PLANAR MINIMAL SURFACES WITH POLYNOMIAL GROWTH

IN THE Sp(4,R)-SYMMETRIC SPACE
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ABsSTRACT. We study the asymptotic geometry of a family of conformally planar
minimal surfaces with polynomial growth in the Sp(4, R)-symmetric space. We
describe a homeomorphism between the “Hitchin component” of wild Sp(4, R)-
Higgs bundles over CP* with a single pole at infinity and a component of maximal
surfaces with light-like polygonal boundary in H?2. Moreover, we identify those
surfaces with convex embeddings into the Grassmannian of symplectic planes of
R*. We show, in addition, that our planar maximal surfaces are the local limits
of equivariant maximal surfaces in H>? associated to Sp(4,R)-Hitchin represen-
tations along rays of holomorphic quartic differentials.
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Let S be a surface of finite type and let GG be a real semisimple Lie group. Higher
Rank Teichmiiller theory is a quickly growing area of research that studies dynami-
cal, geometric and algebraic properties of representations of m1(S) into G (|[Wiel8]),
whose origins can be traced back to the pioneering work of Hitchin on Higgs bundles
(|[Hit87]), and to the foundational work of Corlette (|Cor88|), Donaldson ([Don87]),
and Simpson (|Sim90]). In brief, they developed a theory, generally referred to as
nonabelian Hodge correspondence, that provides homeomorphisms between three
natural objects: the character variety x(I',G), the de Rahm moduli space of flat
connections on principal G-bundles over a Riemann surface X = (S,J); and the
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Dolbeaut moduli space of G-Higgs bundles on X. A fundamental role in this theory
is played by equivariant harmonic maps from the universal cover of X to the sym-
metric space G/K (|Lil9a]). In particular, when G is (non-exceptional) real split
of rank 2 the theory is very rich and well-understood: by work of Hitchin (|Hit92|)
there is a connected component in the character variety that generalizes Teichmiiller
space; there is a unique preferred choice of conformal structure on S that makes
the associated equivariant harmonic maps conformal, and thus (branched) minimal
immersions (|Labl7]); and representations in this connected component all arise as
holonomy of geometric structures on (bundles over) S (|[Barl0], [CTT19], [Lab07],
[Lof01], [Mes07], [GWO08]).

More recently, the nonabelian Hodge correspondence has been extended to include
surfaces with punctures and Higgs bundles with meromorphic Higgs field with tame
or irregular singularities at the punctures (|[BB04|, [Boal4|, [Sim90]). The main aim
of this paper is to describe harmonic maps arising from Higgs bundles over CP!
with polynomial Higgs field for the Lie group Sp(4, R) and the associated geometric
structures. In particular, we aim to unite (see Theorem C) two perspectives: the
complex values of the polynomial in the plane with the synthetic pseudo-Riemannian
geometry of polygons in the boundary of H*2. The latter naturally reflects some com-
binatorics of flats in the symmetric space of Sp(4, R).

In turn, the study of these planar Higgs bundles provides tools for studying fam-
ilies of representations that leave compacta in a character variety. In particular,
and in the setting of the Hitchin component of Sp(4,R) representations of surface
groups, consider a family of representations that has associated harmonic maps from
a Riemann surface X that are conformal and of energies growing without bound. In
that case, we show that the high energy harmonic maps localize in the sense that
the restriction of global harmonic maps of the surface to a small neighborhood on
the surface is well-approximated by the harmonic maps associated to a Higgs bundle
over CP! with polynomial Higgs field (for the Lie group Sp(4,R)).

Let us introduce some notation and terminology. Let f : C — SL(n,R)/SO(n) be
a harmonic map. We can interpret the differential df of f as a 1-form with values
in the vector space m = {A € sl(n,R) | A = A'}. The harmonicity of f implies that
the (1,0)-part ¢ = Of of its differential is holomorphic. We can thus associate to f
holomorphic k-differentials ¢ on the complex plane defined by qr = tr(gok). Notice,
in particular, that g1 = 0 and g2 is the Hopf differential of the harmonic map f. We
say that f has polynomial growth if ¢; are all polynomials. One naturally asks,

Question A. Given holomorphic polynomial k-differentials (qo, ..., qy), is there a
harmonic map f : C — SL(n,R)/SO(n) such that g = tr((0f)*)? Moreover, can
we describe its image?

In this generality, the above question is still open. The first work in this direction
is due to Han, Tam, Treibergs and Wan ([HTTW95|) who studied harmonic maps
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from the complex plane to the hyperbolic plane with polynomial Hopf differential,
showing that the quadratic differential determines a harmonic diffeomorphism from
C to an ideal polygon in H? with m + 2 vertices if m is the degree of the polynomial.
Recent work of Li ([Li19b]) shows, in addition, that such a harmonic diffeomorphism
is unique. A simple dimension count, however, shows that there cannot be a one-to-
one correspondence between polynomial quadratic differentials of degree m on the
complex plane and ideal polygons in H? with m + 2 vertices. Gupta ([Gup21]) ex-
plained this phenomenon in terms of rate in which the harmonic maps take the end
of C into the cusps and obtained a homeomorphism between these moduli spaces by
prescribing the principal part at infinity of the Hopf differential. Another interpre-
tation was given by the first author (|[Tam19]|), who, using anti-de Sitter geometry,
showed that there is actually a homeomorphism between polynomial quadratic dif-
ferentials on the complex plane and pairs of ideal polygons in H? with the same
number of vertices.

An answer to Question A is also known for n = 3 in case of conformal harmonic
maps. In joint work with David Dumas (|[DW15]), the second author used tech-
niques from affine differential geometry to show that there is a conformal equivariant
harmonic map from C to SL(3,R)/SO(3) with prescribed polynomial cubic differen-
tial g3. Moreover, they constructed a homeomorphism between the moduli space of
polynomial cubic differentials of degree m and convex polygons in RP? with m + 3
vertices, exploiting the fact that these harmonic maps arise as Gauss maps of hyper-
bolic affine spheres in R?, which project to convex sets, in this case polygons, in RP2.
In terms of the geometry of the minimal surface in the symmetric space, this result
can be interpreted as the solution of an asymptotic Dirichlet problem for minimal
surfaces in SL(3,R)/SO(3): the minimal surfaces found in [DW15] are asymptotic
to 2(m+ 3) flats at infinity with the property that each consecutive pair shares three
adjacent Weyl chambers at infinity.

In this paper we extend this last result to conformal harmonic maps with polyno-
mial growth into Sp(4,RR)/U(2). We prove the following:

Theorem B. Assume that q4 is a polynomial holomorphic quartic differential of
degree n. Then there exists a conformal harmonic map f : C — Sp(4,R)/U(2) such
that qu = tr((0f)*). Moreover, the associated minimal surface f(C) is asymptotic
to 2(n + 4) flats as |z| — +oo, with the property that any consecutive pair shares
four adjacent Weyl chambers at infinity. Such a collection determines the minimal
surface and qq uniquely.

Although the general idea of the proof resembles that in [DW15], the techniques
used are very different for two main reasons. First of all, we construct the harmonic
map using Higgs bundles: we associate to g4 an irregular Higgs bundle over CP! and
find the solution to Hitchin’s self-duality equations. We then obtain the minimal
surface by parallel transport of a unitary frame using the associated flat connection.
In particular, the study of the geometry at infinity of the minimal surface requires
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precise estimates on the parallel transport as |z| — +o0; this in turn involves the
study of the asymptotic behavior of solutions of a (coupled) system of elliptic PDE
on the complex plane (unlike the SL(3,R) case where the equation can be reduced to
a single scalar PDE). These techniques have the advantage that they might be easily
adapted to every cyclic Higgs bundle and thus used for the study of the asymptotic
geometry of planar minimal surfaces into SL(n,R)/SO(n) with only the requirement
that ¢, does not vanish identically.

The other main difference is that, in order to prove the second part of Theo-
rem B, we use techniques from pseudo-Riemannian geometry. Exploiting the low-
dimensional isomorphism PSp(4,R) = SO(2,3), we interpret the harmonic maps
found before as Gauss maps of maximal surfaces in the pseudo-hyperbolic space
H?? bounding a future-directed negative light-like polygon in the Einstein Universe
Ein'2, which we view as the Lorentzian conformal boundary at infinity of H22. We
show the following;:

Theorem C. There is a homeomorphism between the moduli space of polynomial
quartic differentials of degree n on the complex plane and a connected component of
the moduli space of future-directed negative light-like polygons with n + 4 vertices in
the Einstein Universe.

One cannot ignore the theme running through Theorem C, [DW15] and even
[HTTWO95| (compare [Wol91]). All of these works identify a “Stokes phenomenon”
in which certain cyclic Higgs bundles on CP! (with wild singularity at co) define
geometric shapes — ideal polygons in H?, convex real projective polygons in RP?, or
future-directed negative light-like polygons in Ein'? — which arise in a common way.
In particular, the associated harmonic maps from C to the symmetric space which
have a constant holomorphic differential, and (hence) map onto a flat, provide as-
ymptotic solutions (for the solutions of the Hitchin equations under study) in a region
of the plane defined by the geometry of the quadratic, cubic or (in the present case)
quartic differential; passing from one of these regions to another through a Stokes
direction in the plane provides that the solutions transition to be asymptotic to a
different flat in the symmetric space (typically sharing a collection of Weyl chambers).

However, unlike [HTTW95| or [DW15]|, we have reasons to believe that in our
case this moduli space of geometric structures that cyclic Higgs bundles on CP! in-
duce is not connected. Note that in both [HTTW95| and [DW15|, the geometric
objects under study (harmonic diffeomorphisms onto ideal polygons in H? and affine
spheres projecting onto convex polygons in RIP?) can arise only from one family of
wild (SL(2,R) or SL(3,R)) Higgs bundles on CP! with singularity at infinity that are
themselves reminiscent of the Higgs bundles in the Hitchin component in the case of
surfaces with negative Euler characteristic. In our context, however, already in the
classical setting of closed surfaces of genus at least 2, complete maximal surfaces in
H?2 can be obtained from families of Higgs bundles (JCTT19]) belonging to different
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connected components in the moduli space. This suggests that there should be a one-
to-one correspondence between the connected components of the moduli space of wild
Sp(4, R)-Higgs bundles over CP! and the connected components of future-directed
negative light-like polygons in Ein™2. In support of this idea, we find an explicit
parametrization of the moduli space of future-directed negative light-like hexagons
in Ein"? and show that this has two connected components. Our Theorem C gives
a homeomorphism with the component that does not contain the unique (up to the
action of SOg(2,3)) future-directed negative light-like hexagon in Ein'! ¢ Ein%?.
This is consistent with our conjecture as the family of wild Sp(4,R)-Higgs bundles
over CP' that we consider in this paper are those belonging to the Hitchin section
(cfr. [FN17]) that can never be reduced to SOq(2, 2)-Higgs bundles.

We believe that this study is also relevant to developing a harmonic map com-
pactification of the Hitchin component in the spirit of [Wol89|. By work of Labourie
(|[Lab17]) the Sp(4, R)-Hitchin component of a closed surface S may be parametrized
by the bundle Q* of quartic differentials over the Teichmiiller space of S. A nat-
ural question is to understand the asymptotic behavior of the representations pq
and of the associated ps-equivariant harmonic maps gs : S — Sp(4,R)/U(2) along
a ray qs = sqo of quartic differentials. Works of Collier-Li (|CL17]) and Mochizuki
([Moc14]) give a precise picture away from the zeros of the quartic differential gy (as
well as for general n-differentials). A consequence of Theorem B is an initial study
of the asymptotics of the harmonic maps g5 on all neighborhoods of the surface S in
this case of quartic differentials. In particular, we imagine rescaling the coordinate
chart in a neighborhood so that ¢gs converges to the polynomial quartic differential
2*dz* over C. We can then use the solution of Hitchin’s equations on the plane,
found in Theorem B, to give the following asymptotic estimates, which extend the
ones found in [DW22] (see also [LTW22b]) for the Blaschke metrics along rays of
cubic differentials to the present Sp(4,R)/U(2) setting:

Theorem D. Let g5 = sqg be a ray of holomorphic quartic differentials on a closed
Riemann surface X = (S,J). Let o be the conformal hyperbolic metric on X and
let gs = diag(gl,s,gisl,gl_,;,gg,s) be the harmonic metric on the Higgs bundle (&, ps)
over X, where

0 0 ¢gs O

3 _1 _3 1 00 0 1
E=K2pK 20K 206Kz and ¢s= 01 0 0
1 0 0 O

Let p be a zero of order k for qo. Then, as s — +00, there exists a sequence of radii

rs — 0 such that
3 3 _ 11
gt =O(s*¥ig2) and g+ = O(s¥+ig2) .
’ ‘B(Pﬂ“s) ’ |B(P77‘s)

As a consequence, we deduce (see Corollary 7.8) that the family of maximal sur-
faces in H?? arising from the Higgs bundles described above (|[CTT19]) converge in



PLANAR Sp(4,R)-MINIMAL SURFACES WITH POLYNOMIAL GROWTH 6

the pointed Gromov-Hausdorff topology to the planar maximal surfaces of Theorem
C with polynomial quartic differential z*dz*, where k is the vanishing order of qo at
the chosen base point. This “localization” result mirrors the result in [DW22| that
rays of affine spheres in the Labourie-Loftin coordinates converge to affine spheres
over regular polygons. We believe also that these estimates should play a role in
the study of the asymptotic holonomy along paths that go through some zeros of ¢
(cf. [LTW22b]) and in the description of the (rescaled) limiting harmonic map to a
building ([KNPS15]). We leave these aspects to future work.

Finally, we compare the present work to another recent response to [CTT19|.
Labourie, Toulisse and the second author [LTW22a| study the case of spacelike max-
imal surfaces in H2" with positive boundary on Ein"" and no specification of the
conformal type of the maximal surface (instead, their focus is on removing the restric-
tion in [CTT19] to a cocompact group action). In contrast, Theorems B and C in the
present work study boundary maps which are polygonal, hence only semi-positive,
on planar surfaces.
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1. BACKGROUND MATERIAL

1.1. Lie theory for Sp(4,RR). We recall briefly the relevant Lie theory for the Lie
group Sp(4,R). In particular, we fix once and for all an identification of sp(4,R) as
subalgebra of s((4, C).

We consider on C* the symplectic form given by

(1.1) Q= (-?m Iod> .
The complex symplectic group Sp(4,C) consists of all linear transformations ¢ in
GL(4,C) such that g'Qg = Q. Hence, its Lie algebra is
sp(4,C) = {X € gl(4,C) | X'Q+ QX =0} .
A simple computation shows that X € sp(4,C) if and only if it can be written as

A B
=@ )
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for some A € GL(2,C) and B,C € Sym(2,C). The anti-linear involution
p:Sp(4,C) — Sp(4,C)
g (g1

fixes a maximal compact subgroup isomorphic to SU(4).
We identify Sp(4,R) with the fixed points in the complex group Sp(4,C) of the
anti-linear involution

A:Sp(4,C) — Sp(4,C)

(0 Idy_(0 Id
g d 0 )9\1d o)

Remark 1.1. This group is conjugate via

10 ¢+ 0
1101 0 4
A_E 10 —i o0 € SU(4)
01 0 —i

to the standard Sp(4,R), consisting of matrices with real coefficient preserving the
symplectic form €.

At the Lie algebra level, this identification of Sp(4,R) provides for the identifica-
tion

ap(4,R) = {(% _%t) | Ceu®): De Sym(Q,C)} .

The involutions p and A commute and the composition o = o p acts on sp(4,R) as

¢ D\ (C -D
9\D -ct) = \-D -ct) -
We deduce that o is a Cartan involution for sp(4,R) and induces the (Cartan)
decomposition

sp(4,R) = u(2) & (Sym(2,R) & Sym(2, R)).
By complexifying, we obtain the splitting
sp(4,C) = gl(2,C) & (Sym(2,C) & Sym(2, C)).

1.2. Sp(4,R)-Higgs bundles. We recall here the definition of Sp(4, R)-Higgs bun-
dles over closed Riemann surfaces and their connection with harmonic maps in the
symmetric space Sp(4,R)/U(2).

Definition 1.2. An Sp(4, R)-Higgs bundle on a closed Riemann surface ¥ is a triple
(V,B,7), where V is a holomorphic vector bundle of rank 2, and the forms g €
H(Z,Sym(V)® K) and v € H(Z, Sym(V)*® K ), where K is the canonical bundle
over X.
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The associated SL(4,C)-Higgs bundle is given by the holomorphic vector bundle
E=V @ V*on X and the Higgs field ¢ : € - € ® K represented by the matrix

)

This bundle comes equipped with a symplectic form €2 and an orthogonal structure
Q : &€ — & which, in the above splitting € =V @ V*, are given by

0 Id 0 Id
Q-(_Id O) and Q_<Id O>'
More generally, we will say that a frame for € is Q-symplectic and @Q-adapted, if the
symplectic form and the orthogonal structure are represented by the above matrices.
We are interested in Higgs bundles in the Sp(4, R)-Hitchin component. Those are

parameterized [Lab17] by a point in Teichmiiller space (corresponding to the complex
structure on ) and a holomorphic quartic differential ¢, and they are given by the

triple
3 1 (01 _(a O
V=K:@K 3 7_(1 o) ,B_<0 1).

Hitchin’s equations look for a (harmonic) hermitian metric H on € such that the
Sp(4, R)-connection
V=Dy+e+eh

is flat, where Dy denotes the Chern connection of H. It is well-known that the so-
lution is unique [Sim88] and diagonal [Sim09] of the form H = diag(hy, hy ', Ayt ho)
in the above splitting € = V @ V*. Notice that the hermitian metric is compatible
with the symplectic structure 2 and the orthogonal structure () in the sense that
H'QH = Q and H'QH = . The monodromy of the flat connection V defines then
a representation p : m1(S) — Sp(4, R).

Moreover, the metric H induces a p-equivariant harmonic map
fo: 3 = Sp(4,R)/U(2)

as follows. Fix a point py € ¥ and fix a holomorphic, Q-adapted, Q-symplectic and
H-unitary frame N(p) for the bundle € at every point p € Y. For every p € i], we
denote by N(p) the parallel transport (relative to the connection V) of N(pp) at p.
Notice that in general (i.e. when ¢ # 0), the frame N(p) will not be unitary. If we
identify the symmetric space SL(4,C)/SU(4) with the space of hermitian metrics on
C*, the harmonic map is given by

fy: ¥ — SL(4,C)/SU(4)
P HN®)
Here HN®) is the metric H expressed in the frame N(p). We then notice that the

image of fp is actually contained in the copy of Sp(4,R)/U(2) consisting of hermitian
metrics H on C* that are Q-symmetric (i.e. H'QH ! = Q) and Q-symplectic (i.e.
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H'QH = Q). In fact, if we denote by g(p) € Sp(4,R) the family of matrices such
that N(p)g(5) = N(5), then

(1.2) Fo®) = (9(®)Hlg(B) "

and an easy computation shows that g(p) € Sp(4,R) is equivalent to the hermitian
metric f,(p) being Q-symplectic and @-symmetric. In addition, noting that tr(¢?)
vanishes, we see that the map f, is conformal [Cor88| and thus parameterizes a
minimal surface in the symmetric space.

1.3. Planar minimal surfaces with polynomial growth. In this paper we are
interested in the study of a particular class of minimal surfaces in Sp(4,R)/U(2)
which are described by conformal, harmonic maps f : C — Sp(4,R)/U(2) with poly-
nomial growth.

Given amap f : C — Sp(4,R)/U(2), we recall (|[Cor88|) that if f is harmonic then,
for a lift f : C — Sp(4,R), we have that ¢ = (f)" is holomorphic, where (8f)+
denotes the component of the (1,0)-part of the differential of f, which is orthogonal
to u(2) with respect to the Killing form

B :sp(4,R) x sp(4,R) — C
(X,Y) — tr(XY) .

In particular the quadratic differential

g2 = tr(p?)
and the quartic differential
(1.3) qa = tr(p?)

are holomorphic. The Killing form B induces a Riemannian metric g on the sym-
metric space, and its pull-back via f is

Frop(X,Y) = B((¢ + ") (X), (¢ + 0")(Y))

where H = f(p). Therefore, ¢o is the Hopf differential of the harmonic map f and
the vanishing of ¢o is equivalent to the map f being conformal. In this case the
pull-back metric reduces to

Frgp = tr(pe™) .
Finally, we say that f has polynomial growth if the quartic differential g4 = ¢ is a

polynomial over C.

We can actually interpret the harmonic map f as the harmonic metric induced by
some Higgs bundle over CP! with singularity at infinity. It is sufficient to consider
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the holomorphic bundle & = 69?:1(9(%) over CP! endowed with the Higgs field

00 q O
oo 01
=101 0 0

1000

The Higgs bundle (&,¢) is the SL(4,C)-Higgs bundle associated to an Sp(4,R)-
Higgs bundle with singularity at infinity. Here, we consider (€, ¢) as a good filtered
Higgs bundle ([Mocl4|,[FN17|) with weights (a1, a2, a3,a4). In particular, for a
meromorphic section s = (s1, s2, 53, 54) of €, we define v (s) = max;—1,.. 4{voo(s;) +
a;}, where vy (s;) € Z is the order of singularity at infinity of the section s;. We
then seek a hermitian metric H on & satisfying the self-duality equations
(1.4) Fu+[p, ¢ =0,
which is compatible with the filtration in the following sense: for every meromorphic
section s of & we require that

H(s(2),5(2)) = O(|2[**>*)) as |2] = 400 .

If such H exists, then the map f coincides with the conformal harmonic map induced
by H via the procedure described in the previous subsection.

In the section 2, we will find a solution to Equation (1.4) for the Higgs bundle
(€, ) with weights

3n _n _3non
8 8 8'8)"

where we assume that ¢ is a polynomial quartic differential of degree n.

((117(12,0137(14) = (

1.4. Moduli space of polynomial quartic differentials. A polynomial quartic
differential is a holomorphic differential on the complex plane of the form q(z)dz*,
where ¢(z) is a polynomial function. We denote by Q,, the space of polynomial
quartic differentials of degree n. The group Aut(C) of biholomophisms of C acts on
this space by push-forward. Let MQ,, be the quotient of Q,, by this action. The
geometry of the resulting moduli space is analogous to that described for polynomial
cubic differentials in [DW15].

Proposition 1.3. The moduli space MQ,, is a complex orbifold of real dimension
2(n—1) ifn>1.
Proof. Every polynomial quartic differential may be written as
q=(anz" + an_12""1+ - +ag)dz*

for some a; € C and a,, € C*. An element T'(z) = bz + ¢ € Aut(C) acts on q via

Toq = (anb" ™ (2 4 ¢/b)" 4 an_1b" 3 (2 + ¢/b)" L + - - - 4 brag)dz?.
Hence by choosing b = a,, V() e may make T%q monic (i.e. with leading coefficient
equal to 1); then a suitable choice of the translation component ¢ allows us to assume
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that T.q is centered (i.e. with a,—1 = 0). Notice that these choices are unique up
to multiplying b by an (n + 4)-root of unity. Thus we can describe the moduli space
MQ,, as the quotient

MQ,, = {‘TQYL/ZTH—4

where JQ,, is the space of monic and centered polynomials of degree n and Zj,44

denotes the cyclic group of order n + 4 generated by T'(z) = ;le for a primitive
(n + 4)-root of unity (,14. Since TQ, is naturally identified with C*~! by
T7Q,, — C 1
(2" + ap_22"" 2 +---ag) = (an_2,...,a0) ,
it follows that MQ,, is a complex orbifold of real dimension 2(n — 1). O

Remark 1.4. If n = 0, the space MQq consists of only one point, represented by the
quartic differential ¢ = dz*.

We put on MQ,, the topology induced by the identification
MQ,, = TQ,/Znt4a

found in Proposition 1.3.

2. EXISTENCE
In this section we prove the existence of a conformal harmonic map f : C —
Sp(4,R)/U(2) with given polynomial quartic differential g4 = ¢ (cfr. Equation (1.3)).
We will provide also precise estimates of the behaviour of the associated harmonic
metric H when |z| — oo.

Theorem 2.1. Let q be a polynomial quartic differential of degree n. Consider the
good filtered Sp(4,R)-Higgs bundle (€,¢) over CP' where

c=o(%)s0(3)eo(-%) s (3)

and

0

1

0

0

Then there exists a unique diagonal harmonic metric H satisfying Hitchin’s self-

duality equation Fy + [p, o*H] = 0.

Inspired by the solution of Hitchin’s equations for Sp(4,R)-Higgs bundles over
closed Riemann surfaces (see Section 1), we look for a diagonal metric of the form
H = diag(hq, h2_1, hl_l, hs). Under this assumption, the equation Fy + [¢, *f] =0
simplifies into the following coupled system of elliptic PDE

Alog(h1) + hitha — h3g|> =0
Alog(he) + hy% — hithe = 0.
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Note that here we adopt the convention that A = 0,03; while this convention is
more common for authors writing on Hitchin equations, it differs from that invoked
often by authors writing from a harmonic maps or conformal variational problem
viewpoint.

It is convenient to define u; = log(%) and study the system in the following form

7

A — pUl1—u2 _ 721!,1 2
(2.1) { up =e€ e q]

2us UL —ug

Aug = e“¥2 — ¢
Namely, if we define
F:R?* - R?
F(uyg,up) = (1742 — g7 2U1|g|? 242 — gu17u2) — (Fy, F)
the above system may be written as
Au = F(u)
where v = (u1,u2) and the map F satisfies a monotone condition

OF;
L <0 for i#j.
8ui

In this setting we can apply a super- and sub-solution method to prove the existence
of a smooth solution defined over all C.

Since we did not manage to find a precise reference for this method applied to a
system of PDE, we provide a detailed description of its application to Equation (2.1).

Let Bp be the ball of radius R centered at 0. We start by proving the existence of
a solution to Equation (2.1) on the domain Br with some smooth boundary values
(w1, w9) and for R sufficiently large.

Definition 2.2. We say that u™ is a super-solution of Equation (2.1) with boundary
values (wy,wsg) on the ball By if it is continuous and satisfies

Auf < Fy(u) for i =1,2
u:“ > w; on OBpgr

in the weak sense. Similarly v~ is a sub-solution if it is continuous and satisfies
Au; > Fi(u™) for i=1,2
u; < w; on OBpgr

in the weak sense.

Our sub- and super-solution for System (2.1) will be slightly modifications of
1

(ur,2) =  § 1oe(ll). 3 o(a)
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which is the exact solution of the system if g is a non-zero constant quartic differential
(or an exact solution in regions where ¢ does not vanish). We will also choose the
boundary values

(w1,u2) = (oo, owla))

which are smooth on dBpR as soon as it does not contain any zeros of q.

Lemma 2.3. The following function v~ = (uj ,uy ) s a sub-solution of Equation
(2.1):
3 .
_ {log(IQ\4) if |zl >d
Uy = 3 3 .
max(log(gy,),log(lq|7))  if |z[ <d
1 .
B {log(lq\z) 1 if |z[>d
= 1 . .
max(log(gy,),log(lq|1))  if |z2[<d

where gog denotes the density of the metric with constant curvature —2 on the ball
B(0,2d) centred at the origin with radius 2d

1 ad
P24 =5\ 4d? — |22

and d is a positive real number that depends only on the quartic differential q.

Proof. Let us verify first that u; are continuous. We can choose d sufficiently large
such that {z | [¢(z)| < 1} C B(0,d) and we can suppose that d > % in such a way that
log(g24) is negative for |z| < d. This implies that the functions u; are continuous in
a neighbourhood of |z| = d. Moreover, they are continuous in a neighbourhood of
the zeros of ¢ because log(|q|) tends to —oco at the zeros of ¢, whereas go4 is bounded
away from 0. We notice also that the functions u; are piece-wise smooth and thus
locally Lipschitz.
Let us now verify that 4~ is a sub-solution of the system. Since

3 3 3 i 1 1
max(log(gs,), log(|q|7)) = log(|q|1) < max(log(g3,),log(l¢|7)) = log(lq|7)

3 1
it is sufficient to verify that the pairs (log(\qﬁ), log(|q| i)) and (log(g3,),log(g5,)) are
sub-solutions. Away from the zeros of ¢, the pair (log(|q\%)7 log(lqﬁ)) is a solution

of the system, hence in particular it is a sub-solution. As for the second pair, the
density of the metric with constant curvature —2 satisfies the differential equation

Alog(gad) = 924

therefore,
3
5

g2q = Alog(gs,)

3
2

1
Fi(log(93,),10(93,)) = g2a — 9o la* <

N w

3
2

1 1 1
Fy(log(944),10g(944)) =0 < 5924 = Alog(g4;)
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We deduce that at every point the function u~ is a sub-solution or the maximum of
two sub-solutions, hence it is a sub-solution. Notice also that the boundary conditions
are satisfied as soon as R > d. O

Lemma 2.4. There exists a constant C' > 1 such that, for any choice of R and
consequent boundary values (w1, w2) on OB, the pair

3 1
(ut ) = (G108l + ©), g 1os(la? + 30))
is a super-solution of System (2.1) with those boundary values (w1, ws).

Proof. Of course, as soon as C' > 0, we have that uj > w;, so the boundary conditions
for a supersolution are satisfied on 0Bpg for any R sufficiently large. Then to find
a constant C for which (uj,uj) is a supersolution of equation (2.1), we begin by

noting that a simple computation shows that

3 lg]*C
Aut = —F —
TR r o)
and | |2
3 q.|*C
Aul = ——7— .
2 T8 {qP +30)
Moreover,

3 _1 _3
(la> + C)3(lgl* +3C) 75 — (la* + C) " 7[qf?
BEy(uf uf) = (lal” +3C)7 — (lg* + )3 (lgl* + 30)75 .
Therefore, we need to show that there exists a constant C' > 0 such that
19 1 5
(lal* + €)= (Ja]* +3C) " (lgl* + C)ilg* > §la:IPC
9 15
(lal* +3C)% — (la]* + O)5 (|gI* + 30) % = la:*C

Let us consider the following one-parameter family of functions:

19 _1 5 3
fo(2) = (af* + )% (g +3C) 7% — (laf + O)¥laf* ~ Za:l*C

Fy(uf, uy)

9 3 15 3
go(z) = (|g* +3C)1 — (|g* + C)3(|g|* + 30) s — g\qz\QC-

We will show that fo and go diverge uniformly to infinity when C' — +4o00.

We first remark that for every C' > 0 the functions fc and go admit a global
minimum. Namely, since |¢| — 400 when |z| — 400 and ¢ is a polynomial, the
leading terms of the asymptotic expansions of fo and g¢ for |z| — 400 are given by

fe(2) = 20(1aP)} +o(laP)

3 5

= 3Ca)7 + o(lal*)

and thus, for C fixed, they are unbounded when |z| — 4o00. Let us denote by z;(C)
and z4(C') the point of global minimum of fc and gc, respectively. It is sufficient to

g9c(2)
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show that fo(z7(C)) and go(24(C)) tend to infinity when C' — +o00. Since it seems
difficult to find an explicit expression for z;(C') and z,(C), we give an abstract
argument by considering two different cases. We explain the complete argument for
the function fo, the other being analogous.

Suppose first that z;(C) is uniformly bounded when C' — +o00. In this case, there
exists a ball B, of radius r centred at the origin such that z;(C) € B, for every C.
Let us denote M’ = maxp,_(|¢.|?) and M = maxp,_(|q|?). Then,

fo(z7(C)) > CF (M +3C)"8 — (M + C)s M — %CM’

and it is clear that the right-hand side tends to infinity when C — +o0.

Let us then suppose that z;(C) is unbounded. This implies that |g(z7(C))| is di-
verging as a function of C. Assume that |g(zf(C))|? has super-linear growth as a
function of C, i.e. |q(z;(C))[*> = O(C™) for some n > 1 as C — +oo. Since ¢, is
a polynomial of lower degree than ¢, we deduce that |g.(z;(C))| = o(|q(z¢(C))]|) as
C — +00, hence the asymptotic expansion of fo(zf(C)) reads

fe(z(C) =0(C-Cim).

Therefore, we can conclude that fo diverges to +o00 as C tends to +00. The argument
is similar if |¢(z;(C))|? has linear or sublinear growth as a function of C. O
Theorem 2.5. Let d > 0 be the constant appearing in Lemma 2.53. For every
R > d, there exists an analytic solution u® = (uf,ul) of the following boundary
value problem

AU:IL% — eu{%—ug _ €—2u{2|q‘2

Ault = e2us — euf —uf
uft = 2log(|q|) on OBpr
ufl = Llog(|q|) on OBp

Moreover, u; < uf < u:r

Proof. For this proof we remove the dependence on R in the notation. Let us define
the sequence of functions u* = (uf,u) by

Aub = —Qlulf? + Fl(u]ffz,ugd) + Qub

Auk = —Qub ™% 4 Fy(ulf ub =) + Qoul

uf = flog(lgl)  on OBg

uh=llog(lg)  on  9Bg

gif’ | u e [uo,u_l]} and u°, u~! are a sub-solution and a super-

(2.2)

where ; = sup{

solution of Equation (2.1), respectively.
We claim that

for every k > 1. Then the result follows from the Schauder fixed point theorem
[Ama76, p.660| applied to the differential operator defined by (2.2) on the Banach
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space of pairs of Holder functions on B, standard bootstrap arguments and Morrey’s
regularity theorem [Mor58, p.198]. Moreover, the above inequalities imply that the
solution is bounded from above by (any of) the super-solution(s) and from below by
(any of) the sub-solution(s).

Let us now prove the claim (2.3). We first show that

u(l) < u% < ul_1 .
By definition and the monotonicity properties of the function F}, the following equa-
tions hold
Aut = —Quuit 4+ Quut + Fr(uptuyt)
Auf > Fy(uf, uf) > Fi(uf,uy') — Quf +
Aurt < Fy(uitugt) — Quupt 4+ Qqupt

and the claim follows from the maximum principle (for Sobolev functions, at this
first iteration of the process) applied to differences of the above equations. Namely,

Aug —up') = Q(uj —up)
and the maximum principle implies that u; — ul_l < 0. Similarly,
Auy —uf) < Qi (ug —ud) + Fi(up ' ug ) = P, up') = @ (ug —u}) < Qauj —ud)

by definition of Q1, and from the maximum principle we deduce that u} —u{ > 0.
The reasoning is similar also for the second components. In this case we have

Auy = —Qouyt + Fo(ud,uy ) + Qoud
Aug > Fg(u?,ug) > Fg(u%, ug) — qug + qug
Au;l < Fz(ufl,ugl) < Fg(u%,ugl) — qugl + Qzugl

and the inequalities u3 < ud < uy?! follow from the maximum principle as above.
With the same argument, one can show that
u° < u? < ut
and the chain of inequalities (2.3) follows then by induction. (Note that elliptic
k

regularity implies that the functions u; are increasingly smooth, so that for k > 2,

uk € C?.) O

We now deduce the existence of an analytic solution u = (u1,u2) to Equation (2.1)
defined on the whole complex plane, via a limiting argument.

By Theorem 2.5, we obtain a sequence of analytic functions uf‘ defined on the ball
Bp, for every R > d. By using the fact that ulR is bounded between the sub-solution
and the super-solution for every R, we deduce a uniform bound on AuZR on every
compact set, which is independent of R. By elliptic regularity, the functions uZR
are bounded in the C® norm, uniformly on every compact set. By Ascoli-Arzel4,
this implies that the sequences uf’ converge in the C! norm on compact sets for
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every ¢ = 1,2. In particular, the limit functions wu; are defined over all C and are
weak solutions of the system. By elliptic regularity of Poisson equations (applied to
each single equation), we deduce that u; are smooth and hence are strong solutions of
Equation (2.1). By Morrey’s results [Mor58]|, the functions u; are analytic. Moreover,
by construction we have

3 3
(2.4) 5 log(lal®) < wi < Slog(|g* +C)

1 1
(25) S log(lal) < uz < Slog(lal* +30)

Of course, here it is important that we found in Lemma 2.4 a single constant C' for
which the right-hand sides were supersolutions on Bp for all R sufficiently large.

Corollary 2.6. There exist constants A, R > 0 and an exponent o > 1 as follows.
1
If the |q|2 -distance of a point p € C from the zeros of q is r > R, then

3 —«
0 < wi(p) — g log(lal) < Ar

1
0 < ua(p) — 5 log(lal?) < Ar

Proof. Outside a disc D containing the zeros of ¢, the polynomial ¢ is comparable
to z™ up to multiplicative constants, where n is the degree of ¢q. As a consequence,
the |q\%—distance r of a point p ¢ D from a zero of ¢ is bounded from above by a
multiple of the |z|Z-distance of p from the origin. We deduce that there exists a
constant ¢ > 0 such that

(n+4)
4
;

r < c|p|

where |p| refers to the norm of the complex number p € D. Since |g| is bounded also
from below by a multiple of |z|™, we have

4n
lq(p)| > c|p|* > "r0ED

From the previous theorem, we obtain that

3 3 M A
up — < log(lgf*) < uf — Slog(lgf*) < 5 < —5
8 8 |q‘ rntd
1 1 M A
us — 2 log(|g|?) < uf — Zlog(laf*) < T3 <
8 8 |Q| rntd
By noticing that a = ng_& > 1 for every n > 1, the result follows if we fix R big
enough such that » > R implies p ¢ D. O

Remark 2.7 (On uniqueness). By work of Mochizuki (|[Mocl4]), the solution H =
(hi,hy L hl_l, hg) found above is the unique diagonal solution of the self-duality equa-
tion
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on the Higgs bundle (€,¢) on CP!. Moreover, in recent work ([LM20]), Li and
Mochizuki applied similar sub- and super-solution techniques to show existence and
uniqueness of diagonal solutions of Hitchin’s self-duality equation on every cyclic
Higgs bundle with wild singularities over non-compact Riemann surfaces.

3. GEOMETRY OF THE MINIMAL SURFACE

In this section we study the geometry of the minimal surface with polynomial
growth induced by the harmonic metric found in Section 2.

In particular, the results in this section will imply Theorem B. Moreover, for
S the minimal surface in the symmetric space Sp(4,R)/U(2) associated to a monic
polynomial g of degree n > 1, we find in Theorem 3.9 that S is asymptotic to 2(n+4)
maximal flats in Sp(4,R)/U(2); two consecutive flats that are asymptotic to S share
four adjacent Weyl chambers (Proposition 3.10). Intrinsically, by Proposition 3.11,

the metric on S induced by this immersion is asymptotically 4|q| %, up to an (additive)
error that decays at a rate of O(|q|72).

We organize the argument as follows. After some preliminaries, we display the
solution for the case of gy = dz*. Then we choose good charts away from a compact
set which contains the zeroes that respect the geometry that ¢ imposes on the plane
C: each such plane cuts off a region in C which is roughly a half-plane in the |g|
metric, positioned to develop in a controlled manner, with overlaps that also develop
in a controlled way. In those charts, we find, roughly, that the minimal surface
in the symmetric space Sp(4,R)/U(2) may be well-approximated by an isometric
image of the flat defined by gy. Describing those asymptotics carefully, up to some
estimates deferred until the end of the section, occupies the first half of this section,
and culminates in the proof of Theorem 3.9, Proposition 3.10 and Proposition 3.11.
A careful treatment of the error estimates completes the section.

3.1. Construction of the minimal surface. In Section 1, we recalled how a so-
lution to Hitchin’s equation induces a harmonic map into a symmetric space. The
construction goes as follows. Let H denote the associated Hermitian metric on &
(guaranteed by Theorem 2.1). Let {N(z)}.ec be a holomorphic, Q-symplectic, Q-
adapted and H-unitary frame for the bundle €. The frame {N(z)},ec is not parallel
for the Sp(4, R)-connection V = Dy + ¢ + ¢*f. Fix a base point z5. We denote
by {N(2)}.ec the parallel transport of the frame N(zp) via the connection V. By
expressing the metric H in the frame {N(2)}.cc, we obtain a map

f:C—SL(4,C))/SU(4)
2z HYG)
We then notice that the image of f is in fact contained in the copy of Sp(4,R)/U(2)
inside Sp(4,C)/SU(4), consisting of 2-symplectic and @Q-symmetric hermitian ma-
trices with determinant 1.

Let us now find an explicit expression for H¥() (cfr. Equation (1.2)). Let
{F(2)}.cc be the standard holomorphic frame of & where H*'(?) = diag(hy, hy *, h{*, ha).
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We denote by {F(z)}.cc the parallel transport of F'(zp) with respect to V. For every
z € C, we can find a matrix ¢ (z) such that

F(2)9(2) = F(z)

i.e. 1(z) expresses the change of frame from F(z) to F(z) at every point. Let
v(s) = 2o + se? be a path connecting the base point zg with z. We observe that the
one-parameter family of matrices 1)(s) = 1(7(s)) satisfies the ordinary differential
equation

51) {%w) = Y(s)(e U +e7V)

¥(0) =1d ’
where we denoted by
U=Dyg+¢ and V=

the (1,0)-part and the (0, 1)-part of the connection V, respectively. To see this, note
that equation (3.1) is a direct consequence of the fact that {F(z)}.ec is parallel.
Namely,

= T(1())e(y()(’U +e V) .

Moreover, since the connection V is flat, there exists a constant matrix P € SL(4,C)
such that N(z) = F(z)P. In fact, P is the change of frame between N(zy) and F(zp),
i.e. N(z9) = F(z0)P. We thus deduce that

§(2) = HNG) = gIOF = gFEvTOF S PIGETHT S () 1P
= PI(() Diding(tu (), by (2), ™ (2), ha(2) (6(2) TP

We notice in particular that the geometry of the minimal surface will depend not
only on the functions h;(z), but also on the solution to the ODE (3.1). This will
play a fundamental role in Section 3.3.

3.2. The case of constant quartic differential. In the special case, when the
quartic differential ¢ is constant, the solution of the ODE (3.1) can be written ex-
plicitly and the minimal surface turns out to be a flat in Sp(4,R)/U(2).

Up to biholomorphisms of C, we can suppose that ¢ = dz*. As mentioned in
Section 2, the solution to Hitchin’s equations in this case is

H = diag(1,1,1,1) .
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As a consequence, the system of ODE (3.1) simplifies into

(3.2) () = Yo(s) (Vo + e Vh)
' Yo(0) =1d

where we are using the notation 1)y to indicate that we are dealing with the special
case of constant quartic differential. Moreover, the (1,0)-part and the (0, 1)-part of

the connection Vo = Dy + ¢ + ¢* are respectively

0010 0001
000 1 0010
=101 0 0 Vo=11 00 of
1000 0100

as the Chern connection Dy of H vanishes in these coordinates, since H is constant.
Therefore, equations (3.2) become a system of ODE with constant coefficients, that
can be explicitly integrated:

0 0 e e
0 6—1’9 610
wo(s) =exXp|Ss e—i0  gif 0 0
e e 0 0
By observing that
0 0 ei? efio 2 cos(0) 0 0 0
g1 0 0 e ¢if 5 0 —2sin(#) 0 0
e ef 0 N 0 0 —2cos(6) 0
e e 0 0 0 0 0 2sin(6)
for a constant unitary matrix
1 1 1 1
111 -1 —i
-1 _ +
STl 1 1 1
1 -1 ¢ —i
we obtain that
e2s cos(6) 0 0 0
0 e—2ssin(0) 0 0 .
17b0(‘3) =S 0 0 6—23003(9) 0 S :
0 0 0 e2s sin(0)

If we fix the origin as base point zp in the definition of the harmonic map fo (see
Section 1), and write z = se?®, then fo : C — Sp(4,R)/U(2) is given by

fo(z) = (o(2)~1)'diag(1, 1,1, 1)(2) "
— Wdiag(e—@?(z)’ 648(,2), 649?(2)7 e—4%(z))s—1

- 9. diag(e—éléR(z)’ €4S(Z), 64%(2), 6—4%(2)) ’
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where we denoted with - the action of an element g € SL(4,C). This shows that the
image of fy is a maximal flat in the symmetric space.

3.3. The general case. In order to study the general case, i.e. when the quartic
differential ¢ is an arbitrary polynomial ¢(z) of degree n > 1, the main idea is
to estimate the solution to Equation (3.1) by comparing it with the solution to
Equation (3.2). In fact, the complement of a compact set containing the roots of
q(z) is covered by (n+4) charts, which are conformal to the upper-half plane, where
the quartic differential ¢ is constant. This suggests that in each chart the solution
to Equation (3.1) should look like the solution to Equation (3.2), at least when
we are far enough from the zeros of the polynomial ¢(z). We will thus describe
the asymptotic geometry of the associated minimal surface and we will focus, in
particular, on studying an interesting “Stokes phenomenon”, that already occurred
for affine spheres with polynomial Pick differential ([DW15|) (and indeed implicitly
in [HTTWO5]).

3.3.1. Standard half-planes and rays. Given a quartic differential ¢, a natural coor-
dinate w for ¢ is a local coordinate on an open set of C in which ¢ = dw*. Such a
coordinate always exists locally away from the zeros of g, as it is possible to choose
a holomorphic fourth root of ¢ and define

Notice, in particular, that a natural coordinate is not unique, but every two natural
coordinates for ¢ differ by a multiplication by a fourth root of unity and an additive
constant.

Definition 3.1. We define a g-half-plane (or a standard half-plane, when the refer-
ence to the differential ¢ is obvious) as a pair (U, w), where U C C is open and w
is a natural coordinate for ¢ that maps U diffeomorphically to the upper-half plane
{S(w) > 0}. Note that U then determines w up to addition of a real constant.

A path in C whose image in a natural coordinate for ¢ is a Euclidean ray with
angle 6 is called a g-ray of angle 6. (Note that the angle is well-defined mod 5.) This
means that in a suitable natural coordinate, a ¢-ray is parameterized by t — b+ et
Similarly, a q-quasi-ray with angle 0 is a path that can be parameterized so that its
image in a natural coordinate w is t + et + o(t).

It turns out that every monic polynomial quartic differential ¢ admits a finite
number of ¢-half-planes that cover the complement in C of a compact set containing
the zeros of q.

Proposition 3.2 (|[DW15|). Let ¢ be a monic polynomial quartic differential and let
K be a compact subset of C containing the zeros of q. Suppose q has degree n > 1.
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Then, there exist a compact subset K' O K and a collection of (n + 4) q-half-planes
{(Ug,wi) }=1.... nta with the following properties:

i) the complement of U, Uy is K';

i) the ray {arg(z) = %} is eventually contained in Uy;
iii) the rays {arg(z) = Qﬂéﬁl)} are disjoint from Uy;

iv) on Ug N Ugy1 we have wiy1 = iwy + ¢ for some constant ¢ and each wy, w11
maps this intersection onto a sector of angle 5 based at a real point.

v) any Buclidean ray in C is a q-quasi ray and 1s eventually contained in Uy for
some k.

Let r : C — R™ be the |q\%-distance from the zeros of q. We recall the following
result that will be used in Section 3.3.5.

Proposition 3.3 (|[DW15|). Let ¢ be a monic polynomial quartic differential and let
K be a compact set containing the zeros of q. Then there are constant A, a, Ry with
a > 0 so that for every point p € C with r(p) > Ry, there exists a q-half-plane (U, w)
with UN K =0 such that S(w(p)) > r(p) — A. In addition, on the boundary of this
half-plane we have r(x) > a|R(w(x))|, for x large.

We remark that the monic condition in the above propositions is not restrictive,

as every polynomial can be made monic via a biholomorphic change of coordinates
on C.

3.3.2. Comparing 1o and 1. Let us fix the origin of C as base point zy in the con-
struction of the harmonic map (see Section 3.1). By Proposition 3.2, any point z far
enough from z is connected by a ray v(s) = se?, which is definitely contained in a
standard half-plane. Therefore, there exists a time sg > 0, such that the ray v(s) lies
in a standard half-plane for every s > sg. We can write thus a differential equation
satisfied by ;' (s) for s > so using Equation (3.1) and Equation (3.2):

(33) {C“"% () = v () o (s) Rebo(s) 1)
Py (s0) = Ao

for some matrix Ay € Sp(4, C), which represents the difference between vy and 1 at
the point sp. In Equation (3.3) we have denoted
dipo

R =47(5) 52 9) 5 () 2 s)
= (U - Up) 4+ eV - V) + €Dy

the error between the connection Vi and V. Let us denote by @; the functions

. 3 . 1
U] = U — 3 log(|q|2) and  Ug = ug — 3 log(|q|2) ,

which represent the error between the solution to Equation (2.1) and the particular
solution in the case of constant quartic differential. By Corollary 2.6, the function
@j decays as |z| — 400. We can now write the error R in terms of the function
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in the natural coordinate chart w of the half-plane.
First, since ¢ = dw?*, the term U — Uy vanishes. Moreover, since the metric H is
diagonal, it is easy to verify that the Chern connection Dy is

—ou; 0 0 0
0 Oug 0 0
0 0 0w 0 ’
0 0 0 —Ouq

Dy =H '9H =

because in a natural coordinate #; = ;. Finally, by definition of V' and V4, we have

0 0 0 eii—t2 _ 1

0 0 elii—tz _ 1 0
V=Vo=1 2 4 0 0 0

0 e2i2 _ 1 0 0

Let us denote D = diag(e?$¢0s(0) g=2ssin(0) o=2sc0s(0) o2ssin(0)) and R = S~'RS,
where S is the unitary matrix introduced in Section 3.2. We can then write the error
term as

O(s) = 1o(s)Ripo(s) ™t = SDST'RSD™1S~ = SDR'D™'5~!
= SD(R} + Ry) D151

with
(3.4) R} = €S diag(—duy, diin, Diiy, —iin)S
0 0 (1 —4)0( + t2) 20(ay — u2) (14 4)0(T + 1ia)
_6_ (1 + Z)a(ﬁl + ﬁg) 0 (1 — Z)a(ﬁl + ﬁz) 28(’&1 — ﬁQ)
Y 20(1 — Up) (1+4)0(a1 + a2) 0 (1 —4)0(uy + u2)
(1 —4)0(u1 + u2) 20(iy — z) (L4 1d)0(a1 + u2) 0
and
Ry =e STV = 1p)S .
If we introduce the notation us = —ug and ugy = —uq, an elementary but tedious
computation shows that
) it 3 oy o—i0;1—k (b=D)j T,
W= 2t Jauj+1+TZz JetimUitt for k #1
Jj=0 J€Zy
and
—if(_\k—1 . o .
Ry = A (42) (€720 y 2etu2 4 22 _ 4y

In Section 3.3.5 we will prove the following:

Proposition 3.4. Let r be the distance from the zeros of q. Then for r — +o0

—2|1—ik=t)p

R;,=O<€T> ifk#1,
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, 6—2\/51”
kk — O 7 .

These exponential decays allow us to find a limit of ¥y L(s) along rays in any
“stable direction”, which we now define.

and

Definition 3.5. Let v(t) = b+ ¢ be a ray in a standard half-plane. The direction

of the ray is the angle 6 € [0, 7]. We say that the ray is stable if 6 ¢ {0, T, %, %Tﬂ’ 7}

Similarly, a quasi-ray is stable, if the direction of the associated ray is stable.

The possible directions of stable rays form four intervals of length 7 which we
denote by

) 2 (D) (55 ()

The stability of rays and quasi-rays is related to the convergence of 11! (v(s)):

Lemma 3.6. If v is a stable ray or quasi-ray, then the limit limgs o wwal(’y(s))
exists. Furthermore, among all such rays only four limits are seen, i.e. there exist
Lyy,Ly,L_,L__ € Sp(4,C) such that

Liy if € iy
. _ L. if 6eJ,
1 1 _ )L
Jm vy () =3 7 if 0eJ_
L. if0eJ _

Proof. First we consider rays, and at the end of the proof we show that quasi-rays
have the same behaviour.
Let 7 be a ray and let us write G(s) = ¢y (y(s)). It satisfies the ODE

{%(s) — G(s)0(s)
G(0) = Ao

for some Ay € Sp(4, C). Recalling the definition of ©(s) = SDR'D~1S~!, the decay
of the error O(s) is determined by comparing the decay of R’ and the growth of the
diagonal matrix D = diag(e?0s(0) ¢=2ssin(0) o=2scos(0) o2ssin(0))  Conjugating R’
by the diagonal matrix D(s) multiplies the entry R}, by

b= (35 (s (5 E517)) s (- 507

Combining this with Proposition 3.4, we deduce that for any stable ray, we have a
definite exponential decay in the equation satisfied by G, i.e.

e

Gls)~1G(s) = O ( \_/;)
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for some o > 0 (where a = «(f) depends on #). Standard ODE techniques (see
[DW15, Appendix B|) then show that the limit lims_, 4, G(s) exists.

Now suppose that 1 and =9 are stable rays with angles #; and 65 that belong to
the same interval (J44, J4, J—, or J__). We will show that G1(s)Ga(s)~! — Id as
s — +o0, where G;(s) = 1105 ' (7i(s)). This means that the limit does not depend
on the direction of the ray in a same interval, thus concluding the proof.

For any s > 0, let ns(t) = (1 —t)y1(s) +ty2(s) be the constant speed parameteriza-

tion of the segment from 71(s) and 42(s). Let gs(t) = (¥ ' (ns(0))) by (ms(1)),

which satisfies

95 1 (1)ge(t) = O(ns(1))114(t)

9s(0) =1d

9s(1) = G1(s) ' Ga(s)
Since |n%(t)] = O(s), the analysis above shows that g;'g.(t) = O(y/se=%%), for some
a > 0, because the path 7,(t) never crosses an unstable direction. In particular, by

making s large enough we can arrange for gs(t)~'g.(t) to be uniformly small for all
t € [0,1]. Once again standard ODE methods ([DW15, Lemma B.1 (i)]) give the
desired convergence,

G1(s)71Ga(s) = gs(1) = Id as s — +oo .

Finally, suppose that ~; is a stable quasi-ray, and - is the ray that approximates
~1 with direction #. We can study as above the homotopy 7s(t) = (1—1%)v1(s)+ty2(s)
between the ray and the quasi-ray. Since we have a bound |7’ (t)| = o(s), the previous
argument applies, thus G(s) has the same limit along the stable quasi-ray 7 and
along the associated stable ray 7o. O

We now investigate how limits along rays in different intervals are related.

Lemma 3.7. Let Ly, Ly, L_,L__ be as in the previous lemma. Then there exist
unipotent matrices Uy, Uy, U_, such that

LiLy=SU;S™Y, L7'L_=8SUpS™ and LT'L__=SU_S'.

Proof. We give a detailed proof for L;lL_, the other cases being analogous.

Consider the rays v4(s) = e'¥ s and v—(s) = e'¥s. By the previous lemma
G1(s) = ¥y ' (v4(5)) and G—(s) = ¢y5 " (v-(s)) have respective limits Ly and L_.
For any s > 0, we can join v4(s) and v_(s) by a circular arc

— i) il
ns(t) =e""s)s for te [0,4} .

Let gs(t) = (g 1 (1s(0))) " ababy H(ns(t)), which satisfies
951 (1)gs(t) = O (ns(t) )3 (t)
gs(0) =1d
9s(m/4) = G4(s)7'G—(s) -



PLANAR Sp(4,R)-MINIMAL SURFACES WITH POLYNOMIAL GROWTH 26

Unlike the previous case, however, the coefficient O(7s(t)) is not exponentially small
in s throughout the interval. At ¢t = %, conjugation by the diagonal matrix D
multiplies the (4,2)-entry of R’ by a factor e**, exactly matching the exponential
decay rate of R’ and giving

0 (0 (3)) 0o

However, this potential growth is seen only in the (4,2)-entry, because the other

entries are scaled by smaller exponential factors. In fact, for ¢ € [O, %], we have

v = exp (100 (1= ) <ep (4 (1= 5)7)

We can thus separate the unbounded entry in O(n;(t)) and write
O(ns(t)) = ©°(ns () + s (1) SEa2S ™
where ©%(t) = O(e~?*) for some o > 0, Ej is the elementary matrix, and
6—48
)= 0 (0= ) = OB exp(~(x/8 - %))

This upper bound is a Gaussian function on ¢, renormalized such that its integral
over R is independent of s. Therefore, the function pus(t) is uniformly absolutely
integrable over t € [O, ﬂ We can apply [DW15, Lemma B.2] and conclude that

gs(m/4) — Sexp (E42/04

—0 as s— +oo.

us(t)dt) S

Since gg(mw/4) — LjrlL_ as s — 400, we obtain the desired unipotent difference. [

3.3.3. Asymptotic behaviour of the minimal surface. We can now describe the as-
ymptotic geometry of the minimal surface S = f(C) in the general case. We begin
with the definition of “asymptotic” minimal surfaces adapted to our setting.

Definition 3.8. We say that two minimal surfaces S; and S5 in a Riemannian
manifold Y are asymptotic if there is a domain Riemann surface X and conformal
harmonic parametrizations u; : X — Y of S; so that ui(z) = A(x)uaz(z) for some
isometries A(x) of Y such that A(x) — Id as = leaves compacta in X.

Theorem 3.9. Let g be a monic polynomial quartic differential of degree n > 1.
Then the associated minimal surface S is asymptotic to 2(n + 4) mazimal flats in

Sp(4,R)/U(2).

Proof. We start by proving that in each standard half-plane (U, w) given by Propo-
sition 3.2 the surface S is asymptotic to four maximal flats, one for each interval of
stable directions.

We give the detailed proof for the sector J,, the other cases being analogous. We
recall that S is parameterized by the map

f(w) = P'((w) 1) diag(hy (w), hy " (w), hi * (w), he(w))d(w) P
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for some P € Sp(4,C). We compare f(w) with the flat parameterized by

fo(w) = (o(w)=Hpo(w) "
by Corollary 2.6 and Lemma 3.6, the limit
lim P~ (w) H ™2 (w)o(w) ™" = My

|w| =400
weJ

exists for some M, in the standard copy of Sp(4,R) fixed in Section 1. We now
claim that S is asymptotic to the flat parameterized by

fo(w) = (M) (o (w) 1) tepo(w) M.

Namely, the map g(w) = P_I@b(w)H(w)_%wo(w)_lM;l is an isometry sending
fo(w) to f(w) such that

lim g(w)=1d.
|w|—4o00
weJ
This would give a total number of 4(n + 4) maximal flats to which S is asymp-
totic, but we can actually see that in two overlapping standard half-planes U, and
Uk41 two of the four flats coincide. In fact, by the above discussion, we can notice
that the asymptotic flat depends only on the limit of 1(2)1; ' (2), which itself only
depends on the half-plane Uy in which z eventually lies and on the specific sector
J _’f_ o _’f_, Jk . Jk _in which z is approaching infinity. Since in the intersection of the
two charts Uy and Uy the natural coordinates differ by a multiplication by 4 and
by an additive constant, a quasi-ray of angle 6 in the wg-coordinate has direction
¢+ 5 in the wy1-coordinate. Therefore, the sector Jkt1 gets identified with J _’ﬁ and
the sector JF*! gets identified with Jfﬁ . by the change of coordinates. Hence, the
limits in those directions coincide and it follows that we only have a total number of
2(n + 4) maximal flats. O

The theorem, and especially the discussion in the final paragraph of the proof,
provides a natural meaning to a pair of “consecutive flats asymptotic to the minimal
surface S”.

We can also describe precisely the combinatorics of the collection of flats at infinity.

Proposition 3.10. Two consecutive flats asymptotic to the minimal surface S share
four adjacent Weyl chambers at infinity.

Proof. Recall that a Weyl chamber at infinity is the stabilizer of a minimal parabolic
subgroup P C Sp(4,R) acting on the boundary at infinity of the symmetric space. In
our case, a Weyl chamber at infinity can thus be described by a complete Lagrangian
flag, that is by a collection of vector subspaces of R*

F={{0}ctcLctcR}

where ¢ is a line, L is a Lagrangian plane and ¢~ denotes the hyperplane orthogonal
to ¢ with respect to the symplectic form w on R* that Sp(4,R) preserves. Notice
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that the data of £ and L already determine the flag uniquely.
We are going to show that the intersection of the two consecutive flats

Fi(w) = (M1 (go(w) =) tapo(w) ' M"

and

Fy(w) = (M) (o (w) =) o (w) M
constructed in Theorem 3.9 share four Weyl chambers at infinity; the proof for the
other cases in analogous. Recall that in Section 1, we identified Sp(4,R) as the
subgroup of Sp(4, C) fixed by the anti-linear involution A, and we pointed out that
the map

Sp(4,C)/SU(4) — Sp(4,C)/SU(4)
9] = (g~ 1)g™"
induces an isometry between two models of the Sp(4, R)-symmetric space: as cosets
and also as the space of Q-symmetric and Q-symplectic hermitian metrics on C*.

Using such correspondence, the flats 1 and F5 can equivalently be described by the
matrices

Fi(w) = M_¢(w) and Fy(w)= Miip(w) .
Moreover, from Lemma 3.6 and Lemma 3.7 we know that M_ = P~'L, SU;S~! and
M, = P7'L,, so, together with the fact that

1#0(’[1)) — Sdiag(62§R(z), 6—23(,2)’ 6—2§R(z), 62%(,2))5—1 ;

we deduce that the intersection at infinity of the flats F} and F5 only depends on how
the matrix Uy acts on the Weyl chambers at infinity of the maximal flat of diagonal
matrices. Since Uy = Id 4+ pFy4o, for some p # 0, it is straightforward to check that
Up does not preserve the Weyl chambers at infinity corresponding to the Lagrangian
flags (that involve eg)

{0} C Span(e3) C Span(es, e2) C Span(es, ez, e4) C R*

{0} C Span(es) C Span(es,ez) C Span(es, es,e1) C R?

{0} C Span(es) C Span(ey,ez) C Span(es, e, 1) C R*

{0} C Span(e;) C Span(ey,ez) C Span(ey, ez, e;) C R .
Therefore, F} and F» share four adjacent Weyl chambers at infinity because Sp(4, R)
is a Lie group with root system of type Bs. O

3.3.4. The induced metric on the minimal surface. Using the bounds (2.4) and (2.5)
we prove that the harmonic map f : C — Sp(4,R)/U(2) is a quasi-isometric embed-

ding if C is endowed with the flat metric with cone singularities \q|%

Proposition 3.11. The induced metric on the minimal surface S = f(C) is quasi-

isometric to 4|q\%, with quasi-isometric constant 1+ O(|q|™2) on the end of S. In
particular, it is complete.
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Proof. Recall that the induced metric gy on S can be expressed in terms of the Higgs
field ¢

g5 = tr(pp*) = BIlq|* + 2hahy " + h3” .
Moreover, the sub-solution and super-solution found in Section 2 provide the follow-
ing upper- and lower-bounds for the metric H satisfying Hitchin’s equations

3 3
(lg?+C)"8 <hy <lg|77

1 1
(lg/*+3C)78 < hy <|q|71

for some positive constant C. We deduce that, as |z| — oo, we have
3 1 3 1
g5 = hilal® + 2hahit + b3 > (lgI* + C)7[qf* +2(|g|* + 3C) 75 gl 7 + gl
1 1 1
> lq[2 (1 =€) + 2|g|2 (1 — 3¢) + [q]2
1
> 4lq[2(1+¢) .

where the terms e stand for terms that satisfy € =< |q|~2. As for the upper-bound, a
similar argument shows that

_ _ 1 _1 3 1
g5 = W3l +2hahyt + hy? < q|2 + 21|71 (ja* + O)F + (Igf* +3C)1
1 1 1
<lqlz +2|g[>(1 +€) + |q[> (1 + 3¢)
1
<d4lgl2(1+e€) .
where again the terms e represent terms of the comparability class € < |g|~2. Tt thus
follows that outside a compact set K the induced metric is controlled by a multiple of
1
4|q|2, and decays to that quantity at a rate comparable to |¢|~2. The quasi-isometry

between 4]q\% and gy is then obtained by noticing that, since K is compact, the

metrics 4|q]% and gy are trivially quasi-isometric on K; the claimed asymptotics of
the quasi-isometric ratio is immediate. In particular, the induced metric gy on the

minimal surface S is complete because the metric |q\% is complete. O

3.3.5. Estimates of the error term. This section is dedicated to the proof of Propo-
sition 3.4. Let us define the following auxiliary functions

1 o - -
wr =3 > i (1l — ij41) = iy + T = —ws
JEZLs

1 — N 5 -
w2 = -3 Z (=17 (@ — 1) = 2(01 — U2) ,
JE€EZy
where we are using the notation w3 = —u9 and 44 = —u;. We recall that in a natural

coordinate w on a half-plane, the functions % and o satisfy the following system of
PDE

Aty = etz — =20
(3.5) ~ 24 @~
Aty = e“"2 — 1742 |
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Therefore, a simple computation shows that the error term R}, (cfr. Equation (3.4))
can be written in terms of the derivatives of wy_;, when k > [. In fact,

il_k il_k

/ e —
(3:6) B Ty R O T ST Ry T =

Awk_l .

Notice that the symmetries of the matrix R’ imply that the asymptotic behaviour
of R}, depends only on k—1I and it is sufficient to estimate the cases where k—1 = 1, 2.

Proposition 3.4 will then be a consequence of the following estimate:

Lemma 3.12. Let r be the distance from the zeros of q. Then for r — +o0o we have

6—2\/57’ e—4r
wr =0 | —=— ,’LUQZO( ) and  Aw; = O(wj) for j=1,2.

v vr

Proof of Proposition 3.4. Let us start with the terms R}, for k # [. In view of
Equation (3.6), it is sufficient to estimate Awg_; and Qwy_;. Lemma 3.12 asserts
that Awy_; = O(wg—;) for r — +00, hence

e 21— H|r
Awk_l =0 T

by Lemma 3.12. The bound on dwy_; follows then from the Schauder estimates
applied to Awy_; in a ball of radius rg < 1 about a point at distance comparable to
r from the zeroes of q.

As for the terms on the diagonal,

Rl o e—’i@(_i)k—l —2u1 ) U1 —1uo 2o 4

k= T(e + 2e +e*"2 —4) |

since i; and @y are infinitesimal as 7 — 400, we deduce that R}, = o(%;) for j = 1,2.
In particular, R}, = o(wi) and the estimate follows. |

The proof of Lemma 3.12 relies on some results already proved in [DW15].

Lemma 3.13. Let g € CO(R)NLY(R) be a positive Junction. Then for every positive
constant k there exists a function h € C*°(H) N C°(H) such that

Ah = kh
{MR—Q
Moreover, h satisfies
0 <h <sup(g)
oe—2Vky

h=0 (Hg\h

) for y=S(2) = +o0 .

VY
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Lemma 3.14. Let g € C°(R) N LY(R) be a positive function satisfying g < 4%, for
some k' > 0. Then, there exists a function v € C®(H) N CO(H) such that

Vg 2 9

Av < kv — kk'v?

e—2Vky
v="0lglh

VY

Proof. Consider an arbitrary solution h of the equation Ah = kh. The function
v = h — k'h? satisfies

Av — kv + E'kv? = Ah — E'Ah? — kh 4+ kE'h® + kk/(h — K'h?)?
= —k'(2hARh + 2|Vh|?) + 2kE'h? + EEPh* — 2kER3
= —2k'|Vh|? + kE3n* — 2kE"R3
< kKPRt — 2kK?R? <0

) for y=S(z) > 400 .

provided h < % This condition is satisfied if we take as h the solution provided by
Lemma 3.13 with boundary value 2g, as

2
< h<2 < — < — |
0 <h<2sup(g) < TR

Therefore, v = h — k'h? satisfies
O<v<h
Av < kv — kk'v? .

e—zx/Ey
VY
Moreover, the condition g < 4%, implies that v, > g. O

In particular, by Lemma 3.13, we deduce that v = O (Hg”l ) for y — +o0.

Proof of Lemma 3.12. Let us start with w;.
By Corollary 2.6, there exists a compact subset K, outside of which

3 1 1
Uy =up — 3 log(|q|?) < T and U2 = ug — élog(\qP) < e
By Proposition 3.3, every point p sufficiently far from K lies in a half-plane (U, w)
with UN K = 0 and S(w(p)) > r(p) — C for some C' > 0 independent from p. We
identify (U,w) with H? and we work in the w-coordinates. In particular, in these
coordinates the functions @; satisfy the system of PDE (3.5). Moreover, again by
Proposition 3.3, the function wy = 41 + g is positive and the restriction of w; to
the real axis is integrable. Moreover, its L'-norm can be bounded by some constant
that depends only on the coefficients of q. We can thus apply Lemma 3.14 with

boundary condition g = wy and k = k' = 2, thus getting a function v which satisfies

—2v/2r . . .
v =0 (e \2/; > It is now sufficient to prove that wy; < v, or, equivalently, that
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m = w; — v is always non-positive. Notice that n; € C*(H?) N C’O(ﬁz), and, since
11 and g are positive, the following inequality holds
Awy = 2% — e72U > %) + 2(03 — 42) > 2wy — 2w? .

Suppose by contradiction that 7; is positive in some point, so that the set @ =
n; (e, +00)) # 0. Since 11 < 0 on JH? and 7, decays to zero for |z| — +oo, the set
Q@ is compact and 77 has a maximum at some p € . In this point, we have

0> Ani(p) = Awi(p) — Av(p)
> 2wi(p) — 2wi(p)? — 2u(p) + 4v(p)?
> 2m(p) — 2m(p)(wi(p) + v(p))
> 2m1(p) —m(p) = m(p)

and this contradicts the fact that p € Q.

We now use the estimate for w; to deduce the asymptotic behaviour of ws. Since
we do not know if ws is positive, we work with the function wh = |wy| € C°(C) N
H} (C). Let K be a compact set containing the roots of the quartic differential
q such that wh < 1 on C\ K: this is possible because w) < w;, and we proved

that wy decays to zero. By Proposition 3.2, we can cover the complement of a
neighbourhood of K with a finite number of standard half-planes (U, ¢;). In each of
these, the function wo satisfies the following PDE

Awy = 2(2e™M 712 — 7201 _ 22y
Now, where wo > 0, we have that
72 > 4@y —
e 2 <1 — 20y + 2a?
"2 < 1+ 20y + 33
where the last inequality is true for |(;| large, since the functions 4y and @9 decay to
zero. Therefore, if wo > 0, we have
Awy > woy — 33 + 13) > 4wy — 4w?
for |(;| large enough. Similarly, when wy < 0 we have
e 24 >1 27 for || large enough
€212 > 1 + 24

(@ — ti2)”

eI <14 @y — g + 5

for |(;| large enough

thus
A(—wsz) > 4(—w2) — (—wg)2 > 4(—ws) — 4w% .
We deduce that, in each standard half-plane (U;, (;), outside a compact set, the
function wh = |wy| satisfies
Awh > 4wl — dw? .
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Moreover, from the estimates for w1, we know that, for (; sufficiently large, we have

—4v/2|¢4
e
Wt <o

|l
Let v be the solution of the boundary value problem
{Av = 4y — dw?

_ /
UlR - w2

By a similar argument as that used for w;, we have that w) < v and the estimate
for w} is then a consequence of the following lemma. O

Lemma 3.15. Let g € CO(R) N L*(R) be a positive function such that g < 1 and

let ¢ € C°(H) be such that ¢ = 0(6_4\/§r/r) when r goes to infinity. Then, the
solution v € C°°(H) N CO(H) to the boundary value problem

Av—4v=—¢
Y =9
satisfies v = O (Hnge\_/;T) for r — 400.

Proof. Tt is sufficient to prove that there exists a constant C' > 0 and 1 < a < v/2 so
that, n = (C' + 1)h — Ch® is a super-solution, where h is the function provided by
Lemma 3.13 with £ = 4. First notice that, by our assumption on g, we have

M =(C+1)g—-Cg*>(C+1)g-Cg=g
Moreover,
An—4dn+ g =4(C +1)h — CA(R*) —4(C + 1)h +4Ch* + ¢’
= —Cala —1)|Vh|?h*™2 — Cah® ' Ah + 4Ch® + ¢/
< —4aCh® +4Ch* + ¢’ =4Ch*(1 —a) + ¢’
is negative for r sufficiently large by our assumption on the asymptotic decay on ¢’

and by Lemma 3.13. We can thus choose C sufficiently large so that it is negative
everywhere, and 7 is a super-solution as claimed. O

4. IMMERSIONS INTO THE (GRASSMANNIAN OF SYMPLECTIC PLANES

In this section, we begin the proof of Theorem C. We need to relate the solutions
of the Hitchin equations (2.1) to boundary values of maximal surfaces in H>?. We
accomplish this association via an intermediary identification (Proposition 4.2 and
subsequent remarks) of solutions of the Hitchin equations to convex embeddings of
the plane C into a Grassmannian Gry(Eg). We then relate (Proposition 4.5) such a
convex embedding to a maximal surface in H?2.

Notation. From this point on, we will denote by Sp(4,R) the group of real matrices
preserving the symplectic form €. Recall that this differs by conjugation by A €
SU(4) from the group that we have used so far (see Remark 1.1).
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4.1. Surfaces in the Grassmannian of symplectic planes. Let us start with the
data of an Sp(4,R)-Higgs bundle (€, ¢) over C with polynomial quartic differential
q = q(z)dz* (see Section 1 for the definition). We denote by W the (trivial) circle
bundle over C and with 7 : W — C the canonical projection. We define a global
section of the pullback bundle 7*& — W by

0 0
* héeie * héeig
(4.1) s(z,0)=m 2 + | 2 ,
0 0
0 0

where 7 : & — € is the real involution preserved by the flat connection V and
the coordinates are expressed with respect to the frame {F(z)},cc constructed in
section 3.1. Recalling that 7(v) = H~'Qv (|[Bar10]), with Q defined in Section 1.2,
we obtain

Define Er to be the fixed point set of 7 in €.
Notice that by equation (4.1), we have that the image of s lies in the real sub-
bundle 7*Egr = Fix(7*7), which is preserved by V = 7*V. Then we compute

V%V%S(Z,e) = —s(z,0) .

to conclude that the fibres of W are developed onto real lines.

Therefore, if we denote by Gra(Er) the bundle over C, whose fibre over each
point z € C is the Grassmannian of 2-planes in (€g),, the independence on 6 of the
development of s implies that the map

f(z) =s(z,0) A @% s(z,0)

is a well-defined section of Gra(Er); here we are identifying fiber-wise the Grassman-
nian of 2-planes with the space of decomposable tensors in A2Er via the Pliicker
embedding. If we introduce the following H-unitary, real, global frame of Er

01 h;i
1 h2 1 0
u(z) = —=| 2 u(z) = —= | 1
0 =
V2 v V2 | p2
0 _1
' h% ' thy ?
7 0
u3(z) = ﬁ 02 U4(Z) = E h% )
_ Uy
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it is straightforward to verify that f(z) = u1(z) Aus(z), hence f selects in each fibre
of Er the plane generated by u;(z) and us(z). Now, recall the definition of Q in
Equation (1.1): the V-parallel symplectic form € induces a V-parallel symplectic
form on Eg, which, in the above frame, is expressed by the matrix

00 —1 0
|00 0 -1],
R 10 0 01"

01 0 0

thus the image of f entirely lies in the space of symplectic 2-planes of Ep.

Let us now underline some properties of this map that will allow to recover the
minimal surface in the Sp(4,R)-symmetric space. We learned the following from
Francois Labourie.

Definition 4.1. Let ¥ be a Riemann surface. An immersion f : ¥ — Gro(R?) is
convex if for any point p € ¥ and any tangent vector X € 7,% the map

B(X) = dpf(X) € Ty, Gra(RY)
is invertible.

We develop next an interpretation of TGra(R*). We recall that given a plane
L € Gra(R?*), the tangent space Ty Gra(R?*) is identified with the vector space of
linear homomorphisms Hom(L,R*/L) in the following way. Let L = Span(v,w) and
let 7 : [0,1] — Gra(R*) be a smooth path such that v(0) = L. For every t € [0, 1] we
choose smoothly two vectors v(t) and w(t) so that v(¢) = Span(v(t),w(t)). Using the
Pliicker embedding, we can thus write v(¢) = v(t) A w(t). Now, the tangent vector
at £ = 0 is given by

V(o) =4

= %h:ov(t) A w(t) = U’(O) A w((]) + U(O) A w'(O) ‘

The variation of the plane L is expressed only by the components of v'(0) and w’(0)
that do not lie in the plane L. Thus the tangent vector 4/(0) is completely determined
by the linear map

B(X):L - RY/L
where we construe X € T,¥ as tangent to a curve 7 (as described above) with

f o~ C Gra(R?*), and suppressing some of the notation, we take B(¥)v = v'(0) (mod
L) and B(¥)w = w'(0) (mod L).

Proposition 4.2. The immersion f : C — Gra(R*) defined above is conver.

Proof. Recall that the flat connection V& on Gra(€g) may be defined in terms of
the connection V = H™Y0H + ¢ + ¢* on &: in particular V& (v A w) is defined
in terms of Vv and Vw. To that end, suppose we have a basis {u1(z),us(z)} of
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f(z) and {uz(2),us(2)} of R*/f(2): to compute V& u; A u; for i # j, it suffices to
compute Vuy for k =1 and k£ = 3. For these particular vectors, we thus compute

1 _1 1
Va%ul(z) = hytui(z) + §h2_18yh2u3(z) + hy 2h3ua(z)

1. _ _ _1 1
Va%u?,(z) = —§h2 L0, houy (2) — hytuz(2) — hy 2h3 ua(2)
(4.2) 1 L
Vagul(z) = (hy! - ihglamhg)ug(z) — hy 2h3 ua(z)
Yy
1 11
Vaiug(z) = (hy' + ihglamhg)ul(z) — hy 2h3 uz(z)
Yy
and deduce that the homomorphisms B (a%) and B (6%) are represented by the ma-
trices
O\ _,-5,5(1 0 o\ _ -5, 4(0 -1
p(5) = o 5) 2 ()i (5

with respect to the basis {u(z),us3(2)} of f(2) and {ua(2),us(2)} of R*/f(2). Since

0 0 _
det B (CL% + b8_y> = _hl 1h2(a2 + b2)
vanishes only for a = b = 0, the result follows. O

Lemma 4.3. Let f : C — Gra(R*) be the convexr immersion constructed above.
Then there exist complex structures Ji on f(z) and Jy on R*/f(z) such that, for
every z € C, the map B : T,C — Homc(f(z),R*/f(2)) is an isomorphism that
intertwines with Ji and Js.

Proof. Let us choose the basis {u1(z),us(z)} for f(z) and let us identify R*/f(z)
with the plane generated by {ua(z),us(z)}. We define the complex structures on
these planes as follows

Jl(z):((l) ‘01> and Jg(z):<_01 (1))

Using the explicit formulas for B found in the previous proposition, it is easy to check
that for every X € T,C the map B(X) is C-linear, i.e. B(X)Ji(z) = Ja(2)B(X).
Moreover, if J denotes the standard complex structure on C, we notice that

B (J(%) = J»(2)B <%) and B (J%) = J»(2)B (%) :

which implies that the linear map
B : T.C — Homg(f(2),R*/f(2))
X — B(X)

is well-defined and C-linear for every z € C. Since it is not trivial, it is an isomor-
phism. O
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Remark 4.4. We note that the convex embedding of C into Grz(R*) contructed above
induces a minimal immersion of C into the symmetric space Sp(4,R)/U(2). Indeed,
since R* = f(2) @ R*/f(2) for every z € C, the complex structures provided by the
previous lemma enables us to define a complex structure .J on R*, depending on the
point z € C. Precisely, J(z) = Ji(z) @ —J2(z). We can also define a family of metrics
on R* depending on the point z € C by
Hy,. 7(2)(v,w) = wr(v, J(2)w) .

It follows that the H-unitary frame {u1(z),u2(2), u3(2),ua(2)} is Hyp, s(2)-unitary
at every point, thus H,, j(z) coincides with the harmonic metric H, and thus the
V-parallel transport of H,y j, or equivalently of the complex structure J, produces
the minimal surface in Sp(4,R)/U(2) associated to the given Sp(4, R)-Higgs bundle
data.

4.2. Explicit parameterization for ¢ = dz*. In the special case when the quar-
tic differential is constant we can write explicitly a parameterization of the surface
constructed previously. In analogy with affine spheres (|[DW15|), we will refer to it
as the standard flat maximal surface Tj.

To this aim, it is convenient to work in the global frame, say {w;(z)}’;, for
& in which the matrix connection of the flat connection Vj is diagonal (see Section
3.2). The change of frame is expressed by the constant unitary matrix S introduced
in Section 3.2. We obtain, for the section s in (4.1),

5(2,0) = %eig(wl(z) — w(2) + ws(2) — wa(2))

67:0 6i9

L 1| —e 1 [ —e®

+ o€ (wi(z) —wa(2) +ws(z) —wal2)) =5 | o [ +57| Lo
_eig _610

where the coordinates are now expressed with respect to the frame {w;(2)}i=1,. 4.
In this frame the real involution 7 = H~1'Q is given by

Z1 Z1
29 —1Z9
T = e
z3 —Z3
24 1Z4
thus the frame {e1(z) = wi(z), e2(2z) = (1\;—;) wa(z), e3(z) = iws(z),ea(z) = %UM(Z)}

is real and still diagonalizes the flat connection Vj. Since we know that s(z, ) will
take value in g, we will use coordinates with respect to this frame from now on.
Moreover, the restriction of the V-parallel symplectic form € induces a Vy-parallel
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symplectic form on Eg, that is given by the matrix

00 -1 0
oo 0o -1
“R=110 0 o
01 0 0

We can thus identify R* endowed with the above symplectic form, with the fibre of
Er over a base point 0 € C. By Vy-parallel transporting s at (z,6) to this fibre over
0 € C, we can first parameterize the image of s (as images in the fixed R*) as

5(2,0) = %e’pD(z)(wl(z) — wn(2) + wa(2) — wa(2))

1 .
+ ET(eZHD(z) (w1(z) — wa(z) + wsz(z) —wa(2)))
=1(2 cos(0)e*™(2) | /2(sin(f) — cos(8))e25() 25in(h)e 2R(=) | \/2(—sin(f) — cos(8))e>(3))

where D(z) = diag(e?R(?), e=3() ¢=2R(2) ¢23(2)) for » € C. Consequently, the stan-
dard flat maximal surface Ty = f(C) in the Grassmannian of symplectic planes

(identified with a submanifold of P(A?R*) via the Pliicker embedding)
f(z) =s(z,0) A V%s(z, 0)

2R(2)—2S(z) 2)+2S(z)

1
=ei1 Neg+es Neg+ —e
1 3 2 4 \/i
L on(z)+23(2) L omz)—23(2)
+ —e e3 N\ eg — —e
V2 so T

V2

where ¢; = €;(0) for i = 1,...,4. We observe from this explicit formula that Tj
coincides with the orbit of the point f(0) € Gra(R*) under the action of the diagonal
matrices D(z) = diag(e?(?), e=S(2) ¢=2R(3) 23(2)) for 2 € C.

1
er N\ ey — ﬁe%e( e1 N\ ey

ex Nes,

Moreover, by looking at limits along (quasi)-rays, we can describe the bound-
ary at infinity of Ty as a quadrilateral in the space of Lagrangians of R*, as Table 1
shows.

4.3. Relation with the maximal surface in H*2. Exploiting the low-dimensional
isomorphism PSp(4,R) = SO (2, 3), we can relate the convex surface ¥ in the Grass-
mannian of symplectic planes in R* with a unique maximal surface in H?2. We will
see, in particular, that under the identification between the boundary at infinity of
H?2 (i.e. the Einstein Universe Ein'?) and the space of Lagrangians of R?, the two
surfaces share the same boundary at infinity.

Let us first recall how the low-dimensional isomorphism PSp(4,R) = SOg(2, 3)
is accomplished. We denote by {e;}i=1, . 4 the canonical basis of R* and we consider
the symplectic form w = dx1 Adzs +dxo Adxy. Let V = A2R* be the vector space of
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Type of path v Direction # Projective limit p, of fy(v)

Quasi-ray 6ec(0,5) Dy = €1 A e4]

Ray (of height y) 6= 73 Py =[—e1 Nes+ e ez A ey)
(py — [e1 A es] as y — 00)

Quasi-ray 0e(5,m) Py = [e3 A e4]

Ray (of height iy) 6 =m Py =les Aes — e Weg A ey
(py — [e3 A es] as y — 00)

Quasi-ray 0e(m2)  py=leaNes

Ray (of height y) 6 =2F py = [e1 Aea — e Weg A ey

(py — [e1 N eg] as y — 00)
(3,2m)  py=[e1 Ae
0 Py = [eer Aex —e1 Aey)
(py — [e1 A es] as y — 00)

Quasi-ray 0
Ray (of height iy) @

TABLE 1. Limits of the standard flat maximal surface along rays

skew-symmetric 2-tensors on R*. A standard basis for V is given by {e; Ae;j}i<icj<a.
The symplectic form w induces an inner product on V' via the relation

(4.3) —2(p,p)er Nea NesNeg=d N .

It turns out that (-, -) is non-degenerate and has signature (3,3). The non-degeneracy
allows us to define a canonical 2-tensor w* dual to the symplectic form w by requiring
that

—2(w*, v Aw) = w(v,w)
for every v,w € R*. In our case, we have
w*=e1 Neg+eNey ,

and we notice that (w*,w*) = 1. The group Sp(4,R) acts naturally by isometries
on (V,(-,-)), and preserves w*. Therefore, it acts isometrically on (w*)*, which
is a five-dimensional real vector space endowed with an inner product of signa-
ture (2,3). Tracing this action, we can define a continuous group homomorphism
Sp(4,R) — SOg(2,3), whose kernel only contains <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>