent vectors (tin, Vi) € Ty, v,)M such that

Han” =1 Up, =

where [(1,) = A, and p is the orthogonal projection onto T, $/. This choice of Uy,
and consequent choice of v, will force the terms (11 (1w, 1), v(0))+(II'(0,0),u(0)) >0,
as in [CTT19|. Next, since we have an orthogonal decomposition

R%*? = Span(v,) L T, %' L N, 3/

we may write i, = kyv, + p(ty) + wyp, with w, € N, 3. Since the normal bundle
of a space-like surface in H?? is negative definite, we have that |jw,| < 0. Hence,

1= [[inl* = —k5 + Ip(in) [I* + llwall < —K + llp(an)[|?
which implies that ||p(1,)||?> > 1+ k2. Therefore,

(U, On) = (knpvp + p(ty) + wp, %) = [|p(tn)[| > /1 + k2.

We notice that k,, decays to zero as n goes to infinity because

[t |
n

[Fn| = [(in; vn)| = [dBu,, 0,) (ln; 0)| = [9(grad(B) u, v,), (in; 0))| <
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where we denoted with g the Riemannian metric on M.
The Omori maximum principle then gives that

2

- > Hess(B) (u,, v0) (Un; 0n) > 20/1 4 k2 + 2B (up, vy)
and letting n go to infinity we obtain that

0 > limsup 24/1 + k2 + 2B(uy, v,) = 2+ 2sup(B) .

n—-+o0o

Thus, sup(B) < —1, but this contradicts the fact that —1 < sup(B) < 0. O
Proposition 6.13. The map & is injective.

Proof. Let q,q' € TQ, be different monic and centered polynomial quartic differen-
tials. If there exists j € {1,...,n} such that ¢ = T/q, where T(z) = (p44a2 is a
generator of the Z,4-action, then the equivariance of the map already implies that
a(q) # a(q'), because the marking of the polygon at infinity is changed. Otherwise,
suppose by contradiction that &(q) = &(q’). Then, we can choose maximal surfaces
Y and ¥’ with polynomial growth ¢ and ¢’ with the same boundary at infinity A.
By Lemma 6.11, the surfaces ¥ and ¥’ must coincide, and, in particular, have the
same embedding data. Therefore, there exists a biholomorphism 7”7 of C such that
T.q' = q, but this is impossible because ¢ and ¢’ do not lie in the same Z,,4-orbit
and they are both monic and centered. O

Theorem 6.14. The map & induces a homeomorphism
a:MQ, - MLP,

between the moduli space of polynomial quartic differential on the complex plane of
degree n and a connected component of the moduli space of future-directed, negative
light-like polygons in the Einstein Universe with n + 4 vertices.

Proof. The map & : 79, — TLP,  , is continuous and injective by Proposition 6.13.
It is also proper by Corollary 6.9, hence it is a homeomorphism onto a connected
component of TLP , by the Invariance of the Domain. Since it is Zj,14-equivariant,
it decends to a homeomorphism « : MQ,, — MLP,, , between connected components
of the moduli spaces. O

7. ESTIMATES ALONG RAYS

We wish to apply our results in the (new) setting of closed surfaces. In this
direction, let X = (S,.J) be a closed Riemann surface and let ¢ be a holomorphic
quartic differential on X. Recall from Section 1 that, out of these data, one can
construct an Sp(4, R)-Higgs bundle (€, ) over X in the Sp(4, R)-Hitchin component

WhereﬁzK%@K_%@K_%@K% and

S@:

O O O
O = OO
OO oK
OO = O
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In this setting, it is well-known that the solution of Hitchin’s self-duality equations
is unique and diagonal of the form g = diag(g1, g5 L 97 1 g2). Works of Collier-Li
(|CL17]) and Mochizuki ([Moc14]) describe the asymptotic behaviour of the metric
gs along rays of quartic differentials ¢; = sqg away from the zeros of qg. Here, we
use the harmonic metric H found in Theorem 2.1 in order to construct sub- and
supersolutions that will describe the asymptotics of the harmonic metrics g5 at and
near a zero. We will prove the following result:

Theorem 7.1. Assume p € X is a zero of order k > 1 of the quartic differential
qo- Let o denote the conformal hyperbolic metric on X. Then, there is a sequence of

radii rs — 0 such that

3 3 _ 1
=O(s¥102) and gQél,‘ = O(s*ig
" 1B(p,rs)

N

)

-1
gl’s IB(:DJ‘S)
along the ray qs = squp as s — +0o0.

As a geometric corollary to this analytic result, we will find that that the harmonic
metrics gs “localize” in the sense that the maximal surfaces associated to the quartic
differentials sqy, equipped with a basepoint p, converge in the Gromov-Hausdorff
sense to the polygonal maximal surface associated to the divisor of gy at p. We
describe this more carefully in Corollary 7.8 at the end of the section.

To begin the proof of Theorem 7.1, let us fix local coordinates (V,z) around p
such that go(z) = z*dz*. We introduce new coordinates (V, ;) defined by

1
(s = sFFiz

so that

qu(gs) = (Cs)*QS = Cfdgg .
We notice that if U = 2(V) ={2 € C| |z| <€}, then Us =((V) ={z€ C | |2]| <
esk%‘l}, thus the sequence {(V, sqo, p)}s>0 converges geometrically to (C,¢*d¢*,0).

Let o be the hyperbolic metric on X compatible with the complex structure. We
denote
o = 0(2)|dz|? = 6(C)|dGs|>  where &(C,) = sTio(2)
JAPRES U(z)_lazag
As = OA'(CS)_lagsﬁc;.
Let g = (gl,ggl,gfl,gg) be the solutions of Hitchin’s equations on (&, ). We
define two functions 1,19 : X — R by the property that
L =eVlo and 1 =e¥20
g1 92
The pair (11, 12) is the solution of the system of PDEs, defined on the whole surface,

2
(71) Aowl s 67/}1_7#2 _ 6—21/11|3_|4 + %,‘Q(O‘)
Agihy = e2¥2 — ¥1—v2 4 % k(o)

wlw
N



PLANAR Sp(4,R)-MINIMAL SURFACES WITH POLYNOMIAL GROWTH 60

where k(o) denotes the Gaussian curvature of o.

We denote by {(17],13)}s>0 the solution to the above system along the ray {gs }s>o.
When studying the equation on V| or in general in a neighbourhood of a zero of order
k for qp, it will be convenient to rescale the background metric o to a metric o, so
that

—2
K(os) = —sF+H |

2
It is straightforward to verify that the metric o5 = s%+1 ¢ satisfies the above condition
and we can write in local coordinates

0s = 05(Cs)|dC|*? where 64(Cs) = S%HJ(CS) .

Rewriting Equation (7.1) using the background metric o in the coordinate (s, we
obtain
Aa_s (,llz)f k+4 10g(8)) — eﬂ’f—ﬂ)z k+4 IOg(S) _2(#)1 k:+4 IOg(S)) Iésli + % ’fg
G4gF+a s
S

4
A, (%s L 1og(s)) _ 205w lose)) _ (- 08(9) _ (Wimrkylog(s) 4 1k(a)

E
M

Therefore, we deduce that the functions

vP(G) = wi(G) — o los(s)  v3(C) = ¥3(C) —

are solutions of

k+4

(7.2) {Aasvf:e”f—vi_ —2vllqs\ 1 31(6)

Ag vy = €25 — Vi3 4 4H(03) .
We notice that the coefficients of the above equations converge to the planar

Hitchin’s equations with polynomial quartic differential goo = ¢*d(* because, as s
tends to +o00, we have

|Gs|* = |CEAC? — [goo|?
k(6s) = 0
Gs(Cs) — 1.

This suggests that v7 restricted on V' should converge to the solutions of the planar
equations, here making crucial use of the uniqueness result of Remark 2.7. We prove
this using the sub- and supersolution method, together with the uniqueness result
Proposition 6.13.

Let us start with the subsolutions. Let {U;})¥, be pairwise disjoint natural coor-
dinate charts such that each of them is centered at a zero of ¢g of order k;. We can
assume that each natural coordinate identifies U; with {|z| < €} C C. We define the
following functions on X:

ui(e) = ma (w7 (2). D1og (1)) wge) = man (w21 rog (121 ).
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Here, for z € U;

. 3 1
wili(z) = P log(s) + u1i(sk*1z) — B;
(2

1
wS’Ui(z) log(s) 4+ ugi(ski+tz) — B;

- k; +4
where B; > 0 needs to be chosen, and (uj 4, u2,;) is the solution to the planar Hitchin
equations with polynomial quartic differential ¢**d¢* found in Theorem 2.1.

Lemma 7.2. There exists a constant By > 0 such that for all B; > Bq the functions
ws for j =1,2 are continuous for every s sufficiently large.

Proof. Let us first notice that at a zero of gy, the functions w;f are well-defined

because each wj"Ui takes a finite value at z = 0. We need to show that we can choose
B; > 0 so that if z € 9U; we have

s,U; 3 QS2 s,U; 1 QS2
wl’Ul(z)§§10g<|Ul> and wQ’U’(z)SglogCJl

for every s large enough. We give the details for wf’U", the other case being analogous.

By definition of wf’Ui the above inequality can be re-written as

(7.3)

o 3 lgs|?
W log(s) + u1,i(sFit1z) — B; < glog ol I

The estimates on u;; (see Equation (2.4)) tell us that there exists ¢; > 0 and sp > 0
such that for every s > sg and for every z € 0U; we have

s,U; 3 1
Ui — 1 i k;+4 _ Bi
Wi (2) = g loB(s) + ur o (s7772)
(74) < log(s) + 2 log(s% 21%) + ¢ — Bi
ki +4 4

k;
= Zlog(S) + STlog|e| +c — B; .

On the other hand, if z € 9U;, the right-hand side of Equation (7.3) becomes

3 log (|q5|2) 3 log <522|2ki)
Q 2 ] TR 4
(7.5) 8 o 8 ot(z)

3 ; 1
> —1 —1 — minl — ] .
Z 7 og(s) + 1 og(|el) + |H|11:n 0g (a4(z))

Comparing Equation (7.4) and Equation (7.5), we observe that the inequality in
(7.3) is satisfied for s > s¢ if we choose a positive B; > By with

3 1
By > ¢ — 2 minlog [ —— ) .
0> 6~ gmintos (1)
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A similar inequality on By is obtained when studying the function w‘;’Ui, and it is
then sufficient to take By large enough to satisfy all the inequalities found in this
way for each Uj. O

Lemma 7.3. There exist constants B; > 0 such that the functions w; are subsolu-
tions to Equation (7.1) for s large enough.

Proof. Let us first show that the functions w]S Ui for j = 1,2 are subsolutions on Uj.

By the discussion at the beginning of this subsection, it is actually easier to consider
the functions

Us 3 Ui 1
wy’ e log(s) and wy”' — o log(s) ,

and show that they are subsolutions for Equation (7.2). Let F} = Fi(v§,v3) and
Fy = F»(v§,v3) denote the functions on the right-hand side of Equation (7.2). We
have to show that we can choose B; > By so that

Ui U Ui
Ag, (wy k+410g(5) > Fy (wy k+410g(5) w; k+410g(5)

s,U; sU

s,U;
As, |wy k+4 log(s) ) > F (w}’ e +4 log(s),w k+4 log(s)

Recalling that the pair u;; and ug; are the solution to the planar Hitchin equations
with polynomial quartic differential ¢*d¢?*, the above system is equivalent to

eriimiai — e 2 2BICAE | 85 < emrimtas g2 chi?
e2Uz2,ip—2B; _ guii—uz 4 i,{(o.s) < e2u2,i _ oUl,i—u2,i
which gives
k12 62Bi
—e—%mygkz\?(e?;i — 1)+ 3k(0s) <0
62U2,i(€_2Bi —1)+ i/-;(o's) <0.

The above conditions are satisfied provided B; > 0 and s > 0 are large enough
because 6, — 1 and k(0os) — 0 as s — 400, and of course, the function u;; are
bounded on U;. Clearly, if necessary, we can increase B; so that B; > By.

It is straighforward to check that the pair ( log ("“' ) , tlog (lqg| )) is a solution
outside the zeros of qg, hence, in particular, it is a subsolution. The functions (w3, w3)
are then subsolutions as well because of the monotonicity property of the functions
G; in the right hand side of Equation (7.1). Assume, for instance, that, at a point
z € U;, we have

s s,U; d s _ _1 ‘QS( )|2
wi() = wi(z) and wi(s) = 5 log (3
Then we have

= 2
Voui(2) = Voui" (2) > Gr(wi" (2), w3 (2)) > Gy ( (2), 5 log (‘qi(ﬂ)' >>
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where the first inequality comes from the fact that the pair (w‘f’U",wS’U) is a sub-
solution and the second inequality follows from G being decreasing in the second
variable. Similarly,

V,us(z) = %VU log (!qs((j4)!2> e (8 (\qs£4)\2) Slog (Iqs((f4)!2))
> Go <wi’U '3 log (\qs£4)|2>> :

The other cases can be proved analogously. O

Let us now move on to the supersolutions.

Lemma 7.4. There exist positive constants C1(s) and Ca(s) such that (C1(s), Ca(s))
is a supersolution of Equation (7.1) along the ray qs = sqo with respect to the back-
2

round metric os = s¥4g. Moreover, we can choose them so that, as s — +00, we
S ’ ) )
have

C1(s) — 3Ca(s) = O(s 71) and Ch(s) — ﬁ log(s) = o(1) .

Proof. The pair (C1(s),C2(s)) is a supersolution of Equation (7.1) with respect to
the background metric o, if it satisfies

{ecl(@—cxs) — e 2@l 360 >0

(7.6) ¢2C(s) _ ¢Ci(s)=Ca(s) 4 i;(%) >0

Dividing the second equation by €2¢() | we get
0< 1 — (C1(9)=302(s) _ L —20a(5) ;5%
- 4
This is satisfied for s sufficiently large if we choose for example
2

Ci(s) = 3Ca(s) — %sk—_H ,

provided C(s) > 0. Let us now verify that this choice makes also the first inequality
in (7.6) true for s large enough. We can estimate

eC1(S)—C2(s) . _2C1 |QS| §3k;ﬁl

04 4

2
> (CLO=Ca(s) _ o=2C1(5) o las°) _ 3 =2
X ol 4

-2 -2

(202(5) =5 _ =602 =25 0 (o7 — Zsm

_ £202() <e—s’“2+4 o802 (s) g O(sTH1) — 26_202(8)5k_+24>
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and we can simply define Cy(s) by the property that
=2 =2
e_sk;r‘l 76_802(3)6—5]€T+4O(5k2—f4) - 26_202(8)5";_& -0

Notice that this implies that necessarily Co(s) diverges as s — +o00, precisely,

Ca(s) ﬁlog@ — o).

Corollary 7.5. The constants

C1(s) = Ci(s) + log(s) and Ca(s) = Ca(s) + log(s)

3
k+4 k+4
are supersolutions for Equation (7.1) with respect to the background metric o.

Recall that (V,z) is a coordinate chart centered at the zero p of gg of order k.

We then improve these supersolutions (6’\1(5), @(s)) on V using the solutions to the
planar Hitchin’s equations. We define the functions

W = min(W,C1(s)) W3 = min(W", Ca(s))
with

Wlsv(z) = log(s) + u1(3k+r4z) + 24

k+4
wiVi(z) = ! log(s) + ug(sklﬂz) + A
2 k+ 4 ’
where A is a positive constant to be chosen later and (u1,ug) is the solution to the
planar Hitchin’s equations with quartic differential ¢*d¢*.

Lemma 7.6. There exists a constant Ay > 0 such that for every A > Ag the func-
tions W7 are continuous for every s large enough.

Proof. The argument is similar to that in the proof of Lemma 7.2. We first notice
that at the point p, we will always have W7 (p) = W;’V(p) for s large enough because
u; is uniformly bounded in s at z = 0, whereas C}(s) diverge as s — +o00. It is then
sufficient to check that we can find A > 0 such that for s sufficiently large and for

all z € 9V the following inequalities hold

(7.7) WV (z) > Ci(s) and W5V(z) > Cy(s) .
Let us consider the first condition. Now, of course,
w3 (s) +ur(s72) + 24
L Tkta® !

and so the estimates on u; (see Equation (2.4)) tell us that there exists ¢; > 0 and
s0 > 0 such that for every s > sp and for every z € OV we have

3 3k 3k
. wY > ] " 2 - 24 .
(7.8) I og(s) + Ty og(s) + 1 og(le]) —e1 +
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On the other hand, by Lemma 7.4, there exists a constant d; such that for s > sg
we have

(7.9)  Ci(s) = Cu(s) + log(s) < log(s) + d1 + = ; 7 log(s) -

3 3k
k+4 = 4k +4)

Comparing Equations (7.8) and (7.9), the inequality in (7.7) is satisfied if we choose
1 3k
A> 3 (dl —c1 — Zlog(\e)) .
The same argument applied to W v gives
k
A>dy—co— Zlog(|e|) .

The proof follows by choosing

1 3k k
Ap = max (5 <d1—cl——log(| |)) 2—02——10g(\e|) ) .
]

Lemma 7.7. There exists a constant A > Ag such that the functions W3 are super-
solutions to Equation (7.1) for s large enough.

Proof. 1t is sufficient to prove that st,v for j = 1, 2 are supersolutions on V', because
then the same argument as Lemma 7.3 applies. By the discussion at the beginning
of this subsection, it is actually easier to consider the functions

3
ki+4 ki+4

and show that they are supersolutions to Equation (7.2). Let F} and F5 denote the
functions on the right-hand side of Equation (7.2). We have to show that we can
choose A > Aj so that

s,V s,V s,V
As, (W] k+4 log(s)) <F (Wph = % log(s), W, k+4 log(s ))
Ag, (WY — 24 log(s)) < B (WY = Blog(s), 3" — 2 1og(s)) .

Wf’v log(s) and WQS’V log(s) ,

Recalling that (u1, u2) is the solution to the planar Hitchin equations with polynomial
quartic differential ¢¥id¢?*, the above system is equivalent to

6u1—uz(€A _ 1) _ e_2u1|Ck‘2 (% - 1) + %H(Us) >0
e2(eh — 1) + ¢ (1 - e?) + fr(0s) > 0

In the first inequality we notice that, since k(o) tends to 0, for every A large enough
we can make the sum of the first and last term positive. Note that us is bounded
away from —oo by Lemma 2.3, so we can take the sum of the first and third terms
to grow like €24 in A. Moreover, the second term can be made non-negative for A
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large enough and s large enough because &, tends to 1. Dividing by e%“2, the second
inequality is equivalent to

1
(62A — 1) + €u1—3u2(1 — €A) + Zﬁ?(o’s)e_zqm >0.

From (2.4) and (2.5), we know that u;(¢)—3u2(¢) = o(1) as |(| = +o00. Therefore the
condition holds for A large enough, because the coefficient €24 — 1 is dominant. [J

Proof of Theorem 7.1. In the local chart (V, () around the zero p of order k of the
quartic differential ¢g, the sub- and super-solutions found in Lemma 7.3 and Lemma
7.7 imply that the densities (¢7,13) satisfy

(7.10) wi <Y < W7 and wi; <5 < W5 .

We already remarked that the sequence of coordinate charts (V, () converges ge-
ometrically to (C,¢). Consider a point ¢ € C that is the limit of the sequence

1 1
(s = sFHizg, with z; = s7 #+1((q) € U. Evaluating Equation 7.10 at (s, by definition
of the functions w3, W7 and ¢;, we obtain

ui(Cs) = B <wi(zs) < uilCs) + 24
u3(Cs) = B <wp(zs) <up(Cs) + A

Since (s — ((q) as s — 400, the above inequalities give uniform bound (independent
of s) on every compact set in V for the functions v] and vj and their Laplacian.
Therefore, they converge C1'® on compact sets to functions v$° and v$° defined on
the limiting plane (C, (). Since (vj,v5) is a sequence of solutions of Equation 7.2,
the limit (v, v3°) is a weak solution of the system of PDEs obtained by taking the
limit as s — +oo of the coefficients. As observed before, this is the planar Hitchin’s
equation with polynomial quartic differential g = ¢¥d¢*. Hence, by the injectivity
portion of Theorem C (see especially Proposition 6.13), the functions v$® are the
solutions found in Theorem 2.1. In particular they are smooth and the convergence

(7.11)

1
of v§ to v7° is smooth as well. This shows that for the sequence of radii ry = s *+1,
the harmonic metric gs on the ball centered at p and radius r satisfies

and similarly

as s — +oc. O

As a consequence of this proof — especially the use of the uniqueness of the solutions
v7° in the last paragraph — we can describe the pointed Gromov-Hausdorff limit of
the family of maximal surfaces in H?? associated to the Higgs bundles (&, p;), as
defined in [CTT19].

Corollary 7.8. Let p € X be a zero of order k of the quartic differential qo. Let
Y, denote the mazimal surfaces in H?? associated to the family of Higgs bundles
(€, ps) and denote by I its induced metric. Let (X, Iso) be the conformally planar
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mazimal surface (with polygonal boundary) with polynomial quartic differential ¢*d¢*
endowed with its induced metric. Then (Xs, Is,p) converges, up to subsequences and
composition by global isometries, to (Yoo, Ino,p) in the pointed Gromov-Hausdorff
topology.

Proof. Let (V,z) be a natural coordinate chart for qo so that qo(z) = zFdz*. We

already showed that the new coordinate charts (V, (s) defined by (s = sﬁ‘lz converge
geometrically to the complex plane (C,¢) and in these coordinates g5 = (*d(?* tends
t0 oo = C*d¢* uniformly on compact sets. It is thus sufficient to prove that the
induced metrics I restricted to V' converge to I, smoothly on compact sets, up to
subsequences. This follows immediately from the proof of Theorem 7.1. In fact, up
to subsequences,

Ly, = 4e¥17 V30 (2)|dz]? = 4e"T%5,(Co)dCs|* — 4T 7 ]dC)? = oo -
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