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Abstract. This is the first part of the four-paper sequence, which establishes the Thresh-
old Conjecture and the Soliton Bubbling vs. Scattering Dichotomy for the energy critical
hyperbolic Yang–Mills equation in the (4 + 1)-dimensional Minkowski space-time.

The primary subject of this paper, however, is another PDE, namely the energy critical
Yang–Mills heat flow on the 4-dimensional Euclidean space. Our first goal is to establish
sharp criteria for global existence and asymptotic convergence to a flat connection for this

system in Ḣ
1
, including the Dichotomy Theorem (i.e., either the above properties hold or a

harmonic Yang–Mills connection bubbles off) and the Threshold Theorem (i.e., if the initial
energy is less than twice that of the ground state, then the above properties hold). Our
second goal is to use the Yang–Mills heat flow in order to define the caloric gauge, which will
play a major role in the analysis of the hyperbolic Yang–Mills equation in the subsequent
papers.
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1. Introduction

The goal of this paper is two-fold:

• To develop a large data global theory of the Yang–Mills heat flow on R4. Consider
the Yang–Mills heat flow on R4 with a compact structure group. For initial data a ∈
Ḣ

1
(R4), we establish sharp criteria for global existence and asymptotic convergence to

a flat connection, including the Dichotomy Theorem (Theorem 2.10) and the Threshold
Theorem (Theorem 2.11).

• To define the caloric gauge for the hyperbolic Yang–Mills equation. Using the large
data global theory of the Yang–Mills heat flow, we define the so-called caloric gauge
(Definition 2.17) and identify the structure of the hyperbolic Yang–Mills equation in
this gauge (Theorem 2.27).

While this paper is primarily devoted to analysis of the Yang–Mills heat flow, in the larger
scheme of things it constitutes the first part of a four-paper sequence, whose overall aim
is to prove the Threshold Conjecture and the Dichotomy Theorem for the energy critical
hyperbolic Yang–Mills equation in R1+4. The four installments of the series are concerned
with the following topics:

(1) the caloric gauge for the hyperbolic Yang–Mills equation, present paper.
(2) large data energy dispersed caloric gauge solutions, [19].
(3) topological classes of connections and large data local well-posedness, [20]
(4) soliton bubbling vs. scattering dichotomy for large data solutions, [21].

A short overview of the whole sequence is provided in the survey paper [22].
In the remainder of the introduction, we formulate the three Yang–Mills equations that

play a role in this paper, namely the harmonic Yang–Mills equation (elliptic), the Yang–Mills
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heat flow (parabolic) and the hyperbolic Yang–Mills equation. Then in Section 2, the main
results are stated in a more precise form, along with discussion of some major ideas.

1.1. Lie groups and Lie algebras. Let G be a compact noncommutative Lie group and
g its associated Lie algebra. We denote by Ad(O)X = OXO−1 the action of G on g by
conjugation (i.e., the adjoint action), and by ad(X)Y = [X, Y ] the associated action of g,
which is given by the Lie bracket. We introduce the notation ⟨X, Y ⟩ for a bi-invariant inner
product on g,

⟨[X, Y ], Z⟩ = ⟨X, [Y, Z]⟩, X, Y, Z ∈ g,

or equivalently

⟨X, Y ⟩ = ⟨Ad(O)X,Ad(O)Y ⟩, X, Y ∈ g, O ∈ G.

If G is semisimple then one can take ⟨X, Y ⟩ = −tr(ad(X)ad(Y )) i.e. negative of the Killing
form on g, which is then positive definite, However, a bi-invariant inner product on g exists
for any compact Lie group G.

1.2. Connections and curvature. The objects of study here are connection 1-forms taking
values in the Lie algebra g,

Aj : Rd → g.

The associated covariant differentiation operatorsDj = (D(A))j, acting on g-valued functions
B, are defined by

DjB := ∂jB + ad(Aj)B.

Their commutators yield the curvature tensor

Fjk := ∂jAk − ∂kAj + [Aj, Ak],

in the sense that DjDk − DkDj = ad(Fjk). A basic property of F is that it satisfies the
Bianchi identity :

DαFβγ +DβFγα +DγFαβ = 0.

Given a G-valued function O, its action B → Ad(O)B induces a gauge transformation for
A, namely

Ak → OAkO
−1 − ∂kOO−1 =: G(O)Ak.

Correspondingly, we have for F

Fjk → OFjkO
−1.

1.3. Yang–Mills equations. While this article is primarily devoted to the Yang–Mills heat
flow, there are in effect three Yang–Mills equations which play a role in our work. These are
as follows:

3



1.3.1. The harmonic Yang–Mills equations in the Euclidean space Rd. This is obtained as
the Euler–Lagrange equation for the Lagrangian (or the energy)

Ee[A] :=
1

2

∫︂
Rd

⟨Fjk, F
jk⟩ dx, (1.1)

and has the form
DjFjk = 0 (1.2)

Both the Lagrangian and the harmonic Yang–Mills equation are invariant with respect to
gauge transformations, therefore in order to have a good theory for these equations one needs
to fix the gauge. A common choice here is the Coulomb gauge,

∂jAj = 0 (1.3)

which formally turns the equations (1.2) into a strongly elliptic system,

∆AAk = −[Aj,DkAj] (1.4)

where ∆A is the covariant Laplacian, given by

∆A = DjDj. (1.5)

1.3.2. The Yang–Mills heat flow in R+ × Rd. This can be viewed as the gradient flow for
the above Lagrangian, but written in a gauge invariant fashion. Using the letter s for the
heat-time, we add a heat-time connection component As and the corresponding curvatures
Fsj. Then the covariant Yang–Mills heat flow has the form

Fsj = DℓFℓj, Aj(s = 0) = aj (1.6)

The solutions of the harmonic Yang–Mills equation play the role of steady states for the
Yang–Mills heat flow.

This flow is also gauge invariant. A natural way to fix the gauge is via the de Turck gauge
condition

As = ∂kAk, (1.7)

which formally turns the system (1.6) into a semilinear strongly parabolic system,

(∂s −∆A)Aj = [Aj, ∂
kAk]− [Ak, ∂jAk]. (1.8)

However, there is a second gauge choice which plays the leading role in this article, namely
the local caloric gauge1,

As = 0. (1.9)

In this gauge the system (1.6) becomes a semilinear degenerate parabolic system,

(∂s −∆A)Aj = −Dk∂jAk (1.10)

where the degenerate part occurs at the level of the divergence of A, namely

∂s(∂
kAk) = [Aj,DkFjk]. (1.11)

This would seem to be less favorable from an analytic point of view. However, as it turns
out, under this gauge the long-time behavior is better. Incidentally, this is exactly the gauge
which corresponds to directly taking the gradient flow for the Lagrangian in (1.1).

1The word local is here to differentiate this gauge with the global caloric gauge defined in Definition 2.17
below.
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Remark 1.1. In the literature, the gradient flow ∂sAj = DℓFℓj is usually called the Yang–
Mills heat flow. In our work, however, we find it conceptually and technically useful to adopt
the fully gauge-covariant formulation (1.6), and view this flow as the equation in a gauge
defined by (1.9). Of course, these viewpoints are equivalent.

The first part of the paper will be devoted to the study of global solutions for the Yang–
Mills heat flow.

1.3.3. The hyperbolic Yang–Mills equation in the Minkowski space R1+d. Let R1+d be the (d+
1)-dimensional Minkowski space, equipped with the Minkowski metric diag(−1,+1, · · · ,+1)
in the rectangular coordinates (x0, x1, . . . , xd).

The hyperbolic Yang–Mills equations are the Euler-Lagrange equations associated with
the formal Lagrangian action functional

L[A] := 1

2

∫︂
R1+d

⟨Fαβ, F
αβ⟩ dxdt. (1.12)

Here we are using the standard convention for raising indices using the Minkowski metric,
and greek letters for the Minkowski setting. The (hyperbolic) time is denoted by t, and
corresponds to the index 0 (i.e., t = x0). Thus, the hyperbolic Yang–Mills equations take
the form

DαFαβ = 0. (1.13)

In order to consider the Yang–Mills problem as an evolution equation we need to consider
initial data sets. An initial data set for (1.13) consists of two pairs of 1-forms (aj, ej) on Rd.
We say that (aj, ej) is the initial data for a Yang–Mills wave A if

(Aj, F0j)↾{t=0}= (aj, ej).

Note that (1.13) for β = 0 imposes the condition that the following equation be true for any
initial data for (1.13):

Djej = 0. (1.14)

where Dj denotes the covariant derivative with respect to the aj connection. This equation
is the Gauss (or the constraint) equation for (1.13).

We observe again that harmonic Yang–Mills connections play the role of steady states
for the hyperbolic Yang–Mills evolution. However, here we have an additional class of sym-
metries, namely the Lorentz group. Taking a Lorentz transform of a steady state yields a
soliton, which evolves with constant speed less than 1. It is a simple computation to verify
that the energy of this soliton is larger than the energy of the original harmonic Yang–Mills
connection.

Yet again, (1.13) is gauge invariant. There are several interesting gauge choices one can
make for the hyperbolic Yang–Mills equations:

• The Lorenz gauge,

∂αAα = 0 (1.15)

In this gauge the hyperbolic Yang–Mills equations become a semilinear wave system

□AAα = −[Aβ,DαAβ] (1.16)

In particular it has finite speed of propagation. This gauge is very convenient for local
well-posedness for large but regular data. Unfortunately there are multiple technical
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difficulties if one tries to implement such a gauge in the low regularity setting, see e.g.
[29].

• the temporal gauge,

A0 = 0 (1.17)

This is akin to the local caloric gauge for the heat flow. In particular at the level of the
divergence of Ax we again get a pure transport equation. In this gauge the Yang–Mills
system is still strictly hyperbolic, and in particular it has finite speed of propagation.
Because of this, it is also convenient for local well-posedness for large but regular data.
Unfortunately working with either low regularity solutions or long time solutions runs
into difficulties largely caused by the lack of decay/dispersion in the transport part.

• The Coulomb gauge

∂jAj = 0. (1.18)

where only the spatial divergence is considered. Here the causality is lost; however,
the Coulomb gauge is an “elliptic” gauge which captures well the null structure of the
problem, and thus works well in low regularity settings. Indeed, the Coulomb gauge
was used in [12] to prove the small data result for this problem in the critical Sobolev
space. Unfortunately, for large data there are issues with the Coulomb gauge.

The aim of the second part of this paper will be to use the Yang–Mills heat flow in the local
caloric gauge in order to introduce a new gauge choice for the hyperbolic Yang–Mills flow,
which we call the caloric gauge. The final objective here is to arrive at a good formulation
of the hyperbolic Yang–Mills equation in the caloric gauge.

1.4. Energy, scaling and criticality. Here we review the standard energy, scaling and
criticality considerations which apply to the three Yang–Mills problems described above.

1.4.1. The harmonic Yang–Mills equation. In the context of the harmonic Yang–Mills equa-
tion, the Lagrangian Le[A] plays the role of the energy of the connection A; we will sugges-
tively use the alternate notation ERd [A] for it.

On the other hand, the equations (1.2) also have a scale invariance property,

A(x) → λA(λx).

The Sobolev space with the same scaling is Ḣ
d−2
2 , which we will view as the natural space

for solutions to (1.2). We will refer to this space as the critical Sobolev space. The energy is
scale invariant in dimension d = 4, which we will refer to as the energy critical dimension.

1.4.2. The Yang–Mills heat flow. Here the energy plays the role of a Lyapunov functional,

d

ds
Ee[A] = −

∫︂
Rd

|DjFjk|2dx (1.19)

The scale invariance property now reads

A(x, s) → λA(λx, λ2s).

The critical Sobolev space for the initial data a is again Ḣ
d−2
2 , and the energy critical

dimension is d = 4 as well.
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1.4.3. The hyperbolic Yang–Mills equation. Here the gauge invariant energy is given by

E{t}×Rd [A] =
1

2

∫︂
{t}×Rd

∑︂
α<β

|Fαβ|2dx.

The scale invariance property has the form

A(t, x) → λA(λt, λx).

The critical Sobolev space for the initial data (a, e) is Ḣ
d−2
2 × Ḣ

d−4
2 , and the energy critical

dimension is again d = 4.
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2. The main results

In this section, we present the main results proved in this paper. We focus primarily on the
energy critical dimension d = 4, although some of our results and techniques easily extend
to higher dimensions; see Remark 2.29 below.

2.1. Review of results for harmonic Yang–Mills connections on R4. Here we do
not consider any new results, but instead recall the known results concerning the harmonic
Yang–Mills equation.

We start with the classical elliptic regularity result:

Theorem 2.1 ([40]). All harmonic Yang–Mills connections in H1
loc are smooth up to a gauge

transformation O ∈ H2
loc (or equivalently O;x ∈ H1

loc).

Key to this theorem is existence of a good gauge (namely, the local Coulomb gauge) in
which the harmonic Yang–Mills equation becomes a nice elliptic system. The importance of
a judicious choice of gauge to reveal essential analytic features of the equation is a theme
that we will see repeatedly below for the other Yang–Mills equations.

Another fundamental issue, which for example arises in the study of moduli spaces [7], is
the behavior of H1

loc connections with uniformly bounded energy Ee. We recall the following
basic results:

Theorem 2.2. Consider a sequence an of H1
loc harmonic Yang–Mills connections with uni-

formly bounded energies Ee[an] ≤ Ee < ∞. Then:

(1) (Uhlenbeck compactness) After passing to a subsequence, an is weakly convergent in H1

up to H2
loc gauge transformations.

(2) (Small energy) If Ee is sufficiently small, then after passing to a subsequence, an converges
strongly in H1

loc to the flat connection up to H2
loc gauge transformations.

(3) (Dichotomy) Generally, one of the following two scenarios must hold:
7



(a) After passing to a subsequence, an converges strongly in H1
loc up to H2

loc gauge trans-
formations.

(b) The sequence “bubbles off” a nontrivial harmonic Yang–Mills connection. More
precisely, there exists a finite set of points Σ such that, after passing to a subse-
quence, an converges strongly in H1

loc on R4 \ Σ up to H2
loc gauge transformations.

Moreover, for each x0 ∈ Σ, there exist sequences xn → x0 and rn → 0 such that the
rescaled sequence

bn(x) = rna
n(xn + rnx)

converges strongly in H1
loc to a nontrivial harmonic Yang–Mills connection.

For more sophisticated results on the structure of the possible singular set Σ we refer to [25].
By part (2), we see that

EGS = inf{Ee[Q] : Q is a nontrivial harmonic Yang–Mills connection on R4} (2.1)

is strictly positive. Part (3) then implies that, if EGS < ∞, then there exists a harmonic
Yang–Mills connection Q, which we call a ground state, such that

Ee[Q] = EGS.

For noncommutative compact structure groups, we indeed have EGS < ∞. This nontrivial
fact comes from the beautiful interplay among the harmonic Yang–Mills equation on R4,
topology and the theory of Lie groups. To property describe it, we need to introduce the
concept of topological classes.

For a compact base manifold, such as S4, this term refers to the isomorphism classes
of principal G-bundles which supports the connection. On the other hand, for R4, which
is contractible and thus supports only the trivial fiber bundles, a topological class must be
interpreted rather as a property of a connection. If a is a harmonic Yang–Mills connection on
R4, then consider its pullback on S4 \ {point} by the stereographic projection. By conformal
invariance, it is a harmonic Yang–Mills connection on S4 \ {point} with the same energy,
and by the singularity removal theorem of Uhlenbeck [41], it can be uniquely extended to
a principal G-bundle on the whole sphere S4. We identify its isomorphism class with the
topological class of a.

Remark 2.3. More generally, if A is smooth with a rapidly decaying curvature F , then it
uniquely determines a principal G-bundle on the one-point compactification S4 of R4, whose
isomorphism class may be identified with the topological class of A. In fact, this procedure
essentially works under the mere condition that A ∈ H1

loc with finite energy. We refer the
reader to [20, Section 3] for a precise definition of topological classes of such connections
along these ideas.

By the above discussion, it suffices to consider the harmonic Yang–Mills connections on S4.
For concreteness, we also restrict our attention to G = SU(2), in which case we normalize
⟨A,B⟩ = −tr(AB). Then the Chern number c2 of a principal G-bundle, which is always an
integer, characterizes its topological class. It may be computed from a by the Chern–Weyl
formula

c2(a) =
1

8π2

∫︂
S4
tr(f ∧ f). (2.2)

One way to construct harmonic Yang–Mills connections is to look for the absolute min-
imizers of the energy functional Ee in a fixed topological class; such connections are called
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instantons. A procedure due to Atiyah–Drinfeld–Hitchin–Manin [1] gives explicit construc-
tion of all instantons in the case of G = SU(2). In particular, we have:

Theorem 2.4 ([1]). Consider G = SU(2) with ⟨AB⟩ = −tr(AB). In every topological class
of principal G-bundles on S4, there exists an instanton (ground state) Q with energy

Ee(Q) = 8π2|c2|.

One may wonder if the instantons exhaust all harmonic Yang–Mills connections. Remark-
ably, the answer is no, as demonstrated by [30, 3, 26, 23]. Nevertheless, Gursky–Kelleher–
Streets [8] recently proved the following lower bound:

Theorem 2.5 ([8]). Consider G = SU(2) with ⟨AB⟩ = −tr(AB). If a is a harmonic
Yang–Mills connection on a principal G-bundle on S4, then either a is an instanton, or

Ee(a) ≥ 8π2|c2|+ 16π2.

In particular, observe that we have a refined threshold for a topologically trivial harmonic
Yang–Mills connection: It is either flat, or must have energy at least 2EGS = 16π2.

For a general noncommutative Lie groupG, instantons may be constructed from the SU(2)
version by an appropriate embedding su(2) → g, which always exists and forms the basis of
the classical Cartan–Weyl structure theory of compact Lie groups. Moreover, Theorem 2.5
holds more generally for any simple compact Lie group, and also has important implications
for general noncommutative compact Lie groups; see Theorem 6.10. For details, we refer the
reader to [20, Section 6].

2.2. Large data global theory for the Yang–Mills heat flow on R4. Here we consider
the question of local and global well-posedness, as well as asymptotic convergence property,
for the Yang–Mills heat flow (1.6) at energy regularity.

Here and in the rest of this paper, we restrict our attention to connection 1-forms in

Ḣ
1
, in anticipation of the results we will prove for the hyperbolic Yang–Mills equation (see

Section 2.3). More precisely, we will need a global theory of the Yang–Mills heat flow only
for those connections whose hyperbolic Yang–Mills evolutions scatter. These must be in the

trivial topological class (“topologically trivial”), or equivalently, gauge-equivalent to a Ḣ
1

connection [20, Section 4].
In the question of well-posedness of the Yang–Mills heat flow, the gauge choice is critical,

as we would like to avoid pure gauge singularities. Local well-posedness is most readily un-
derstood in the de Turck gauge, where the Yang–Mills heat flow becomes a strongly parabolic
semilinear flow. The following result is relatively easy to establish, and is provided without
proof:

Theorem 2.6. The Yang–Mills heat flow (1.6) in the de Turck gauge is locally well-posed

in Ḣ
1
, as well as globally well-posed for small data.

In particular the small data solutions will satisfy

∥A∥
L∞Ḣ

1∩L2Ḣ
2 ≲ ∥a∥

Ḣ
1 (2.3)

and will decay to zero at infinity. We remark that a similar small data result can also be
proved in the Coulomb gauge; however this gauge no longer extends to all large data.
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Unfortunately, the small data global well-posedness result in the de Turck gauge does not
readily extend to large data. To understand why, consider initial data a whose curvature f
vanishes, f = 0. By the energy dissipation relation (1.19) we expect the solution to satisfy
Fjk = 0 at all heat-times s > 0. Such solutions are gauge equivalent to the zero solution, so
they can be represented as

A = O;x.

The equation (1.6) is clearly globally solvable in Ḣ
1
, for any extension of O = Id to s > 0

would yield a solution. However, if we now impose the de Turck gauge condition we arrive
at the following equation for O:

O;s = DjO;j

which is nothing but the harmonic heat flow equation for G-valued maps. It is well-known
(see [5, 4]) that this flow can develop singularities in finite time. Hence the same will happen
for the Yang–Mills heat flow (1.6) in the de Turck gauge.

The above discussion motivates the introduction of the local caloric gauge (1.9) as a
substitute for the de Turck gauge. The pure gauge blow-up described above no longer arises
as pure gauge solutions are stationary in the local caloric gauge.

We start with the basic local well-posedness result in the local caloric gauge:

Theorem 2.7. The Yang–Mills heat flow (1.6) in the local caloric gauge is locally well-posed

in Ḣ
1
, as well as globally well-posed for small data.

A precise statement of this theorem is provided in Section 5. However, for reader’s conve-
nience we briefly describe here the main features:

(a) Existence, uniqueness and C1 local dependence on the initial data. However, in contrast
to the case of the de Turck gauge, C2 dependence does not seem to hold.

(b) Higher regularity also holds; in particular the data to solution map is Lipschitz in

Ḣ
1 ∩ Ḣ

σ
for all σ > 1. Also a frequency envelope version of the result is valid.

(c) The curvature F satisfies global parabolic bounds,

∥F∥
L∞L2∩L2Ḣ

1 ≲∥a∥
Ḣ

1 1

and decays to zero at infinity.
(d) The connection A(s), however, does not decay to 0 at infinity. Instead, the limit

a∞ = lim
s→∞

A(s)

exists in Ḣ
1
, and has zero curvature f∞ = 0.

Next, we introduce the gauge- and scaling-invariant space-time norm

∥F∥L3(J ;L3)

which plays an important role in our study. In fact, we have the following Structure Theorem:

Theorem 2.8 (Structure Theorem). Let A be a Yang–Mills heat flow given by Theorem 2.7
on a heat-time interval J , such that

∥F∥L3(J ;L3) ≤ Q < ∞. (2.4)

When J is finite, A can be extended as a Yang–Mills heat flow past its endpoint. When J is
infinite, properties (b)–(d) holds for A, where the implicit constants depend also on Q.
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Motivated by this result, for a ∈ Ḣ
1
with a global solution A, we introduce the notation

Q(a) = ∥F∥L3([0,∞);L3). (2.5)

We will refer to Q(a) as the caloric size of the connection a. In what follows, by writing
Q(a) < ∞, it is implicit that a has a global associated Yang–Mills heat flow A.

We note that many more strong conclusions about A and nearby Yang–Mills heat flows
can be made from (2.4), which is why we call Theorem 2.8 the Structure Theorem. We refer
the reader to Section 5 for a more precise statement and the proof.

Remark 2.9 (Remark on the techniques). The subtlety in the proofs of Theorems 2.7 and 2.8
lies in the fact that in the local caloric gauge, (1.10) is only degenerate parabolic. One way
to handle this issue is via the de Turck trick, which in our formalism amounts to working in
the de Turck gauge; as discussed above, however, this approach is effective only locally in
time. Our approach instead is to rely on a version of the de Turck trick for the linearization
of the Yang–Mills heat flow; in this scheme, an auxiliary flow called the dynamic Yang–Mills
heat flow plays a major role. We refer the reader to Section 2.6 for a further discussion.

Next, we describe our main large data results for the Yang–Mills heat flow. By a blow-up
analysis based on the monotonicity formula (or the energy identity)∫︂

1

2
⟨Fij, F

ij⟩(s1) dx+

∫︂ s1

s0

∫︂
⟨DℓFℓi,D

ℓF i
ℓ ⟩ dxds =

∫︂
1

2
⟨Fij, F

ij⟩(s0) dx,

Theorem 2.8 can be considerably strengthened as follows:

Theorem 2.10 (Dichotomy Theorem). Let a be a connection 1-form in Ḣ
1
, and let A be

the solution to (5.1) with initial data Ai(s = 0) = ai given by Theorem 2.7. Then one of the
following two properties must hold for the maximal solution:

(a) The solution is global, Q(a) = ∥F∥L3([0,∞);L3) < ∞, and A(s) converges to a flat con-

nection a∞ in Ḣ
1
as s → ∞.

(b) The solution “bubbles off” a nontrivial harmonic Yang–Mills connection, either
(i) at a finite blow-up time s < ∞, or
(ii) at infinity s = ∞.

A more precise form of Theorem 2.10, as well as its proof, may be found in Section 6.
Theorem 2.10 identifies the possible obstruction for global existence and asymptotic con-

vergence to a flat connection as “bubbling off” a nontrivial harmonic Yang–Mills connections.
Taking into account their theory reviewed in Section 2.1, we obtain:

Theorem 2.11 (Threshold Theorem). Let a be a connection 1-form in Ḣ
1
, and let A be the

solution to (5.1) with initial data Ai(s = 0) = ai given by Theorem 2.7. If

Ee[a] < 2EGS,

then the solution A is global, Q(a) = ∥F∥L3([0,∞);L3) < ∞, and A(s) converges to a flat

connection a∞ in Ḣ
1
as s → ∞.

For a more precise form of Theorem 2.11, as well as its proof, we again refer to Section 6.
Observe that the threshold energy is 2EGS instead of the obvious value EGS! This refine-

ment is a result of taking into account the “topological triviality” of Ḣ
1
connections, as well
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as “topological nontriviality” of harmonic Yang–Mills connections with energy below 2EGS,
as suggested by Theorem 2.5 (at least for G = SU(2)).

Remark 2.12 (Brief historical remarks). The bubbling analysis, which forms the basis of the
proofs of Theorems 2.10 and 2.11, has its origin in the classical work of Struwe [33] (see also
Schlatter [28]). In the context of a general compact (Riemannian) base manifold, Schlatter
[27] proved global existence and (weak) asymptotic convergence under non-sharp energy
restrictions, and a sharp threshold theorem was proved recently in by Gursky–Kelleher–
Streets [8], as a corollary of their lower bound on the energy of non-instanton harmonic Yang–
Mills connections. In comparison to these works, the significance of our results lies in the
precise asymptotics of the Yang–Mills heat flow on the noncompact space R4 (encapsulated
by the bound Q(a) < ∞ via Theorem 2.8), which allows us to define the global caloric
gauge, to be described below. We also refer to the interesting recent work of Waldron on
(im)possible finite time singularities [42, 43], and of Kelleher–Streets [9, 10] on the structure
of the general singular set.

2.3. Preview of results for the hyperbolic Yang–Mills equation in R1+4. In order
to motivate the subsequent results concerning the caloric gauge, we state here the local and
global well-posedness results for the energy critical hyperbolic Yang–Mills equation that will
be proved in the subsequent papers [19, 20, 21] of the series.

For the local and global well-posedness properties of the hyperbolic Yang–Mills equation,
the question of the gauge choice is again paramount. We begin with some classical, higher
regularity local well-posedness results:

Theorem 2.13. The hyperbolic Yang–Mills equation (1.13) is locally well-posed in H3×H2

in both the Lorenz and the temporal gauge.

As mentioned before, both of these gauges are consistent with causality, i.e, the corre-
sponding evolution has finite speed of propagation. Because of this, the large data problem
is easily localized and reduced to a small data problem. The small data problem is pertur-
bative in the Lorenz gauge, but slightly nonperturbative in the temporal gauge.

While in both of these gauges one can lower somewhat the regularity of the data, de-
scending to (critical) energy regularity while working directly in these gauges2 appears to
be fraught with difficulties. The same applies to the global problem; the two are in effect
equivalent at least to a certain extent.

The Coulomb gauge (1.18), on the other hand, provides a much better structure for the
equations. In recent work of the second author with Krieger [12], the small data problem
was considered at energy regularity:

Theorem 2.14. The hyperbolic Yang–Mills equation (1.13) in the Coulomb gauge (1.18) is

globally well-posed for small data in Ḣ
1 × L2.

At the same time, blow-up solutions are known to exist in certain cases (see [11, 24]) just
above the ground state energy. This leads one to a “Threshold Conjecture” similar to the
one for the Yang–Mills heat flow.

2We remark that, a-posteriori, we obtain local well-posedness at the critical regularity in the temporal
gauge (see Theorem 2.16). However, its proof is highly indirect, and the key analysis is still performed in
the caloric gauge [19, 20].
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Unfortunately, it appears3 that in general the Coulomb gauge cannot be extended to all
data below the threshold energy. Hence we need an alternative gauge choice which should
retain as much as possible of the algebraic structure associated to the Coulomb gauge, but
which is well-defined at least for subthreshold connections.

This gauge, which we will call the (global) caloric gauge, is defined using the Yang–Mills
heat flow. It is precisely the Threshold Theorem for the Yang–Mills heat flow which guar-
antees that the caloric gauge is defined for all subthreshold connections.

The primary aim of the four-paper series, of which the present one is the first, is to prove
the following two results, which are analogous to Theorems 2.11 and 2.10. The first result
gives an affirmative answer to the Threshold Conjecture:

Theorem 2.15 (Threshold Theorem). The hyperbolic Yang–Mills equation (1.13) in the
caloric gauge is globally well-posed, and the solution scatters, for all initial data (a, e) ∈
Ḣ

1 × L2 with energy below 2EGS.

In Theorem 2.15, the restriction to “topologically trivial” data (a, e) ∈ Ḣ
1×L2 is natural,

since one of the conclusions is scattering of the solution. This explains the refined threshold
2EGS. On the other hand, for more general data (a, e) ∈ H1

loc × L2
loc with finite energy, we

establish the following sharp dichotomy:

Theorem 2.16 (Dichotomy Theorem). The hyperbolic Yang–Mills equation (1.13) is locally
well-posed in the temporal gauge for all initial data (a, e) ∈ H1

loc × L2
loc with finite energy.

Moreover, one of the following two properties must hold:

(a) The solution is global, and A scatters as t → ∞ after a suitable gauge transformation.
(b) The solution “bubbles off” a soliton, either

(i) at a finite blow-up time t < ∞, or
(ii) at infinity t = ∞.

In (a), for sufficiently large t the solution A(t) can in fact be gauge-transformed into the
caloric gauge, which then scatters as t → ∞ in the same sense as Theorem 2.15. In (b),
a soliton for the hyperbolic Yang–Mills equation is simply a Lorentz transformation of a
nontrivial harmonic Yang–Mills connection Q. By time reversibility, this theorem applies
also (separately) to the past time direction.

Further discussion of gauges and of the above results, as well as a more complete formula-
tion of these, are postponed for the other three papers. The main goal of the second part of
the present paper, which consists of Sections 7–9, is to properly define the caloric gauge, and
to provide a formulation of the hyperbolic Yang–Mills equations in this gauge which suffices
for the proof of the above theorems. The caloric gauge and the corresponding results are
described in the next subsection, and the proofs are provided later on.

2.4. The global caloric gauge and the manifold of caloric connections. Here, we
state our main results concerning the caloric gauge connections in a simplified form for the
reader’s convenience. More accurate statements are given and proved in Section 7.

Consider a connection a on R4, whose associated Yang–Mills heat flow is global and satisfies
Q(a) < ∞. Since the limiting connection a∞ is flat, it must be gauge equivalent to the zero

3At this point, one should regard this as a conjecture for which we have some evidence but not a proof.
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connection. Precisely, there must be a gauge transformation O with the property that

(a∞)j = O−1∂jO.

Here O = O(a) ∈ Ḣ
2
(interpreted in the sense that O;j ∈ Ḣ

1
) is unique up to constant

conjugations. Conjugating the full heat flow with respect to such an a yields a gauge-
equivalent connection

Ãj = OAjO
−1 −O;j

which solves the Yang–Mills heat flow, and satisfies Ã(∞) = 0. This leads us to the following
definition of caloric connections:

Definition 2.17. We will say that a connection a ∈ Ḣ
1
with Q(a) < ∞ is (globally) caloric

if the corresponding limiting connection vanishes, a∞ = 0; we denote the set of all such
connections by C. More quantitatively, we denote by CQ the set of all caloric connections
whose caloric size Q(a) satisfies

Q(a) = ∥F∥L3([0,∞);L3) ≤ Q.

Then the Threshold Theorem for the Yang–Mills heat flow can be restated as an existence
result for gauge-equivalent caloric connections:

Theorem 2.18. For every connection ãj ∈ Ḣ
1
with energy below 2EGS, there exists a gauge-

equivalent caloric connection a ∈ Ḣ
1
, which is unique up to constant gauge transformations.

The connection a is defined as

aj = Cal(ã) := OãjO
−1 −O;j, O = O(ã).

To properly solve the hyperbolic Yang–Mills equation in the caloric gauge, we need to
view the family C of the caloric gauge connections as an infinite dimensional manifold. Here

the Ḣ
1
topology is no longer sufficient, so we introduce the slightly stronger topology4

H = {a ∈ Ḣ
1
: ∂ℓaℓ ∈ ℓ1L2},

which reflects the fact, discussed later in greater detail, that caloric connections satisfy a
nonlinear form of the Coulomb gauge condition. Then we have

Theorem 2.19. For any caloric connections a ∈ CQ with energy E, we have the H bound

∥a∥H ≲Q,E 1. (2.6)

The set C of all Ḣ
1
caloric connections is a C1 infinite dimensional submanifold of H.

For an arbitrary a ∈ C, O(a) is only defined as an equivalence class, modulo constant gauge
transformations. However, if in addition we know that a ∈ H, then O(a) is continuous, and
we can fix its choice by imposing the additional condition

lim
x→∞

O(x) = Id. (2.7)

With this choice we have the following regularity property:

4Here ℓ1 stands for dyadic summation in frequency. We prefer this notation to the more classical Besov
style notation, as we can apply it to a larger class of spaces, see also Section 3.
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Theorem 2.20. The map a → O(a) is locally C1 from H to Ḣ
2 ∩ C0, and from Hσ to

Ḣ
1 ∩ Ḣ

σ+1
for σ ≥ 2. It is also also continuous from Ḣ

1
to5 Ḣ

2
.

Finite energy solutions to the hyperbolic Yang–Mills equation will be continuous functions
of time which take values into C. They are however not smooth in time, instead their time
derivative will merely belong to L2. Because of this, we need to take the closure of its tangent
space TaC (which a-priori is a closed subspace of H) in L2. This is denoted by TL2

a C. It is
also convenient to have a direct way of characterizing this space; that is naturally done via
the linearization of the Yang–Mills heat flow:

Definition 2.21. For a caloric gauge connection a ∈ C, we say that L2 ∋ b ∈ TL2

a C if the
solution to the linearized local caloric gauge Yang–Mills heat flow equation

∂sBk = [Bj, Fkj] +Dj(DkBj −DjBk), Bk(0) = bk (2.8)

satisfies

lim
s→∞

B(s) = 0 in L2.

A key property of the tangent space TL2

a C is the following nonlinear div-curl type decom-
position:

Theorem 2.22. Let a ∈ C. Then for each e ∈ L2 there exists a unique decomposition

e = b−Da0, b ∈ TL2

a C, a0 ∈ Ḣ
1
. (2.9)

with the corresponding bound

∥b∥L2 + ∥a0∥Ḣ1 ≲ ∥e∥L2 . (2.10)

For any e ∈ L2, we introduce the notation

b = Πa(e)

for its projection b as in (2.9) to TL2

A C.
Finally, as already hinted by Theorem 2.19, a key property of a caloric connection is that

its divergence ∂ℓAℓ satisfies a generalized Coulomb condition. We separate out the quadratic
part, which can be explicitly determined, and the remaining higher order terms, which only
play a perturbative role in the subsequent analysis:

Theorem 2.23. For a ∈ C, we have the representation

∂kAk = DA(A) = Q(A,A) +DA3(A). (2.11)

where Q(A,A) is a symmetric6 bilinear form (see Definition 3.1 below) with symbol

Q(ξ, η) =
|ξ|2 − |η|2

2(|ξ|2 + |η|2)
. (2.12)

and DA3(A) is a C1 map on C containing cubic and higher order terms, and satisfying better
bounds.

5Here Ḣ
2
needs to be interpreted as a quotient space, modulo constant gauge transformations.

6Note that the symbol of Q is odd, but this is combined with the antisymmetry of the Lie bracket
appearing in the bilinear form; see Definition 3.1.
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Remark 2.24 (Brief historical remarks). The caloric gauge was introduced by Tao [34] in
the context of mappings from R2 into hyperbolic space, using the harmonic map heat flow
on R2. Its construction was extended to general targets up to the ground state energy
(cf. Theorem 2.18) by Smith [31]. Various authors successfully applied the caloric gauge
in analysis of dispersive equations for mappings, including Tao [35, 36, 37, 38, 39] for the
wave maps on R1+2; Bejenaru–Ionescu–Kenig–Tataru [2], Smith [32] and Dodson–Smith [6]
for Schrödinger maps on R×R2. We also note some recent applications of the caloric gauge
in the context of wave maps on the hyperbolic space [13, 14, 16, 15].

The idea of caloric gauge was extended to the Yang–Mills setting (i.e., for vector bundle
connections) by the first author [17, 18] at subcritical regularity. In that case, since the
scaling symmetry is broken, it is more natural to only impose the local caloric gauge condition
(1.9) for heat-times below certain threshold s0 > 0 dictated by the initial data; this is in
contrast to the global caloric gauge used in this work.

2.5. The hyperbolic Yang–Mills equation in the caloric gauge. We now turn our
attention to the hyperbolic Yang–Mills equation. We will consider solutions which at any
fixed time t are in the caloric gauge, Ax(t) ∈ C. We will refer to such solutions as caloric
Yang–Mills waves.

We first clarify the notion of an initial data set for the Yang–Mills equation in the caloric
gauge. On the one hand, we have the gauge covariant notion (a, e), which satisfies the
constraint equation (1.14). On the other hand, in the caloric gauge, we will consider the
spatial component of the connection as the dynamic variable, and view the temporal part
of the connection as an auxiliary variable (which is analogous to the Coulomb case). From
this point if view, we have:

Definition 2.25. An initial data for the Yang–Mills equation in the caloric gauge is a pair
(a, b) where a ∈ C and bk ∈ TL2

a C.

These two notions are related to each other by the following result:

Theorem 2.26. (1) Given any Yang–Mills initial data pair (a, e) ∈ Ḣ
1 × L2 such that

Q(a) < ∞, there exists a caloric gauge Yang–Mills data (ã, b) ∈ TL2C and a0 ∈ Ḣ
1
, so

that the initial data pair (ã, ẽ) is gauge equivalent to (a, e), where

ẽk = bk −D
(ã)
k a0.

(2) Given any caloric gauge data (ã, b) ∈ TL2C, there exists a unique a0 ∈ Ḣ
1
, with Lipschitz

dependence on (a, b) ∈ Ḣ
1 × L2, so that

ek = bk −D
(a)
k a0

satisfies the constraint equation (1.14).

For a proof, see Theorem 8.1 below. In view of this result, we can fully describe caloric
Yang–Mills waves as continuous functions

I ∋ t → (Ax(t), ∂tAx(t)) ∈ TL2C.

Next, we consider the task of providing a full description of the gauge-dependent system
of nonlinear wave equations satisfied by a caloric Yang–Mills wave A. Recall the Yang–Mills
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equation (1.13):
DαFαβ = 0.

Separating these equations into the spatial (β ̸= 0) case

DαDαAk = DkDαAα − [Aα,DkAα], (2.13)

and respectively the temporal (β = 0) case

DkDkA0 = D0D
kAk − [Ak,D0Ak], (2.14)

we will seek to interpret the first equation as a hyperbolic evolution for Ax, and the second
as an elliptic compatibility condition for A0. This is achieved as follows:

Step 1. Use the equation (1.13) to show that A0 is uniquely determined by A = Ax and
B = Bx = ∂tAx,

A0 = A0(A,B) (2.15)

where A0 is a C1 map on TL2C which contains an explicitly computed quadratic part A2
0,

as well as purely perturbative higher order terms A3
0:

A0(Ax, Bx) = A2
0(A,B) +A3

0(A,B). (2.16)

Step 2. Use the equations (2.13) to show that D0A0 is uniquely determined by A and B,
i.e.,

D0A0 = DA0(Ax, Bx) (2.17)

where DA0 is a C1 map on TL2C which plays a purely perturbative role in the analysis.

The above steps allow us to recast the equations (2.13) in the form

□AAk = P [Aj, ∂kAj] + 2∆−1∂kQ(∂αAj, ∂αAj) +R(A, ∂tA) (2.18)

Here on the right we have two quadratic terms depending only on A and B, both of which
have a favorable null structure, and a higher order remainder term R, which admits fa-
vorable L1L2 bounds and thus only plays a perturbative role. However, in the covariant
d’Alembertian □A on the left, we still have the coefficients A0 and D0A0, which are deter-
mined as above in terms of Ax and ∂tAx. Of these only the quadratic part A2

0 of A0 plays a
nonperturbative role. We arrive at:

Theorem 2.27. The hyperbolic Yang–Mills equation in the caloric gauge takes the form
(2.18), where

• Q is a symmetric quadratic form of order zero with symbol (2.12).

• R is a C1 map on TL2C satisfying perturbative bounds.
• A0 and D0A0 are uniquely determined by A and Ax via (2.15), (2.16) and (2.17).
• The generalized Coulomb condition (2.11) holds.

A more precise form of this result is contained in Section 9. All perturbative terms are
shown to satisfy favorable bounds purely in terms of Strichartz type norms for the connection
A. The exact structure of all explicit quadratic forms Q, A2

0 and DA2 will play a key role
in the next paper of our three paper sequence.

To study the small data problem it would be sufficient to work with the equation (2.18).
However, for the large data problem we also need to flow the wave equation in the parabolic
direction. In a nutshell, a shift in caloric time results in a natural smoothing of the solution,
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which serves as an ingredient in the ”induction on energy” scheme in [19] to compensate for
the lack of smallness of the energy.

To smooth out the space-time connection (A0, A), we use the dynamic Yang–Mills heat
flow

Fsα = DℓFℓα, α = 0, 1, . . . 4 (2.19)

which is the Yang–Mills heat flow for A adjoined with an s-evolution equation for A0. Then
at nonzero heat-times s the equation (1.13) becomes

DαFαβ(s) = wα(s). (2.20)

The space-time 1-form wα is called the (hyperbolic) Yang–Mills tension field. In general
wα(s) ̸= 0 for s > 0, as the two flows (wave and heat) do not commute. In order to proceed,
additional steps are needed:

Step 3. Compute parabolic evolutions for wα, showing that at time t they depend only on
the data A(t), B(t) and of course on s,

wα = wα(A(t), B(t), s).

A key point is that the initial data wα(s = 0) is zero, thanks to the hyperbolic Yang–Mills
equation (1.13). As a consequence, wα turns out to be quadratic and higher order.

Step 4. Separate wα into the quadratic part and a higher order term,

wα(s) = w2
α(s) +w3

α(s).

where the former can be explicitly computed, and the latter is purely perturbative.

Step 5. Recalculate A0 andD0A0 to include the dependence on w(s), and write the analogue
of the equation (2.18) for A(s):

□A(s)Ak(s) = P [Aj(s), ∂kAj(s)] + 2∆−1∂kQ(∂αAj(s), ∂αAj(s)) +R(A(s), ∂tA(s)).

+ Pw2
k(s) +Rs(A, ∂tA)

(2.21)

The extra term on the right is matched by a like contribution to the quadratic part of A0,
i.e. (2.16) is replaced by

A0(s) = A0(A(s), B(s)) + ∆−1w2
0 +A3

0,s(A,B) (2.22)

Now we can state

Theorem 2.28. The caloric flow A(s) of a hyperbolic Yang–Mills wave in the caloric gauge
takes the form (2.21), where the additional terms w2

k(s), Rs and A3
0,s(A,B) satisfy the fol-

lowing properties:

• w2
k(s)(A,B) are explicit quadratic forms localized7 at frequency s−

1
2 .

• Rs and A3
0,s(A,B) are C1 maps on TL2C satisfying perturbative bounds, also localized

at frequency s−
1
2 .

The analysis of the equation (2.21), carried out in [19], will be very similar to that of
(2.18), with the minor proviso that the quadratic terms in w in the two equations above
have a very mild nonperturbative role, and exhibit a null form type cancellation.

7with decaying tails
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Remark 2.29. Finally, we briefly discuss what happens in dimensions higher than 4. After

replacing Ḣ
1
by Ḣ

d−2
2 and defining

Q(a) = ∥F∥Ld−1
s ([0,s+);Ld−1

x ),

the analogue of Theorems 2.7 and 2.8 may be proved for any dimension d ≥ 4, by essentially

a technical extension of the arguments in this paper. For connections a ∈ Ḣ
d−2
2 with Q(a) <

∞, the caloric gauge condition can be defined exactly in the same way (Definition 2.17), and
the subsequent results concerning the caloric gauge also extend easily to higher dimensions.

On the other hand, our proof of the Dichotomy and Threshold Theorems (Theorems 2.10
and 2.11) rely on specific features of dimension 4 (energy criticality, knowledge of harmonic
Yang–Mills connections etc.), and does not admit direct generalization to higher dimensions.

2.6. Remarks on the dynamic Yang–Mills heat flow and the de Turck trick. In
this paper, the dynamic Yang–Mills heat flow

Fsα = DℓFℓα (2.23)

plays a central role in multiple major ways. This subsection is devoted to a brief discussion
of these aspects.

The same flow appears in our work in three distinct capacities:

(1) As a gauge covariant smoothing flow for space-time connections. This is the most direct
interpretation of the dynamic Yang–Mills heat flow (as opposed to the original Yang–
Mills heat flow, which is for spatial connections). It is used in the energy induction
argument in [19]; for this reason, we derive equations obeyed by the dynamic Yang–Mills
heat flow A(s) of a caloric Yang–Mills wave (see Section 2.5). Noncommutativity of
the hyperbolic and parabolic Yang–Mills equations gives rise to a nontrivial Yang–Mills
tension field wµ(s), whose analysis is key for deriving the equations for A(s).

Curiously, wµ(s) (s > 0) also makes appearance in estimates for ∂0A0, even at s = 0.
This is due to other uses of related to the “infinitesimal de Turck trick”, which we explain
below.

(2) As a means to perform the “infinitesimal de Turck trick” for the linearized Yang–Mills
heat flow in the local caloric gauge. The usual de Turck trick is a way of compensating for
the degeneracy of (1.10) by an s-dependent gauge transformation; in our gauge-covariant
formalism, it amounts to working in the de Turck gauge (1.7). As we have seen, however,
this approach is problematic for large data global theory.

Instead, we perform the de Turck trick not forA, but rather at the level of the linearized
flow (2.8) (thus the name “infinitesimal de Turck trick”). The algorithm is as follows.
Given a one-parameter family of Yang–Mills heat flows Aj(t, x, s) with data aj(t, x)
(t ∈ I, x ∈ R4, s ∈ J), we add a t-component A0(t, x, s) and view it as a connection
1-form on I × R4 × J . In the s-direction, we then impose the equation

Fs0 = DℓFℓ0 (2.24)

which, combined with (1.6), forms the dynamic Yang–Mills heat flow system.
The key idea is to work with

F0j = ∂tAj − (D(A))jA0. (2.25)
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As opposed to ∂tAj, which solves (2.8), F0j has the advantage of obeying a nondegenerate
covariant parabolic equation:

DsF0j −∆AF0j − 2ad(F ℓ
j )F0ℓ = 0.

Solving this equation would determine F0j from any data F0j(s = 0) = ej. We choose
ej = ∂taj, which amounts to prescribing a0 = 0. Then A0 may be determined by
integrating

∂sA0 = Fs0 = DℓFℓ0 (2.26)

where the first equality is the local caloric condition, and the second one is (2.24). Finally,
using (2.25), we come back to the solution ∂tA of the linearized Yang–Mills heat flow.

The success of this approach is based on the solvability of ∆A and ∂s −∆A, which is
developed in Section 4. It forms the basis of our analysis in Section 5.

(3) As a means to obtain useful representation of projection to the caloric manifold. This is
a variant of the “infinitesimal de Turck trick”. Previously, we chose to initialize a0 = 0.
When a(t = 0) is a caloric connection, another natural choice is to set A0(s = ∞) = 0,
which amounts to making a gauge transformation in t so that the nearby a(t)’s are also
caloric. Integrating (2.26) from s = ∞ to 0, we obtain the following representation of
a0:

a0 = −
∫︂ ∞

0

DℓFℓ0(s) ds.

By (2.25), we have

ej = ∂taj − (D(a))ja0.

Since a(t)’s are caloric, ∂taj clearly belongs to TaC since each a(t) is caloric, whereas
D(a)a0 is a pure covariant gradient. By Theorem 2.22, ∂taj is precisely the projection
Πaej.

The procedure just described gives an explicit algorithm for computing Πa, which we
will use extensively in Section 7 and onward. The same idea also allows us to relate the
second order variation ∂0a0(s = 0) with integral of D0D

ℓFℓ0(s) = Dℓwℓ(s) from s = ∞
to 0 (up to minor error terms), which explains the usefulness of w(s) in (1).

3. Notations, conventions and other preliminaries

3.1. Notations and conventions. Here we collect some notation and conventions used in
this paper.

• We employ the usual asymptotic notation A ≲ B to denote A ≤ CB for some implicit
constant C > 0. The dependence of C on various parameters is specified by subscripts.

• We use the notation ∂ (without sub- or superscripts) for the spatial gradient ∂ =
(∂1, ∂2, . . . , ∂d), and ∇ for the space-time gradient ∇ = (∂0, ∂1, . . . , ∂d). We write ∂(n)

(resp. ∇(n)) for the collection of n-th order spatial (resp. space-time) derivatives, and
∂(≤n) (resp. ∇(≤n)) for those up to order n.

Linear, translation invariant operators acting on functions in R4 are viewed as multipli-
ers, and described in a standard fashion via their symbol. Bilinear operators also play an
important role in this paper. In the Lie algebra context, the connection between bilinear
operators and symbols is described as follows:
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Definition 3.1. By a bilinear operator with symbol m(ξ, η) = mjk(ξ, η) (which is a complex-
valued 4× 4-matrix), we mean an expression of the form

L(a, b) =

∫︂∫︂ (︂
mab(ξ, η)[âa(ξ), b̂b(η)]

)︂
ei(ξ+η)·x dξ dη

(2π)8
.

If L were symmetric, then the symbol m(ξ, η) is anti-symmetric in ξ, η, in the sense that
mab(ξ, η) = −mba(η, ξ); this is due to the antisymmetry of the Lie bracket.

3.2. Function spaces. We begin with the standard Sobolev spaces:

• The n-th homogeneous Lp-Sobolev space for functions from Rd into a normed vector
space V is denoted by Ẇ

n,p
(Rd;V ). In the special case p = 2, we write

Ḣ
n
(Rd;V ) = Ẇ

n,2
(Rd;V ).

The Lebesgue spaces (i.e., when n = 0) are denoted by Lp(Rd;V ).

• The mixed space-time norm Lq
sẆ

σ,r

x [resp. Lq
tẆ

σ,r

x ] of functions on Rd
x×Js [resp. It×Rd

x]

is often abbreviated as LqẆ
σ,r
. It will be clear from the context which variable (either

s or t) is involved.
• Given a function space X (on either Rd or R1+d), we define the space ℓpX by

∥u∥pℓpX =
∑︂
k

∥Pku∥pX

(with the usual modification for p = ∞), where Pk (k ∈ Z) are the usual Littlewood–
Paley projections to dyadic frequency annuli.

In the last section of the paper, where we make the connection with the hyperbolic Yang-
Mills equation, we need Strichartz type norms to describe bounds for various remainder
terms. Generally the Strichartz norms are used to describe the dispersive decay of solutions
for the linear wave equation. In particular for solutions to the homogeneous wave equation
□u = 0 in R1+4 we have

∥∇u∥LpẆ
σ,q ≲ ∥∇u(0)∥L2

for exponents (p, q, σ) in the admissible Strichartz range

1

p
+

4

q
= 2 + σ, 2 ≤ p, q ≤ ∞,

2

p
+

3

q
≤ 3

2
. (3.1)

The exponents (p, q) for which equality holds in the last relation above are referred to as
sharp Strichartz exponents. For the remainder term bounds in the last section we seek to
avoid using sharp Strichartz norms, and instead use only a restricted range of exponents.
For this reason we choose a sufficiently small universal threshold δs > 0 and define

∥u∥Str = sup{∥u∥LpẆ
σ,q ; (p, q, σ) admissible, δs ≤

1

p
≤ 1

2
− δs,

2

p
+

3

q
≤ 3

2
− δs}. (3.2)

as well as

∥u∥Str1 = ∥∇u∥Str (3.3)

These norms have two key properties, which will play an important role in the next paper
of the sequence [19]:

• They are divisible in time, i.e. can be made small by subdividing the time interval.
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• Saturating the associated Strichartz inequalities requires strong pointwise concentration,
rather than the usual range of Knapp examples (wave packets).

3.3. Frequency envelopes. To provide more accurate versions of many of our estimates
and results we use the language of frequency envelopes.

Given a sequence ck (k ∈ Z) of positive numbers and a translation invariant norm ∥ · ∥X ,
we introduce the shorthand

∥u∥Xc := sup
k

∥Pku∥X
ck

.

Definition 3.2. Given a translation invariant space of functions X, we say that a sequence
ck of positive numbers is a frequency envelope for a function u ∈ X if

(i) The dyadic pieces of u satisfy

∥u∥Xc ≤ 1, or equivalently, ∥Pku∥X ≤ ck

(ii) The sequence ck is slowly varying,

2−δ(j−k) ≲
ck
cj

≲ 2δ(j−k), j > k.

Here δ is a small positive universal constant. For some of the results we need to relax the
slowly varying property in a quantitative way. Fixing a universal small constant 0 < ϵ ≪ 1,
we set

Definition 3.3. Let σ1, σ2 > 0. A frequency envelope ck is called (−σ1, σ2)-admissible if

2−σ1(1−ϵ)(j−k) ≲
ck
cj

≲ 2σ2(1−ϵ)(j−k), j > k.

Another situation that will occur frequently is that where we have a reference frequency
envelope ck, and then a secondary envelope dk describing properties which apply on a back-
ground controlled by ck. In this context the envelope dk often cannot be chosen arbitrarily
but instead must be in a constrained range depending on ck. To address such matters we
set:

Definition 3.4. We say that the envelope dk is σ-compatible with ck if we have

ck
∑︂
j<k

2σ(1−ϵ)(j−k)dj ≲ dk.

We will often replace envelopes dk which do not satisfy the above compatibility condition
by slightly larger envelopes that do:

Lemma 3.5. Assume that ck and dk are (−σ1, S) envelopes, and also that ck is bounded.
Then for σ̃ < σ(1− ϵ) the envelope

ek = dk + ck
∑︂
j<k

2σ̃(j−k)dj

is σ-compatible with ck. The implicit constant in Definition 3.4 is bounded above by 1 +
Cσ(1−ϵ)−σ̃∥c∥ℓ∞.
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Proof. We need to show that

ck
∑︂
j<k

2σ(1−ϵ)(j−k)ej ≲ ek.

This is trivial for the first term in ej, so we consider the contribution of the second,

ck
∑︂
ℓ<j<k

2σ̃(ℓ−k)dℓ2
(σ(1−ϵ)−σ̃)(j−k)cj ≲ ck

∑︂
ℓ<k

2σ̃(ℓ−k)dℓ.

The claim regarding the bound on the implicit constant in Definition 3.4 follows by inspec-
tion. □

Finally we need the following additional frequency envelope notations:

(c · d)k = ckdk, a≤k =
∑︂
j≤k

aj,

c
[σ]
k = sup

j<k
2(1−ϵ)σ(j−k)cj (σ > 0).

4. Linear covariant elliptic and parabolic flows

4.1. Solvability for ∆A. Our goal here is to study the elliptic equation

∆AB = F, (4.1)

where A is a connection 1-form on R4, D is the covariant derivative associated to A and
∆A = DℓDℓ is the covariant Laplacian. Moreover, B,F are g-valued functions on R4. In

this subsection, we assume that A ∈ Ḣ
1
, and omit the dependence of all implicit constants

on ∥A∥
Ḣ

1 .
The main result is:

Theorem 4.1. Assume that A ∈ Ḣ
1
. Then the equation (4.1) is solvable with bounds as

follows:

∥B∥Ḣσ ≲ ∥F∥
Ḣ

σ−2 , (0 < σ < 2). (4.2)

If in addition ∂jAj ∈ ℓ1L2, then we also have

∥B∥
ℓ1Ḣ

2 ≲ ∥F∥ℓ1L2 . (4.3)

Proof. All these bounds are perturbative if we assume in addition that A is small in Ḣ
1
.

Else we proceed with the following steps:

The case σ = 1. Here the solutions are variationally interpreted as minimum points for the
functional

L(B) =

∫︂
1

2
⟨DjB,DjB⟩ − ⟨B,F ⟩dx.

The desired solvability result may be proved with a standard calculus of variations argument
combined with the diamagnetic inequality for D as follows. Note that, for every ϵ > 0 and
smooth B, ∂j(ϵ+⟨B,B⟩) 1

2 ≤ (ϵ+⟨B,B⟩)− 1
2 ⟨B,DjB⟩ ≤ |DjB|. Multiplying by a nonnegative

test function φ and taking ϵ → 0, we obtain the diamagnetic inequality :

|∂|B|| ≤ |DB| in the sense of distributions.
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By Sobolev embeddings, we immediately see that ∥B∥L4 ≲ ∥DB∥L2 ; then expanding DjB =
∂jB + ad(Aj)B and estimating ∥ad(Aj)B∥L2 ≲ ∥A∥

Ḣ
1∥B∥L4 , we obtain

∥B∥L4 + ∥B∥
Ḣ

1 ≤ C(1 + ∥A∥
Ḣ

1)∥DB∥L2 . (4.4)

As a result, we obtain the following lower bound on L(B):

L(B) ≥ 1

2
∥DB∥2L2 − ∥B∥

Ḣ
1∥F∥

Ḣ
−1 ≥ 1

4
∥DB∥2L2 − C2(1 + ∥A∥

Ḣ
1)2∥F∥2

Ḣ
−1 .

By (4.4) and the convexity of L, used in the form of the identity

L(B+B′

2
) +

1

2

∫︂
⟨Dj(B−B′

2
),Dj(

B−B′

2
)⟩ dx =

1

2
(L(B) + L(B′)) ,

we see that any minimizing sequence B(n) ∈ Ḣ
1
for L converges strongly to a minimizer

B ∈ Ḣ
1
, which is unique.

Finally, the desired bound follows from L(B) ≤ L(0) = 0 and (4.4).

The case σ > 1. By duality the case σ < 1 reduces to this.
It suffices to start with F localized at frequency 1 with ∥F∥

Ḣ
σ−2 = 1, and prove that the

bounds above hold. The smaller frequencies of B are obtained from the Ḣ
1
bound, so we

need to get the higher frequencies. A perturbative argument at high frequencies shows that
we must have B ∈ Ḣ

σ
, but this proof depends on the frequency envelope of A. It remains

to remove this dependence.

Let ck = ∥PkB∥
Ḣ

2 , and let dk, ek be (−δ, δ) frequency envelopes for A in Ḣ
1
and ∂ℓAℓ in

L2, respectively. A direct application of the Ḣ
1
bound to ∆AB = F yields

ck ≲ 2k for any k. (4.5)

which is effective only for k ≤ 0. For k > 0 we view our equation as an equation for
B≥k = (1− P<k)B, i.e.,

∆AB≥k = [P<k,∆A]B.

We furthermore decompose

[P<k,∆A]B =P<k

(︁
(2ad(Aℓ)∂ℓ + ad(∂ℓAℓ) + ad(Aℓ)ad(A

ℓ))P≥kB
)︁

− P≥k

(︁
(2ad(Aℓ)∂ℓ + ad(∂ℓAℓ) + ad(Aℓ)ad(A

ℓ))P<kB
)︁
.

In what follows, we omit the tensor index ℓ. Applying the Ḣ
1
result to the above equation,

and using Littlewood–Paley trichotomy, we obtain the bound

∥P≥kB∥
Ḣ

1 ≲ ∥[P<k,∆A]B∥
Ḣ

−1

≲ ∥P≥kB∥
Ḣ

1

∑︂
j≤k−5

2j−kdk + 2−2k∥∂P<kB∥L∞

∑︂
j≥k−5

22(k−j)dj

+ 2−k∥P<kB∥L∞

∑︂
j≥k−5

2k−j(ej + d2j)

≲ dk∥P≥kB∥
Ḣ

1 + 2−kdk(2
−k∥∂P<kB∥L∞) + 2−k(ek + d2k)∥P<kB∥L∞ .
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We apply this only for those good k’s where dk ≪ 1, which are all but finitely many. Then
the first term on the far RHS can be absorbed into the LHS, and we obtain

∥B≥k∥Ḣ1 ≲ 2−kdk(2
−k∥∂P<kB∥L∞) + 2−k(ek + d2k)∥B<k∥L∞ . (4.6)

The LHS controls any ∥Bj∥Ḣ1 with j ≥ k. Since for any j ∈ Z we can find a good k < j
such that dk ≪ 1 and j − k = O(1), we have (after relabeling j → k)

ck ≲ dk
∑︂
j<k

2j−kcj + (ek + d2k)
∑︂
j<k

cj for any k > 0.

The first term on the RHS may be essentially absorbed into the second term after reiteration:

dk
∑︂
j<k

2j−kcj ≲ 2−kdk + dk
∑︂

0<j<k

2j−k

(︄
dj
∑︂
i<j

2i−jci + (ej + d2j)
∑︂
i<j

ci

)︄
≲ 2−kdk + dk

∑︂
i<k

ci
∑︂

max{i,0}<j<k

(︁
dj2

i−k + (ej + d2j)2
j−k
)︁

≲ 2−kdk + d2k
∑︂
i<k

2(1−δ)(i−k)ci + dk(ek + d2k)
∑︂
i<k

ci

≲ 2−kdk + (ek + d2k)
∑︂
i<k

ci.

Plugging this bound back into the preceding bound we obtain

1 +
∑︂

0<j≤k

ck ≤ 2−kdk +
∑︂

0<j≤k

(1 + C(ek + d2k))

(︄
1 +

∑︂
0<j<k

cj

)︄
for any k > 0.

By induction on k, using also the relation
∑︁

k>0 2
−kdk ≲ 1, it follows that

1 +
k∑︂

j=1

cj ≲
k∏︂

j=1

(︁
1 + C(d2j + ej)

)︁
.

In the first case we simply have ek ≲ dk. Since dk ∈ ℓ2, this yields

k∑︂
j=1

cj ≲ eC
√
k,

which suffices for the Ḣ
σ
bound when σ < 2.

In the second case we have d2k + ek ∈ ℓ1 so we get instead instead

k∑︂
j=1

cj ≲ 1,

which leads to

ck ≲ d2k + ek. □

We continue with the frequency envelope version of the above result:
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Theorem 4.2. Assume that A ∈ Ḣ
1
, with a (−1, S) frequency envelope ck. Also assume

that F ∈ Ḣ
−1

has a 1-compatible (−1, S) frequency envelope dk. Then the equation (4.1) is
solvable with bounds as follows:

∥Bk∥Ḣ1 ≲ dk. (4.7)

Proof. If S = 1 then this follows from the previous result, and no compatibility condition
is needed; so we may assume that S > 1. Note also that it suffices to consider a (−δ, S)
frequency envelope dk, as −δ can be improved to −1 using Theorem 4.1. Let C be minimal
with the property that

∥Bk∥Ḣ1 ≤ Cdk. (4.8)

To guarantee that such a C exists, we can always replace dk by

dϵk = max{dk, ϵ}
These envelopes are still 1-compatible with ck, and the desired result is obtained by letting
ϵ → 0.
Now we write the equation for Bk in the paradifferential form,

∆A<k
Bk = Gk =:PkF − Pk

(︁
2ad(P≥kA

ℓ)∂ℓB + ad(∂ℓP≥kAℓ)B
)︁

− Pk

(︁
ad(P≥kA

ℓ)ad(Aℓ)B + ad(P<kA
ℓ)ad(P≥kAℓ)B

)︁
− [Pk,∆A<k

]B,

where A<k = P<kA. We use Littlewood–Paley to estimate

∥Gk∥Ḣ−1 ≲ dk(1 + C
∑︂
j<k

2j−kcj) + Cck
∑︂
j<k

2j−kdj,

where all contributions in the high× high → low case are rapidly decreasing and subsumed
in the j = k term, provided that we choose δ sufficiently small.

If C ≲ 1 then we are done. Else, let k be so that (4.8) is near optimal. Then we must
have

Cdk ≲ dk(1 + C
∑︂
j<k

2j−kcj) + Cck
∑︂
j<k

2j−kdj,

so either
1 ≲

∑︂
j<k

2j−kcj,

or
dk ≲ ck

∑︂
j<k

2j−kdj.

In the first case, as ck is a (δ,−S) envelope, we must clearly have ck ≈ 1. In the second case,
by the compatibility condition,

dk ≲ ck
∑︂
j<k

2j−kdj ≲ ck2
−mϵ

∑︂
j<k−m

2(1−ϵ)(j−k)dj + ck2
(S−1)mdk ≲ dk

(︁
2−mϵ + 2(S−1)mck

)︁
,

so that after choosing m appropriately large, the same conclusion ck ≈ 1 holds.
Therefore, in both cases, by the compatibility condition we must also have

dk ≳ ck
∑︂
j<k

2(1−ϵ)(j−k)dj ≳ d
[1]
k ,

and then the conclusion follows from the S = 1 case. □
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4.2. Solvability for ∂s−∆A: L2 theory. Our goal here is to study the parabolic equation

∂sBj −∆ABj − 2ad(Fj
k)Bk = Gj +DkHkj. (4.9)

in a time interval J = [0, T ]. Here B, G are g-valued 1-forms and H is a g-valued covariant 2-

tensor on R4×J . We assume that A is a L∞(J ; Ḣ
1
) connection, with curvature F ∈ L2(J ; Ḣ

1
)

and ∂sA ∈ L2(J ;L2). Since our results will be scale invariant, the lenght of J plays no role
and is arbitrary. For simplicity, we will often omit the indices and abbreviate (4.9) as

(∂s −∆A − 2ad(F ))B = G+DH.

Furthermore, we will skip writing out the heat-time interval J , and drop the dependence of
implicit constants on ∥A∥

L∞Ḣ
1 , ∥F∥

L2Ḣ
1 and ∥∂sA∥L2L2 .

We start with a basic solvability result:

Theorem 4.3. Let −2 < σ < 2, and A as above. Then the above equation is well-posed in
Ḣ

σ
, with bounds8

∥B∥L∞Ḣ
σ + ∥DB∥L2Ḣ

σ ≲ ∥B(0)∥Ḣσ + ∥G∥L1Ḣ
σ + ∥H∥L2Ḣ

σ . (4.10)

Proof. We begin with the case σ = 0. When the term 2ad(F )B is absent, the desired estimate
follows by multiplying (4.9) by Bj and integrating by parts over R4 × J . The contribution
of the term 2ad(F )B is then treated perturbatively, by splitting J in to a finite number of

intervals on each of which the L2Ḣ
1
norm of F is small.

For σ = 1 we differentiate the equation to obtain the following (schematic) linear equation
for DB:

(∂s −∆A − 2Ad(F ))DB = DG+D2H + (∂sA)B + (DF )B + FDB, (4.11)

and apply the σ = 0 result. The last three terms on the right are perturbative. By interpo-
lation this yields the result for 0 ≤ σ ≤ 1.
For 1 < σ < 2 we use again the differentiated equation (4.11), and perturb off the σ − 1

result. To insure that no additional derivative falls on ∂sA and DF , we write

(∂sA)B + (DF )B = DℓD
ℓ∆−1

A ((∂sA)B + (DF )B)

and note that, by Theorem 4.1,

∥D∆−1
A ((∂sA)B + (DF )B)(s)∥

Ḣ
σ−1 ≲∥((∂sA)B + (DF )B)(s)∥

Ḣ
σ−2

≲(∥∂sA(s)∥L2 + ∥F (s)∥
Ḣ

1)∥B(s)∥Ḣσ .

Hence the last three terms on the right in (4.11) can be treated perturbatively, by putting

(∂sA)B + (DF )B in L2Ḣ
σ−2

and FDB in L1Ḣ
σ−1

.
Finally, for negative σ we use duality, as our assumptions are invariant with respect to

heat-time reversal. □

We will also need a frequency envelope version of the above result. Simply the fact that
this result applies for a range of indices σ already allows us to obtain the following

Corollary 4.4. Assume that dk is a (−2, 2) frequency envelope for B(0) in L2, G in L1L2

and H in L2L2. Then
∥PkB∥L∞L2 + ∥PkDB∥L2 ≲ dk. (4.12)

8Here it is important to have covariant derivatives on the left if σ ≥ 1, and on the right if σ ≤ −1.
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The lower range limit for this bound (more precisely, the lower admissibility of dk) is
entirely satisfactory, but we would like to increase the upper limit in order to also have a
higher regularity result. The obvious price to pay is that we need a stronger assumption on
the connection A. To quantify that we will use an ℓ2 frequency envelope ck so that

∥PkA∥L∞Ḣ
1 + ∥PkF∥

L2Ḣ
1 + ∥Pk∂sA∥L2L2 ≲ ck. (4.13)

Then we have the following:

Theorem 4.5. Assume that (4.13) holds for some (−1, S) frequency envelope ck. Let dk be
a 1-compatible (−2, S) frequency envelope for B(0) in L2, G in L1L2 and H in L2L2. Then
we have

∥PkB∥L∞L2 + ∥PkDB∥L2L2 ≲ dk. (4.14)

Proof. The proof is analogous to that of Theorem 4.2. We may assume that S > 2 and that
dk is a (−δ, S) frequency envelope. Let C be minimal so that

∥PkB∥L∞L2 + ∥PkDB∥L2L2 ≤ Cdk. (4.15)

To insure that such a C exists, we can always relax dk in the high frequencies while keeping
the compatibility condition, as in the proof of Theorem 4.2.

We rewrite (4.9) in the paradifferential form

(∂s −∆A<k
)Bk =PkG+D(A<k)PkH + Pk (2ad(P≥kA)∂B + ad(∂P≥kA)B)

+ Pk (ad(P≥kA)ad(A)B + ad(P<kA)ad(P≥kA)B) + Pk(2ad(F )B)

+ [Pk,∆A<k
]B + [Pk,D

(A<k)]H

=PkG+G′
k +D(A<k)(PkH +D(A<k)∆−1

A<k
G′′

k),

where A<k = P<kA, Bk = PkB and

G′
k =Pk(2ad(F )B),

G′′
k =Pk (2ad(P≥kA)∂B + ad(∂P≥kA)B)

+ Pk (ad(P≥kA)ad(A)B + ad(P<kA)ad(P≥kA)B)

+ [Pk,∆A<k
]B + [Pk,D

(A<k)]H.

Recall that, by Theorem 4.1,

D(A<k)∆−1
A<k

: Ḣ
−1 → L2.

Applying the L2 bound for Bk in Theorem 4.3 (which does not require any curvature infor-
mation), it follows that

∥Bk∥L∞L2 + ∥D(A<k)Bk∥L2L2 ≲ dk + ∥G′
k∥L1L2 + ∥G′′

k∥L2Ḣ
−1 .

By Littlewood–Paley theory, we may estimate

∥G′
k∥L1L2 + ∥G′′

k∥L2Ḣ
−1 ≲Cck

∑︂
j<k

2j−kdj + Cdk
∑︂
j<k

2j−kcj,
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and

∥PkD
(A)B∥L2L2 ≲∥D(A<k)Bk∥L2L2 + ∥Pk(ad(A≥k)B∥L2L2 + ∥[Pk,D

(A<k)]B∥L2L2

≲∥D(A<k)Bk∥L2L2 + Cdk
∑︂
j<k

2j−kcj.

where the high × high → low interaction terms are again rapidly decreasing, and thus is
subsumed to the j = k terms after fixing δ to be sufficiently small. Thus, we arrive at the
estimate

∥PkB∥L∞L2 + ∥PkD
(A)B∥L2L2 ≲ dk + C(ck

∑︂
j<k

2j−kdj + dk
∑︂
j<k

2j−kcj). (4.16)

Let k be so that (4.15) is near optimal. Then we must have

Cdk ≲ dk + C(ck
∑︂
j<k

2j−kdj + dk
∑︂
j<k

2j−kcj),

and it follows that

either 1 ≲
∑︂
j<k

2j−kcj or dk ≳ ck
∑︂
j<k

2j−kdj.

As in the proof of Theorem 4.2, in either case we must have ck ≈ 1. Then, by the compati-

bility condition, dk ≳ d
[1]
k , so the desired bound follows from the case S = 1. □

Next, we prove an L1
s-type bound.

Theorem 4.6. Consider the equation (4.9) with H = 0, G ∈ L1Ḣ
σ−1

and B(0) ∈ Ḣ
σ−1

,
where −1 < σ < 1. Then the solution B obeys the bound

∥DB∥L1Ḣ
σ ≲ ∥B(0)∥

Ḣ
σ−1 + ∥G∥

L1Ḣ
σ−1 .

Assume that (4.13) holds for some (−1, S) frequency envelope ck. Let dk be a 1-compatible

(−1, S) frequency envelope for B(0) in Ḣ
−1

and G in L1Ḣ
−1
. Then

∥Pk(DB)∥L1L2 ≲ dk.

Note that the scaling of Theorem 4.6 differs from Corollary 4.4 and Theorem 4.5. This
reflects the fact that in what follows, Theorem 4.6 will typically be applied to a covariant
derivative DB of a solution B to (4.9).

Proof. We directly prove the frequency envelope version. By Duhamel’s formula, the general
case is easily reduced to the homogeneous case G = 0. Note that 2kdk is a (−2, S) frequency
envelope for B in L2, which is 1-compatible with ck. Thus, by Theorem 4.5, we have

∥PkB∥L∞L2 + ∥Pk(DB)∥L2L2 ≲ 2kdk. (4.17)

On the other hand, commuting the equation with s
1
2
+ϵ, we obtain

(∂s −∆A − 2ad(F )) s
1
2
+ϵB =

1 + 2ϵ

2
s−

1
2
+ϵB =

1 + 2ϵ

2
Dℓ
(︂
s−

1
2
+ϵHℓ

)︂
.

where
Hℓ = Dℓ(∆A)

−1B.

We claim that
∥PkH∥L∞L2 + ∥PkH∥

L2Ḣ
1 ≲ dk. (4.18)
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Assuming (4.18), we first conclude the proof. Using the L∞L2 bound for s < 2−2k, and the

L2Ḣ
1
bound for s > 2−2k, it follows that

∥Pk(s
− 1

2
+ϵH)∥L2L2 ≲ 2−2ϵkdk.

For ϵ > 0 sufficiently small, 2−2ϵkdk still satisfies the admissibility and the compatibility
conditions. Thus, by Theorem 4.5, we have

∥s
1
2
+ϵPk(DB)∥L2L2 ≲ 2−2ϵkdk. (4.19)

Interpolating (4.17) and (4.19), we obtain the desired frequency envelope bound for DB in
L1L2.
It remains to prove (4.18). For the L∞L2 bound, we first note that Theorem 4.2 and the

L∞L2 bound in (4.17) imply

∥Pk(∆
−1
A B)∥

L∞Ḣ
1 ≲ dk.

Then splitting D = ∂ + ad(A) and using Littlewood–Paley trichotomy, we estimate

∥PkH∥L∞L2 ≲∥Pk(D∆−1
A B)∥L∞L2

≲∥Pk(∆
−1
A B)∥

L∞Ḣ
1 + ∥Pk(ad(A)∆

−1
A B)∥L∞L2

≲dk + ck
∑︂
j<k

2j−kdj ≲ dk,

where we used the compatibility condition in the last inequality.

On the other hand, the L2Ḣ
1
bound needs a bit of additional work, in order to make use

of the L2L2 bound for DB in (4.17). We begin by writing

H = ∆−1
A ∆AH = ∆−1

A DℓB +∆−1
A [∆A,Dℓ]∆

−1
A B.

The contribution of the first term on the RHS is directly dealt with Theorem 4.2. For the
second term, note that schematically, [∆A,Dℓ] = ad(DF ) + ad(F )D. Using Littlewood–

Paley trichotomy, as well as the frequency envelope bounds for F ∈ L2Ḣ
1
, DF ∈ L2L2,

∆−1
A B ∈ L∞Ḣ

−1
and D∆−1

A B ∈ L∞L2, we have

∥Pk(ad(DF )∆−1
A B)∥

L2Ḣ
−1 + ∥Pk(ad(F )D∆−1

A B)∥
L2Ḣ

−1 ≲ dk + ck
∑︂
j<k

2j−kdj ≲ dk.

The desired L2Ḣ
1
bound for H now follows from Theorem 4.2 and an argument to peel off

ad(A) = D− ∂ as in the previous case. □

4.3. Solvability for ∂s −∆A: Lp parabolic regularity. Next, we consider Lp solvability
of (4.9), and parabolic regularity properties of its solutions. For this, we assume that A
satisfies a stronger parabolic regularity property:

∥PkA(s)∥Ḣ1 ≲ ck(1 + 22ks)−N for all s > 0, (4.20)

where {ck} ∈ ℓ2 and N > 2. Then for the homogeneous covariant equation

(∂s −∆A − 2Ad(F ))B = 0, B(0) = b, (4.21)

the following result holds:
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Theorem 4.7. Let A be as in (4.20) with a (−δ, S) compatible frequency envelope ck, and

− 2 < σ <
4

p
, 2 ≤ p ≤ ∞, 0 < δ ≤ min{4

p
− σ, 2 + σ}. (4.22)

Let dσ,pk be a (−δ, S) frequency envelope for b in Ẇ
σ,p
, which is δ-compatible with ck. Then

there exists a unique solution B ∈ C([0,∞); Ẇ
σ,p
) to (4.21), and we have

∥PkB(s)∥Ẇσ,p ≲∥c∥ℓ2 ,N dσ,pk (1 + 22ks)−N . (4.23)

Proof. We proceed in several steps.

Step 1: A = 0, inhomogeneous case. We start with the constant coefficient case A = 0.
We will treat the general case as a perturbation of this case. For this purpose, we need a
slightly refined estimate for the inhomogeneous equation.

Consider the solution B to the inhomogeneous equation

(∂s −∆)B = G, B(s0) = 0,

with

∥PkG∥Ẇσ,p ≤ 22kdσ,pk (22ks)−β(1 + 22ks)−M .

where dσ,pk an arbitrary positive sequence here, and β < 1. Then for any 0 < α ≤ 1, we have

∥PkB(s)∥Ẇσ,p ≲α dσ,pk (2min{22k|s− s0|, 22ks}α(22ks)−β(1 + 22ks)−M . (4.24)

Indeed, note by Duhamel’s formula, B takes the form

B(s) =

∫︂ s

s0

e(s−s̃)∆G(s̃) ds̃.

We consider two cases:

(1) Short interval. If s < 2s0, then s̃ ∈ (s0, s) obeys s̃ ≈ s, so that

∥PkB(s)∥Ẇσ,p ≲
∫︂ s

s0

∥e(s−s̃)∆G(s̃)∥Ẇσ,p ds̃

≲
∫︂ s

s0

(s− s̃)−1+α∥G(s̃)∥
Ẇ

σ−2(1−α),p ds̃

≲dσ,pk (22k|s− s0|)α(22ks)−β(1 + 22ks)−M .

(2) Long interval. If s ≥ 2s0, then we split
∫︁ s

s0
=
∫︁ s

2

s0
+
∫︁ s

s
2
and proceed as follows:

∥PkB(s)∥Ẇσ,p ≤∥e
s
2
∆

∫︂ s
2

s0

e(
s
2
−s̃)∆G(s̃) ds̃∥Ẇσ,p +

∫︂ s

s
2

∥e(s−s̃)∆G(s̃)∥Ẇσ,p ds̃

≲(1 + 22ks)−M

∫︂ s
2

s0

(
s

2
− s̃)−1+α∥G(s̃)∥

Ẇ
σ−2(1−α),p ds̃

+

∫︂ s
2

s0

(s− s̃)−1+α∥G(s̃)∥
Ẇ

σ−2(1−α),p ds̃

≲dσ,pk (22ks)α−β(1 + 22ks)−M .
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Step 2: A ̸= 0, homogeneous case. Next, we consider the covariant homogeneous
equation (4.21) with an arbitrary A satisfying (4.20). Let δ0 = min{2+σ− δ(1− ϵ), 1

2
}, and

consider the slowly varying envelope

c̃k = sup
j

2−δ0(1−ϵ)|j−k|cj.

For each time s we associate the dyadic frequency k(s) so that s ≈ 2−2k(s).
Given a small constant ϵ0 to be fixed below, we split the time interval [0,∞) into finitely

many subintervals Jj = [sj, sj+1] so that each Jj has one of the following properties:

• Either c̃k(s) ≤ ϵ0 for all s ∈ Jj;
• or, sj+1 − sj ≤ ϵ0sj.

Once ϵ0 is fixed, the number of such subintervals can be bounded by a constant depending
on ∥c∥ℓ2 and ϵ0.
In both cases we solve the problem perturbatively off the constant coefficient case (Case 1).

We expand ∆A and F in terms of A, and then write the equation schematically as

(∂s −∆)B = ad(A)∂B + ad(∂A)B + ad(A)ad(A)B, B(sj) = bj,

or equivalently

B(s) = e(s−sj)∆bj + (LB)(s)

where

(LB)(s) =

∫︂ s

sj

e(s̃−sj)∆(ad(A)∂B + ad(∂A)B + ad(A)ad(A)B)(s̃)ds̃.

We make the induction hypothesis that

∥Pkbj∥Ẇσ,p ≲ dσ,pk (1 + 22ksj)
−N , (4.25)

and use a fixed point argument in the space X with the norm

∥B∥X = sup
s∈Jj

sup
k
(dσ,pk )−1(1 + 22ks)−N∥Bk(s)∥Ẇσ,p .

Observe that (4.25) follows from the hypothesis in the initial step j = 1. To continue the
induction, it suffices to show that in both cases L is a contraction in X.

Indeed, suppose B satisfies

∥PkB(s)∥Ẇσ,p ≤ (dσ,pk )(1 + 22ks)−N .

Then we seek to estimate the expression

PkG(s) = Pk(ad(A)∂B + ad(∂A)B + ad(A)ad(A)B)(s)

We separate out essentially the high× high → low interaction:

Ghh
k =ad(P≥k−5A)∂P≥kB + ad(∂P≥k−5A)P≥kB

+ ad(P≥k−5A)ad(A)P≥kB + ad(P<k−5A)ad(A≥k−5)P≥kB
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and decompose PkG into PkG
hh
k and PkG

lh
k = PkG−PkG

hh
k . Using the standard Littlewood–

Paley trichotomy, we obtain

∥PkG
lh
k (s)∥Ẇσ,p ≲22kck

∑︂
ℓ<k

2(
4
p
−σ)(ℓ−k)dσ,pℓ (1 + 22ks)−N(1 + 22ℓs)−N

+ 22kdσ,pk

∑︂
ℓ<k

2ℓ−kcℓ(1 + 22ks)−N(1 + 22ℓs)−N ,

∥PkG
hh
k (s)∥Ẇσ,p ≲22k

∑︂
ℓ>k

2σ(k−ℓ)cℓd
σ,p
ℓ (1 + 22ℓs)−2N .

For 0 < α < 2N , we have the simple inequalities∑︂
ℓ<k

2αℓ(1 + 22ℓs)−N ≲2αk(1 + 22ks)−
α
2 , (4.26)∑︂

ℓ>k

2αℓ(1 + 22ℓs)−N ≲2αk(22ks)−
α
2 (1 + 22ks)−N+α

2 , (4.27)

so it follows that

∥PkG
lh
k (s)∥Ẇσ,p ≲22kck(

∑︂
ℓ<k

2δ(ℓ−k)dσ,pℓ )(1 + 22ks)−N−δ1

+ 22kdk(
∑︂
ℓ<k

2δ0(ℓ−k)cℓ)(1 + 22ks)−N− 1
2
(1−δ0)

∥PkG
hh
k (s)∥Ẇσ,p ≲22k(sup

ℓ>k
2(2+σ)(1−ϵ)(k−ℓ)cℓd

σ,p
ℓ )(22ks)−1+ 2+σ

2
ϵ(1 + 22ks)−2N+1− 2+σ

2
ϵ,

where δ1 =
1
2
(4
p
− σ − δ) > 0. Using the slowly varying properties

dσ,pℓ ≲ 2δ(1−ϵ)(ℓ−k)dσ,pk for ℓ > k, cℓ ≲ 2δ0(1−ϵ)|ℓ−k|c̃k for any ℓ,

as well as the following consequence of δ-compatibility

ck
∑︂
ℓ<k

2δ(ℓ−k)dσ,pℓ ≲ 2−δϵmck
∑︂

ℓ<k−m

2δ(1−ϵ)(ℓ−k)dσ,pℓ + 2Smckd
σ,p
ℓ ≲ (2−δϵm + 2Smc̃k)d

σ,p
k ,

where m > 0 is to be chosen below, we obtain

∥PkG
lh
k (s)∥Ẇσ,p ≲22k(2−δϵm + 2Smc̃k)d

σ,p
k (1 + 22ks)−N−2δ2 , (4.28)

∥PkG
hh
k (s)∥Ẇσ,p ≲22k

(︃
22ks

1 + 22ks

)︃−1+2δ2

c̃kdk(1 + 22ks)−N−2δ2 , (4.29)

with δ2 =
1
2
min{δ1, 12(1− δ0), N − 1 + 2+σ

2
ϵ, 2+σ

2
ϵ}.

Applying Step 1 to each piece, with α = δ2 for Glh
k and α = 1− δ2 for Ghh

k , this leads to

∥PkLB(s)∥Ẇσ,p ≲ (1 + 22ks)−N−δ2(2−δϵm + 2Smc̃k)d
σ,p
k min{1, 22k|Jj|}δ2 .

Now we consider the two scenarios (this is where we fix m and ϵ1):

(1) Short intervals. Here Jj = [sj, sj+1] where sj, sj+1 ≈ 2−2kj and |sj+1 − sj| ≲ ϵ12
−2kj .

Then we gain from the first factor if 22k ≫ 22kj , and from the last otherwise.
(2) Long intervals. Here Jj = [sj, sj+1] where sj ≈ 2−2kj and s1 ≈ 2−2kj+1 , and |Jj| ≈ 2−2kj+1 .

Then we gain from the first factor if 22k ≫ 22kj , from 2−δϵm + 2Smc̃k ≤ 2−δϵm + 2Smϵ1 if
22kj ≲ 22k ≲ 22kj+1 , and from the last factor otherwise. □
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We also need a version of the previous result for the inhomogeneous equation

(∂s −∆A − 2Ad(F ))B = G, B(0) = 0, (4.30)

Theorem 4.8. Let 0 ≤ β < 1. Let dk be (−1, S) admissible and 1-compatible with ck. If

∥PkG∥L2 ≲ 22k(22ks)−βdk(1 + 22ks)−N . (4.31)

Then
∥PkB∥L2 ≲ (22ks)1−βdk(1 + 22ks)−N . (4.32)

Similarly, for general (σ, p) as in (4.22), if dk is (−δ, S) admissible and δ-compatible with
ck, and if

∥PkG∥Ẇσ,p ≲ 22k(22ks)−βdσ,pk (1 + 22ks)−N . (4.33)

then we have
∥PkB∥Ẇσ,p ≲ (22ks)1−

α
2 dσ,pk (1 + 22ks)−N . (4.34)

Proof. The proof repeats the proof of the previous theorem. Step 1 is reused in its entirety,
as well as the interval partition in Step 2. The only difference is in the choice of the induction
hypothesis (4.25), which is now replaced by

∥Pkbj∥Ẇσ,p ≲ (22ks)1−
α
2 dσ,pk (1 + 22ksj)

−N , (4.35)

But this is still consistent with (4.24), so the rest of the argument is again identical to the
previous proof. □

5. The Yang–Mills heat flow and the local caloric gauge

5.1. The covariant and dynamic Yang–Mills heat flows. Our first goal here is to intro-
duce the equations for the Yang–Mills heat flow and its linearization in a gauge independent
fashion. The Yang–Mills heat flow models the parabolic evolution of a connection 1-form
A = Aj dx

j. This can be thought of as the gradient flow associated to the functional

Ee[A] =
1

2

∫︂
R4

⟨Fjk, F
jk⟩ dx.

We will denote by s ∈ [0,∞) the heat-time variable. To describe this flow covariantly we
add an s component As to the connection, so that our connection 1-form is now

Aj dx
j + As dx

One can think of As as the generator of a semigroup of gauge transformations.

Definition 5.1. Given an interval J ⊆ [0,∞), we say that a connection 1-form A = Aj dx
j+

As dx on R4 × J is a covariant Yang–Mills heat flow if it solves

Fsi = DℓFℓi (5.1)

This equation is invariant under pointwise gauge transformations on R4 × J .
Assuming that (5.1) holds, it is not difficult to see that the curvature tensors also must

solve their own system of covariant parabolic equations:

Lemma 5.2. Let Aj dx
j+As ds be a sufficiently regular solution to (5.1). Then the curvature

components Fij and Fsi obey the following covariant parabolic equations.

DsFij −DℓDℓFij =− 2[F ℓ
i , Fjℓ], (5.2)

DsFsi −DℓDℓFsi =− 2[F ℓ
s , Fiℓ]. (5.3)
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Next we consider the linearization of the covariant Yang–Mills heat flow. To describe this
we consider a smooth one parameter family A(t) of covariant Yang–Mills heat flows. Here,
anticipating the use of t as the hyperbolic Yang–Mills time variable, we will use the index 0
for t derivatives. Then we seek to write the equations for

B = ∂0A

A direct linearization in the equations (5.1) yields the evolution

DsBi −DiBs = Dℓ(DℓBi −DiBℓ) + [Bℓ, Fℓi] (5.4)

This is invariant with respect to gauge transformations which depend on s and x. Further,
the effect of a one-parameter family of gauge transformations O(t) in the equations (5.1)
that satisfies O(t = 0) = Id is the invariance of (5.4) under the following transformation:

Bi → Bi −DiA0, Bs → Bs −DsA0 (5.5)

where A0(s, x) = O;t(0, s, x) is the linearized action of O at t = 0. In this sense, (5.5) may
be regarded as a linearized gauge transformation for (5.4). Another useful statement that is
equivalent to the invariance of (5.4) under (5.5) is that Bidx

i + Bsds = DiA0dx
i +DsA0ds

solves the linearized flow (5.4) for any g-valued function A0.
To achieve full covariance, we proceed as above and add to our connection the s dependent

A0 component:

Aα dx
α + As ds.

Instead of tracking B, we are now considering the parabolic evolution of the correspond-
ing curvature tensor F0j, Fs0, which can be interpreted as a gauge-covariant deformation of
Aj, A0. These are related to Bj, B0 via the relations

F0j = Bj −DjA0, F0s = Bs −DsA0. (5.6)

Due to the above gauge invariance, these still solve the equations (5.4).
So far, the choice of A0 was arbitrary. We specify covariantly the parabolic evolution of

A0:

Definition 5.3. Given an interval J ⊆ [0,∞), we say that a connection 1-form Aα dx
α +

As dx on R4 × J is a dynamic (covariant) Yang–Mills heat flow if it solves

Fsα = DℓFℓα (5.7)

Compared with (5.1), here we have added the α = 0 equation, which specifies A0 given its
value at the initial heat-time s = 0. Indeed, Fs0 = DℓFℓ0 may be equivalently written as

DsA0 −DℓDℓA0 = Bs −DℓBℓ. (5.8)

This choice is independent of the equation (5.4) satisfied by B. On the other hand, the
advantage of writing (5.7) instead of (5.8) is that the former is manifestly covariant under
any t- and/or s-dependent gauge transformation O = O(t, x, s).
Assuming that A is a dynamic Yang–Mills heat flow, one can differentiate to obtain

the desired covariant parabolic equations for the curvature, which expand the equations
in Lemma 5.2:
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Lemma 5.4. Let A = Aα dx
α + As ds be a sufficiently regular solution to (5.7). Then the

curvature components Fαβ and Fsα obey the following covariant parabolic equations.

DsFαβ −DℓDℓFαβ =− 2[F ℓ
α , Fβℓ], (5.9)

DsFsα −DℓDℓFsα =− 2[F ℓ
s , Fαℓ]. (5.10)

At this point, the way one should think of the α = 0 component of these equations is as a
covariant equivalent formulation of the linearized equations (5.4), given that A0 satisfies the
gauge fixing condition (5.7) for α = 0; see Section 2.6.

Remark 5.5 ((5.7) with α = 0 as an infinitesimal de Turck trick). Note that, by imposing the
equation Fs0 = DℓFℓ0, we have arrived at a nondegenerate parabolic equation for F0j in (5.9),
as opposed to the degenerate parabolic equation (5.4). This statement can be alternatively
seen as follows, in a way that resembles the classical de Turck trick for (5.1) (cf. (1.7)–(1.8)).
Using DℓDiBℓ = DiD

ℓBℓ + [F ℓ
i , Bℓ], (5.4) can be rewritten as

DsBi −DℓDℓBi + 2[F ℓ
i , Bℓ] = Di(Bs −DℓBℓ).

If one attempts to cancel the undesirable RHS by a linearized gauge transformation of the
form (5.5), then one is naturally led to the condition (5.8), which is equivalent to (5.7) with
α = 0 under the definitions F0j = Bj −DjA0 and F0s = Bs −DsA0.

5.2. Covariant bounds for solutions. Postponing for the moment the gauge dependent
well-posedness question, we now explore the possible covariant bounds for sufficiently regular
solutions. These are necessarily curvature based. The first is the monotonicity formula:

Proposition 5.6. Let A be a sufficiently regular covariant Yang–Mills heat flow. Then for
0 ≤ s0 ≤ s1 we have the relation∫︂

1

2
⟨Fij, F

ij⟩(s1) dx+

∫︂ s1

s0

∫︂
⟨DℓFℓi,D

ℓF i
ℓ ⟩ dxds =

∫︂
1

2
⟨Fij, F

ij⟩(s0) dx. (5.11)

This is verified by a direct computation. Based on this relation, one expects that well-
behaved solutions to the curvature equations satisfy

F ∈ L∞L2, DF ∈ L2L2.

By the diamagnetic inequality, the latter bound implies F ∈ L2L4. Interpolating between
this norm and L∞L2, one obtains in particular

F ∈ L3L3.

This norm plays a key role in our analysis, as it serves as a continuation criteria for solutions.
More precisely, we have the following:

Proposition 5.7. Let A be a sufficiently regular covariant Yang–Mills heat flow on the
heat-time interval J = [s0, s1). Suppose that

∥F∥L3
s(J,L

3
x)
≤ Q < ∞. (5.12)

for some Q < ∞.

(1) Then for any n ≥ 0, there exists Qn = Qn(∥F (s = s0)∥L2 ,Q) < ∞ such that

∥sn/2D(n)
x F∥L∞

ds
s

(J ;L2
x)
+ ∥s(n+1)/2D(n+1)

x F∥L2
ds
s

(J ;L2
x)
≲ Qn. (5.13)
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(2) Suppose, in addition, that (A0, A) is a sufficiently regular dynamic Yang–Mills heat flow
on J . Then for any n ≥ 0, there exists Q0,n = Q0,n(∥F0x(s = s0)∥L2 , ∥F (s = s0∥L2 ,Q) <
∞ such that

∥sn/2D(n)
x F0j∥L∞

ds
s

(J ;L2
x)
+ ∥s(n+1)/2D(n+1)

x F0j∥L2
ds
s

(J ;L2
x)
≲ Q0,n. (5.14)

Here the L3L3 bound in the hypothesis is applied only to the spatial components of the
curvature. However, the conclusion applies as well to the F0j components.

Proof. We prove each part in order.

Proof of (1). We proceed by an induction argument. Assume that, for 0 ≤ n′ ≤ n− 1, we
have ∑︂

0≤m≤n′

(︃
∥sm/2D(m)

x F∥2L∞
ds
s

(J ;L2
x)
+ ∥s(m+1)/2D(m+1)

x F∥2L2
ds
s

(J ;L2
x)

)︃
≤ 2Q2

n′ (5.15)

for some Qn′ < ∞, then we claim that (5.15) holds for n′ = n. In the base case n = 0, we
make no induction hypothesis.

For each fixed i, j, the curvature component Fij obeys

DsFij −∆AFij = −2[F k
i , Fjk].

Commuting with D
(n)
x , we obtain a schematic equation of the form

DsD
(n)
x Fij +∆AD

(n)
x Fij =

n∑︂
n′=0

[D(n′)
x F,D(n−n′)

x F ].

Multiplying by snD
(n)
x Fij (using the bi-invariant inner product) and integrating over R4 ×

(s1, s2), we get

1

2

∫︂
sn2 |D(n)

x Fij|2(s2) dx+

∫︂ s2

s1

∫︂
sn+1 |D(n+1)

x Fij|2 dx
ds

s

=
1

2

∫︂
sn1 |D(n)

x Fij|2(s1) dx+ n

∫︂ s2

s1

∫︂
sn |D(n)

x Fij|2 dx
ds

s

+
n∑︂

n′=0

∫︂ s2

s1

∫︂
sn+1⟨[D(n′)

x F,D(n−n′)
x F ],D(n)

x F ⟩ ds
s

Therefore,

∥sn/2D(n)
x F∥2L∞

ds
s

((s1,s2);L2
x)
+ ∥s(n+1)/2D(n+1)

x F∥2L2
ds
s

((s1,s2);L2
x)

≤ C

(︃
∥sn/21 D(n)

x F (s)∥2L2
x
+ n∥sn/2D(n)

x F∥2L2
ds
s

((s1,s2);L2
x)
+ I2n

)︃
where

In(s1, s2) =
n∑︂

n′=0

∫︂ s2

s1

∫︂
sn+1⟨[D(n′)

x F,D(n−n′)
x F ],D(n)

x F ⟩ ds
s
.

We decompose

In(s1, s2) = In,high(s1, s2) + In,low(s1, s2)
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where

In,high(s1, s2) =

∫︂ s2

s1

∫︂
sn+1⟨[F,D(n)

x F ],D(n)
x F ⟩ ds

s
,

In,low(s1, s2) =
∑︂

0≤n′,n−n′<n

∫︂ s2

s1

∫︂
sn+1⟨[D(n′)

x F,D(n−n′)
x F ],D(n)

x F ⟩ ds
s
.

Observe that In,low is nontrivial only when n ≥ 2. In that case, we estimate In,low using
Hölder and covariant Sobolev inequalities as follows:

|In,low(s1, s2)| ≤C

(︄ ∑︂
0≤n′<n

∥s(n′+1)/2D(n′)
x F∥L2

ds
s

((s1,s2);L4
x)

)︄2

∥sn/2D(n)
x F∥L∞

ds
s

((s1,s2);L2
x)

≤C

(︄ ∑︂
0≤n′<n

∥s(n′+1)/2D(n′+1)
x F∥L2

ds
s

((s1,s2);L2
x)

)︄2

∥sn/2D(n)
x F∥L∞

ds
s

((s1,s2);L2
x)

By the induction hypothesis,

|In,low(s1, s2)| ≤CQ2
n∥sn/2D(n)

x F∥L∞
ds
s

((s1,s2);L2
x)

which is acceptable since it is linear in F .
On the other hand, for In,high we proceed differently in the base case n = 0 and the

inductive case n > 0. In the base case, we simply have

|In,high(J)| ≤ C∥F∥3L3
s(J ;L

3
x)
,

and In,low = 0, so the desired conclusion (5.15) follows with n = 0.
In the inductive case n > 0, we estimate

|In,high(s1, s2)|
≤C∥s1/2F∥L2

ds
s

((s1,s2);L4
x)
∥s(n+1)/2D(n)

x F∥L2
ds
s

((s1,s2);L4
x)
∥sn/2D(n)

x F∥L∞
ds
s

((s1,s2);L2
x)

≤C∥s1/2DxF∥L2
ds
s

((s1,s2);L2
x)
∥s(n+1)/2D(n+1)

x F∥L2
ds
s

((s1,s2);L2
x)
∥sn/2D(n)

x F∥L∞
ds
s

((s1,s2);L2
x)
.

Therefore, this term can be absorbed into the LHS if

C∥s1/2DxF∥L2
ds
s

((s1,s2);L2
x)
≪ 1. (5.16)

By the induction hypothesis, ∥s1/2DxF∥L2
ds
s

(J ;L2
x)

≤ Q0 < ∞, so the interval J can be split

into O(Q0)-many of intervals on each of which (5.16) holds. Reinitializing data at every
(left) endpoint of these intervals, we obtain the conclusion (5.15) for n′ = n.

Proof of (2). As in (1), we again proceed by an induction. Here, the key point is that the
equation obeyed by F0x, namely

DsF0j −∆AF0j = −2[F k
0 , Fjk]

is linear in F0x. The contribution of the RHS can be treated perturbatively, using the bound
proved in (1), and splitting J into small intervals to gain smallness of F . We leave the details
to the reader. □

38



While in these bounds we cannot substitute covariant derivatives by regular derivatives, we
do have the corresponding Lp bounds which would normally follow from Sobolev embeddings:

Corollary 5.8. Under the same assumptions as the previous proposition, we also have

∥s2(
1
2
− 1

q
)+( 1

4
− 1

p
)Fαβ∥Lp

ds
s

(J ;Lq) ≲Q 1,
1

p
+

2

q
≤ 1

2
(5.17)

respectively

∥s
n
2
+2( 1

2
− 1

q
)+( 1

4
− 1

p
)D(n)

x Fαβ∥Lp
ds
s

(J ;Lq) ≲Q 1, p, q ≥ 2, n ≥ 1. (5.18)

Proof. This follows from the diamagnetic inequality ∂j|Fαβ| ≤ |DjFαβ| and the standard
Sobolev embeddings; we leave the details to the reader. □

5.3. Main results in the local caloric gauge. To prove local solvability for the Yang–
Mills heat flow we need to fix the gauge. One natural choice in this context is the de Turck
gauge,

As = ∂ℓAℓ, (5.19)

With this gauge choice, the covariant Yang–Mills heat flow equations (5.1) are reduced to
a genuinely parabolic semilinear system, and their local theory is relatively straightforward.
Unfortunately, it is not clear to us whether this gauge leads to global solutions in the large
data case, rather than gauge related singularities. Part of the difficulty is that this flow is
nontrivial even for flat connections, where it corresponds to a critical harmonic map heat
flow into the Lie group G.

In order to avoid such difficulties we will work from the start in the the local caloric gauge,

As = 0. (5.20)

The Yang–Mills heat flow written in the local caloric gauge takes the form

∂sAi = DℓDℓAi −Dℓ∂iAℓ, Ai(0) = ai. (5.21)

Here one can see the downside of working in this gauge, namely that our evolution is only
degenerate parabolic. This will cause some small difficulties with the local theory, but has
the chief advantage that it is very well suited for the global theory.

The non-parabolic component of the above system is captured in the evolution of ∂kAk,
which we capture here for later use:

∂s∂
ℓAℓ = −[Ak,DℓFℓk]. (5.22)

This evolution retains some gauge freedom, namely that which corresponds to purely spa-
tial (i.e. s independent) gauge transformations. Later in this section we will take advantage
of this gauge freedom to construct our caloric gauge for the hyperbolic Yang–Mills equation.

In the same vein, the linearized Yang–Mills heat flow written in the local caloric gauge
Bs = 0 has the form

∂sBi = Dj(DjBi −DiBj) + [Bj, Fji], Bi(0) = bi. (5.23)

We introduce the notation

(curl AB)ij = DiBj −DjBi. (5.24)
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In addition to the above gauge transformations B → OBO−1, here we have the additional
gauge freedom arising from pure gauge variations of A, namely9

Bi → Bi −DiC (5.25)

where C is again independent of s (though its covariant derivatives are not).
We repeat this discussion with the A0 equation of the dynamic Yang–Mills heat flow,

which takes the form
∂sA0 = DℓFℓ0, (5.26)

where F0ℓ are uniquely determined in terms of their initial data from the equations

∂sF0ℓ −∆AF0ℓ = −2[F k
0 , Fℓk]. (5.27)

The gauge freedom here is even simpler,

A0 → A0 + C, (5.28)

where C = C(x) is independent of the heat-time s.
The Yang–Mills heat flow written in the form (5.21) has the disadvantage that the principal

part ∆Ai − ∂i∂
ℓAℓ of the RHS is not strictly negative-definite; hence the principal part does

not exhibit (forward in heat-time) smoothing for the whole Ai. Instead, at the leading order
this equation decouples into a nondegenerate parabolic equation for the curl of A, coupled
with an ODE evolution for the divergence of A. The same considerations apply to the
linearized equation.

Unfortunately we cannot take advantage of this decoupling directly. However, a carefully

covariant version of it turns out to be effective, and leads us to the critical Ḣ
1
well-posedness

theory for the system (5.21).
From the above discussion we retain the special role played by the divergence of A, which

in general gains no regularity in time. For later use, we will also consider solutions for which
the divergence of A is more regular, and extend the well-posedness theory to the space

H = {a ∈ Ḣ
1
: ∂ℓaℓ ∈ ℓ1L2}.

The same considerations as above apply to the linearized equation (5.23). On the other
hand, the evolution (5.27) of F0ℓ is nondegenerate parabolic. For this reason we will use a
roundabout way to obtain solutions to the linearized flow. Precisely, we follow the following
algorithm:

• We initialize a0 = 0 and f0ℓ = bℓ at s = 0.
• We solve the parabolic equation for F0j.
• We obtain A0 by integrating (5.26) in heat-time.

As discussed in Section 2.6, this may be though of as an infinitesimal de Turck trick for
(5.23).

Our main local well-posedness result for the Yang–Mills heat flow in the local caloric gauge
is as follows:

Theorem 5.9. The Yang–Mills heat flow in the local caloric gauge is locally well-posed in

both Ḣ
1
and H, with locally Lipschitz dependence on the initial data. The same result holds

in Ḣ
1 ∩Hσ for all σ ≥ 1.

9This is the linearized gauge freedom (5.5) of (5.4) under the additional restriction O;s = 0 in order to
keep the local caloric gauge condition As = 0.
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To study the long time behavior of solutions it is useful to have bounds which depend only
on the L3L3 norm of F :

Theorem 5.10. Let a ∈ Ḣ
1
, and A be the corresponding Ḣ

1
solution for the Yang–Mills

heat flow in the local caloric gauge on a time interval J = [0, s0). Assume that, for some
Q,M1 > 0, the L3L3 curvature bound (5.12) holds in J and that

∥a∥
Ḣ

1 ≤ M1. (5.29)

(1) Then we have the uniform bound

∥A∥
L∞Ḣ

1 + ∥F∥
L∞L2∩L2Ḣ

1 + ∥∂sA∥L2L2 ≲Q ∥a∥
Ḣ

1 . (5.30)

as well as the similar H bound.
(2) Let b ∈ Ḣ

σ
be a corresponding linearized data. Then we have the uniform bound

∥B∥L∞Ḣ
σ + ∥curlAB∥L2Ḣ

σ ≲Q,M1 ∥b∥Ḣσ , −2 < σ < 2, (5.31)

as well as the similar H bound.
(3) Assume in addition that a ∈ Ḣ

σ
for some σ > 1. Then we have the uniform bound

∥A∥L∞Ḣ
σ + ∥F∥

L∞Ḣ
σ−1∩L2Ḣ

σ + ∥∂sA∥L2Ḣ
σ−1 ≲M,M1 ∥a∥Ḣσ . (5.32)

Also for the linearized equation we have

∥B∥L∞Ḣ
σ + ∥curlAB∥L2Ḣ

σ ≲Q,M1 ∥b∥Ḣσ + ∥b∥
Ḣ

1∥a∥Ḣσ . (5.33)

These bounds assert that the solution to data map for the Yang–Mills heat flow in the

local caloric gauge is uniformly Lipschitz in Ḣ
1
, H and Ḣ

1 ∩ Ḣ
σ
( σ > 1) on bounded sets

in Ḣ
1
for as long as the L3L3 norm of F remains controlled.

We will prove parts (1) and (2) directly. However, for part (3) we will instead establish a
stronger and more accurate frequency envelope version of the above result. For this, we will
use the following notation:

• ck is a (−1, S) frequency envelope for the connection a in Ḣ
1
.

• dk is a (−1, S) frequency envelope for the linearized data b in L2.

If S = 2 then these envelopes can be taken independently of each other. For larger S, we
require that dk be 2-compatible10 with ck.

With the above notation, we have:

Theorem 5.11. Let a ∈ Ḣ
1
with (−1, S) frequency envelope ck, and b ∈ L2 with 2-compatible

(−1, S) frequency envelope dk. Let A, B be the corresponding solutions for the Yang–Mills
heat flow, respectively its linearization around A, in the local caloric gauge on a heat-time
interval J = [0, s0). Assume that the L3L3 curvature bound (5.12) holds in J , and also that
(5.29) holds. Then we have the frequency envelope bounds

∥PkA∥L∞Ḣ
1 + ∥PkF∥

L∞L2∩L2Ḣ
1 + ∥PkDF∥

L1Ḣ
1 ≲Q,M1 ck, (5.34)

sup
s1,s2

∥Pk(∂
ℓAℓ(s1)− ∂ℓAℓ(s2))∥L2 ≲Q,M1 ckc

[1]
k . (5.35)

respectively,
∥PkB∥L∞L2 + ∥PkcurlAB∥L2 ≲Q,M1 dk, (5.36)

10In fact, any σ-compatibility with σ > 1 would do. The reason for this range is that it allows us to treat

the linearized equation simultaneously at the two regularities that we are interested in, namely Ḣ
1
and L2.
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sup
s1,s2

∥DkBk(s1)−DkBk(s2)∥Ḣ−1 ≲Q,M1 ckd
[2]
k + dkc

[1]
k +

∑︂
j>k

2k−jcjdj. (5.37)

Theorem 5.10 allows us to consider the question of continuation of solutions for the Yang–
Mills heat flow:

Corollary 5.12. (1) Let a ∈ Ḣ
1
and A be the corresponding Ḣ

1
solution for the Yang–Mills

heat flow in the local caloric gauge on a heat-time interval J = [0, s0). Assume that the

L3L3 curvature bound (5.12) holds in J . Then the following limit exists in Ḣ
1
:

A(s0) = lim
s→s0

A(s). (5.38)

Further, there exists a strictly larger interval J̃ = [0, s̃0) as well as ϵ = ϵ(Q, ∥a∥
Ḣ

1) so

that for all data ã with ∥ã− a∥
Ḣ

1 ≤ ϵ, the corresponding solution Ã exists in J̃ , satisfies
(5.12) with Q replaced by 2Q, as well as

∥A− Ã∥
L∞(J̃ ;Ḣ

1
)
≲Q ∥a− ã∥

Ḣ
1 . (5.39)

(2) If in addition a ∈ H, respectively a ∈ Ḣ
1 ∩ Ḣ

σ
(σ > 1) then the above limit exists in H,

respectively Ḣ
1 ∩ Ḣ

σ
.

As a consequence of the last result we have the following continuation criteria:

Corollary 5.13. Let A be a maximal Ḣ
1
solution for the Yang–Mills heat flow in the local

caloric gauge in an interval J = [0, s0). Then we have either s0 = ∞ or ∥F∥L3(J ;L3) = ∞.

Here we are especially interested in the global behavior of solutions. Given a global
covariant Yang–Mills heat flow A with initial data a = A(s = 0), define

Q(a) = ∥F∥L3([0,∞);L3). (5.40)

First, we show that small initial energy leads to a global solution, with an explicit bound on
Q(a):

Corollary 5.14. Let a be a Ḣ
1
connection with a sufficiently small Ee[a]. Then the corre-

sponding solution A to the Yang–Mills heat flow in the local caloric gauge exists globally, and
obeys

Q(a)2 ≲ Ee[a].

For solutions with Q(a) < ∞, we obtain uniform global-in-time bounds for the Yang–Mills
heat flow and its linearization in the local caloric gauge by Theorem 5.10. Moreover, the
following asymptotic convergence properties also hold.

Corollary 5.15. Let A be a global Ḣ
1
solution for the Yang–Mills heat flow in the local

caloric gauge with Q(a) = ∥F∥L3([0,∞);L3) ≤ Q < ∞. Then the limiting connection A∞

exists in Ḣ
1
and has zero curvature. The same applies to the linearized equation in Ḣ

σ
with

−1 < σ < 2 as well as in H.
Furthermore, the map a → A∞ is Lipschitz in Ḣ

1
, H, Ḣ

1 ∩ Ḣ
σ
(σ > 1) uniformly on

bounded convex subsets of Ḣ
1
where (5.12) holds uniformly.
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5.4. Proof of the main results in the local caloric gauge. This subsection is devoted
to the proof of the results stated in the preceding subsection. All the solutions for the
Yang–Mills heat flow are assumed from here on to be in the local caloric gauge (5.20).

Due to the degeneracy of the parabolic system for A, we cannot address directly the local

well-posedness question in Ḣ
1
, and we begin with a more regular setting:

Lemma 5.16. The Yang–Mills heat flow in the local caloric gauge (5.21) is locally well-

posed for initial data a ∈ Ḣ
1∩ Ḣ

3
, with Lipschitz dependence on the initial data and lifespan

depending only on the initial data size.

The same argument applies in Ḣ
1 ∩ Ḣ

σ
for all σ ≥ 3.

Proof. We write the system as a mixed parabolic/transport for the curl/div of A:{︃
(∂s −∆)curlA = [DA,DA] + [D2A,A] + [A,A,DA],
∂s divA = [A, ∂curlA] + [A,A,DA].

Here the only important structural information is that divA does not appear differentiated

in the second equation. For initial data A(0) ∈ Ḣ
1 ∩ Ḣ

3
we solve this system in the space

X = (L∞H2 ∩ L2H3)× L∞H2

by estimating the right hand side in

Y = (L1H2 + L2H1)× L1H2

A standard fixed point argument in this setting yields local well-posedness, with a lifespan
depending only on the initial data size. The control of the H3 norm is useful as it guarantees
that A ∈ L∞. □

We now turn our attention to obtaining scale invariant bounds for such solutions. We will
use the L3L3 bound for F as a key a-priori assumption, while the initial data is assumed to
have finite energy, i.e.,

1

2
∥F [a]∥2L2 ≤ E < ∞. (5.41)

Lemma 5.17. Let A be a sufficiently regular Yang–Mills heat flow on a heat-time interval
J , so that (5.12) and (5.41) hold. Then we have the bound

∥A∥
L∞Ḣ

1 ≲Q,E 1 + inf
s∈J

∥A(s)∥
Ḣ

1 . (5.42)

Remark 5.18. The lemma is also valid for the dynamic Yang–Mills heat flow with the A0

component added in (5.42), after replacing (5.41) by

1

2

∑︂
α<β

∥Fαβ(s = 0)∥2L2 ≤ E < ∞. (5.43)

Later we will seek to imbalance the A0 bounds.

Remark 5.19. From the proof, it will also be evident that a spatially localized version of
Lemma 5.17 also holds, i.e.,

∥A∥
L∞(J ;Ḣ

1
(BR))

≲Q,E 1 + inf
s∈J

∥A(s)∥
Ḣ

1
(BR)

, (5.44)

for any fixed ball BR ⊆ R4.
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Proof. We will proceed in two steps, where we first establish an L4 bound for A, and then a

Ḣ
1
bound. For the L4 bound we need to estimate

I =

⃦⃦⃦⃦∫︂ s0

0

DℓFℓids

⃦⃦⃦⃦4
L4

=

∫︂ s0

0

⟨DℓFℓi(s1),D
ℓFℓi(s2)⟩⟨DℓFℓi(s3),D

ℓFℓi(s4)⟩ds1 · · · ds4.

We restrict to s1 ≤ s2 ≤ s3 ≤ s4, as the other cases are similar. Dividing time into dyadic
regions and using the bounds (5.17) and (5.18), we estimate the corresponding integral I1
by

I1 ≲
∑︂
dyadic

⃦⃦⃦⃦∫︂
DF (s1)ds1

⃦⃦⃦⃦
L2

⃦⃦⃦⃦∫︂
DF (s2)

⃦⃦⃦⃦
L2

⃦⃦⃦⃦∫︂
DF (s3)ds3

⃦⃦⃦⃦
L∞

⃦⃦⃦⃦∫︂
DF (s4)ds4

⃦⃦⃦⃦
L∞

≲M

∑︂
dyadic

s
1
2
1 s

1
2
2 s

− 1
2

3 s
− 1

2
4 ∥DF∥L2

s1
L2∥DF∥L2

s2
L2∥sDF∥L2

s3
L∞∥sDF∥L2

s4
L∞ .

Given the ordering of the si’s, this sum has has off-diagonal decay, and thus converges.

In a similar manner, for the Ḣ
1
bound we need to estimate⃦⃦⃦⃦∫︂ s0

0

∂DℓFℓids

⃦⃦⃦⃦2
L2

≲

⃦⃦⃦⃦∫︂ s0

0

D2Fds

⃦⃦⃦⃦2
L2

+

⃦⃦⃦⃦∫︂ s0

0

[A,DF ]ds

⃦⃦⃦⃦2
L2

.

We proceed as above. The first term is written as∫︂
s1≤s2

⟨DF (s1),D
3F (s2)⟩ds1ds2,

and we can combine the two L2L2 bounds for the two factors.
The second term is written as∫︂

s1≤s2

⟨[A,DF ](s1), [A,DF ](s2)⟩ds1ds2.

Here we directly use the L4 bound for A, the L2L2 bound for the first DF (s1) and the L2L∞

bound for DF (s2). □

Next, we establish higher regularity bounds.

Lemma 5.20. Let A be a sufficiently regular Yang–Mills heat flow so that (5.12) holds.
Then we have the bounds

∥A∥
L∞Ḣ

k+1 ≲Q,M1 ∥A(0)∥Ḣk+1 , k ≥ 1 (5.45)

Proof. We first remark that bounds for A(0) directly translate into bounds for F (0), namely

∥D(k)F (0)∥L2 ≲M1 ∥A(0)∥Ḣk+1 .

This directly leads to improved bounds in Proposition 5.7, with k covariant derivatives added:

∥sm/2D(m+k)
x F∥L∞

ds
s

(J ;L2
x)
+ ∥s(m+1)/2D(m+k+1)

x F∥L2
ds
s

(J ;L2
x)
≤Q,k ∥D(k)F (0)∥L2 (5.46)

Next we prove the covariant version of (5.45), arguing by induction on k. Our starting
point is the k = 0 bound in the previous proposition. For the induction step we differentiate
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(5.26) k + 1 times to obtain the schematic equation

∂sD
(k+1)A = D(k+2)F +

k∑︂
j=0

[D(j+1)F,D(k−j)A].

Then we integrate in s from s = 0 and estimate separately each term. The analysis for the
first term is identical to the proof of the L2 bound in the previous Lemma, but using (5.46)
instead of (5.13). For the summand in the second term we need to consider the integral

I =

∫︂
s1≤s2

⟨[D(j+1)F,D(k−j)A](s1), [D
(j+1)F,D(k−j)A](s2)⟩dxds1ds2

Now we use (5.46) for F , respectively our induction hypothesis for A to bound the four
factors in L2, L∞L4, L2L∞ respectively L∞L4 to obtain

|I| ≲
∑︂

s1<s2,dyadic

s
1
2
1 s

− 1
2

2 ∥D(j+1)F∥L2
s1

L2∥D(k−j+1)A∥L∞L2∥sD(j+1)F∥L2
s2

L∞∥D(k−j+1)A∥L∞L2

≲ ∥D(j)F (0)∥2L2∥D(k−j+1)A∥L∞L2 .

Then the RHS is bounded using the induction hypothesis, provided that j ̸= 0. If j = 0 we
can argue in a similar fashion if we mildly unbalance the estimate, using instead the norms
L2L4, L∞L2, L2L∞ respectively L∞L4. Alternatively, we can also divide the heat-time
interval into subintervals where the above L2Lp norms of F are small, and then reiterate.
It remains to make the transition from covariant to regular derivatives. For k = 1 we

estimate as follows:

∥∂(2)A∥L2 ≲M1 ∥D∂A∥L2 ≲ ∥D(2)A∥L2 + ∥[DA,A]∥L2

≲M1 ∥D(2)A∥L2 + ∥DA∥L4∥A∥L4 ≲M1 ∥D(2)A∥L2 .

A similar argument inductively applies for higher k. □

We continue with some finer scale invariant estimates for A and F :

Lemma 5.21. Let A be a sufficiently regular Yang–Mills heat flow so that (5.12) and (5.29)
hold. Then we have the bounds

∥F∥
L2Ḣ

1 + ∥sF∥
L∞Ḣ

2 + ∥s
1
2F∥

L2Ḣ
2 ≲Q,M11, (5.47)

as well as

∥DF∥
ℓ2L1Ḣ

1 ≲Q,M11, (5.48)

∥A∥
ℓ2L∞Ḣ

1 ≲Q,M11, (5.49)

∥F − es∆f∥
ℓ1L2Ḣ

1 ≲Q,M11. (5.50)

Proof. We start with (5.47). The first bound is obvious. For the second we need to estimate
at fixed s

∥s∂2F∥L2 ≲ ∥sD∂F (s)∥L2 ≲ ∥s∂DF (s)∥L2 + ∥s∂AF∥L2 ≲ ∥sD2F (s)∥L2 + ∥∂A∥L2∥sF∥L∞

which suffices. For the third we argue similarly.
More covariant derivatives are also allowed here. In particular the bound (5.48) for

∥DF∥
ℓ2L1Ḣ

1 is obtained by combining bounds for ∥DF∥L2 and ∥sDF∥
L2Ḣ

2 . (Alternatively,
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we could use the fact that DFix solves the (4.9) with G ∈ L1Ḣ
−1
, and appeal to Theo-

rem 4.6.)
The improved A bound (5.49) follows by integrating

Ai(s) =

∫︂ s

0

DℓFℓi(s̃) ds̃

using (5.48).
Finally we consider the difference

F̃ = F − es∆f

which solves the schematic equation

(∂s −∆)F̃ = [A, ∂F ] + [∂A, F ] + [A, [A,F ]] =: G.

Then we use off-diagonal decay, as well as the preceding bounds, to obtain the following
estimate for G:

∥G∥
ℓ1L2Ḣ

−1 ≲Q,M1 1.

Then (5.50) follows from the usual heat flow estimate (or use Theorem 4.5 with A = 0). □

We now have sufficient estimates in order to establish the continuation of regular solutions
for the Yang–Mills heat flow with regular data:

Lemma 5.22. Let J be the maximal time of existence for the Yang–Mills heat flow problem

in the local caloric gauge, with initial data a ∈ Ḣ
1 ∩ Ḣ

3
. Then either J = [0,∞) or

∥F∥L3(J ;L3) = ∞.

Proof. We assume that A is a solution in Ḣ
1 ∩ Ḣ

3
in a finite time interval J , so that

∥F∥L3(J ;L3) < ∞. By Lemma 5.20, the solution is uniformly bounded in Ḣ
1 ∩ Ḣ

3
for s ∈ J .

Since the lifespan of the solution to the initial value problem depends only on the size of the
data, it immediately follows that we can extend the solution past J . □

Next, we consider the L2 well-posedness for the linearized equation (5.23). It is convenient
to also consider the corresponding inhomogeneous problem, which we write in the form

∂sBk −Dj(DjBk −DkBj)− [Bj, Fjk] = Hk +DjGjk, Bk(0) = bk (5.51)

where G is antisymmetric.

Lemma 5.23. Let A be a sufficiently regular Yang–Mills heat flow so that (5.12) holds.

Then the linearized equation (5.51) is well-posed in Ḣ
σ
for −2 < σ < 2, and we have the

bounds

∥B∥L∞Ḣ
σ + ∥DiBj −DjBi∥L2Ḣ

σ ≲ ∥B(0)∥Ḣσ + ∥H∥L1Ḣ
σ + ∥G∥L2Ḣ

σ (5.52)

Proof. Depending on σ we divide the problem in three cases:

Case 1: −1 < σ < 1. For this part of the proof we do not use the fact that A is an
Yang–Mills heat flow. Instead, we use only the following properties:

• A is bounded in Ḣ
1
, ∥A∥

L∞Ḣ
1 ≲Q,M1 1.

• F is bounded in L2Ḣ
1
, ∥F∥

L2Ḣ
1 ≲Q,M1 1.

• ∂sA ∈ L2, ∥∂sA∥L2 ≲Q,M1 1.
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These are precisely what we need to apply Theorem 4.3.
Our approach here is to solve the linearized equation via the A0 flow, as follows:

• We assign for simplicity the initial value a0 = 0. Then we have matching initial data
f0j = bj.

• We find F0j by solving the inhomogeneous version of the covariant curvature flow (5.27),
namely

∂sF0ℓ −∆AF0ℓ = −2[Fℓ
k, Fk0] +Hℓ +DjGjℓ. (5.53)

• We recover A0 by integrating (5.26) in heat-time

A0(s) =

∫︂ s

0

DkFk0(s1) ds1.

• We find the solution B to the linearized inhomogeneous problem (5.51) by

Bj = F0j +DjA0.

This approach may at first appear more roundabout, but it has the chief advantage that
we only need to solve dynamically a strongly parabolic evolution. It may be thought of as
an “infinitesimal de Turck’s trick” for the linearized Yang–Mills heat flow (cf. Section 2.6).

The bounds for F0j are already provided by Theorem 4.3, which yields

∥F0j∥L∞Ḣ
σ + ∥DF0j∥L2Ḣ

σ ≲ ∥f0j∥Ḣσ + ∥H∥L1Ḣ
σ + ∥G∥L2Ḣ

σ .

By the formula curlAB = curl AF0x + [F,A0], it remains to estimate

∥DA0∥L∞Ḣ
σ + ∥[F,A0]∥L2Ḣ

σ ≲ ∥f0j∥Ḣσ + ∥H∥L1Ḣ
σ + ∥G∥L2Ḣ

σ . (5.54)

Since −1 < σ < 1, this reduces to

∥A0∥L∞Ḣ
σ+1 ≲ ∥f0j∥Ḣσ + ∥H∥L1Ḣ

σ + ∥G∥L2Ḣ
σ .

To bound A0, we need to better understand the expression DjF0j. This solves the
(schematic) parabolic equation

(∂s −∆A)D
jF0j = [DF, F0j] + [F,DF0j] +DjHj + [F,G],

where we used the fact that DkDjGjk = −1
2
[F jk, Gjk] by antisymmetry. As σ ∈ (−1, 1), we

can estimate the right hand side in L1Ḣ
σ−1

. By Theorem 4.6, it follows that

∥DjF0j∥ℓ2L1Ḣ
σ+1 ≲ ∥f0j∥Ḣσ + ∥H∥L1Ḣ

σ + ∥G∥L2Ḣ
σ

which in turn leads by integration to the desired L∞Ḣ
σ+1

bound for A0.
As a final remark, we observe that by interpolating the bounds (5.52) with different σ we

obtain the slightly stronger form

∥B∥ℓ2L∞Ḣ
σ + ∥DiBj −DjBi∥L2Ḣ

σ ≲ ∥B(0)∥Ḣσ + ∥H∥L1Ḣ
σ + ∥G∥L2Ḣ

σ . (5.55)

Case 2: 1 ≤ σ < 2. In addition to the previous case, here we use the bounds

• DF is bounded in ℓ2L1Ḣ
1
, ∥DF∥

ℓ2L1Ḣ
1 ≲M,M1 1.

• ∂sA ∈ ℓ2L1Ḣ
1
, ∥∂sA∥ℓ2L1Ḣ

1 ≲M,M1 1.
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which were established in Lemma 5.21.
Here we apply the previous estimates to DℓB. The equations for DℓB have the form

∂sD
ℓBk −Dj(DjD

ℓBk −DkD
ℓBj)− [DℓBj, Fjk] = Hℓ

k +DjGℓ
jk (5.56)

where

Hℓ
k =DℓHk +

1

2
[F ℓj, Gjk] + [F ℓj,DjBk −DkBj] + [∂sA,Bk] + [Bj,DℓFjk],

Gℓ
jk =DℓGjk + ([F ℓ

j , Bk]− [F ℓ
k , Bj]).

Obtaining Ḣ
σ−1

bounds for DB suffices, in view of the elliptic bound

∥DB∥
ℓ2L∞Ḣ

σ−1 + ∥curlA DB∥
L2Ḣ

σ−1 ≈Q,M1 ∥B∥ℓ2L∞Ḣ
σ + ∥curlAB∥L2Ḣ

σ .

The LHS of the last relation comes from the bounds (5.55) for DB. To obtain those, we treat
the B dependent terms in Hℓ

k and Gℓ
jk perturbatively. To guarantee smallness, we partition

the heat-time interval J into finitely many subintervals where ∥F∥
L2Ḣ

1 and ∥DF∥
ℓ2L1Ḣ

1 are

small. The last norm is used in order to estimate the last two terms in Hℓ
k:

∥[DF,B]∥
L1Ḣ

σ−1 ≲ ∥DF∥
ℓ2L1Ḣ

1∥B∥
ℓ2L∞Ḣ

σ−1 .

This is where the improved ℓ2 summation is essential in the last term. We omit further
details.

Case 3: −2 < σ ≤ −1. Here we argue by duality. The well-posedness for the linearized

flow in Ḣ
σ
is equivalent to the well-posedness for the adjoint linearized flow in Ḣ

−σ
. The

adjoint linearized flow is a backward degenerate parabolic flow, which has exactly the same
form as (5.51) but with the sign of ∂s reversed. Since our assumptions on A and F in the
previous two steps are stable with respect to time reversal, it follows that their conclusion
applies to the adjoint linearized flow as well. Thus the desired conclusion follows. □

We now complement the previous result with a frequency envelope bound. We assume
that A satisfies

∥PkA∥L∞Ḣ
1 + ∥PkF∥

L2Ḣ
1 + ∥Pk∂sA∥L2L2 + ∥PkDF∥

L1Ḣ
1 ≲ ck. (5.57)

Then we have the following:

Lemma 5.24. Assume that (4.13) holds for some (−1, S) frequency envelope ck. Let dk be
a 2-compatible (−1, S) frequency envelope for B(0) in L2, G in L1L2 and H in L2. Then we
have

∥PkB∥L∞L2 + ∥PkcurlAB∥L2L2 ≲ dk. (5.58)

Proof. We prove the result in two steps repeating the analysis in the previous proof.

Step 1: The result for 1-compatible frequency envelopes. This is similar to the
argument in the previous lemma in the case |σ| < 1. The desired bound for F0j follows from
Theorem 4.5.

Next we consider the parabolic flow for DjF0j,

(∂s −∆A)D
jF0j = R

where (schematically)

R = [DF, F0j] + [F,DF0j] +DjHj + [F,G].
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Repeatedly using the Littlewood-Paley trichotomy we estimate the right hand side

∥PkR∥L1L2 ≲ 2kdk

where the worst term is the first one where DF is the high frequency factor. There we

combine the L1Ḣ
1
bound for DF with the L∞L2 bound for F0j.

The frequency envelope 2kdk is still admissible. Hence by Theorem 4.5 this bound for R
yields

∥PkD
jF0j∥L∞L2∩L2Ḣ

1 ≲ 2kdk.

Moreover, by Theorem 4.6 we get

∥PkD
jF0j∥L1Ḣ

1 ≲ dk.

This in turn after integration yields

∥PkA0∥L∞Ḣ
1 ≲ dk,

and thus the similar bound
∥PkDA0∥L∞L2 ≲ dk.

Finally it remains to estimate [F,A0] in L2L2. Here we combine the A0 bound in L∞Ḣ
1

and the L2Ḣ
1
bound for F .

Step 2: The result for 2-compatible frequency envelopes. This is similar to the
argument in the previous lemma in the case 1 ≤ σ < 2.

Here we work with the equations for DB. If dk is a 2-compatible frequency envelope for
the initial data b,

∥Pkb∥L2 ≲ dk,

then the data Db for DB satisfies (by Littlewood–Paley trichotomy)

∥PkDb∥L2 ≲ 2k(dk + ck
∑︂
j<k

22(j−k)dj) ≲ 2kdk,

and is 1-compatible with ck.
We make the bootstrap assumption

∥PkB∥L∞L2 + ∥PkcurlAB∥L2L2 ≤ Cdk.

on some subinterval. To show that this extends to the whole interval, we need to verify that
the B dependent terms in the right hand side of (5.56) can be treated perturbatively. The
terms to bound are

∥Pk([F, curlAB])∥L1L2 + ∥Pk[DF,B]∥L1L2 + ∥Pk[F,B]∥L2 ≪ 2kdk

The desired bound is obtained by standard Littlewood-Paley bilinear theory, which yields

2k(dk + ck
∑︂
j<k

22(j−k)dj) ≲ 2k(dk + ck sup
j<k

2(2−ϵ)(j−k)dj) ≲ 2kdk

However we also need to gain smallness. In the last chain of inequalities it is clear that
smallness holds unless

ck ≈ 1, 2(2−ϵ)(j−k)dj ≲ dk, j < k. (5.59)

The first property selects only finitely many values of k; in those cases, we can gain smallness
from the divisible norms of F by subdividing the time interval.
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Now we are in position to apply the bound in Step 1 for DB to obtain

∥PkDB∥L∞L2 + ∥Pk curlADB∥L2 ≲ 2kdk.

It remains to return to B and show that this implies

∥PkB∥L∞L2 + ∥Pk curlAB∥L2 ≲ dk.

But this is done again perturbatively, where the errors are small unless (5.59) holds. But
then we are in a position to apply Lemma 5.23 directly. □

Finally we use the frequency envelope bounds for the linearized equations in order to prove
frequency envelope bounds for solutions to the Yang–Mills heat flow:

Lemma 5.25. Let A be a sufficiently regular Yang–Mills heat flow so that (5.12) holds. Let

c0k be a (−1, S) frequency envelope for the initial data a in Ḣ
1
. Then we have

∥PkA∥L∞Ḣ
1 + ∥PkF∥

L2Ḣ
1 + ∥Pk∂sA∥L2L2 + ∥PkDF∥

L1Ḣ
1 ≲ c0k (5.60)

Proof. This is based on the observation that if A is a solution for the Yang–Mills heat flow
then ∂xA are solutions for the corresponding linearized equations.

Case 1. Here we consider the easier case when c0k is a (−1, 1) frequency envelope. Then the

conclusion immediately follows from Lemma 5.23, with the exception of the L1Ḣ
1
bound,

which is instead obtained from Theorem 4.6 applied to DF .

Case 2. In order to work with more general envelopes, we denote by c
[1]
k a minimal (−1, 1)

frequency envelope for (A,F ) in the sense of (4.13), and by ck a minimal (−1, S) frequency

envelope for (A,F ) in the same sense. By the result in Case 1 above we have c
[1]
k ≲ c

0[1]
k .

Define the envelope

dk = c0k + ck sup
j<k

22(1−ϵ)(j−k)c0j .

Then 2kdk is 2-compatible with respect to ck, therefore applying Lemma 5.24 toDA it follows
that

∥PkDA∥
L∞Ḣ

1 + ∥PkDF∥
L2Ḣ

1 ≲ 2kdk.

Then from Theorem 4.6, we obtain

∥PkDF∥
L1Ḣ

1 ≲ dk.

Moreover, removing the covariant derivative from the first bound, we have

∥PkA∥L∞Ḣ
1 + ∥PkF∥

L2Ḣ
1 ≲ dk + ckc

[1]
k .

Thus, it follows that

ck ≲ dk + ckc
[1]
k ≲ c0k + ckc

[1]
k .

This implies ck ≲ c0k unless c
[1]
k ≈ 1. But in that case ck ≈ c

[1]
k , and again we win by the

result in Case 1, which implies c
[1]
k ≈ c

0[1]
k ≈ c0k. □

The bounds for the linearized equation allow us to consider the case of rough data a ∈ Ḣ
1
.

Our strategy will be to define rough solutions not directly, but rather as limits of smooth
solutions.
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Lemma 5.26. For every initial data a ∈ Ḣ
1
for the Yang–Mills heat flow in the local caloric

gauge there exists a nontrivial time interval J = [0, s0) and a local solution A ∈ C(J ; Ḣ
1
),

which is the unique limit of regular solutions.

Proof. For the existence part, we denote by ck a frequency envelope for a in Ḣ
1
. Then we

consider a continuum of regularized data a<k = P<ka for k ≥ k0, where k0 will be chosen
later. We denote the corresponding solutions by A<k, and the curvature 2-forms by F<k.
Given ϵ > 0, we choose J = [0, s0] so that

∥F<k0∥L3(J ;L3) ≤ 1.

Then we consider the maximal interval K = [k0, k1] with the property that for k ∈ K, the
solution Ak exists in J and satisfies

∥F<k∥L3(J ;L3) ≤ 2, for k ∈ K.

Within this range, the solutions Ak are uniformly bounded in L∞Ḣ
1
. Further, we can

combine the results in Lemmas 5.20,5.23 to conclude that

∥(A<k+1 − A<k)∥L∞Ḣ
1 + ∥F<k+1 − F<k∥L3L3 ≲ ck.

with further decay away from frequency 2k,

∥(A<k+1 − A<k)∥L∞Ḣ
N + ∥F<k+1 − F<k∥L3Ẇ

N−1,3 ≲N 2(N−1)kck, N ≥ 0.

Here the implicit constants depend only on ∥a∥
Ḣ

1 . Summing up, it follows that

∥A<k1 − A<k0∥2L∞Ḣ
1 + ∥F<k1 − F<k0∥2L3L3 ≲

∑︂
k0≤k≤k1

c2k, k ∈ K. (5.61)

Now we choose k0 so that ∑︂
k≥k0

c2k ≪ 1.

Then for k ∈ K we obtain

∥F<k∥L3L3 ≤ 3

2
.

By the maximality of K it follows that K = [k0,∞). Further, by (5.61) it follows that the
limit

A = lim
k→∞

A<k

exists in L∞Ḣ
1
. This is the desired solution. Further, we remark that the solution A satisfies

the frequency envelope bounds

∥PkA∥L∞Ḣ
1 + ∥PkF∥L3L3 ≲ ck, k > k0, (5.62)

and the regularization bounds

∥A− A<k0∥2L∞Ḣ
1 + ∥F − F<k0∥2L3L3 ≲

∑︂
k>k0

c2k, (5.63)

which will be useful later. □

Remark 5.27. Our argument only insures that the rough solution we construct is unique
among the limits of smooth solutions. We leave open the question of establishing uncondi-

tional uniqueness in the larger class of Ḣ
1
solutions.
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Next we consider the lifespan of Ḣ
1
solutions.

Lemma 5.28. Let J be the maximal time of existence for a Ḣ
1
solution to the Yang–Mills

heat flow in the local caloric gauge. Then either J = [0,∞) or ∥F∥L3(J ;L3) = ∞.

Proof. Let A be an Ḣ
1
solution on a finite time interval J so that

∥F∥L3(J ;L3) = Q < ∞.

Then we seek to show that the solution A can be continued past J . Let J0 ⊂ J and k0 < ∞
be maximal so that the approximate solutions A<k exist on J0 and satisfy

∥F<k∥L3(J0;L3) ≤ 2Q, k ≥ k0.

Such J0 and k0 exist by the existence part. Also by the argument in the existence part, we
obtain the bounds (5.62) and (5.63), but where the implicit constant now depends on F .
Choosing k0 large enough so that ∑︂

k≥k0

c2k ≪Q 1,

from (5.63) it follows that in effect

∥F<k∥L3(J0;L3) ≤
3

2
Q, k ≥ k0.

Hence we must have J0 = J , else we contradict the maximality of J . Thus the bounds (5.62)
and (5.63) hold in J . Further, by Lemma 5.20, the solution A<k0 extends beyond J to an
interval J1 where

∥F<k0∥L3(J1;L3) ≤
5

4
Q.

Then the prior existence argument shows that the solutions A and A<k all extend to J1,
satisfying similar bounds. □

As a corollary of the above result (or rather its proof) we also obtain the following stability
result:

Corollary 5.29. Let a be a Ḣ
1
initial data with ∥a∥

Ḣ
1 ≤ M1, and J a time interval where

the solution exists and satisfies
∥F∥L3(J ;L3) ≤ Q.

Then there exists ϵ = ϵ(Q,M1) > 0 so that for all data ã satisfying

∥a− ã∥
Ḣ

1 ≤ ϵ,

the corresponding solution exists in J , satisfies

∥F̃∥L3(J ;L3) ≤ 2Q,

and has a Lipschitz dependence on the initial data.

This concludes the proof of Theorems 5.9, 5.10 and 5.11 in Ḣ
1
, as well as Corollary 5.13.

We next consider the similar problems for the H space, where all that is needed is the
ℓ1L2 norm both for ∂ℓAℓ and for ∂ℓBℓ in the context of the linearized equation. This works
because the equation for ∂ℓAℓ is not strongly parabolic, instead it is merely a transport
equation. Our first goal is to show that the bounds for ∂ℓAℓ propagate in time:
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Lemma 5.30. Let A be an Ḣ
1
Yang–Mills heat flow so that (5.12) and ∥A(0)∥

Ḣ
1 ≤ M1

hold. Then we have the bounds

sup
s1,s2

∥∂ℓAℓ(s1)− ∂ℓAℓ(s2)∥
ℓ1L2∩Ẇ 1, 43

≲Q,M1 1. (5.64)

In addition, if ck is a (−1, S) frequency envelope for a then we have

sup
s1,s2

∥Pk(∂
ℓAℓ(s1)− ∂ℓAℓ(s2))∥L2 ≲Q,M1ckc

[1]
k ,

sup
s1,s2

∥Pk(∂
ℓAℓ(s1)− ∂ℓAℓ(s2))∥

Ẇ
1, 43

≲Q,M1ckc≤k.
(5.65)

Proof. We use the relation

∂s∂
ℓAℓ = ∂ℓDjFjℓ = −[Aℓ,DjFjℓ].

Let ck be a frequency envelope for a in Ḣ
1
. Then ck is also a frequency envelope for A

in L∞Ḣ
1
, and also for DF in L1Ḣ

1
. The conclusion easily follows by an integration in

heat-time. □

We remark that for the L2 bound we have off-diagonal decay, therefore we obtain a c2k
envelope (at least if ck is a (−1, 1) envelope), whereas the case of L

4
3 is borderline.

Now we switch to the linearized Yang–Mills heat flow (5.23):

Lemma 5.31. Let A be an Ḣ
1
Yang–Mills heat flow so that (5.12) holds, and B a corre-

sponding Ḣ
1
solution for the linearized equation. Then we have the bounds

sup
s1,s2

∥DℓBℓ(s1)−DℓBℓ(s2)∥
ℓ1L2∩Ẇ 1, 43

≲Q,M1 ∥b∥Ḣ1 , (5.66)

and its analogue for L2 data,

sup
s1,s2

∥DℓBℓ(s1)−DℓBℓ(s2)∥ℓ1Ḣ−1∩L
4
3
≲Q,M1 ∥b∥L2 . (5.67)

In addition, if ck is a (−1, S) frequency envelope for a in Ḣ
1
, and dk is a 2-compatible (−1, S)

frequency envelope for b in L2, then

sup
s1,s2

∥Pk(D
ℓBℓ(s1)−DℓBℓ(s2))∥Ḣ−1 ≲Q,M1ckd

[2]
k + dkc

[1]
k +

∑︂
j>k

2k−jcjdj,

sup
s1,s2

∥Pk(D
ℓBℓ(s1)−DℓBℓ(s2))∥L 4

3
≲Q,M1ckd

[1]
k + dkc≤k +

∑︂
j>k

2k−jcjdj.
(5.68)

As a consequence of (5.68), if d′k is a (−1, S) frequency envelope for b in Ḣ
1
which is

1-compatible with ck, then

sup
s1,s2

∥Pk(D
ℓBℓ(s1)−DℓBℓ(s2))∥L2 ≲Q,M1ck(d

′
k)

[1] + d′kc
[1]
k ,

sup
s1,s2

∥Pk(D
ℓBℓ(s1)−DℓBℓ(s2))∥

Ẇ
1, 43

≲Q,M1ckd
′
≤k + dkc≤k.

(5.69)

Indeed, note that dk = 2−kd′k is a 2-compatible (−1, S) frequency envelope for b in L2.
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Proof. The equation for DℓBℓ is

∂sD
ℓBℓ = [DjF

jℓ, Bℓ] +Dℓ[Bj, Fjℓ] + [Fℓj,D
jBℓ] = −2[Bj,DℓFℓj].

If ck and dk are as above, then they are frequency envelopes for DF in L1Ḣ
1
and B in L∞L2,

respectively. The desired lemma follows by integration in heat-time. □

Next, we prove the explicit bound for F ∈ L3([0,∞);L3) when the energy is small:

Lemma 5.32. Let A be a Ḣ
1
Yang–Mills heat flow with energy E ≪ 1. Then A exists

globally, and
∥F∥2L3([0,∞);L3) ≲ E .

This proves Corollary 5.14.

Proof. By local well-posedness and Lemma 5.28, it suffices to prove the following: Assuming
that A exists on J and satisfies the bootstrap assumption

∥F∥2L3(J ;L3) ≤ 2C0E ,
we claim that

∥F∥2L3(J ;L3) ≤ C0E , (5.70)

provided that C0 is large enough, and E is sufficiently small.
From the proof of Proposition 5.7, recall that

∥F∥2L∞
ds
s

(J ;L2) + ∥s
1
2DF∥2L2

ds
s

(J ;L2) ≲ E + ∥F∥3L3(J ;L3) ≲ E + C
3/2
0 E3/2.

Then by covariant Sobolev and interpolation, we have

∥F∥2L3(J ;L3) ≲ ∥F∥2L∞
ds
s

(J ;L2) + ∥s
1
2DF∥2L2

ds
s

(J ;L2) ≲ E + C
3/2
0 E3/2,

from which (5.70) is clear. □

Finally, we are in a position to prove that the limits of A and B at infinity exist if
F ∈ L3([0,∞);L3):

Lemma 5.33. (1) Let A be an Ḣ
1
(resp. H) Yang–Mills heat flow so that (5.12) holds.

Then the limit
A∞ = lim

s→∞
A(s)

exists in Ḣ
1
(resp. H), and has zero curvature

F∞ = 0.

Further, the map A(0) → A∞ is C1 in Ḣ
1
, H and Ḣ

1 ∩ Ḣ
σ
, where σ > 1.

(2) Let B be a solution for the corresponding linearized equation. If b ∈ Ḣ
σ
(resp. H),

0 ≤ σ ≤ 1, then the limit
B∞ = lim

s→∞
B(s)

exists in Ḣ
σ
(resp. H) and satisfies

D(A∞)
kB∞,j −D(A∞)

jB∞,k = 0.

If in addition A(0) ∈ Ḣ
σ′

(σ′ > 1) then the same property holds in Ḣ
1 ∩ Ḣ

σ′

.
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This proves Corollary 5.15.

Proof. We proceed in several steps.

Step 1: Proof of (1), existence of A∞. The result is obtained by revisiting the proof of
Lemma 5.17. Precisely, the same computation but between two times s0 and s1 shows that

lim
s0,s1→∞

∥A(s0)− A(s1)∥Ḣ1 = 0,

as a consequence of the similar decay estimates for the parabolic space-time norms of F .
The H bound follows in a similar manner as in Lemma 5.30.

Proof of (2). We first consider b ∈ Ḣ
1
. We write the (schematic) equation for G = curlAB,

(∂s −∆A − 2ad(F ))G = [F,DB] + [DF,B].

The RHS is bounded in L2Ḣ
−1
, so using the L2 solvability for this problem we conclude that

curlAB → 0 in L2 as s → ∞. On the other hand as in Lemma 5.31, divAB = DℓBℓ has a
limit. Then the limit for B is obtained by solving the associated covariant div-curl system,
using the fact that the curvature decays to zero in L2.
First, we consider the case 0 ≤ σ < 1. To avoid solving the covariant div-curl system, we

employ a more roundabout route using the “infinitesimal de Turck trick” (cf. Section 2.6).
As in Case 1 of the proof of Lemma 5.23, we introduce a dynamic component A0 and the
equation Fs0 = DℓFℓ0 with A0(s = 0) = 0. Then F0j solves

(∂s −∆A − 2ad(F ))F0j = 0, F0j(s = 0) = bj.

Thus F0j vanishes at s = ∞ in Ḣ
σ
.

To transfer this behavior to Bj = F0j +DjA0, it suffices to show that DjA0 has a limit as

s → ∞ in Ḣ
σ
. Proceeding as in Case 1 of the proof of Lemma 5.23, we obtain

∥DℓFℓ0∥ℓ2L1Ḣ
σ+1 ≲ ∥b∥Ḣσ .

Since ∂sA0 = Fs0 = DℓFℓ0, we see that A0 → a0,∞ in Ḣ
σ+1

. Then using the Ḣ
1
convergence

of A → a∞ in part (1), and also the fact that σ + 1 < 2, it follows that DA0 → D(a∞)a0,∞
in Ḣ

σ
, as desired.

Finally, the H bound follows in a similar manner as in Lemma 5.31, and the Ḣ
1 ∩ Ḣ

σ′

(σ′ > 1) bound follows from Ḣ
1
case and the frequency envelope bound in Lemma 5.24.

Step 3: Proof of (1), C1 dependence of A∞ on A(0). Let Ah(0) be a C1 family of

initial data in Ḣ
1
, H or Ḣ

1 ∩ Ḣ
σ
with σ > 1), and let Ah be the corresponding Yang–Mills

heat flows in the local caloric gauge. Then ∂hA
h solves the linearized equation, with data in

the respective topology. Thus, the desired statement follows from part (2). □

6. The Dichotomy and the Threshold Theorems

In this section, we present the Dichotomy and the Threshold Theorems for the Yang–
Mills heat flow, which are sharp criteria for global well-posedness and convergence to the

flat connection of the Yang–Mills heat flow in Ḣ
1
(R4).
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6.1. The Dichotomy Theorem. Here, we precisely state and prove the Dichotomy Theo-
rem for the Yang–Mills heat flow.

Theorem 6.1 (Dichotomy Theorem for the Yang–Mills heat flow). Let a be a connection

1-form in Ḣ
1
, and let A be the solution to (5.1) with initial data A(s = 0) = a. Then either

the solution is global and Q(a) < ∞, or the solution “bubbles off” a soliton in the following
sense:

(i) (Finite blow-up time). If the blow-up time (maximal existence time) s0 is finite, then
there exist a point x0 ∈ R4, a sequence of points (xn, sn) → (x0, s0) and a sequence of
scales rn → 0 such that

lim
n→∞

G(On)(rnA)(xn + rnx, sn + r2ns) = Q(x) in L2
loc(R4 × [−1, 0]),

lim
n→∞

Ad(On)(r2nF )(xn + rnx, sn + r2ns) = F [Q](x) in L2
loc(R4 × [−1, 0]),

for some sequence of s-independent gauge transformations On ∈ H2
loc (in the sense that

On
;x ∈ H1

loc) and a nontrivial finite energy harmonic Yang–Mills connection Q.
(ii) (Infinite blow-up time). If the maximal existence time is s = ∞, then there exist a

point x0 ∈ R4, a sequence of points (xn, sn) → (x0,∞) and a sequence of scales rn such
that

lim
n→∞

G(On)(rnA)(xn + rnx, sn + r2ns) = Q(x) in L2
loc(R4 × [−1, 0]),

lim
n→∞

Ad(On)(r2nF )(xn + rnx, sn + r2ns) = F [Q](x) in L2
loc(R4 × [−1, 0]),

for some sequence of s-independent gauge transformations On ∈ H2
loc (in the sense that

On
;x ∈ H1

loc) and a nontrivial finite energy harmonic Yang–Mills connection Q.

The remainder of this subsection is devoted to the proof of Theorem 6.1. Unless other-
wise stated, we always consider Yang–Mills heat flows in the local caloric gauge given by
Theorem 5.9.

The key starting point of the proof is the monotonicity formula (or the energy identity)∫︂
1

2
⟨Fij, F

ij⟩(s1) dx+

∫︂ s1

s0

∫︂
⟨DℓFℓi,D

ℓF i
ℓ ⟩ dxds =

∫︂
1

2
⟨Fij, F

ij⟩(s0) dx, (6.1)

which, in the case Q(a) = ∞, allows us to locate intervals In on which the Yang–Mills
heat flow is concentrated in the sense that ∥F∥L3(In;L3) = 1, but the harmonic (Yang–Mills)
tension field DℓFℓj vanishes in L2(In;L

2) in the limit as n → ∞.

Lemma 6.2. Let an be a sequence of initial data, and let An be the corresponding solution
to (5.1) with An(s = 0) = an, with the maximal heat-time interval of existence Jn, such that

∥fn∥L2 ≤ E , lim
n→∞

∥F n∥L3(Jn;L3) = ∞,

where fn and F n are the curvature 2-forms for an and An, respectively. Then there exist
subintervals In ⊆ Jn with the following properties:

∥F n∥L3(In;L3) = 1, ∥(D(An))ℓF n
ℓi∥L2(In;L2) → 0, ∥D(An)F n∥L2(In;L2) ≲E 1. (6.2)

Proof. We partition the time intervals Jn into subintervals In,m where ∥F n∥L3(In,m;L3) = 1
for each n,m. We select the subinterval with minimal energy dissipation, and denote it by
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In. Thus, we now have a sequence of solutions An in time intervals In with the following
properties:

∥F n∥L3(In×R4) = 1, ∥(D(An))ℓF n
ℓi∥L2(In;L2) → 0.

Further, a straightforward integration by parts argument shows that the two bounds above
also allow us to control the full gradient for the curvature,

∥D(An)F n∥L2(In;L2) ≲ 1. □

Naively, we wish to rescale An so that each In becomes the unit interval, and pass to the
limit; if successful, the limiting curvature F would satisfy ∥F∥L3 = 1, as well as DℓFℓj = 0.
The first property would guarantee that F ̸= 0, and the second, that F is a harmonic Yang–
Mills connection, as claimed in Theorem 6.1. However, to make such an argument precise,
we need to handle several issues:

• The major concern when taking a weak limit is to insure that this is nonzero. To
achieve that, we need to break the scaling and translation symmetries. This is done
using localized L2 norms. (Lemma 6.4)

• To pass to the weak limit at the level of An, we need a uniform bound for the size
of An. While we do have uniformity in all F n bounds, there is no such guarantee for
An. We will address this by renormalizing an via a suitable gauge transformation, and
then using the local caloric gauge bounds in order to propagate these uniform bounds
in heat-time. (Lemma 6.5)

• Compactness fails, the obvious culprits being the scaling and translation (in both space
and heat-time) symmetries. Even after factoring out the symmetry group, we still

cannot hope for full compactness in the Ḣ
1
topology, and we will have to settle for a

weaker sense as stated in Theorem 6.1.

We now turn to the detail, addressing first the issue of breaking the scaling and translation
symmetries. The idea here is that having a nontrivial L3L3 norm for the curvature requires
some nontrivial concentration of the L2 norm on parabolic cubes Qϵ of the form

Qϵ = Bϵ(x1)× (s1 − ϵ2, s1). (6.3)

We will measure the concentration via the scaling-invariant norm

ϵ−1∥F∥L2L2(Qϵ).

To obtain this, we begin with a simple propagation bound:

Lemma 6.3. Let A be a Yang–Mills heat flow on I. For any subinterval J ⊆ I, we have

∥F∥L∞L2(Bϵ(x1)×J) ≲ ϵ−1∥F∥L2L2(B2ϵ(x1)×J) + ∥DℓFℓj∥L2(B2ϵ(x1)×J).

Proof. Let χϵ be a spatial cutoff adapted to Bϵ(x1), which vanishes outside 2Bϵ(x1). We
compute

d

ds

∫︂
χϵ(x)|F |2dx = −

∫︂
χϵ(x)|DℓFℓj|2dx+

∫︂
∆χϵ|F |2dx.

Here ∆χϵ has size ϵ−2 so integrating this relation we obtain the desired conclusion. □

Using Lemma 6.3, we may prove the desired concentration lemma.
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Lemma 6.4. Let A be a Yang–Mills heat flow on I with energy ≤ E, which satisfies

∥F∥L3(I;L3) = 1, ∥DℓFℓi∥L2(I;L2) < δ, ∥DF∥L2(I;L2) ≤ F . (6.4)

If δ ≪E,F 1, then there exists a parabolic cube Qϵ ⊆ R4 × I with the property that

ϵ−1∥F∥L2L2(Qϵ) ≳E,F 1. (6.5)

Proof. In this proof, we use the shorthand LpLq(I) for Lp(I;Lq). Furthermore, we suppress
the dependence of the implicit constants on E ,F .
We begin with the fixed time bound

∥F (s)∥3L3 ≲ ∥F (s)∥L2∥DF (s)∥2L2 ,

which after time integration yields the interpolation inequality

∥F∥3L3L3(I) ≲ ∥F∥L∞L2(I)∥DF∥2L2L2(I).

Since ∥F∥L3L3(I) = 1, whereas ∥F∥L∞L2(I), ∥DF∥L2L2(I) ≲ 1, there must be some s∗ ∈ I so
that

∥F (s∗)∥3L3 ≳ ∥F (s∗)∥L2∥DF (s∗)∥2L2 , ∥F (s∗)∥3L3 ≈ |I|−1.

Moreover, going back to the first inequality it follows that

∥DF (s∗)∥2L2 ≳ |I|−1.

We now revisit the proof of this bound, using the improved Gagliardo-Nirenberg inequality:

∥u∥L2 ≲ ∥∇u∥
2
3

L
4
3
∥u∥

1
3

Ḃ
−2,∞
∞

,

where ∥u∥
Ḃ

−2,∞
∞

= supk 2
−2k∥Pku∥L∞ . Since the kernel of Pk rapidly decays on the scale 2−k,

we have
∥u∥

Ḃ
−2,∞
∞

≲ sup
Bϵ

ϵ−2∥u∥L1(Bϵ).

Putting these estimates together, at s = s∗, we have

∥F∥3L3 = ∥|F |2∥
3
2

L
3
2

≲∥|F |2∥
1
2

L1∥|F |2∥L2

≲∥|F |2∥
1
2

L1∥∇|F |2∥
2
3

L
4
3
∥|F |2∥

1
3

B−2,∞
∞

≲∥F∥L2∥DF∥
2
3

L2∥F∥
2
3

L4 sup
Bϵ

(ϵ−1∥F∥L2(Bϵ))
2
3

≲∥F∥L2∥DF∥
4
3

L2∥F∥
2
3

L4 .

By the (covariant) Sobolev embedding, the last line is bounded from above by ∥F∥L2∥DF∥2L2 ,
and then by ∥F∥3L3 by our choice of s∗. Thus near equality must hold at the last step, i.e.,

sup
Bϵ

ϵ−1∥F (s∗)∥L2(Bϵ) ≈ ∥DF (s∗)∥L2 . (6.6)

Further, recall that ∥DF (s∗)∥L2 ≳ |I|− 1
2 , so for a near optimal ϵ we must also have ϵ ≲ |I| 12 .

Consider now a (nonstandard) parabolic cube Q̃ of the form

Q̃ = Bϵ∗(x∗)× IC−2ϵ2∗ , |IC−2ϵ2∗ | = C−2ϵ2∗,
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where Bϵ∗(x∗) is the near optimal ball in (6.6) and s∗ ∈ IC−2ϵ2∗ ⊆ I. By the previous lemma,
it follows that

ϵ−1∥F∥L2L2(B2ϵ∗ (x∗)×I
C−2ϵ2∗

) ≳ 1.

By the pigeonhole principle, we may find a parabolic cube Qϵ ⊆ B2ϵ∗(x∗) × IC−2ϵ2∗ with
ϵ = C−1ϵ∗ satisfying the lower bound (6.5), as desired. □

Next, we handle the issue of obtaining a uniform bound for An. The idea is to exploit
covariant parabolic regularity and use the radial (or exponential) gauge on a fixed heat time,
then propagate the good bound using to other heat times in the local caloric gauge.

Lemma 6.5. Suppose that

∥F (s = 0)∥L2 ≤ E , ∥F∥L3L3(R4×[0,2]) ≤ 1.

Then there exists a gauge transformation O ∈ H2
loc(R4 × [1, 2]) (in the sense that O;x ∈

H1
loc(R4 × [1, 2])) such that Ã = G(O)A = Ad(O)A−O;x obeys

∥∂Ã∥L∞L2(BR×[1,2]) + ∥Ã∥L∞L4(BR×[1,2]) ≲E,R 1, (6.7)

where BR is the ball of radius R with the same (spatial) center as Q, and

∂sÃ = 0 in R4 × [1, 2].

Proof. Without loss of generality, we may assume that the spatial center of Q is 0. We
consider first the special case when a = A(s = 0) is smooth, and then the general case.

Case 1: a is smooth. Thanks to the L3L3 norm bound for F , the local caloric gauge
solution A is smooth on [0, 2]. Moreover, by Proposition 5.7, we have full covariant parabolic
regularity of F . In particular, on the interval [1, 2] we have

∥D(N)F∥L∞L∞(R4×[1,2]) ≲
∑︂

0≤k≤N+3

∥D(k)F∥L∞L2(R4×[1,2]) ≲N 1. (6.8)

Solving the ODE

O−1∂rO = Ar(1), O(0) = Id,

which is straightforward since A is smooth, we obtain a smooth s-independent gauge trans-
formation O such that Ã = G(O)A = Ad(O)A−O;x satisfies

Ãr(s = 1) = 0, Ãs = 0 on [0, 2].

In particular, in the polar coordinates (r,Θ), we have ∂rÃΘ = F̃ rΘ = Ad(O)FrΘ at s = 1.
Integrating (6.8) in the radial direction, we easily obtain

∥∂Ã(s = 1)∥L2(BR) + ∥Ã(s = 1)∥L4(BR) ≲R 1. (6.9)

By Lemma 5.17 (more precisely, see Remark 5.19), we may propagate this bound to other
times. This proves the desired bound (6.7).

Case 2: a ∈ Ḣ
1
. To avoid solving the ODE for O, we approximate the rough solution A

by smooth solutions. More precisely, for each k ∈ R consider the smooth approximation
a<k = P<ka of a, and let A<k be the corresponding local caloric gauge Yang–Mills heat flow
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with A<k(s = 0) = a<k. For k sufficiently large, we know that A<k exists on [0, 2], A<k → A

in L∞Ḣ
1
, and that its curvature F<k obeys

∥F<k(s = 0)∥L2 ≤ 2E , ∥F<k∥L3L3(R4×[0,2]) ≤ 2.

Then by the previous case, we may find a smooth gauge transformation O<k such that
Ã<k(s = 1) = Ad(O<k)A<k(s = 1)−O<k;x obeys (6.9) with a uniform constant. In particular,
for each fixed R,

∥O<k;x∥H1(BR) ≲E,R 1 + ∥a∥
Ḣ

1 .

Let us fix a matrix group representation G ↪→ O(N) ⊆ RN×N (which exists since G is
compact), and view O<k as a sequence in H2

loc(R4;RN×N). By the preceding bound and
(6.9), after passing to a subsequence, we may find a weak limit O<k ⇀ O in H2

loc(R4;RN×N),

which also converges a.e, and Ã<k(s = 1) ⇀ Ã(s = 1) in H1
loc(R4). This weak convergence

is sufficient to justify that O ∈ G a.e., O;x = ∂xOO−1 ∈ H1
loc(R4; g) and

Ã(s = 1) = Ad(O)A(s = 1)−O;x,

as well as the bound (6.9). Extending Ã to s ∈ [0, 2] by defining Ã(s) = Ad(O)A(s) − O;x,
and using Lemma 5.17 (more precisely Remark 5.19), the desired bound (6.7) follows. □

We are now ready to complete the proof of Theorem 6.1.

Proof of Theorem 6.1. When Q(a) < ∞, A extends globally thanks to Corollary 5.13. It
remains to consider the case Q(a) = ∞.

Step 1: Selection of intervals. Let E = Ee[a], and let J = [0, s0) be the maximal interval
of existence of the local caloric gauge solution A with data a, where s0 may be finite or
infinite. In either case, we fix a sequence s̃n ↗ s0 and apply Lemma 6.2 to an = A(s̃n)
(which is possible since Q(an) = ∞ for each n). The resulting sequence of solutions and
intervals, which we denote by An and In, satisfy (6.2).

Step 2: Breaking the scaling and translation symmetries. Next, we apply Lemma 6.4
to each An on In, whose hypothesis is insured by (6.2) for large enough n. Thus we find a
parabolic cube Qn = Brn(xn)× (sn − r2n, sn) ⊆ R4 × In with the property that

r−1
n ∥F n∥L2L2(Qn ≳E 1.

By construction, observe that sn → s0 and rn ≲ s0 − s̃n → 0 if s0 < ∞. We rescale and
translate each An so that (xn, sn, rn) = (0, 0, 1); for simplicity of notation, we still call the
resulting heat flows An.

Step 3: Gauge transformation and compactness argument. For the sequence of
solutions constructed at the previous step, we have the uniform covariant bounds

∥F n∥L∞L2 ≤ E , ∥F n∥L3L3 ≤ 1, ∥D(An)F n∥L2 ≲E 1,

the decay

∥DjFjk∥L2 → 0,

and the bound from below

∥F n∥L2(Q) ≳E 1.
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Applying Lemma 6.5, we find a sequence of s-independent gauge transformations On ∈ H2
loc

such that Ã
n
= G(On)An = Ad(On)An −On

x obeys the uniform local-in-space bounds

∥Ãn∥
L∞Ḣ

1
(BR×[1,2])

≲E,R 1.

By covariant Sobolev embeddings this further yields the bounds from above

∥F̃ n∥
L2Ḣ

1
(BR×[1,2])

+ ∥∂sF̃
n∥

L2Ḣ
1
2 (BR×[1,2])

≲E,R 1.

We consider a weakly convergent subsequence in the above topologies, and denote by
(A,F ) the corresponding limits. These must satisfy the same bounds from above as F̃

n
and

Ã
n
.
In what follows, we drop the tilde and simply write (An, F n) = (Ã

n
, F̃

n
) for simplicity

of notation. By compact Sobolev embeddings the sequences F n and An can be taken to
converge strongly in say L2(BR × [−1, 0]). This shows that F is the curvature of A, and it
also allows us to pass to the limit in the last two relations two obtain

DjFjk = 0, ∥F∥L2(Q) > 0

We can also pass to the limit in the local caloric gauge Yang–Mills heat flow in L2L2 to
obtain

∂sA = 0

Thus A is a nontrivial, stationary H1
loc connection, which satisfies the harmonic Yang–Mills

equation. □

6.2. The Threshold Theorem. In this section, we prove the Threshold Theorem for the

energy critical Yang–Mils heat flow in Ḣ
1
, whose precise statement is as follows:

Theorem 6.6 (Threshold theorem). Let a be a connection 1-form in Ḣ
1
(R4) with energy E,

which is below twice the ground state energy 2EGS. Let A be the solution to (5.1) with initial
data Ai(s = 0) = ai. Then A extends globally in heat-time. Moreover, there exists a positive
function Q(E) such that

Q(a) = ∥F∥L3([0,∞);L3) ≤ Q(E). (6.10)

As a consequence of this result and Theorem 5.10, we have global-in-time bounds for both
the Yang–Mills heat flow in the local caloric gauge with subthreshold data, as well as its
linearization.

Some preliminary discussion is in order. From the Dichotomy Theorem (Theorem 6.1), if
a fails to exist globally or Q(a) = ∞, then a nontrivial harmonic Yang–Mills connection Q
bubbles off. Since E [Q] ≥ EGS, this scenario is ruled out when the energy of a is below EGS.
Theorem 6.6 differs from this naive result in two ways:

• The threshold energy is 2EGS, instead of EGS. This refinement is achieved by taking into

account the “topological triviality” of Ḣ
1
connections, as well as “topological nontrivi-

ality” of any harmonic Yang–Mills connection Q with Ee[Q] < 2EGS.
• Instead of just the qualitative statement Q(a) < ∞, a uniform a-priori bound Q(a) ≤
Q(E) for any data a with energy ≤ E < 2EGS is claimed. For this purpose, we apply
the argument in Section 6.1 to a sequence of solutions; in contrast, it was applied to a
single solution in the Dichotomy Theorem.
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Associated to a connection a on R4 with curvature f ∈ L2, we introduce the characteristic
number

χ(a) =

∫︂
R4

−⟨f ∧ f⟩ = 1

4

∫︂
R4

−⟨fij, fkℓ⟩ dxi ∧ dxj ∧ dxk ∧ dxℓ. (6.11)

Remarkably, the characteristic number χ(a) vanishes for a ∈ Ḣ
1
. This is a manifestation of

“topological triviality” of an Ḣ
1
connection.

Lemma 6.7. If a ∈ Ḣ
1
with curvature 2-form f , then

χ(a) =

∫︂
R4

⟨f ∧ f⟩ = 0.

Proof. We give a direct computation. The 4-form −⟨f ∧ f⟩ is closed, and thus exact (since
R4 is contractible). Indeed, if we introduce the 3-form

Y = −
(︃
⟨aj, ∂kaℓ⟩+

1

3
⟨aj, [ak, aℓ]⟩

)︃
dxj ∧ dxk ∧ dxℓ

then
dY = −⟨f ∧ f⟩.

By Stokes’s theorem,

χ(a) = lim inf
R→∞

∫︂
∂BR(0)

Y = − lim inf
R→∞

∫︂
∂BR(0)

(︃
⟨aj, ∂kaℓ⟩+

1

3
⟨aj, [ak, aℓ]⟩

)︃
dxj ∧ dxk ∧ dxℓ.

But since a ∈ Ḣ
1
, the RHS vanishes. □

Remark 6.8. In [20], where we define precisely the notion of topological classes of (possibly

rough) finite energy connections, it is shown that (1) a ∈ Ḣ
1
is equivalent to a being in the

same topological class as the trivial connection (hence “topologically trivial”), and (2) χ is
a topological invariant. These facts lead to an alternative proof of the lemma.

On the other hand, the integrand of (6.11) provides a pointwise lower bound on the energy
density. This statement is often referred to as the Bogomoln’yi bound.

Lemma 6.9. We have the pointwise bound

|⟨f ∧ f⟩| ≤ 1

2
⟨f, f⟩, (6.12)

where we use the standard inner product (·, ·) for 2-forms, which makes {dxj ∧ dxk : j < k}
an orthonormal basis.

Proof. We use the Hodge star operator ⋆, which has the property

(ω, η)dx1 ∧ · · · ∧ dx4 = ω ∧ ⋆η for 2-forms ω, η,

as well as ⋆1 = dx1 ∧ · · · ∧ dx4 and ⋆dx1 ∧ · · · ∧ dx4 = 1. Then

⟨f, f⟩ = ⋆ (2⟨f ∧ ⋆f⟩)
= ⋆ ⟨(f ± ⋆f) ∧ ⋆(f ± ⋆f)⟩ ± 2 ⋆ ⟨f ∧ f⟩
=⟨(f ± ⋆f) ∧ (f ± ⋆f)⟩ ± 2 ⋆ ⟨f ∧ f⟩.

Since the first term on the last line is nonnegative, (6.12) follows. □
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Next, we need the fact that any nontrivial harmonic Yang–Mills connection with energy
below 2EGS is “topologically nontrivial”, in the sense that |χ| = EGS. Indeed, we have:

Theorem 6.10. Let G be a noncommutative compact Lie group. Let

EGS = inf{Ee[Q] : Q is a nontrivial harmonic Yang–Mills connection on R4}.

Then the following statements hold.

(1) There exists a nontrivial harmonic Yang–Mills connection Q such that Ee[Q] = EGS < ∞.
(2) Let Q be any nontrivial harmonic Yang–Mills connection. Then either Ee[Q] ≥ 2EGS, or

|χ(Q)| = Ee[Q] ≥ EGS.

This theorem is a combination of well-known facts concerning instantons (i.e., energy
minimizers in a topological class) and a recent lower bound on non-instanton harmonic
Yang–Mills connections by Gursky–Kelleher–Streets [8]. For instance, consider the case
G = SU(2) and ⟨A,B⟩ = −tr(AB), where χ(a) = 8π2c2 (here, c2 is the second Chern
number computed from the connection a). Then part (1) is the classical existence of BPST
instantons, and part (2) follows from [8, Corollary 1.3]. For the proof of Theorem 6.10 in
the general case of a noncommutative compact Lie group G, we refer the reader to [20,
Section 6].

We are now ready to prove Theorem 6.6.

Proof of Theorem 6.6. We divide the proof into two steps.

Step 1: Contradiction argument and extraction of a bubble. Fix a positive number
E < 2EGS. Suppose, for the purpose of contradiction, that there does not exist Q(E) > 0

such that (6.10) holds for every a ∈ Ḣ
1
with Ee[a] ≤ E . Then there exists a sequence

an ∈ Ḣ
1
of initial data, such that the corresponding solutions on the maximal time interval

of existence Jn obey

∥F n∥L3(Jn;L3) → ∞.

Applying Lemma 6.2, we may find a sequence of solutions An on R4 × In satisfying (6.2).
Proceeding as in Steps 2 and 3 in the proof of the Dichotomy Theorem, we find a sequence
(xn, sn, rn, O

n) such that (after passing to a subsequence)

lim
n→∞

Ã
n
(x, s) = Q(x) in L2

loc(R4 × [−1, 0]), (6.13)

lim
n→∞

F̃
n
(x, s) = F [Q](x) in L2

loc(R4 × [−1, 0]), (6.14)

where

Ã
n
(x, s) =G(On)(rnA

n)(xn + rnx, sn + r2ns),

F̃
n
(x, s) =F [Ã

n
](x, s) = Ad(On)(r2nF

n)(xn + rnx, sn + r2ns),

and Q is a nontrivial H1
loc harmonic Yang–Mills connection.

Step 2: Refinement using χ. By the local L2 convergence (6.14), it follows that

Ee[Q] ≤ E < 2EGS.

Thus, by Theorem 6.10, |χ(Q)| = Ee[Q]. Without loss of generality, assume that χ(Q) > 0.
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Fix any R > 0. By Lemma 6.7, we have

0 = χ(Ã
n
(s)) =

∫︂
BR

−⟨F̃ n ∧ F̃
n⟩(s) +

∫︂
R4\BR

−⟨F̃ n ∧ F̃
n⟩(s).

Thus, again by the local L2 convergence (6.14), we have

lim
n→∞

∫︂
R4\BR

⟨F̃ n ∧ F̃
n⟩(s) =

∫︂
BR

−⟨F [Q] ∧ FQ]⟩

after passing to a subsequence, for almost every s ∈ (−1, 0). Given any ϵ > 0, by choosing
R sufficiently large, the RHS can be made equal to χ(Q) up to an error of size as most ϵ.
Hence, by Lemma 6.9,

E ≥ lim sup
n→∞

1

2

∫︂
R4

⟨F̃ n
, F̃

n⟩(s)

= lim sup
n→∞

1

2

∫︂
R4\BR

⟨F̃ n
, F̃

n⟩(s) + 1

2

∫︂
BR

⟨F̃ n
, F̃

n⟩(s)

≥ lim sup
n→∞

|
∫︂
R4\BR

⟨F̃ n ∧ F̃
n⟩(s)|+ |

∫︂
BR

⟨F̃ n ∧ F̃
n⟩(s)|

≥2χ(Q)− 2ϵ = 2EGS − 2ϵ.

Since ϵ > 0 is arbitrary, we arrive at E ≥ 2EGS, which is a contradiction. □

7. The caloric gauge

7.1. Caloric connections and the projection map. The results in Section 5 show that

for connection a ∈ Ḣ
1
with Q(a) < ∞, its Yang–Mills heat flow A converges at infinity

to a flat connection A∞ which has a C1 dependence on a in the topologies Ḣ
1
, H and

Ḣ
1 ∩ Ḣ

σ
(σ > 1). Moreover, in Section 6, we showed that for connections a ∈ Ḣ

1
with

Ee[a] < 2EGS, its Yang–Mills heat flow in the local caloric gauge is globally well-posed in the
above topologies, and Q(a) ≤ Q(E) for some positive function Q(E).

We are now ready to take advantage of these properties in order to formulate precisely
the (global) caloric gauge. We first define caloric gauge connections.

Definition 7.1. A Ḣ
1
connection a in R4 with Q(a) < ∞ is a caloric gauge connection if

the corresponding Yang–Mills heat flow A in the local caloric gauge satisfies A(∞) = 0.

We immediately have the following:

Proposition 7.2. For each Ḣ
1
connection ã in R4 with Q(a) < ∞, there exists an unique

(up to constant gauge transformations) gauge-equivalent connection a, which is a caloric
gauge connection. Further, the map ã → a is continuous in the quotient topology defined by
the distance

d(a1, a2) = inf
O∈G

∥Oa1O
−1 − a2∥Ḣ1

and C1 in H (for a suitable choice of the associated constant gauge transformation).

In the sequel, we will denote the gauge-equivalent caloric gauge connection a given by this
proposition by

a = Cal(ã).
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Proof. If ã is a Ḣ
1
connection with Q(ã) < ∞, then the corresponding solution to the Yang–

Mills heat flow in the local caloric gauge is global (by definition) and has a limit a∞ as s
approaches infinity (Corollary 5.15). Furthermore, a∞ has zero curvature. Then we need to
find O so that

O−1∂jO = a∞,j.

Then the connection a is given by

aj = OãjO
−1 −O;j.

Here we interpret this as a system of ODE’s. Formally, the zero curvature condition is
viewed as a complete integrability condition for this system. This is rigorous if a∞ is more

regular, e.g. if a∞ ∈ Ḣ
1 ∩ Ḣ

3
, in which case we can initialize O by11 O(0) = Id .

For less regular a∞, we consider a sequence of regular approximations an∞, which are
obtained simply by localizing the initial data ã below frequency 2n. We note that n must
be sufficiently large, in order to insure that the truncated connections also obey Q(ãn) ≤
2Q(ã) < ∞. This leads to a corresponding sequence On of regular gauge transformations.
For the sequence On, we have

[On(Om)−1];x = Ad(On)(an∞ − am∞).

Hence, an easy computation shows that

∥[On(Om)−1];x∥Ḣ1 ≲ ∥an∞ − am∞∥
Ḣ

1 ,

but for the pointwise bound we only have

∥[On(Om)−1]∥L∞ ≲ ∥an∞ − am∞∥
ℓ1Ḣ

1 .

This is proved in a standard manner as in the proof of the Gagliardo–Nirenberg–Sobolev, by
showing first that we have the averaged bound

R−4

∫︂
BR(x)

d(On(Om)−1(x), On(Om)−1(y)) dy ≲
∫︂
BR(x)

1

|x− y|3
|[On(Om)−1];x(y)| dy

≲
∫︂
R4

1

|x− y|3
|an∞(y)− am∞(y)|dy,

then observing that the RHS is bounded by ∥an∞ − am∞∥
ℓ1Ḣ

1 . The pointwise bound follows
by taking R → 0 and using the Lebesgue differentiation theorem.

Thus it is natural to distinguish two scenarios:

Scenario (i). If ã ∈ H then a∞ ∈ ℓ1Ḣ
1
. Indeed, ∂ℓa∞,ℓ ∈ ℓ1L2 and ∂ja∞,k − ∂ka∞,j =

−[a∞,j, a∞,k], so that

∆a∞a∞,j = ∂k∂
ℓa∞,ℓ + [aℓ∞, ∂ka∞,ℓ].

Since the RHS belongs to ℓ1Ḣ
−1
, it follows that a∞ ∈ ℓ1Ḣ

1
by Theorem 4.1 (plus a simple

interpolation).
It follows that the sequence On converges in L∞, and thus the limit

O = lim
n→∞

On

11In case (i) below another natural normalization is to set O(∞) = Id.
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exists. To establish C1 dependence on the data, we consider a smooth one parameter family

ãh of initial data in H, which in turn generates a smooth one parameter family ah∞ in ℓ1Ḣ
1
.

To see how O depends on h we compute

∂x(O
−1∂hO) = ∂ha

h
∞ − [ah∞, O−1∂hO],

or equivalently, using the ah∞ connection D = D(ah∞),

Dx(O
−1∂hO) = ∂ha

h
∞ ∈ ℓ1Ḣ

1
.

Taking the divergence this yields the elliptic equation

∆ah∞
(O−1∂hO) = divah∞∂ha

h
∞ ∈ ℓ1L2, (7.1)

and thus, by Theorem 4.1 and Corollary 5.15,

∥O−1∂hO∥
ℓ1Ḣ

2 ≲ ∥∂hah∞∥
ℓ1Ḣ

1 ≲ ∥∂hãh∥H.

This is the only step in the argument where the extra ℓ1 summability is used.
Now we are ready to establish the C1 dependence of a = Cal(ã) on ã. Indeed, we have

∂ha = ∂h(Ad(O)(ã−O−1∂xO)) = Ad(O)(∂h(ã− a∞) + [O−1∂hO, ã− a∞]).

The L4 bound

∥∂ha∥L4 ≲ ∥∂hã∥Ḣ1

follows by the unitarity of Ad(O), and the Ḣ
1
bound

∥∂ha∥Ḣ1 ≲ ∥∂hã∥Ḣ1

is easily obtained after one additional differentiation.
It remains to establish the ℓ1L2 bound for div∂ha. After peeling off some good terms, this

reduces to the mapping property

ℓ1L2 ∋ b → ObO−1 ∈ ℓ1L2.

This follows by interpolation from the easier Ḣ
1
similar mapping property and its dual Ḣ

−1

bound.

Scenario (ii). If ã ∈ Ḣ
1
then a∞ ∈ Ḣ

1
and the sequence On is no longer guaranteed to

converge pointwise. However, we still have

∥[On(Om)−1];x∥2Ḣ1 ≲ ∥an∞ − am∞∥2
Ḣ

1 ≲
m∑︂

k=n

c2k,

where ck is a (−1, 1) frequency envelope for ã in Ḣ
1
. We claim that there exists a sequence

P n ∈ G such that Õ
n
= P nOn satisfy∫︂

Q

d(Õ
n
, Õ

m
)2dx ≲Q

∞∑︂
k=min{n,m}

c2k → 0 as n,m → ∞

for any cube Q. Assuming this claim, we obtain a limit

O = lim
n→∞

Õ
n

in L2
loc
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so that O;x ∈ Ḣ
1
and O−1∂xO = a∞. By Lebesgue’s dominated convergence theorem this

suffices in order to guarantee that the limit

a = lim
n→∞

an∞

exists in Ḣ
1
, as desired.

It remains to verify the claim. For this purpose, we take the extrinsic viewpoint by fixing
a matrix group representation G ↪→ O(N) ⊆ RN×N (which exists since G is compact) and
viewing each On as a RN×N -valued map. Fix a cube Q, and consider the average

Õ
nm

=
1

|Q|

∫︂
Q

On(Om)−1 dx.

By Poincaré’s inequality, it follows that

d(G, Õ
nm

)2 ≲
1

|Q|

∫︂
|On(Om)−1 − Õ

nm|2 dx

≲

(︃∫︂
Q

|[On(Om)−1];x|4 dx
)︃ 1

2

≲
m∑︂

k=n

c2k.

This implies that, for sufficiently large m,n, Õ
nm

is close to G, and its nearest-point projec-
tion Onm ∈ G satisfies

1

|Q|

∫︂
Q

d(Omn, On(Om)−1)2 dx ≲
m∑︂

k=n

c2k.

A similar argument using the nearest-point projection and Poincaré’s inequality also shows
that Onm approximately satisfy the cocycle condition, i.e.,

d(Onℓ, OnmOmℓ)2 ≲ d(Õ
nℓ
, Õ

nm
Õ

mℓ
) +

max{n,m,ℓ}∑︂
k=min{n,m,ℓ}

c2k ≲
max{n,m,ℓ}∑︂

k=min{n,m,ℓ}

c2k.

Now we define P n by the following inductive procedure: Define P 1 = limm→∞ O1n
(1)
m for some

convergent subsequence of O1m, P 2 = limm→∞ O2n
(2)
m for some further subsequence of O2n

(1)
m ,

etc. Then

d((P n)−1Pm, Onm)2 ≲
∞∑︂

k=min{n,m}

c2k

so that Õ
n
= P nOn satisfy the claimed bound.

Finally, a similar argument yields the continuous dependence of a on ã with respect to the
metric in the proposition. We omit the details. □

To understand the higher regularity of the map ã → a = Cal(ã) we also establish frequency
envelope bounds. We begin with a technical bound for Ad(O). We introduce the notation

cpjk = ∥PjAd(O)Pk∥Lp→Lp .

where 2 ≤ p < ∞. When p = 2, we will often omit p and simply write

cjk = c2jk.
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Lemma 7.3. (1) Assume that O−1∂xO ∈ Ḣ
1
. Then

cpjk ≲∥O−1∂xO∥
Ḣ

1
2−

4
p
|j−k|.

(2) Let ck be a (−1, S) frequency envelope for O−1∂xO in Ḣ
1
. Then

cpjk ≲∥O−1∂xO∥
Ḣ

1
2

4
p
(k−j)cj, k < j − C.

Proof. In this proof, we suppress the dependence of implicit constants on ∥O−1∂xO∥
Ḣ

1 .
For part (1), by interpolation, it suffices to only consider the cases p = ∞ and p = 2. The

first case is trivial. In the case p = 2, by duality we consider j ≥ k and by scaling we set
k = 0. Differentiating we have

∂Ad(O)a = Ad(O)(∂a+ [O−1∂xO, a])

which yields an Ḣ
1
bound and thus 2−|j−k|. A second differentiation gives the bound in part

(1).
For part (2) we set j = 0. For a localized at frequency 2k with ∥a∥Lp ≲ 1, using Littlewood–

Paley trichotomy we can estimate

∥Pℓ[O
−1∂xO, a]∥Lp ≲

⎧⎨⎩ 2
4
p
k2(1−

4
p
)ℓcℓ ℓ ≥ k + 5,

2k k − 5 ≤ ℓ < k + 5,
22ℓ−kck ℓ < k − 5.

(7.2)

For ℓ > k + 5, we also note that

∥Pℓ[O
−1∂xO, a]∥L2 ≲ 2

4
p
k2−ℓcℓ. (7.3)

Hence for k < j − C, we can estimate

2jcpjk ≲ 2kcpjk + ck
∑︂
ℓ<k

22ℓ−kcpjℓ +
∑︂

ℓ:k<ℓ<j−C

2
4
p
(k−ℓ)2ℓcpjℓ +

∑︂
ℓ>j−C

2(2−
4
p
)jc2jℓ2

4
p
k2−ℓcℓ

For C sufficiently large, the first term on the RHS can be absorbed into the LHS. Moreover,
since cℓ grows slowly to the right, we can easily estimate the last term on the RHS to obtain

cpjk ≲ ck
∑︂
ℓ<k

22ℓ−k−jcpjℓ +
∑︂

ℓ:k<j−C

2
4
p
(k−ℓ)2ℓ−jcpjℓ + 2C2

4
p
(k−j)cj.

We claim that cpjk ≲C 2
4
p
(k−j)cj. Indeed, choosing C large enough, reiterating this bound

yields strictly smaller contributions unless cj ≈ 1, in which case we use the bound in part
(1). □

We may now prove a frequency envelope bound for Cal(ã).

Proposition 7.4. Let ã be a connection in Ḣ
1
satisfying Q(a) ≤ Q < ∞ and ∥ã∥

Ḣ
1 ≤ M1,

with (−1, S) frequency envelope ck. Then a = Cal(ã) also has frequency envelope ck in Ḣ
1
,

with the bound

∥Pja∥Ḣ1 ≲Q,M1 cj.
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Proof. Here, we suppress the dependence of implicit constants on Q and M1. Let O be the
generator of the corresponding gauge transformation, O−1∂xO = a∞. Then

a = Cal(ã) = Ad(O)ã−O;x = Ad(O)(ã− a∞).

By Theorem 5.11, ck is a frequency envelope for O−1∂xO in Ḣ
1
. Using Lemma 7.3, we

compute

∥Pja∥Ḣ1 ≲
∑︂
k

2j−kckckj ≲ cj +
∑︂

k<j−C

ckcj2
k−j ≲ cj

as needed. □

We now consider bounds for the linearization of Cal.

Proposition 7.5. Let ã(h) be a C1 family in H satisfying the uniform bounds Q(ã(h)) ≤
Q < ∞ and ∥ã(h)∥H ≤ M1. Let O(h) the corresponding gauge transformations into caloric
gauge, normalized so that O(h)(∞) = Id. Assume that ck is a (−1, S) frequency envelope for

ã(0) in Ḣ
1
, dk is a 1-compatible (−1, S) frequency envelope for ∂hã

(0) in Ḣ
1
and that

d′k = ckd
[1]
k + dkc

[1]
k

is a (−1, S) frequency envelope for ∂ℓ∂hã
(0)
ℓ in L2. Then we have

∥Pk∂ha
(0)∥

Ḣ
1 ≲ dk + ck(c · d)≤k. (7.4)

Proof. The expression ∂ha
(h) is given by

∂ha
(h) = Ad(O(h))∂hã

(h) −D(a(h))ah

where

ah = O
(h)
;h .

The O(h) conjugation is again harmless by Lemma 7.3; precisely, this gives

∥Pk(Ad(O
(0))∂hã

(0))∥
Ḣ

1 ≲
∑︂
j

2k−jdjcjk ≲ dj + ck
∑︂

j<k−C

dj2
j−k ≲ dk.

where at the last step we have used the compatibility condition.
Hence in order to estimate ∂ha

(h) we need to understand ah. First, we have

∥Pk((O
(0))−1∂hO

(0))∥
Ḣ

2 ≲ d′k. (7.5)

This is obtained directly from the elliptic equation (7.1), using the bounds for div ∂ha∞
provided by Theorem 5.11. Then since

ah = O
(0)
;h = Ad(O(0))(O(0))−1∂hO

(0),

by a similar argument as before using Lemma 7.3, we obtain

∥Pkah∥Ḣ2 ≲ d′k + ck
∑︂
j<k

2j−kd′j ≲ d′k. (7.6)

where the last inequality follows from compatibility, i.e.,

ck
∑︂
j<k

2j−kd′j ≲ ck
∑︂
j<k

2j−kdj ≲ d′k.
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To complete the proof of the proposition we estimate

∥Dah∥Ḣ1 ≲ d′k +
∑︂
j<k

d′jck ≲ d′k + ck(c · d)≤k.

Finally, we note that by the compatibility condition we have

d′k ≲ dk. □

As a corollary of Proposition 7.5, we obtain

Corollary 7.6. The map ã → a = Cal(ã) for Ḣ
1
connections with Q(a) ≤ Q < ∞ is C1 in

H ∩Hσ (σ > 1), with a bound depending on Q.

We omit the straightforward proof, which is similar to Scenario (i) in the proof of Propo-
sition 7.2, but now taking into account the frequency envelope bound.

7.2. The caloric manifold and its tangent space. We denote by C the set of all caloric
gauge connections, and define

CQ = {a ∈ Ḣ
1
: a is a caloric gauge connection with Q(a) ≤ Q}.

Note that C = ∪Q>0CQ.
We seek to describe C as a C1 infinite dimensional manifold. Given the results above, it

is natural to seek to do this in the H topology. As a first step, we show that C connections
are indeed in H, and satisfy some nonlinear form of the Coulomb gauge condition.

Proposition 7.7. For a ∈ CQ with energy ≤ E, its caloric gauge Yang–Mills heat flow
satisfies the bound

∥A∥
Ḣ

1 + ∥∂ℓAℓ∥ℓ1L2∩W 1, 43
≲Q,E 1. (7.7)

Proof. The Ḣ
1
bound is a direct consequence of Lemma 5.17 applied on an infinite interval.

Then we use Lemma 5.30 for the divergence of A. □

Now we can prove the following:

Theorem 7.8. The set C is an infinite dimensional C1 submanifold of the Banach space H.

The fact that we only get C1 may well be an artifact of the construction; the difficulty is
that the map a → a∞ is C1 but possibly no better.

Proof. Consider a caloric gauge connection a ∈ CQ with energy E . We will show that there
exists ϵ = ϵ(E ,Q) > 0 so that C ∩ BH

ϵ (a) can be parametrized with a C1 local chart. Here,
BH

ϵ (a) is the ball of radius ϵ around a in the H topology. For the purpose of this proof, all
covariant differentiations will be with respect to the connection a.

To achieve our goal we begin with the closed affine subspace of Ḣ
1

B = {a+ b ∈ Ḣ
1
: (D(a))ℓbℓ = 0},

which is in some sense a local Coulomb gauge adapted to the connection a. Then we consider
the caloric gauge representations of elements of B near a0,

B ∋ a+ b → Cal(a+ b) ∈ C. (7.8)

We will prove that this map represents a C1 parametrization of C near a.
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Step 1: Proof of regularity. We first claim that this map is C1 in a neighbourhood of a.
By the previous results we know that

∥∂ℓaℓ∥ℓ1L2 ≲Q,E 1.

Then the map

B ∋ a+ b → ∂ℓ(a+ b)ℓ ∈ ℓ1L2

is C1. Hence the C1 regularity of Cal restricted to B follows.

Step 2: Proof of local invertibility. In order to view this map as a local chart on C we

need to show that it is invertible in the Ḣ
1
topology. It suffices to show that its differential

at a is bounded from below. To compute its differential we denote by O(b) the associated
gauge transformation, normalized by O(∞) = Id. Then Cal has the form

Cal(a+ b)j = O(b)(a+ b)jO(b)−1 −O(b);j,

and its differential at a has the form

(dCal(a)b)j = bj + [dO(0)b, aj]− ∂j(dO(0)b)

Hence

(dCal(a)b)j = bj − (D(a))jc, c = dO(0)b.

Hence we need to prove the bound

∥b−D(a)c∥H ≳ ∥b∥H. (7.9)

Since (D(a))ℓbℓ = 0, it suffices to show that

∥D(a)c∥
ℓ1Ḣ

1 ≲ ∥∆ac∥ℓ1L2 . (7.10)

But this is a consequence of Theorem 4.1.

Step 3: Proof of local surjectivity. Here we show that our map (7.8) is locally surjective
near a. Thus consider another caloric connection a1 which is close to a. Then we have

∥a− a1∥Ḣ1 ≪ 1, ∥∂k(a− a1)k∥ℓ1L2 ≪ 1.

At this point we use only these bounds, forgetting that a1 is caloric. We consider the straight
line joining a and a1, denoted by a(h) with h ∈ [0, 1]. Along this line we construct a family
of gauge transformations O(h), with O(0) = Id, which move this segment into B. We need
to verify the relation

Dk(Ad(O(h))a(h)k −O(h);k) = Dkak(0).

Here and below, all covariant differentiations are taken with respect to the fixed connection
a. Equivalently, we can differentiate with respect to h to rewrite this condition as

0 =∂hD
k(Ad(O)a(h)k −O;k)

=Dk([O;h, Ad(O)a(h)k] + Ad(O)(a1 − a)k)− ∂kO;h + [O;k, O;h])

We view this as an equation for O;h:

DkDkO;h =Dk(Ad(O)(a1 − a)k)

+Dk(h[O;h, Ad(O)(a1 − a)k]− [O;h, O;x]− [O;h, (Ad(O)− 1)ak])
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Here we view the right hand side terms as perturbative, and integrate O;h in h to find O in

the space ℓ1Ḣ
2
. For this, we use the smallness of a1 − a in H, of O;k in ℓ1Ḣ

1
, as well as of

Ad(O)− 1 in H → H. We skip the straightforward details. □

We now take a closer look at the tangent space to C. Since the caloric manifold C is a
C1 submanifold of H, its tangent space TaC is naturally defined as a closed subspace of H.
Precisely, given b ∈ H, we denote by B the solution to the linearized Yang–Mills heat flow
(i.e., (5.4)) in the local caloric gauge as = 0 (i.e., (5.23)), which we recall here

∂sBi = Dj(DjBi −DiBj) + [Bj, Fji], Bi(0) = bi. (7.11)

This is a well-posed flow in H, with bounds similar to the bounds for the Yang–Mills heat
flow. Further, the limit B(∞) exists in H and is curl-free. Then the tangent space TC can
be defined as

TaC = {b ∈ H : B(∞) = 0}. (7.12)

For our purposes here we need to look at a larger tangent space, namely with respect to
the L2 topology. We denote it by TL2

a C, and it is defined as the closure of TaC in the L2

topology, or equivalently as

TL2

a C = {b ∈ L2 : B(∞) = 0}.

Due to the linearized gauge invariance (5.5) with ∂sa0 = 0, it is clear that

TL2

a C ∩D(a)Ḣ
1
= 0.

Our next result shows that these two closed subspaces of L2 are in effect transversal:

Proposition 7.9. Let a ∈ CQ ⊆ C with energy E. Then the following statements hold:

(1) Any function w ∈ L2 admits a unique representation

w = b−D(a)c, b ∈ TL2

a C, c ∈ Ḣ
1

and the following estimate holds:

∥b∥Hσ + ∥c∥
Ḣ

σ+1 ≲Q,E ∥w∥Ḣσ , −1 < σ < 1. (7.13)

Correspondingly, if σ = 1 then we have

∥b∥H + ∥c∥
ℓ1Ḣ

2 ≲Q,E ∥w∥H. (7.14)

(2) Furthermore, we can represent c as

c = −∆−1∇ · w + L(a, w),

where L(a, w) is at least quadratic, and satisfies better bounds

∥L(a, w)∥
ℓ1Ḣ

σ+1 ≲Q,E ∥w∥Ḣσ , −1 < σ < 1. (7.15)

The above decomposition is in effect a nonlinear div-curl decomposition. The map from
w to b can be viewed as a canonical projection onto TL2

a C. In the sequel we will denote this
projection by

b = Πaw. (7.16)
72



Proof. Proof of (1). The case of H is essentially12 Proposition 7.5 with O(0) = Id, w =

∂hã
(0), Πaw = ∂ha

(0) and c = −O
(0)
;h . In the case of Ḣ

σ
with −1 < σ < 1, we solve

the linearized equation (7.11) with w as initial data; the solution is denoted by W . By

Corollary 5.15 (see also Lemma 5.33), the map w → W (∞) is bounded in Ḣ
σ
, and W (∞)

has the form W (∞) = −∇c, with c ∈ Ḣ
σ+1

. Then we simply set

b = w +D(a)c ∈ TL2

a C.

Proof of (2). We peel off the leading part of c, namely

c0 = −∆−1∂ℓwℓ.

Then W +D(A)c0 still solves the linearized heat flow equation, and further, its data satisfies
the better (schematic) equation for the divergence

D(a) · (w +D(a)c0) = a · w + a · a ·∆−1∂w + ∂a ·∆−1∂w,

which implies that D(a)(w + Dac0) ∈ ℓ1Ḣ
σ−1

. Then we propagate this regularity through
the linearized flow, as in Lemma 5.31. □

Remark 7.10. Now we discuss an alternative way to derive bounds on c (and therefore b)
relying on the dynamic Yang–Mills heat flow instead of appealing to bounds for (7.11) (cf.
Sections 2.6 and 5.1). This is a variant of the proof of Lemma 5.33.

Let w ∈ L2. We begin from the existence of a decomposition wj = bj−D(a)c with b ∈ TL2

a C
and c ∈ Ḣ

1
; our aim is then to derive a formula for c, which can be analyzed without reference

to (7.11). Assume that bj = ∂taj(t), where (−ϵ0, ϵ0) ∋ t ↦→ aj(t) ∈ C is a C1 curve in C
for some ϵ0 > 0. As in Section 5.1, we introduce Aj(t = 0, x, s) and A0(t = 0, x, s) by
solving Fsj = DℓFℓj and Fs0 = DℓFℓ0 on t = 0 with Aj(t = 0, x, s = 0) = aj(x) and
A0(t = 0, x, s = 0) = c(x). Observe that F0j(t = 0, x, s) = (Bj −DA0) (t = 0, x, s), where
Bj is the solution to (7.11) with Bj(s = 0) = bj. Since F0j solves the linear covariant
(nondegenerate) parabolic equation (5.9) with F0j(t = 0, ·, s = 0) = bj −D(a)c ∈ L2, by the
L2 theory in Theorem 4.3, it follows that lims→∞ F0j = 0 in L2 on {t = 0}. Moreover, by the

definition of TL2

a C, it follows that lims→∞Bj = 0 in L2. Hence, we see that lims→∞ DA0 = 0
in L2 on {t = 0}. By the diamagnetic inequality as in the proof of Proposition 4.1, as well

as the softer facts that A0(s = 0) ∈ Ḣ
1
and that Fs0 = DℓFℓ0 can be viewed as a parabolic

equation for A0, it then follows that

lim
s→∞

A0 = 0

in Ḣ
1
on {t = 0}. Using ∂sA0 = Fs0 = DℓFℓ0 (thank to As = 0), we arrive at

c = A0(s = 0) = −
∫︂ ∞

0

DℓFℓ0 ds, (7.17)

in Ḣ
1
and on {t = 0}, which is the desired representation formula.

12Here, the L2 frequency envelope d′k for ∂ℓwℓ need not be related to ck and dk, except that it must be
1-compatible with ck. Then the proof of Proposition 7.5 goes through, with the only exception of the last
inequality d′k ≲ dk.
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Observe that, while we assumed the existence of c to derive (7.17), the right-hand side
of (7.17) can be computed in a manner that depends only on aj and wj. Indeed, aj already
determines Aj(t = 0, x, s) in the global caloric gauge, and F0j satisfies the same covariant
linear parabolic equation (5.9) on {t = 0} with F0j(s = 0) = wj regardless of c. In particular,
by (7.17) and the results in Section 5, we may obtain estimates on c such as ∥c∥

Ḣ
σ+1 ≲Q,E

∥w∥Ḣσ for −1 < σ < 1 etc. The advantage of this approach is that we have an explicit
formula (7.17), which will be useful later.

We conclude by noting the following consequences of the preceding argument, which give
dynamic-Yang–Mills-heat-flow characterizations of a curve in C and TL2

a C.
(1) Let Aµdx

µ be a dynamic Yang–Mills heat flow on I×R4×[0,∞) with Aµ(t, ·, s = 0) ∈ Ḣ
1
.

Then Aj dx
j ∈ C for each t ∈ I if and only if As = 0 everywhere and Aj(t, ·s = ∞) = 0,

A0(t, ·, s = ∞) = 0 (in Ḣ
1
) on t ∈ I.

(2) Let bj ∈ L2 and aj ∈ C. Then bj ∈ TL2

a C if and only if there exists a dynamic Yang–Mills
heat flow Aµ on {t = 0} × R4 × [0,∞) with Aj(s = 0) = aj, F0j(s = 0) = bj satisfying
the double boundary condition (on {t = 0}):

A0(s = 0) = A0(s = ∞) = 0. (7.18)

One consequence of Proposition 7.9 is that if b ∈ TL2

a C then ∂ℓbℓ has better regularity;
this is a linearized analogue of Proposition 7.7:

Corollary 7.11. Let a ∈ CQ ⊆ C with energy E, and b ∈ Ḣ
σ
a corresponding linearized

caloric data set. Then we have

∥∂ℓbℓ∥ℓ1Ḣσ−1 ≲Q,E ∥b∥Ḣσ − 1 < σ < 1. (7.19)

We note that the endpoint case σ = 1 is somewhat different, in that we no longer have
a bounded projection on the caloric tangent space. However, the bound for caloric tangent
state survives, as a consequence of Lemma 5.31 (see also Proposition p:fe-ah).

We also have a frequency envelope bound for Πa:

Lemma 7.12. Let a ∈ CQ ⊆ C with energy E, and with Ḣ
1
(−1, S)-frequency envelope ck.

(1) Let w ∈ L2 with a (−1, S) frequency envelope dk, which is 1-compatible with ck. Then
we have

∥PkΠaw∥L2 ≲Q,E dk.

(2) Alternatively, let w ∈ H, and let dk, respectively d′k, be 1-compatible (−1, S) frequency

envelopes for w in Ḣ
1
, respectively ∂ℓwℓ in L2. Then we have

∥PkΠaw∥Ḣ1 ≲Q,E dk + d′k + ckd
′
≤k.

Note that the 1-compatibility condition rules out application of (1) to w ∈ Ḣ
1
, in which

case (2) must be used.

Proof. Proof of (1). In anticipation of ensuing arguments, we give a proof using the idea
in Remark 7.10. It is very similar to the proof of Lemma 5.24, Step 1, except we integrate
DℓFℓ0 from infinity to obtain a0.

More precisely, note that
Πaw = w −D(a)a0
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where a0 is given by the formula (7.17), A is the Yang–Mills heat flow of a, and F0j solves

(∂s −∆A − 2ad(F ))F0x = 0, F0j(0) = f0j = wj.

As in the proof of Lemma 5.24, we have

∥PkD
ℓFℓ0∥L1Ḣ

1 ≲ dk.

and thus after integration,

∥Pka0∥Ḣ1 + ∥PkDa0∥L2 ≲ dk.

Note that 1-compatibility is crucial to get the control of Da0. The proof (1) is complete.

Proof of (2). This statement can be read off from the proof of Proposition 7.5, where
O(0) = Id. □

7.3. The heat flow of caloric connections: L2 analysis. Our goal here is to better
describe the Yang–Mills heat flow of caloric connections as a perturbation of the linear heat
flow. Toward that goal we begin with a caloric connection a ∈ CQ with energy E and with
a corresponding linearized caloric data b ∈ TL2

a C (which we write (a, b) ∈ TL2CQ for short),
and we seek to obtain bounds for their caloric heat flows A(s) and B(s). It is useful and
natural to express these bounds in terms of frequency envelopes. The next result shows that
for caloric connections both A and F have full parabolic regularity:

Proposition 7.13. (1) Let a be a caloric connection in CQ with energy at most E, and let

ck be its (−1, S)-frequency envelope in Ḣ
1
. Then for any N ≥ 0, its Yang–Mills heat

flow A(s) satisfies

∥PkA(s)∥Ḣ1 + ∥PkF (s)∥L2 ≲Q,E,Nck(1 + 22ks)−N , (7.20)

∥Pk∂
ℓAℓ(s)∥L2 ≲Q,E,Nckc

[1]
k (1 + 22ks)−N . (7.21)

(2) Let b be a corresponding linearized caloric data set with a 2-compatible L2 (−1, S)-
frequency envelope dk. Then for any N ≥ 0, its linearized caloric flow B satisfies the
bounds

∥PkB(s)∥L2 ≲Q,E,Ndk(1 + 22ks)−N , (7.22)

∥Pk∂
jBj(s)∥Ḣ−1 ≲Q,E,N

(︂
dkc

[1]
k + ckd

[2]
k +

∑︂
j>k

2k−jcjdj

)︂
(1 + 22ks)−N . (7.23)

Our starting point for the proof is the covariant curvature bounds in Proposition 5.7, and
their slightly less covariant local caloric gauge versions in Lemma 5.21. Our first goal is to
expand them to fully noncovariant versions, taking advantage of the additional information
A(∞) = 0, B(∞) = 0. This is done in the following lemma:

Lemma 7.14. (1) Let a be a caloric connection in CQ with energy E, and let A be its Yang–
Mills heat flow. Then for any m ≥ 0, we have the bounds

∥sm/2∂(m)
x F∥2L∞

ds
s

([0,∞);L2
x)
+ ∥s(m+1)/2∂(m+1)

x F∥2L2
ds
s

([0,∞);L2
x)
≲Q,E1, (7.24)

∥sm/2∂(m+1)
x A∥2L∞

ds
s

([0,∞);L2
x)
+ ∥s(m+1)/2∂(m+2)

x A∥2L2
ds
s

([0,∞);L2
x)
≲Q,E1. (7.25)
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(2) In addition, if b ∈ Ḣ
σ
is a corresponding linearized caloric data set with −1 < σ < 2,

then the corresponding solution B satisfies the estimates

∥sm/2∂(m)
x B∥2

L∞
ds
s

([0,∞);Ḣ
σ
x)
+ ∥s(m+1)/2∂(m+1)

x B∥2
L2

ds
s

([0,∞);Ḣ
σ
x)

≲Q,E ∥b∥Ḣσ . (7.26)

Proof. For counting the s-weights, it is convenient to use the measure ds
s
for s ∈ [0,∞). In

this proof, for simplicity of notation, we simply write LqLr = Lq
ds
s

([0,∞);Lr). Moreover, we

suppress the dependence of implicit constants on Q and E .
Proof of (1). We start from the bounds in Proposition 5.7, which now hold globally in
time. Recall also that, by Proposition 7.7, we already have

∥∂xA∥L∞L2 ≲Q,E 1.

Step (1).1: Covariant bounds for A. These follow from (5.13) after time integration from ∞.
Starting from the (schematic) relation

∂sA = DF,

we differentiate to obtain
∂sDA = D(2)F + [DF,A].

Then reiterating yields

∂sD
(m)A = D(m+1)F +

m∑︂
k=1

[D(k)F,D(m−k)A].

Thus, for m > 0 we can estimate

∥sm/2D(m+1)A∥L∞L2 ≲ ∥sm/2+1∂sD
(m+1)A∥L∞L2

≲ ∥sm/2+1D(m+2)F∥L∞L2 +
m+1∑︂
k=1

∥sm/2+1[D(k)F,D(m+1−k)A]∥L∞L2

and the last term is bounded inductively if k < m+ 1, as

∥sm/2+1[D(k)F,D(m+1−k)A]∥L∞L2 ≲ ∥sk/2+1D(k)F∥L∞L∞∥s(m−k)/2D(m−k+1)A∥L∞L2

and directly if k = m+ 1,

∥sm/2+1[D(m+1)F,A]∥L∞L2 ≲ ∥sm/2+1D(m+1)F∥L∞L4∥A∥L∞L4 .

The argument for the L2L2 bounds is similar, and also applies if m = 0.

Step (1).2: The bound (7.24) for m = 1. The L∞L2 part follows from (7.27). For the L2

part we estimate

∥s∂(2)F∥L2L2 ≲∥sD∂F∥L2L2 ≲ ∥s∂DF∥L2L2 + ∥s[∂A, F ]∥L2L2

≲∥sD(2)F∥L2L2 + ∥∂A∥L∞L2∥sF∥L2L∞ .

Step (1).3: The bound (7.25) for m = 0. We already know the L∞L2 part. For the L2L2

bound we estimate

∥s1/2∂(2)
x A∥L2L2 ≲ ∥s1/2D∂A∥L2L2 ≲ ∥s1/2∂DA∥L2L2 + ∥s1/2[∂A,A]∥L2L2

≲ ∥s1/2D(2)A∥L2L2 + ∥∂A∥L∞L2∥s1/2A∥L2L∞ .
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Finally for the last factor we have

∥s1/2A∥L2L∞ ≲ ∥s3/2DF∥L2L∞

Step (1).4: The bound (7.24). For m = 0 we only need the following simple bound:

∥F∥
Ḣ

1 ≲ ∥DF∥L2 . (7.27)

We now consider m ≥ 1. For the L∞L2 bound we have

∥sm/2∂(m)F∥L∞L2 ≲ ∥sm/2D(m)F∥L∞L2+
∑︂

m0+m1+···+mk=m−k

∥sm/2
(︂ k∏︂

j=1

ad(D(mj)A)
)︂
D(m0)F∥L∞L2

and it remains to estimate

∥sm/2
(︂ k∏︂

j=1

ad(D(mj)A)
)︂
D(m0)F∥L∞L2 ≲

(︂ k∏︂
j=1

∥smj/2+1D(mj)A∥L∞L∞

)︂
∥sm0/2D(m0)F∥L∞L2 .

Similarly, for the L2L2 bound we get

∥s(m+1)/2∂(m+1)F∥L2L2 ≲∥s(m+1)/2D(m+1)F∥L2L2

+
∑︂

m0+m1+···+mk=m+1−k

∥s(m+1)/2
(︂ k∏︂

j=1

ad(D(mj)A)
)︂
D(m0)F∥L2L2 .

Here we distinguish two cases. If m0 > 0 then we estimate the F factor in L2L2 and all A
factors in L∞L∞ as above. Else we estimate the F factor in L2L4, and one of the A factors
in L∞L4.

Step (1).5: The bound (7.25). For the L∞L2 bound we have, with m ≥ 0,

∥sm/2∂(m+1)A∥L∞L2 ≲∥sm/2D(m+1)A∥L∞L2

+
∑︂

m0+m1+···+mk=m−k+1

∥sm/2
(︂ k∏︂

j=1

ad(D(mj)A)
)︂
D(m0)A∥L∞L2

and conclude as above using the induction hypothesis. The L2L2 bound is also similar, and
that argument also applies if m = 0.

Proof of (2). We will approach B via the F0j flow with same data, which also has Ḣ
σ

regularity. We already know from Theorem 4.3 that this is well-posed in Ḣ
σ
, which gives

the bound in (7.26) for N = 0. Then we write the equation for s∆AF0j, apply the same
estimate and then argue as above and repeat. This yields the desired estimate, but for F0j

rather than B:

∥sm/2∂(m)
x F0j∥2L∞Ḣ

σ + ∥s(m+1)/2∂(m+1)
x F0j∥2L2Ḣ

σ ≲Q,E 1. (7.28)

Next we turn our attention to A0. As b is a linearized caloric data set, it follows that A0

vanishes at infinity and at s = 0. Then A0 is represented in two different ways as

A0(s0) = −
∫︂ ∞

s0

DℓFℓ0(s)ds =

∫︂ s0

0

DℓFℓ0(s)ds.
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We first claim that

∥sm/2∂(m)
x A0∥2L∞Ḣ

σ+1 + ∥s(m+1)/2∂(m+1)
x A0∥2L2Ḣ

σ+1 ≲Q,E 1. (7.29)

Indeed, the integrand satisfies the same bounds as for F0j but with σ replaced by σ − 1.
Then by direct integration from infinity we obtain all the desired bounds for A0 (i.e. the

same as for F0j but with σ−1 replaced by σ+1), with the notable exception of the L∞Ḣ
σ+1

bound. For this we combine the L2Ḣ
σ
bound for DF = ∂sA0 with the s−1L2Ḣ

σ+2
bound

for A0.
Unfortunately the estimate (7.29) does not directly yield the similar bounds for DA0,

precisely in the range σ ≥ 1. There (7.29) does not provide any good control over the low
frequencies of A0, which is needed for the bilinear term [A,A0]. To remedy this we also
integrate from zero to obtain the bound

∥s−1A0∥2L∞Ḣ
σ−1 ≲Q,E 1. (7.30)

Now we can bound the term [A,A0] using a Littlewood-Paley trichotomy as follows: if the
frequency of A0 is higher, then combine (7.25) with (7.29), and if the frequency of A0 is
lower, then combine (7.25) with (7.30). □

We are now ready to complete the proof of Proposition 7.13.

Completion of the proof of Proposition 7.13. As before, we suppress the dependence of im-
plicit constants on Q, E , N .
We first consider (−1, 2) envelopes for both B and A. Then the bounds for the linearized

caloric flow B in part (2) of the proposition follow directly from the lemma. Hence the
bounds for A and F in part (1) are obtained by applying the result in part (2) to ∂xA, which
solves the linearized equation.

In order to relax the admissibility constraint on the frequency envelope from (−1, 2) to
(−1, S), we reiterate the equations based on the linear heat flow. Indeed, denoting by cSk the

minimal (−1, S) frequency envelopes for the data a in Ḣ
1
, we use induction on S to show

that
∥PkA∥Ḣ1 ≲ cSk (1 + 22ks)−N .

The above analysis proves this for S < 2. To increase S to S + σ with σ < 1 we reiterate
based on the linear (schematic) Duhamel formula

F (s) = es∆F (s = 0) +

∫︂ s

0

e(s−s̃)∆([A, ∂F ] + [∂A, F ] + [A, [A,F ]]) ds̃,

followed by integration from infinity for A. A direct computation (whose tedious details we
omit) using Littlewood–Paley trichotomy yields

∥PkA∥Ḣ1 ≲ (cS+σ
k + cSk

∑︂
j<k

2j−kcSj )(1 + 22ks)−N .

As we have
cSk ≈ sup

j<k
2S(1−ϵ)(j−k)cS+σ

j ,

we compute

cSk
∑︂
j<k

2j−kcSj ≤
∑︂
j,ℓ<k

2S(1−ϵ)(j−k)cS+σ
j 2ℓ−kcS+σ

ℓ ≲
∑︂
j<k

2(S+σ+)(j−k)cS+σ
j ≈ cS+σ

k
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where at the second-to-last step we separate the cases j < ℓ and ℓ < j and use ck ≲ 1. The
induction is concluded.

Since the estimate for A has been closed, a more direct argument applies for B. We first
estimate F0j perturbatively using Theorem 4.7, which yields

∥PkF0j(s)∥L2 ≲ dk(1 + 22ks)−N . (7.31)

Then for A0 we can integrate either from infinity (for the high frequencies) or from zero (for
the low frequencies). We obtain:

Lemma 7.15. Under the assumptions above, we have

∥PkA0(s)∥Ḣ1 ≲dk(1 + 22ks)−N , (7.32)

∥s−1PkA0(s)∥Ḣ−1 ≲dk. (7.33)

Combining this lemma with the (7.31), we obtain (7.22) for (−1, S) frequency envelopes.
It remains to prove the estimates for ∂ℓAℓ and ∂ℓBℓ. As in Lemmas 5.30 and 5.31, this is

a direct computation based on the representations

∂ℓAℓ(s) =

∫︂ ∞

s

[Aℓ,DkFkℓ]ds̃,

respectively,

∂ℓBℓ(s) + [Aℓ, Bℓ](s) = DℓBℓ(s) = 2

∫︂ ∞

s

[Bℓ,DkFkℓ]ds̃.

We omit the details. □

Our next goal is to establish difference bounds for the heat flows of caloric connections. For
this we consider two linearized caloric data sets (a(0), b(0)), (a(1), b(1)) ∈ TL2CQ with energy
at most E , which are assumed to be sufficiently close

∥a(0) − a(1)∥
Ḣ

1 ≪Q,E 1. (7.34)

Then we seek to compare their corresponding caloric extensions (A(0)(s), B(0)(s)), respec-
tively (A(1)(s), B(1)(s)), and provide frequency envelope bounds for the differences

δA(s) = A(1)(s)− A(0)(s), δB(s) = B(1)(s)−B(0)(s), .

Our main result is as follows:

Proposition 7.16. Let (a(0), b(0)), (a(1), b(1)) ∈ TL2CQ be two linearized caloric data sets with
energy at most E, such that (7.34) holds. Assume that ck is a (−1, S)-frequency envelope for

(a(0), b(0)) and (a(1), b(1)) in Ḣ
1×L2, and that dk is a 1-compatible (−1, S)-frequency envelope

for (a(0) − a(1), b(0) − b(1)) in Ḣ
1 × L2, such that

ek = dk + ck(c · d)≤k (7.35)

and ckek are also (−1, S)-admissible. Then we have the difference bounds

∥PkδA(s)∥Ḣ1 + ∥PkδF (s)∥L2 + ∥PkδB(s)∥L2 ≲Q,E,N ek(1 + 22ks)−N , (7.36)

respectively,

∥Pk∂
ℓδAℓ(s)∥L2+∥Pk∂

ℓδBℓ(s)∥Ḣ−1 ≲Q,E,N

(︂
cke

[1]
k +ekc

[1]
k +

∑︂
j>k

2k−jcjej

)︂
(1+22ks)−N . (7.37)
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The compatibility assumption may be sharpened if we consider separate frequency en-
velopes for b(0), b(1) and b(0) − b(1); however, we avoid this for the sake of simplicity.

We remark that similar bounds for the linearized equation follow from the previous propo-
sition, at least for infinitesimal deformations of A. However, if we try to transfer this directly
to differences, then we need to address the problem of constructing a smooth path between
a(0) and a(1) which stays within the caloric manifold. This will be of independent interest
later, so we state the result separately.

Proposition 7.17. Under the same assumptions as in the previous proposition, there exists
a C1 path

[0, 1] ∋ h → (a(h), b(h)) ∈ TL2C
so that for h ∈ [0, 1], Q(a(h)) ≤ 2Q, Ee[a(h)] ≤ 2E, and the following estimates hold uniformly:

∥Pka
(h)∥

Ḣ
1 + ∥Pkb

(h)∥L2 ≲Q,E ck, (7.38)

respectively,
∥Pk∂ha

(h)∥
Ḣ

1 + ∥Pk∂hb
(h)∥L2 ≲Q,E ek. (7.39)

We now prove the two propositions above.

Proof of Proposition 7.17. We suppress the dependence of constants on Q, E , N .
We first construct the path joining a(0) and a(1). We begin with the straight line path

ã(h) = ha(1)+(1−h)a(0) between a(0) and a(1), which does not stay within the caloric manifold.

In view of (7.34), this path remains in {(a, b) ∈ Ḣ
1 ×L2 : Q(a) ≤ 2Q, Ee[a] ≤ 2E}. For ã(h)

and ∂hã
(h) we have

∥Pkã
(h)∥

Ḣ
1 ≲ ck, ∥Pk∂hã

(h)∥
Ḣ

1 ≲ dk.

Hence, using Theorem 5.11 and Lemma 5.31 (in particular, (5.69)), we conclude that we
have the uniform bounds

∥PkÃ
(h)∥

L∞Ḣ
1 + ∥PkF̃

(h)∥
L2Ḣ

1 ≲ ck,

∥Pk∂hÃ
(h)∥

L∞Ḣ
1 + ∥Pk(Di∂hÃ

(h)

j −Dj∂hÃ
(h)

i )∥
L2Ḣ

1 ≲ dk,

as well as the improved divergence bound

∥Pk(∂
ℓ∂hÃ

(h)

ℓ (s1)− ∂ℓ∂hÃ
(h)

ℓ (s2))∥L∞L2 ≲ ckd
[1]
k + dkc

[1]
k .

Integrating this over the interval h ∈ [0, 1] we obtain the following intermediate result:

Lemma 7.18. Given the frequency envelopes ck and dk as above, we have the uniform
difference bounds

∥PkδA∥L∞Ḣ
1 + ∥PkδF∥

L2Ḣ
1 ≲ dk. (7.40)

respectively

∥Pk∂
ℓδAℓ∥L∞L2 ≲ ckd

[1]
k + dkc

[1]
k . (7.41)

We remark that for the first bounds we do not use the caloric gauge. However for the
second it is critical that A(0)(∞) = A(1)(∞) = 0. In particular, its conclusion is nontrivial
even at s = 0, where we get

Corollary 7.19. Given the frequency envelopes ck and dk as above, we have

∥Pk∂
ℓδaℓ∥L2 ≲ ckd

[1]
k + dkc

[1]
k . (7.42)
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As a consequence of this, by construction we also get

∥Pk∂
ℓ∂hã

(h)
ℓ ∥L2 ≲ ckd

[1]
k + dkc

[1]
k . (7.43)

Once we have a good understanding of ã(h) and ∂hã
(h), we project onto the caloric manifold,

setting

a(h) = Cal(ã(h)).

Now the bounds for a(h) in the proposition follow from Proposition 7.4, while those for ∂ha
(h)

follow from Proposition 7.5.

We now consider the question of choosing b(h). We begin with b̃
(h)

which interpolates
linearly between b(0) and b(1), and define

b(h) = Πa(h) b̃
(h)

= b̃
(h) −D(a(h))a

(h)
0

where a
(h)
0 is the initial data for the corresponding connection component which is initialized

to zero at infinity (see Remark 7.10), i.e.,

a
(h)
0 =

∫︂ ∞

0

(D(a(h)))ℓF
(h)
0ℓ (s̃) ds̃.

Now the b(h) bound in (7.38) is a consequence of Lemma 7.12. To estimate ∂hb
(h) we need

∂hD
(a(h))a

(h)
0 , which we write as

∂hD
(a(h))a

(h)
0 = D(a(h))∂ha

(h)
0 + [∂ha

(h), a
(h)
0 ].

The second term is easy to estimate using the previous bound for ∂ha
(h) and for a

(h)
0 as in

the proof of Proposition 7.13.

It remains to bound ∂ha
(h)
0 in Ḣ

1
. We claim that

∥Pk∂ha
(h)
0 (s)∥

Ḣ
1 ≲ ek. (7.44)

To achieve this, we use another round of the “infinitesimal de Turck trick” (see Re-
mark 7.10). In what follows, we suppress the superscript (h). Let us introduce a dynamical
gauge component Ah, which satisfies

∂sAh = DjFjh, Ah(∞) = 0, (7.45)

where Fjh solves the covariant heat equation

(∂s −∆A − 2ad(F ))Fhj = 0, Fhj(0) = ∂haj. (7.46)

Then we also have

Ah(0) = 0. (7.47)

Differentiating with respect to s, we see that

∂sDhA0 = [DℓFℓh, A0] +DhD
ℓFℓ0 = [DℓFℓh, A0] + [F ℓ

h , Fℓ0] +DjDhFj0. (7.48)

On the other hand, DhFj0 obeys the inhomogeneous covariant heat equation

(∂s −∆A − 2ad(F ))DhF0j = Gj, DhF0j(0) = ∂hb̃j, (7.49)
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where Gi is (schematically) of the form13

Gi = [DFh, F0] + [Fh,DF0]. (7.50)

Now we have all the equations we need in order to prove the estimates.
By Proposition 7.13.(2), we already have

∥PkFhj∥Ḣ1 ≲ ek(1 + 22ks)−N , ∥PkF0j∥L2 ≲ ck(1 + 22ks)−N . (7.51)

Hence for Gi we obtain

∥PkGi∥Ḣ−1 ≲ s−
1
2 ek(1 + 22ks)−N .

Thus solving the parabolic equation for DhF0i using Theorems 4.7 and 4.8, we obtain

∥PkDhF0i∥L2 ≲ ek(1 + 22ks)−N . (7.52)

This implies that

∥Pk∂sDhA0∥Ḣ−1 ≲ ek(1 + 22ks)−N ,

which in turn yields the desired bound for DhA0,

∥PkDhA0∥Ḣ1 ≲ ek(1 + 22ks)−N , (7.53)

which at s = 0 gives (7.44). □

Proof of Proposition 7.16. We use the path (a(h), b(h)) constructed in Proposition 7.17. The
difference bounds in the proposition are obtained by integrating with respect to h ∈ [0, 1]
the corresponding bounds for ∂hA

(h)(s) and ∂hB
(h)(s).

The frequency envelope bounds for the data ∂ha
(h) translate to similar bounds for ∂hA

(h)(s)

by Proposition 7.13, and thus to bounds for ∂hF
(h)
ij = Di∂hA

(h)
j −Dj∂hA

(h)
i . We remark that,

by 1-compatibility of dk and ek with ck, we end up with simply the frequency envelope ek
on the RHS.

For ∂hB
(h), we again introduce the auxiliary dynamic component Ah as in the preceding

proof. Suppressing the superscript (h), we have

∂hB = DhB − [Ah, B].

For the second term we combine the B bound given by Proposition 7.13.(2) with the Ah

bound in Lemma 7.15 (note that A0 in the lemma corresponds to Ah here). For the first
term we write

DhB = DhF0j +DhDA0 = DhF0j +DDhA0 + [Fhj, A0].

To estimate the RHS, we combine the bounds (7.52) for DhF0j, (7.53) for DhA0, (7.51) for
Fhj and the following bound for A0:

∥PkA0(s)∥Ḣ1 ≲ ck(1 + 22ks)−N ,

which is obtained by integrating ∂sA0 = DℓFℓ0 from s = ∞, and using (7.51) for Fℓ0. Again,
by compatibility, the frequency envelope bound on the RHS simplifies to ek.
Our final goal is to prove the bound for ∂h∂

ℓAℓ and ∂h∂
ℓBℓ; we only give a sketch of the

proof. For ∂h∂
ℓAℓ, its s derivative is:

∂s∂h∂
ℓAℓ = ∂h[Aℓ,D

iF ℓ
i ] = [∂hAℓ,D

iF ℓ
i ] + [Aℓ,D

i(Di∂hA
ℓ −Dℓ∂hAi)]

13For this computation, we also need the Bianchi identity DhFij = DiFhj −DjFhi.
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We then integrate from infinity, estimating the RHS using the bounds for A in Proposi-
tion 7.13 and ∂hA from above.

The case of ∂h∂
ℓBℓ is dealt with similarly. Given the estimates for ∂hA, this is easily seen

to be equivalent to the bound for ∂hD
ℓBℓ. For this we compute its s derivative,

∂s∂hD
ℓBℓ =− 2∂h[Bℓ,D

iF ℓ
i ]

=− 2[∂hBℓ,D
iF ℓ

i ]− 2[Bℓ, [∂hA
i, F ℓ

i ]]− 2[Bℓ,D
i(Di∂hA

ℓ −Dℓ∂hAi)].

Now it suffices to integrate from infinity, estimating all terms on the RHS, using the bounds
for A in Proposition 7.13 and ∂hB from above. □

Next we compare the Yang–Mills heat flow of a caloric connection a ∈ C with its linear
heat flow. Precisely, for its heat flow and the associated curvature tensor, we consider the
following representations:

Aj(s) = es∆aj +Aj(s), Fij(s) = es∆fij + Fij(s), (7.54)

as well as
∂ℓAℓ(s) = DA(s). (7.55)

Here Aj, Fij and DA are viewed as maps on C × [0,∞).
Similarly, if b is a corresponding linearized caloric data, then for its (local caloric gauge)

linearized Yang–Mills heat flow B, we consider the representation

Bj(s) = es∆bj +Bj(s), ∂ℓBℓ(s) = DB(s), (7.56)

where Bj and DB are maps on TL2C × [0,∞).
Our goal is now to show that these maps satisfy favorable quadratic bounds with Lipschitz

dependence on a. For each heat-time s, recall that k(s) refers to the associated frequency
with 22k(s)s = 1. As part of our analysis, we will show that Aj(s), Fij(s) and B(s) are
primarily concentrated at frequency k(s).

For the following proposition, let 0 < δ ≪ 1.

Proposition 7.20. Let (a, b) ∈ TL2CQ with energy at most E be equipped with Ḣ
1 × L2

(−δ, S) frequency envelope ck. Then we have the bounds

∥(1−s∆)NAi(s)∥
Ẇ

1, 43
+∥(1−s∆)NFij(s)∥L 4

3
+∥(1−s∆)NBj(s)∥L 4

3
≲Q,E,N 2−k(s)ck(s), (7.57)

respectively,

∥PkDA∥
Ẇ

1, 43
+ ∥PkDB∥

L
4
3
≲Q,E,N c

[1]
k (1 + 22ks)−N . (7.58)

Similarly, if (a(0), b(0)) and (a(1), b(1)) are two close linearized caloric data sets, with a joint

Ḣ
1 × L2 (−δ, S) frequency envelope ck and 1-compatible (−δ, S) frequency envelope dk for

the difference in Ḣ
1 × L2. Let

ek = dk + ck(c · d)≤k.

Then we have the difference bounds

∥(1− s∆)NδAi(s)∥
Ẇ

1, 43
+ ∥(1− s∆)NδFij(s)∥L 4

3
+ ∥(1− s∆)NδBj(s)∥L 4

3
≲Q,E,N 2−k(s)e

[1]
k(s),

(7.59)
respectively,

∥PkδDA∥
Ẇ

1, 43
+ ∥PkδDB∥

L
4
3
≲Q,E,N e

[1]
k (1 + 22ks)−N . (7.60)
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Here we note that all quantities estimated here are of quadratic type. In particular we
can easily get ck replaced by c2k if we give up a bit in terms of Sobolev embeddings and
taper off rapid decay of high frequencies of ck (i.e., consider (−δ, δ) frequency envelopes).

See Proposition 7.27 for such a statement in the Ẇ
σ,p

setting.

Proof. The proof is tedious but straightforward. We focus on the structure of the equations,
and only sketch the details.

First we establish the curvature bound, using the equations (5.2) and Duhamel’s principle
to write

Fij(s0) =Fij(s0)− es0∆fij

=

∫︂ s0

0

e(s0−s)∆
(︁
−2[F ℓ

i , Fjℓ] + 2[Aℓ,D
ℓFij] + [∂ℓAℓ, Fij]

)︁
ds.

(7.61)

Then we use the bounds (7.20) for A and F to estimate the integrand, using Littlewood–
Paley trichotomy; the worst term is [A,DℓFij] in the low × high scenario. Combined with
heat flow bounds, this yields the F bound in (7.57).

Next we establish the corresponding DA bound, this time integrating from infinity using
the representation (5.22):

DA(s) =

∫︂ ∞

s

[Ak,DjFkj]ds. (7.62)

The desired bound follows again from (7.20) by Littlewood–Paley trichotomy. Again, the
worst case is the low × high scenario.
Finally, we establish the A bound, solving again from zero in the equation (5.21) to obtain

Ai(s0) =Ai(s0)− es0∆ai

=

∫︂ s0

0

e(s0−s)∆
(︁
−∂i∂

ℓAℓ − [Aℓ, ∂iAℓ] + 2[Aℓ,D
ℓAi] + [∂ℓAℓ, Ai]

)︁
ds.

(7.63)

Here we treat all ∂ℓAℓ terms perturbatively, using the previously obtained bound.
We now consider the B bounds. Here B is obtained via the F0j and A0 route (see Sec-

tion 2.6). The first step is to consider the quadratic part of the curvature F0j, for which the
analysis and estimates are identical to that for Fij. The next step is to obtain bounds for
A0, for which we have the double boundary condition A0(0) = A0(∞) = 0 thanks to the fact
that b is caloric. Thus, we obtain the double representation

A0(s) =

∫︂ ∞

s

DjFj0ds = −
∫︂ s

0

DjFj0ds (7.64)

Peeling off the linear heat flow of Fj0 we obtain

A0(s) =

∫︂ ∞

s

DjFj0 + [Aj, e
s̃∆b]ds̃+∆−1es∆∂jbj.

respectively

A0(s) = −
∫︂ s

0

DjFj0 + [Aj, e
s̃∆b]ds̃−∆−1(1− es∆)∂jbj.

Combining the two we arrive at

A0(s) = (1− es∆)

∫︂ ∞

s

DjFj0 + [Aj, e
s̃∆b]ds̃− es∆

∫︂ s

0

DjFj0 + [Aj, e
s̃∆b]ds̃. (7.65)
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Now we can estimate this in Ẇ
1, 4

3 as follows,

∥(1− s∆)NA0(s)∥
Ẇ

1, 43
≲ 2−k(s)ck(s). (7.66)

This immediately leads to the B bound in (7.57), as Bj = F0j +DjA0.
We now consider the bounds for DB, which is given by

DB(s) = 2

∫︂ ∞

s

[Bj,DiFij]ds̃. (7.67)

The corresponding bound in (7.58) immediately follows.
Lastly, the difference bounds (7.59), (7.60) follow in the same fashion by using the differ-

ence estimates in the previous proposition. □

7.4. The heat flow of caloric connections: Lp analysis. We are also interested in the
Lp regularity properties for caloric connections. For this we will primarily be interested in

considering the caloric flow for subthreshold linearized caloric data (a, b) ∈ Ẇ
σ,p × Ẇ

σ−1,p
,

for a range of indices (σ, p) related to the Strichartz estimates for the wave equation with

Ḣ
1
data, which corresponds to the line between the spaces

Ḣ
1
, Ẇ

1
6
,6

However, in order to have a good range of admissible envelopes we want to be able to vary
somewhat the number of derivatives. We also want to be able to work with weaker spaces,
obtained from the above ones by Sobolev embeddings. This will be useful in order to take
full advantage of the energy dispersion later in the paper. Because of these, we will use a
range (σ, p) as well as associated frequency envelopes as follows:

2 ≤ p ≤ ∞, −1 < σ <
4

p
. (7.68)

The above range insures global well-posedness of the covariant heat flow in both Ẇ
σ,p

and

Ẇ
σ,p−1

for caloric connections a ∈ Ḣ
1
, with good parabolic decay, see Theorem 4.7. The

last condition asserts that Ẇ
σ,p

scales below L∞.
For an appropriately constant δ > 0, which is small depending on p, σ, we will denote

by cσ,pk , respectively ck, (−δ, S) frequency envelopes for (a, b) in Ẇ
σ,p × Ẇ

σ−1,p
, respectively

in Ḣ
1 × L2. We will also compare flows corresponding to two pairs of data (a(0), b(0)) and

(a(1), b(1)). In that case we will use the notation cσ,pk , respectively ck, for joint Ẇ
σ,p× Ẇ

σ−1,p
,

respectively Ḣ
1 ×L2, (−δ, S)-frequency envelopes. Also, we will denote by dσ,pk , respectively

dk, for a (−δ, S) frequency envelope for their difference in Ẇ
σ,p×Ẇ

σ−1,p
, respectively Ḣ

1×L2.
We will assume that cσk , d

σ,p
k and dk are δ-compatible with ck.

Our estimates for differences will primarily involve the following modification of dσ,pk :

eσ,pk = dσ,pk + cσ,pk d
[δ]
k + cσ,pk (c · d)≤k. (7.69)

By the above compatibility properties, it can be verified that eσ,pk is 2δ-compatible with ck.
With the setup as above, our first main goal will be to prove:
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Proposition 7.21. (1) Let (a, b) be a linearized caloric data set in TL2CQ with energy ≤ E,
equipped with frequency envelopes ck and cσ,pk as above. Then the corresponding Yang–
Mills heat flow A and the linearized Yang–Mills heat flow B, respectively, satisfy the
bounds

∥PkA(s)∥Ẇσ,p + ∥PkF (s)∥
Ẇ

σ−1,p + ∥PkB(s)∥
Ẇ

σ−1,p ≲Q,E,N cσ,pk (1 + 22ks)−N . (7.70)

(2) Let (a(0), b(0)) and (a(1), b(1)) be two linearized caloric data sets in TL2CQ with energy
≤ E, which are sufficiently close as in (7.34), and equipped with frequency envelopes ck,
cσ,pk , dk, d

σ,p
k as above. Then the difference of their Yang–Mills heat flow pairs satisfies

∥PkδA(s)∥Ẇσ,p + ∥PkδF (s)∥
Ẇ

σ−1,p + ∥PkδB(s)∥
Ẇ

σ−1,p ≲Q,E,N eσ,pk (1 + 22ks)−N . (7.71)

Proof. We proceed in several steps. Our first result is concerned with the Ẇ
σ,p

bounds for
the caloric projection map (cf. Proposition 7.4).

Lemma 7.22. Let (σ, p) be as in (7.68). Let ã be a Ḣ
1∩Ẇ σ,p

connection with Q(ã) ≤ Q < ∞
and ∥ã∥

Ḣ
1 ≤ M1. Let ck be a (−δ, S) frequency envelope for ã in Ḣ

1
, and let cσ,pk be a (−δ, S)

frequency envelope for ã in Ẇ
σ,p

which is δ-compatible with ck. Then the caloric projection
a = Cal(ã) satisfies the bounds

∥Pka∥Ẇσ,p ≲Q,M1 c
σ,p
k . (7.72)

Proof. We suppress the dependence of implicit constants on Q and M1. The idea is to first
estimate F in the caloric gauge, and then pass to a using the caloric gauge representation

a = −
∫︂ ∞

0

DℓFℓi ds.

To begin, let O be the corresponding gauge transformation, i.e.,

O−1∂xO = a∞.

By Theorem 5.11, ck is a frequency envelope for a∞ in Ḣ
1
. Then by Lemma 7.3 and

compatibility, it follows that cσ,pk is a Ẇ
σ−1,p

frequency envelope for

fjk = Ad(O)f̃ jk.

By Propositions 7.4 and 7.13, we have

∥PkA(s)∥Ḣ1 ≲ ck(1 + 22ks)−N .

Therefore, solving the parabolic equation for f using Theorem 4.7, we obtain

∥PkF (s)∥
Ẇ

σ−1,p ≲ cσ,pk (1 + 22ks)−N .

By Littlewood–Paley trichotomy for [Aℓ, Fℓi], we have

∥PkD
ℓFℓi(s)∥Ẇσ,p ≲ 22kcσ,pk (1 + 22ks)−N +

∑︂
j>k

2(2+σ)(k−j)cjc
σ,p
j 22j(1 + 22js)−N−10. (7.73)

Then integrating in s, the desired bound follows. □

Next we consider the heat flow of Ẇ
σ,p

caloric data, and prove the A bound in part (1) of
the proposition:
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Lemma 7.23. Let a ∈ CQ with energy ≤ E, and with a Ḣ
1
(−δ, S) frequency envelope ck.

Let (σ, p) be as in (7.68), and let cσ,pk be a (−δ, S) frequency envelope for a in Ẇ
σ,p
, which

is δ-compatible with ck. Then we have the bounds

∥PkA(s)∥Ẇσ,p + ∥PkF (s)∥
Ẇ

σ−1,p ≲Q,E,N cσ,pk (1 + 22ks)−N . (7.74)

Proof. This is the same as the previous argument but with O = I. Note that M1 ≲Q,E 1 by
Proposition 7.7. Moreover, we have the representation

Aj(s) = −
∫︂ ∞

s

DℓFℓj(s̃) ds̃.

Hence, the desired bound follows by integrating (7.73) from ∞ to s. □

Next we turn our attention to the linearized caloric flow and and the corresponding pro-
jection map. To set the notations, let a be a caloric connection, and b̃ a linearized data set.
Its projection b = Πab̃ is a linearized caloric data set. Our goals will be to

• Provide Ẇ
σ,p

frequency envelope bounds for the projection map b̃ → b.
• Provide Ẇ

σ,p
frequency envelope bounds for the linearized Yang–Mills heat flow of b.

We begin with a frequency envelope bound for the projection map, which is analogous to
Lemma 7.12:

Lemma 7.24. Let a ∈ CQ with energy ≤ E, and with a Ḣ
1
(−δ, S) frequency envelope. Let

b̃ ∈ L2, and let b = Πab̃ be its caloric projection.

(1) Let (σ, p) be in the range −2 < σ < 4
p
− 1, and let dσ,pk be a (−δ, S) frequency envelope

for b̃ in Ẇ
σ,p
, which is δ-compatible with ck. Then b satisfies the bound

∥Pkb∥Ẇσ,p ≲Q,E dσ,pk . (7.75)

(2) Suppose that 4
p
−1 ≤ σ < 4

p
. Let cσ,pk be a (−δ, S) frequency envelope for a in Ẇ

σ,p
, and let

dk, respectively dσ,pk be (−δ, S) frequency envelopes for b̃ in Ḣ
1
, respectively Ẇ

σ,p
, which

are δ-compatible with ck. Assume also that d′k = ckd
[1]
k + dkc

[1]
k is a (−δ, S) frequency

envelope for ∂ℓb̃ℓ in L2. Then

∥Pkbj∥Ẇσ,p + ∥PkF0j(s)∥Ẇσ,p ≲Q,E dσ,pk + cσ,pk (c · d)≤k. (7.76)

Note that the frequency envelope in (7.76) is bounded by eσ,pk in (7.69).

Proof. Proof of (1). As in the proof of Lemma 7.12, we begin by solving the covariant
parabolic flow for F0j, with data

f0j = b̃.

By Theorem 4.7, this yields the parabolic bounds

∥PkF0j∥Ẇσ,p ≲ dσ,pk (1 + 22ks)−N . (7.77)

Now
b = b̃−Da0

where

a0 = −
∫︂ ∞

0

DℓFℓ0ds.
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By the previous estimate and compatibility, we obtain the bound

∥Pka0∥Ẇσ+1,p ≲ dσ,pk (7.78)

which in turn leads to the desired bound for Da0,

∥PkDa0∥Ẇσ,p ≲ dσ,pk , (7.79)

where we again used compatibility.

Proof of (2). Here the bound (7.78) still holds, but it no longer implies (7.79). Precisely,
the only difficulty occurs in the expression [a, a0] for the high-low interactions. In that case
we use

∥P≤ka0∥L∞ ≲
∑︂
j≤k

∥Pja0∥Ḣ2 ≲ (c · d)≤k,

which is derived from the bound on ∂ℓb̃ℓ (see the proof of Proposition 7.5). This is combined
with the bound ∥Pka∥Ẇσ,p ≤ cσ,pk . □

Next we consider the regularity of linearized caloric flows, and in particular prove the B
bounds in part (1) of the proposition:

Lemma 7.25. Let a ∈ CQ with energy ≤ E and with a Ḣ
1
(−δ, S) frequency envelope ck.

Let (σ, p) be as in (7.68), and let dσ,pk be a (−δ, S) frequency envelope for b in Ẇ
σ−1,p

, which
is δ-compatible with ck. Then b satisfies the bound

∥PkB(s)∥
Ẇ

σ−1,p ≲Q,E,N dσ,pk (1 + 22ks)−N . (7.80)

Proof. We proceed exactly as in part (1) of the previous proof (with a caution, however, that
the scaling of dσ,pk is different!). Observe that

Bj(s) = ∂0Aj(s) = F0j(s)−DjA0(s).

In view of (7.77), it only remains to estimate DA0(s). For A0(s), we have the representation

A0(s) = −
∫︂ ∞

s

DℓFℓ(s̃) ds̃.

Thus, the desired estimate for DA0(s) follows by integration from infinity to s, as in the
proof of Lemma 7.24. □

Finally, we consider difference bound (which is the only use we have for the previous
projection bounds):

Lemma 7.26. (1) Consider two caloric connections a(0), a(1) ∈ CQ and energy ≤ E so that
(7.34) holds. Let ck and cσ,pk , respectively dσ,pk , be frequency envelopes for a(0), a(1), re-
spectively a(0)− a((1), as in the assumptions of Proposition 7.21. Then there exists a one
parameter family a(h) of caloric data in C2Q with energy ≤ 2E, so that

∥Pka
(h)∥Ẇσ,p ≲Q,E cσ,pk , (7.81)

as well as

∥Pk∂ha
(h)∥Ẇσ,p ≲Q,E eσ,pk . (7.82)
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(2) In addition, let b(0), b(1) be corresponding linearized caloric data sets with Ẇ
σ−1,p

(−δ, S)
frequency envelopes cσ,pk , respectively dσ,pk for the difference, as in the assumptions of
Proposition 7.21. Then there exists a corresponding family of linearized caloric data sets
b(h) with similar bounds,

∥Pkb
(h)∥

Ẇ
σ−1,p ≲Q,E cσ,pk , (7.83)

as well as

∥Pk∂hb
(h)∥

Ẇ
σ−1,p ≲Q,E eσ,pk . (7.84)

Proof. Proof of (1). We will prove that the family a(h) constructed in Proposition 7.17
has all the desired properties. We use the same notation as there. The first bound (7.81)
is a direct consequence of the mapping properties of the caloric projection operator Cal in
Lemma 7.22.

Next we consider the bound for ∂ha
(h), which is obtained by

∂ha
(h) = Ad(O(h))∂hã

(h)
j − (D(a))jO

(h)
;h = Πa(h)Ad(O

(h))∂hã
(h),

where the last equality follows from the uniqueness statement in Proposition 7.9. By

Lemma 7.3 and compatibility, it follows that dσ,pk , dk and d′k = ckd
[1]
k + dkc

[1]
k , respec-

tively, are frequency envelopes for Ad(O(h))∂hã
(h) in Ẇ

σ,p
, for Ad(O(h))∂hã

(h) in Ḣ
1
and

for ∂ℓ(Ad(O(h))∂hã
(h)
ℓ ) in L2, respectively. Then the desired bound (7.82) follows from

Lemma 7.24.(2).

Proof of (2). We proceed again as in Proposition 7.17, from which we borrow the notation

and equations. Given a(h) constructed in part (1), we first define b̃
(h)

by linearly interpolating
between b(0) and b(1). These have the desired regularity but are not yet on the tangent space
of the caloric manifold, so we project, setting

b(h) = Πa(h) b̃
(h)

.

Now the b(h) bound (7.81) is a consequence of Lemma 7.24.
To estimate ∂hb

(h) we need ∂hDa0.

∂hDa0 = D∂ha0 + [∂ha, a0].

The second term is easy to estimate using the previous Ẇ
σ,p

bound for ∂ha and the Ḣ
1

bound for a0 in Lemma 7.15, as

Ẇ
σ,p · Ḣ1 → Ẇ

σ−1,p
.

It remains to bound ∂ha0 in Ẇ
σ,p
. Exactly as in Proposition 7.17, we use another round of

the “infinitesimal de Turck trick”, where we introduce a dynamical component Ah satisfying
(7.45), (7.46) and (7.47). We have

∂sDhA0 = [DℓFℓh, A0] + [F ℓ
0 , Fℓ0] +DjDhFj0,

where DhFj0 solves the covariant heat equation (7.49) with inhomogeneity Gj as in (7.50),

and with initial data ∂hb̃.
By Theorem 4.7 and the prior bounds at s = 0, we already have

∥PkFhj∥Ḣ1 ≲ (dk + ck(c · d)≤k)(1 + 22ks)−N , ∥PkF0j∥L2 ≲ ck(1 + 22ks)−N ,
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∥PkFhj∥Ẇσ,p ≲ (dσ,pk + cσ,pk (c · d)≤k)(1 + 22ks)−N , ∥PkF0j∥Ẇσ−1,p ≲ cσ,pk (1 + 22ks)−N .

Hence for Gi (which is, schematically, [DFh, F0]+[Fh,DF0]) we obtain, by Littlewood–Paley
trichotomy,

∥PkGi∥s 1
2 Ẇ

σ−2,p
+s1−Ẇ

σ−1−δ,p ≲ eσ,pk (1 + 22ks)−N .

where, of course, both s
1
2 Ẇ

σ−2,p
and s1−Ẇ

σ−1−,p
have the same scaling as Ẇ

σ−3,p
. The

worst terms arise from (i) high× low interaction in [DFh, F0], (ii) low× high interaction in
[Fh,DF0] , and (iii) high× high → low for both terms. These give (i) dσ,pk + cσ,pk (c · d)≤k in

s
1
2 Ẇ

σ−2,p
, (ii) cσ,pd

[1]
k in s

1
2 Ẇ

σ−2,p
and (iii) dσ,pk + cσ,pk (c · d)≤k in s1−Ẇ

σ−1−δ,p
, respectively.

Recall from (7.69) that the resulting frequency envelopes add up to eσ,pk .
Then solving the parabolic equation for DhF0i we obtain

∥PkDhF0i∥Ẇσ−1,p ≲ eσ,pk (1 + 22ks)−N .

By (7.48), this implies that

∥∂sDhA0∥Ẇσ−2,p ≲ eσ,pk (1 + 22ks)−N ,

which in turn, after integration from infinity, yields the desired bound for DhA0,

∥DhA0∥Ẇσ,p ≲ eσ,pk (1 + 22ks)−N . □

As a consequence of the last result, we are able to provide the difference bounds in part
(2) of the proposition. These are obtained by combining the last lemma with the linearized
bounds in Lemma 7.25. □

Our next goal is to compare our caloric heat flow for (A,B) with the corresponding linear

heat flow. We do this first at the linear level, where we can prove a Ẇ
σ,p

counterpart of
Proposition 7.20. From here on we assume that

0 < σ <
4

p
, 2 < p < ∞.

To the pair (σ, p) we associate another pair (σ1, p1) so that the following relations hold:

0 ≤ σ1 < σ,

respectively,
4

p1
− σ1 = 2(

4

p
− σ).

These are so that we have the scaling equivalence (and bilinear multiplicative property)

Ẇ
σ,p · Ẇ σ,p ∼ Ẇ

σ1,p1
.

Proposition 7.27. Let (a, b) ∈ TL2C be a linearized caloric initial data set, with Ḣ
1 × L2

(−δ, S)-frequency envelope ck and Ẇ
σ,p × Ẇ

σ−1,p
(−δ, S)-frequency envelope cσ,pk , which is

δ-compatible with ck. Then its Yang–Mills heat flow satisfies the bounds

∥(1− s∆)NAj(s)∥Ẇσ1,p1 + ∥(1− s∆)NFij(s)∥Ẇσ1−1,p1 ≲Q,E,N 2−k(s)cσ,pk(s)c
σ,p[δ]
k(s) , (7.85)

∥(1− s∆)NBj(s)∥Ẇσ1−1,p1 + ∥(1− s∆)NFi0(σ)∥Ẇσ1−1,p1 ≲Q,E,N 2−k(s)cσ,pk(s)c
σ,p[δ]
k(s) (7.86)

respectively,

∥PkDA∥Ẇσ1,p1 + ∥PkDB∥
Ẇ

σ1−1,p1 ≲Q,E cσ,pk c
σ,p[δ]
k . (7.87)
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Similarly, if (a(0), b(0)) and (a(1), b(1)) are two close linearized caloric initial data sets with
frequency envelopes ck, c

σ,p
k , dk, d

σ,p
k satisfying the assumptions of Proposition 7.21, then we

have the difference bounds

∥(1− s∆)NδAj(s)∥Ẇσ1,p1 + ∥(1− s∆)NδFij(s)∥Ẇσ1−1,p1

≲Q,E,N 2−k(s)(cσ,pk(s)e
σ,p[δ]
k(s) + eσ,pk(s)c

σ,p[δ]
k(s) ),

(7.88)

∥(1− s∆)NδBj(s)∥Ẇσ1−1,p1 + ∥(1− s∆)NδFi0(s)∥Ẇσ1−1,p1

≲Q,E,N 2−k(s)(cσ,pk(s)e
σ,p[δ]
k(s) + eσ,pk(s)c

σ,p[δ]
k(s) ),

(7.89)

respectively,

∥PkδDA(s)∥Ẇσ1,p1 + ∥PkδDB(s)∥
Ẇ

σ1−1,p1 ≲Q,E cσ,pk e
σ,p[δ]
k + eσ,pk c

σ,p[δ]
k . (7.90)

Here for all DB bounds we make the additional assumption σ > 1
2
.

Proof. We proceed as in the proof of Proposition 7.20. Again, the proof is tedious but
straightforward. We focus on the key structural aspects, and omit the details.

First we estimate Fij, using the representation (7.61). The same argument applies to F0j.

For the bilinear terms in the integral we estimate both factors using the Ẇ
σ,p

envelopes.
To fix the notations, consider the worst term [A, ∂F ]. Then using the Littlewood-Paley
trichotomy we have two main contributions,

Fij(s) ≈ 2−2kP≤k(s)[A<k(s), ∂F<k(s)] +
∑︂

k>k(s)

2−2kP≤k(s)[Ak, ∂Fk]

In the second term we have additional off-diagonal decay as we only need to apply Bernstein
for the product. In the first, however, if A has lower frequency then we need to apply
Bernstein separately for A, and so we can only use an Lq bound for A.

Next we estimate DA, for which we use the representation (7.62). The integrand is quite
similar to the one above, but now we integrate to infinity. Thus the leading term is

DA(s) ≈
∑︂

k1,k2≤k(s)

2−2kmax [Ak1 , ∂Fk2 ]

and when we consider PkDA(s) we arrive at the same two cases as above, with the same
final result.

To estimate Ai we use the same analysis one derivative higher, via (7.63). The same
applies to A0 via (7.65), which implies the B bound.
Finally we consider the DB bound, where we use

DkBk = −2

∫︂ ∞

0

[Bj,DiFij]ds

The worst contribution is in the high× high → low case,

DkBk ≈
∑︂
j>k

2−2jPk(PjB · ∂PjF ).

The derivative in front of PjF gives one more 2j, so we only have 2−j left. This is where we
need to assume that σ > 1

2
.

The estimates for the differences are similar, using part (2) of Proposition 7.21 and Propo-
sition 7.16. □
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We end this subsection by fixing some parameters for the ensuing analysis. For our goal
below, we will need to work with five different sets of exponents (σ(0), p(0)), (σ(1), p(1)), . . . ,
(σ(4), p(4)). Their choice is somewhat flexible, within a range. We describe it in the following
table14:

(σ, p) Scaling Lq
t match σ constraint p constraint (σ1, p1)

(σ(0), p(0)) Ḣ
1

L∞ 1

2
< σ(0) < 1 2 < p < 4 (0, 2)

(σ(1), p(1)) Ḣ
5
4 L4 1

2
< σ(1) <

7

12
3 < p <

16

5
(
1

2
, 2)

(σ(2), p(2)) Ḣ
5
4
+σ0

L4− 1

2
+ 2σ0 < σ(2) <

7

12
− 5σ0

3
p < 3 (

1

2
+ 2σ0, 2)

(σ(3), p(3)) Ḣ
4
3 L3 1

3
< σ(3) <

4

9

18

5
< p < 4 (

1

3
,
12

5
)

(σ(4), p(4)) Ḣ
3
2
−2σ0

L2+ 1

6
− 4σ0 < σ(4) <

1

6
− 10σ0

3
p < 6 (

1

6
− 4σ0,

24

5
)

Here σ0 is a small parameter,

0 < σ0 <
1

22
.

The above proposition applies the these sets of indices as follows:

Corollary 7.28. (1) All bounds in Proposition 7.27 apply for the sets of indices (σ(0), p(0)),
(σ(1), p(1)) and (σ(2), p(2)).

(2) The bounds in Proposition 7.27, except for the DB bounds, apply for the sets of indices
(σ(3), p(3)) and (σ(4), p(4)).

To keep the notation simpler, in what follows we denote the corresponding homogeneous

Sobolev spaces, and the associated frequency envelopes by Ẇ
(j)
, respectively c

(j)
k for j =

0, 1, 2, 3, 4. For the most part, the following embeddings will suffice for our estimates:

Ẇ
(0) ⊂ Ẇ

1
2
, 8
3 , Ẇ

(1) ⊂ Ẇ
1
2
, 16
5 , Ẇ

(2) ⊂ Ẇ
1
2
−σ0,3

,

Ẇ
(3) ⊂ Ẇ

1
3
,4
, Ẇ

(4) ⊂ Ẇ
1
6
−2σ0,6

.
(7.91)

The reason we go past the range of these embeddings is to be able to gain off-diagonal decay
in several quadratic and cubic estimates.

We fix a universal constant δ0 > 0, which is sufficiently small relative to the five pairs
(σ(0), p(0)), . . . , (σ(4), p(4)), as well as σ0. This will be our lower admissibility range, as well
as compatibility parameter, for all the frequency envelopes we use.

14Lq
t refers to the t-integrability in the matching Ḣ

1
-Strichartz norm.

92



Given a linearized caloric data set (a, b) ∈ TL2C, we let Q, E be upper bounds Q(a) ≤ Q
and Ee[a] ≤ E . We let ck, respectively c

(j)
k , be (−δ0, S) frequency envelopes for (a, b) in

Ḣ
1 × L2, respectively in Ẇ

σ(j),p(j) × Ẇ
σ(j)−1,p(j)

.
Next, given a pair of linearized caloric data sets (a(0), b(0)), (a(1), b(1)) ∈ TL2C, with again

let Q, E be upper bounds Q(a(0)),Q(a(1)) ≤ Q and Ee[a(0)], Ee[a(1)] ≤ E , which are close in

the sense of (7.34). We let ck, respectively c
(j)
k , be joint (−δ0, S) frequency envelopes in

Ḣ
1 × L2, respectively in Ẇ

σ(j),p(j) × Ẇ
σ(j)−1,p(j)

. For the difference (a(0) − a(1), b(0) − b(1)),

we let dk, respectively d
(j)
k , be (−δ0, S) frequency envelopes in Ḣ

1 × L2, respectively in

Ẇ
σ(j),p(j) × Ẇ

σ(j)−1,p(j)

.
In all cases above, we assume that c

(j)
k , dk, and d

(j)
k are δ0-compatible with ck.

7.5. Generalized Coulomb condition and Q. By now, we have repeatedly seen (and
took advantage of the fact) that caloric connections a and their linearizations b satisfy a
generalized type of Coulomb gauge condition

∂ℓaℓ = DA(a), ∂ℓbℓ = DB(a, b),

where the smooth maps DA and DB contain only quadratic and higher terms, and have
better regularity. As a remarkable corollary of the results proved in the preceding subsection,
we are now able to provide a better description of these maps. In particular, the main
quadratic part is described in terms of the explicit symmetric bilinear form Q with symbol

Q(ξ, η) =
|ξ|2 − |η|2

2(|ξ|2 + |η|2)
. (7.92)

Later, in the analysis of the hyperbolic Yang–Mills equation, we will use the explicit form of
the quadratic part, while the cubic and higher terms will only play a perturbative role.

Proposition 7.29. Let (a, b) ∈ TL2CQ be a linearized caloric data set with energy ≤ E.
Then ∂ℓaℓ = DA(a) and ∂ℓbℓ = DB(a, b) decompose into the quadratic and the higher order
parts

DA(a) =Q(a, a) +DA3(a),

DB(a, b) =
1

2
([a, b] + 2Q(a, b)) +DB3(a, b),

where Q is the symmetric bilinear form with symbol (7.92), and the remainders DA3, DB3

are maps containing cubic and higher order terms. Under the assumptions at the end of
Section 7.4, they obey the following bounds:

∥PkDA3∥L2 + ∥PkDB3∥
Ḣ

−1 ≲Q,Ec
(0)
k (c

(0),[δ0]
k )2, (7.93)

∥PkDA3∥
Ḣ

1
2
+ ∥PkDB3∥

Ḣ
− 1

2
≲Q,Ec

(1)
k (c

(1),[δ0]
k )2, (7.94)

∥PkDA3∥
Ḣ

1 + ∥PkDB3∥L2 ≲Q,Ec
(3)
k (c

(3),[δ0]
k )2. (7.95)
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as well as the corresponding difference bounds

∥PkδDA3∥L2 + ∥PkδDB3∥
Ḣ

−1 ≲Q,E(c
(0),[δ0]
k )2e

(0),[δ0]
k , (7.96)

∥PkδDA3∥
Ḣ

1
2
+ ∥PkδDB3∥

Ḣ
− 1

2
≲Q,E(c

(0),[δ0]
k )2e

(0),[δ0]
k , (7.97)

∥PkδDA3∥
Ḣ

1 + ∥PkδDB3∥L2 ≲Q,E(c
(3),[δ0]
k )2e

(3),[δ0]
k . (7.98)

We will also often write

DA2(a) = Q(a, a), DB2(a, b) =
1

2
([a, b] + 2Q(a, b)) .

To understand their mutual relation, note that DB is the not the linearization of DA, but
rather Dℓbℓ = DB + [aℓ, bℓ] is. We also remark that (7.95) and (7.98), respectively (7.95)
and (7.98), will be dynamically accompanied with L2

t , respectively L1
t , in Section 9 below.

Proof. We use the representation (7.62). The leading quadratic part is obtained using the
linear heat flow for A, and has the form

DA2(a) =

∫︂ ∞

0

[es∆aj, ∂k(es∆∂kaj − es∆∂jak)]ds.

Integrating this and symmetrizing in j and k yields the symbol

DA2(ξ, η) = − η2

ξ2 + η2
.

The desired expression (7.92) follows after antisymmetrization.
To estimate DA3 we write

DA3(a) =

∫︂ ∞

0

[A2,DkFkj] + [es∆aj, [Ak, Fkj]] + [es∆aj, ∂kFkj] ds.

All of (7.93), (7.94) and (7.95) are proved by estimating the integral on the right by
Littlewood–Paley trichotomy.

• For (7.93), we use the Ẇ
σ(0),p(0) ⊂ L4 bound for A and es∆a, the Ẇ

−1,4
bound for F ,

the L2 bound for A2 and the Ḣ
−1

bound for F.

• For (7.94), we use the Ẇ
σ(1),p(1) ⊂ L

16
3 bound for A and es∆a, the Ẇ

−1, 16
3 bound for F ,

the Ḣ
1
2 bound for A2 and the Ḣ

− 1
2 bound for F.

• For (7.95), we use the Ẇ
σ(3),p(3) ⊂ L6 bound for A and es∆a, the Ẇ

σ(3)−1,p(3) ⊂ Ẇ
−1,6

bound for F , the Ẇ
1
3
, 12
5 bound for A2 and the Ẇ

− 2
3
, 12
5 bound for F.

The argument for DB3 is similar, there we use the representation

DkBk = −2

∫︂ ∞

0

[Bj,DiFij]ds

where we expand all terms as the linear heat flow plus a quadratic error, so that

DB3 = −2

∫︂ ∞

0

[Bj,DiFij] + [et∆bj, [Ai, Fij]] + [et∆bj, ∂jFkj] + [Bj,Dj∂
kAk]ds.

Here ∂kAk yields only cubic contributions. □
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8. The dynamic Yang–Mills heat flow and the caloric Yang–Mills waves

Consider a sufficiently regular space-time connection At,x on J × R4, which solves the
inhomogeneous hyperbolic Yang–Mills equation

DαFαβ = wβ. (8.1)

Here, w is called the Yang–Mills tension field, and satisfies the constraint equation

Dβwβ = 0. (8.2)

Assume in addition that for each t, A(t) = Ax(t) is a caloric connection and B(t) = ∂tAx(t) ∈
TL2

A(t)C; in short, we call At,x an inhomogeneous caloric Yang–Mills wave.
To take advantage of the caloric gauge condition, we extend At,x = At,x,s as a dynamic

Yang–Mills heat flow on J ×R4 × [0,∞). Precisely, we adjoint the heat-time s ∈ [0,∞) and
consider the dynamic Yang–Mills heat flow At,x,s

Fsα = DℓFℓα, At,x(t, x, s = 0) = At,x(t, x),

under the local caloric gauge condition As = 0. By the (global) caloric gauge assumption,
the Yang–Mills heat flow A(t, x, s) exists globally in heat-time s, and tends to 0 as s → ∞.
Afterwards, it follows that A0(t, x, s) = At(t, x, s) also exists globally in heat-time s and
tends to 0 as s → ∞.
In order to study the problem (8.1) in the caloric gauge, we first need to clarify what is

a proper initial data set. Our starting point is the notion, introduced earlier, of a gauge

invariant data set (a, e) ∈ Ḣ
1 × L2, where ej = F0j is subject to the constraint Djej = w0.

On the other hand, once the gauge is fixed we expect to have control of a full initial data
set (A, ∂tA). However, these are not all independent due to the gauge condition, and at
least conceptually, we expect to see the same pattern as in the Coulomb gauge, namely that
A = Ax ∈ C and B = ∂tAx ∈ TL2

A C are the independent variables. Thus, we will call the
pair (A(t), B(t)) the initial data for the Yang–Mills connection At,x at time t in the caloric
gauge (see Definiton 2.25).

Our goals are now three-fold:

• To establish a one to one correspondence between the two initial data sets (a, e) and
(A,B).

• To show that the remaining initial data components A0 and ∂0A0 can be recovered in
an elliptic fashion from Ax and Bx.

• To understand the evolution of wν with respect to the heat-time.

Of course, our main interest lies in the homogeneous case wν = 0; for this purpose, it is not
immediately apparent why the third goal is important. However, it will shortly become clear
that there are multiple reasons. On the one hand, this turns out to be closely related to the
second goal above, even for the homogeneous case wν = 0. On the other hand, knowing that
the dynamic Yang–Mills heat flow A(s) at a heat-time s is a good approximate hyperbolic
Yang–Mills connection plays a key role in our induction on energy argument in [19].

Unrelated to the above objectives, in the last part of this section we turn the tables and
prove that we can transfer some L∞ type bounds in the opposite direction, namely from
the curvature (f, e) to the caloric data (a, b). This part has no further continuation in the
present paper, but will be very useful in the next article [19] in the context of the energy
dispersion.

95



We begin with the equivalence of the two notions of initial data sets:

Theorem 8.1. (1) Given any Yang–Mills initial data pair (ak, ek) ∈ Ḣ
1 × L2 such that

Q(a) < ∞, there exists a unique caloric gauge Yang–Mills data set (ãk, bk) ∈ Ḣ
1 × L2

and a0 ∈ Ḣ
1
, so that the initial data pair (ãk, ẽk) is gauge equivalent to (ak, ek), where

ẽk = bk −Dka0.

In addition, (ã, b) and a0 are unique up to constant gauge transformations, and depend
continuously on (a, e) in the corresponding quotient topology. Further, the map (a, e) ↦→
(ã, b) is locally C1 in the stronger topology15 H×L2 → H×L2, as well as in more regular
spaces HN ×HN−1 → HN ×HN−1 (N ≥ 2).

(2) Given any caloric gauge data (ak, bk) ∈ TL2C, there exists an unique a0 ∈ Ḣ
1
, depending

smoothly on (ak, bk) so that

ek = bk −Dka0

satisfies the constraint equation (1.14). Further, the map (a, b) → a0 is also Lipschitz
from HN ×HN−1 → HN for N ≥ 3.

This proves Theorem 2.26.

Proof. Proof of (1). For the first part we note that we can first place aj in the caloric
gauge, and thus reduce the problem to the case when ãj = aj. Then the fact that ek and ẽk
are gauge equivalent simply means that e = ẽ.
Both the existence and the uniqueness part for the decomposition

ek = bk −Dka0

comes from Proposition 7.9.

Proof of (2). For the second part, we note that the divergence equation for ek gives

DkDka0 = Dkbk + w0

so that a0 is obtained by solving this elliptic equation, see Theorem 4.1. □

Next we turn our attention to the expressions for A0 and ∂0A0. For A0 we will directly
use the above elliptic equation,

DkDkA0(s) = DkBk(s) + w0(s). (8.3)

In particular this will uniquely identify A0(0) as a smooth function

A0 = A0(A,B) = A2
0(A,B) +A3

0(A,B) (8.4)

where we will further separate the quadratic part and the higher order terms.
Alternately, we can also obtain A0 by integrating (5.26) to obtain the following formula

(see Remark 7.10):

A0(s) =

∫︂ ∞

s

DℓF0ℓ(s
′) ds′ =

∫︂ ∞

s

w0(s
′) ds′. (8.5)

15Here we impose again the condition lim|x|→∞ O(a) = I in order to fix the choice of O(a).
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We will use this expression to gain control of D0A0. Indeed, differentiating with respect to
t we arrive at

∂0A0(s) =

∫︂ ∞

s

∂0w0(s
′) ds′ = −

∫︂ ∞

s

Dkwk(s
′) + [A0, w0(s

′)] ds′ (8.6)

To continue we need to understand the evolution of w0, which is coupled to the evolution
of all wν ’s:

Lemma 8.2 (Deformation of the Yang–Mills tension). Let A = Aj dx
j + As ds be a suf-

ficiently regular dynamic covariant Yang–Mills heat flow, i.e. solution to (5.7). Then the
Yang–Mills tension wµ obeys the following covariant parabolic equation.

Dswν −DℓDℓwν = 2[F ℓ
ν , wℓ] + 2[F µℓ,DµFνℓ +DℓFνµ] (8.7)

For a proof, see [17, Appendix A]. We remark that in the last expression by symmetry all
terms cancel unless µ = 0, so we can rewrite it as

Dswν −DℓDℓwν = 2[F ℓ
ν , wℓ] + 2[F 0ℓ,D0Fνℓ +DℓFν0] (8.8)

For this system to be self-contained at fixed t, we need to avoid the D0 derivatives on the
right. This is achieved differently depending on whether ν is zero or not. For ν ̸= 0 we
simply apply the Bianchi identities to get

Dswν −DℓDℓwν = 2[F ℓ
ν , wℓ] + 2[F 0ℓ,DνF0ℓ + 2DℓFν0], ν ̸= 0 (8.9)

which does not involve ν = 0 at all. On the other hand if ν = 0 then we have

Dsw0 −DℓDℓw0 = 2[F ℓ
0 , wℓ]− 2[F0

ℓ, wℓ +DkFkℓ] = −2[F0
ℓ,DkFkℓ]. (8.10)

Thus the above computation shows that we can express D0A0(0) as a function

D0A0 = DA0(A,B) := DA2
0(B,B) +DA3

0(A,B)

which is again decomposed into a quadratic term and a higher order term. The aim of the
remaining subsections is to make all these decompositions quantitative rather than qualita-
tive.

In what follows, A or B without any subscripts refer to the spatial components Ax or Bx.
Moreover, A, B, A0, B0 etc. without (s) refers to the corresponding components at s = 0.
We use the convention set up at the end of Section 7.4, with (a, b) is replaced by (A,B).

8.1. The analysis of wν. We begin with the case when the initial data for w is w(s = 0) = 0,
i.e., our map is a homogeneous Yang–Mills wave. Then we have the following:

Proposition 8.3. Let At,x be a caloric Yang–Mills wave on I × R4 satisfying (A0, A) ∈
Ct(I; Ḣ

1 × CQ) with E [a] ≤ E. Then at fixed heat-time s > 0 we have

w(s) = w(A,B, s) = w2(A,B, s) +w3(A,B, s) (8.11)

where the quadratic part w2 has the form

w2
ν(B,B) = −2W(Bl, ∂νBl − 2∂lBν), ν ̸= 0 (8.12)

w2
0(A,B) = 2W(Bl, ∂2

kAl), ν ̸= 0 (8.13)
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where W is a symmetric bilinear form with symbol

W(ξ, η, s) =

∫︂ s

0

e−(s−s′)|ξ+η|2e−s′(|ξ|2+|η|2) ds′

=− 1

2ξ · η
e−s|ξ+η|2 (︁1− e2s(ξ·η)

)︁
.

(8.14)

Further, w satisfies the following bounds:

∥(1− s∆)Nw(s)∥
Ḣ

− 3
2
≲Q,E,N 2−

k(s)
2 c

(0)
k(s)c

(0)[δ0]
k(s) (8.15)

∥(1− s∆)Nw(s)∥
Ḣ

− 1
2−σ0

≲Q,E,N 2−σ0k(s)c
(1)
k(s)c

(1)[δ0]
k(s) (8.16)

respectively

∥(1− s∆)Nw3(s)∥
Ḣ

− 1
12

≲Q,E,N 2−
k(s)
12 c

(2)
k(s)c

(2)[δ0]
k(s) c

(4)[δ0]
k(s) + (c

(2)[δ0]
k(s) )2c

(4)
k(s) (8.17)

as well as corresponding difference bounds:

∥(1− s∆)Nδw(s)∥
Ḣ

− 3
2
≲Q,E,N 2−

k(s)
2 c

(0)[δ0]
k(s) e

(0)[δ0]
k(s) (8.18)

∥(1− s∆)Nδw(s)∥
Ḣ

− 1
2−σ0

≲Q,E,N 2−σ0k(s)c
(1)[δ0]
k(s) e

(1)[δ0]
k(s) (8.19)

respectively

∥(1− s∆)Nδw3(s)∥
Ḣ

− 1
12

≲Q,E,N 2−
k(s)
12 e

(2)[δ0]
k(s) c

(2)[δ0]
k(s) c

(4)[δ0]
k(s) + (c

(2)[δ0]
k(s) )2e

(4)[δ0]
k(s) (8.20)

where

δw2,3(s) = w2,3(A(0), B(0), s)−w2,3(A(1), B(1), s).

Proof. Here we use the equations (8.9), respectively (8.10), recalling that at the initial time
F0ℓ −Bℓ = DℓA0 is a quadratic term which is better behaved.
To compute the leading quadratic component of wν we proceed as follows, first for ν ̸= 0:

w2
ν ≈ 2

∫︂ s0

0

e(s−s0)∆[es∆F 0l, es∆(DνF0ℓ + 2DℓFν0)]ds

≈ − 2

∫︂ s0

0

e(s−s0)∆[es∆Bℓ, es∆(∂νBℓ − 2∂ℓBν)]ds

= − 2W(Bℓ, ∂νBℓ − 2∂ℓBν)

where W has the symbol

W(ξ, η) =

∫︂ s0

0

e−(s−s0)(ξ+η)2e−s(ξ2+η2)ds

We remark that B has size (ξ2 + η2) localized in the region |ξ + η| ≲ s
− 1

2
0 .

Next we consider ν = 0, where we use (8.10) instead. Then a computation which is similar
to the one above yields

w2
0 = −2W(Bℓ, ∂k∂kAℓ)

To prove the bounds in the proposition we use Theorem 4.8. Thus we need to estimate
the right hand side in the equations (8.9) respectively (8.10).
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For the bound (8.15) we use Proposition 7.21 to estimate

∥(1− s∆)N [F (s),DF (s)]∥
Ḣ

− 3
2
≲ 2

3k(s)
2 (c

(0)
k(s))

2

and then apply heat flow bounds.
For the bound (8.16) we use the same bounds to similarly estimate

∥(1− s∆)N [F (s),DF (s)]∥
Ḣ

− 1
2−σ0

≲E 2−(2+σ0)k(s)(c
(1)
k(s))

2

The same applies for (8.17). Here we use again Proposition 7.21 for F , while the contribution
of the nonlinear terms F in F is easy to account for based on Proposition 7.27.

Finally, the difference bounds are proved similarly. □

8.2. The analysis of A0. Our main result is as follows:

Proposition 8.4. Let At,x be a caloric Yang–Mills wave on I × R4 satisfying (A0, A) ∈
Ct(I; Ḣ

1 × CQ) with E [a] ≤ E. Then for A0 we have the representation:

A0 = A0(A,B) = A2
0(A,B) +A3

0(A,B) (8.21)

where A2
0(A,B) is a bilinear form of the form

A2
0(A,B) = (−∆)−1([A,B] + 2Q(A,B)). (8.22)

and A3
0(A,B) is a higher order term, linear in B, so that the following bounds hold:

∥PkA
2,3
0 (A,B)∥

Ḣ
1 ≲Q,E c

(0)
k c

(0)[δ0]
k (8.23)

and (corresponding to L2
t )

∥PkA
2,3
0 (A,B)∥

Ḣ
3
2
≲Q,E c

(1)
k c

(1)[δ0]
k (8.24)

as well as (corresponding to L1
t )

∥PkA
3
0(A,B)∥

Ḣ
2 ≲Q,E c

(2)[δ0]
k c

(2)
k c

(4)
k + (c

(2)
k )2c

(4)[δ0]
k . (8.25)

We also have the corresponding difference bounds:

∥PkδA
2,3
0 ∥

Ḣ
1 ≲Q,E c

(0)[δ0]
k e

(0)[δ0]
k , (8.26)

∥PkδA
2,3
0 ∥

Ḣ
3
2
≲Q,E c

(1)[δ0]
k e

(1)[δ0]
k , (8.27)

∥PkδA
3
0∥Ḣ2 ≲Q,E e

(2)[δ0]
k c

(2)[δ0]
k c

(4)[δ0]
k + (c

(2)[δ0]
k )2e

(4)[δ0]
k , (8.28)

where
δA2,3

0 = A2,3
0 (A(0), B(0))−A2,3

0 (A(1), B(1)).

Proof. We only sketch the proof, emphasizing the structural points.
For A0 we already have the elliptic equation

∆AA0 = DkBk

On the other hand for Dkbk we have the representation in Proposition 7.29. Thus we have

∆AA0 = DB2(a, b) +DB3(a, b)

In particular the quadratic part of A0 is given by

A2
0(a, b) = ∆−1DB2(a, b)
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and its symbol is directly obtained from the symbol of DB2,

A2
0(ξ, η) =

1

(ξ + η)2
DB2(ξ, η)

The bounds (8.23) and (8.24) are immediate consequences of the estimates in Proposi-
tions 7.27, 7.29, combined with Theorem 4.1.

It remains to prove the bound (8.25). The cubic part of A0(a, b) is given by

∆AA
3
0(a, b) = DB3(a, b)− 2[Ak, ∂kA

2
0]− [∂kAk + A2

k,A
2
0]

We will separately bound the three terms in the right hand side above in ℓ1L2. We have
already proved this for the first term in Proposition 7.29, and the remaining two terms are

similar using only the Ḣ
3
2
+2σ0

bound for A0 (combined with the Ẇ
1
6
−2σ0,6

bound for A, in
the worst case), which in turn is proved similarly as (8.24). □

The above description of A0 suffices for our description of the caloric Yang–Mills wave at
heat-time s = 0. However, we will also need to show that at s > 0, A(s) is a good approximate
caloric Yang–Mills wave. One difference between the two is that A0(s) ̸= A0(A(s), B(s));
this is because solving the w equation with zero Cauchy data at time 0, respectively zero
Cauchy data at time s, yields different results. Nevertheless, we need to compare the two:

Proposition 8.5. Let At,x be a caloric Yang–Mills wave on I × R4 satisfying (A0, A) ∈
Ct(I; Ḣ

1 × CQ) with E [a] ≤ E. Let At,x(s) be the corresponding dynamic Yang–Mills heat
flow. Then for A0(s) we have the representation

A0(s) = A0(A(s), B(s)) +A2
0;s(A,B) +A3

0;s(A,B) (8.29)

where A2
0;s(A,B) is a bilinear form

A2
0;s(A,B) = ∆−1w2

0(A,B, s).

Moreover, under the additional assumption that all frequency envelope bounds are (−δ, δ)-
admissible, the following bounds hold:

∥(1− s∆)NA2,3
0;s(A,B)∥

Ḣ
1
2
≲Q,E,N 2−

k(s)
2 (c

(0)
k(s))

2, (8.30)

∥(1− s∆)NA2,3
0;s(A,B)∥

Ḣ
3
2−σ0

≲Q,E,N 2−σ0k(s)(c
(1)
k(s))

2, (8.31)

respectively

∥(1− s∆)NA3
0;s(A,B)∥

Ḣ
2− 1

12
≲Q,E,N 2−

k(s)
12 (c

(2)
k(s))

2c
(4)
k(s). (8.32)

In the next section, the three bounds above would be dynamically accompanied by L∞
t , L2

t

respectively L1
t .

Proof. Denote by w̃ the solutions to the w equations (8.9)-(8.7) but with initial data w̃(s) = 0.
Then we have

A0(s)−A0(A(s), B(s)) =

∫︂ ∞

s

(w0 − w̃0)(s
′)ds′.

The function z0 = w0 − w̃0 solves the homogeneous heat equation

(∂s −∆A)z0 = 0, z0(s) = w0(s).
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For w0(s) we can use the Ḣ
− 3

2 , respectively Ḣ
− 1

2
−σ0

bounds in (8.15) and (8.16) to estimate
z0(s

′) in the same spaces in a parabolic fashion. Then (8.30) and (8.31) directly follow. The
same applies to the contribution of w3

0(s) in (8.32). It remains to consider the contribution
of w2

0(s) in (8.32). This corresponds to replacing z0 above by the solution z20 to

(∂s −∆A)z
2
0 = 0, z0(s) = w2

0(s).

We consider to the expansion

z20(s
′) = es

′∆w2
0(s) +

∫︂ s′

s

e(s
′′−s)∆([A,Dz20 ] + [DA, z20 ])(s

′)ds′′.

For z20 , we use the Ḣ
− 1

2
−σ0

derived from (8.16), and for A we use the Ẇ
σ(4),p(4)

norm. □

8.3. The analysis of D0A0. Here we have a representation as follows:

Proposition 8.6. Let At,x be a caloric Yang–Mills wave on I × R4 satisfying (A0, A) ∈
Ct(I; Ḣ

1 × CQ) with E [a] ≤ E. Then for ∂0A0 we have the representation

∂0A0 = DA2
0(B,B) +DA3

0(A,B) (8.33)

where the two terms are quadratic, respectively cubic and higher in A,B, and DA2
0(B,B)

takes the form

DA2
0(B,B) = −2∆−1Q(B,B).

Further, they satisfy the bounds

∥PkDA2,3
0 ∥L2 ≲Q,E c

(0)
k c

(0)[δ0]
k (8.34)

∥PkDA2,3
0 ∥

Ḣ
1
2
≲Q,E c

(1)
k c

(1)[δ0]
k (8.35)

∥PkDA3
0∥Ḣ1 ≲Q,E c

(2)
k c

(2)[δ0]
k c

(4)[δ0]
k + (c

(2)[δ0]
k )2c

(4)
k (8.36)

as well as the corresponding difference bounds (cf. Proposition 8.4).

Proof. This is obtained by integrating the previous representation and bounds for wk via the
formula (8.6). Precisely, we have

∂0A0 =

∫︂ ∞

0

[Aν , wν ] + ∂jwj ds.

The first term above is cubic, and it suffices to combine A and w bounds (Ẇ
1
6
−2δ

and Ḣ
− 1

2
+δ

in the worst case for (8.36)).
So it remains to consider the ∂jwj term. For the quadratic part we integrate the symbol

of W(s) ∫︂ ∞

0

∫︂ s0

0

e−s(ξ2+η2)e(s0−s)(ξ+η)2dsds0 =
1

(ξ2 + η2)(ξ + η)2

which combines with the argument of W , namely ∂j[Bl, ∂jBl] = [Bl,∆Bl]. It remains to
account for the cubic term in w, for which we use the bounds in Proposition 8.3. This is
exactly the same argument as for A0. □
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Remark 8.7. In the proof of the preceding proposition, we can also obtain the quadratic
symbol in a more direct fashion, by returning to the A0 equation. Retaining only quadratic
terms, we have

∂0A0 ≈ ∂0A0(a, b) = A0(b, b) +A0(a, ∂tb) ≈ A0(b, b) +A0(a,∆a)

At the symbol level we get for the first expression after antisymmetrization

ξ2 − η2

(ξ + η)2(ξ2 + η2)

whereas the second expression vanishes after antisymmetrization.

As in the case of A0, we also need to compare D0A0(s) with DA0(A(s), B(s)).

Proposition 8.8. Let At,x be a caloric Yang–Mills wave on I × R4 satisfying (A0, A) ∈
Ct(I; Ḣ

1 × CQ) with E [a] ≤ E. Let At,x(s) be the corresponding dynamic Yang–Mills heat
flow. Then for D0A0(s) we have the representation

D0A0(s) = DA0(A(s), B(s)) +DA2
0;s(A,B) +DA3

0;s(A,B) (8.37)

where DA2
0;s(A,B) is a bilinear form

DA2
0;s(A,B) = ∆−1∂kw2

k(A,B, s).

Moreover, under the additional assumption that all frequency envelope bounds are (−δ, δ)-
admissible, the following bounds hold:

∥(1 + s∆)NDA2,3
0;s∥

Ḣ
− 1

2
≲Q,E,N 2−

k(s)
2 (c

(0)
k(s))

2 (8.38)

∥(1 + s∆)NDA2,3
0;s∥

Ḣ
1
2−σ0

≲Q,E,N 2−σ0k(s)(c
(1)
k(s))

2 (8.39)

respectively

∥(1 + s∆)NDA3
0;s∥

Ḣ
1− 1

12
≲Q,E,N 2−

k(s)
12 (c

(2)
k(s))

2c
(4)
k(s). (8.40)

Proof. The proof is similar to that of Proposition 8.5 for A2,3
0;s; we omit the details. □

8.4. Turnabout: from curvature to caloric data. Throughout this section so far, we
have adopted the viewpoint that (a, b) should be considered as the canonical initial data
set. However, we also briefly need to turn the tables, and prove an estimate for caloric data
(a, b) and its caloric flow which is derived from information about initial curvature (f, e).
This is one of the end results of this paper, which will be used in [19] to transfer small
“inhomogeneous energy dispersion” information from (f, e) to (A,B).

Proposition 8.9. Let ck be a (−δ0, δ0) frequency envelope for (a, b) in Ḣ
1 × L2, and let dk

be a (−δ0, δ0) frequency envelope for (f, e) in Ẇ
−2,∞

. Then the following bounds hold:

2−k∥PkA(s)∥L∞ + 2−2k∥PkB(s)∥L∞ ≲Q,E,N(dk)
1
2 (1 + 22ks)−N , (8.41)

∥Pk∂
jAj(s)∥L2 + ∥Pk∂

jBj(s)∥Ḣ−1 ≲Q,E,N(dk)
1
2 ck(1 + 22ks)−N , (8.42)

∥(1 + s∆)NA(s)∥L2 + ∥(1 + s∆)NB(s)∥
Ḣ

−1 ≲Q,E,N2
−k(s)(dk(s))

1
2 ck(s). (8.43)

One can view this as a non-symmetric variant of Propositions 7.21, 7.27 and 7.29. Here,
there is no need to consider more general (−δ0, S) frequency envelopes.
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Proof. We proceed in several steps, omitting the dependence of implicit constants onQ, E , N :

Step 1: Fij and F0j bounds. For the curvature components we have the covariant
heat equations (5.9) therefore we are in a position to apply the bounds in Theorem 4.7.

Unfortunately the Ẇ
−2,∞

norm is borderline inadmissible there. To rectify this we work

instead in the intermediate Ẇ
−1,4

norm, for which by interpolation we have the initial data
bounds

∥Pk(f, e)∥Ẇ−1,4 ≲ (ckdk)
1
2

By Theorem 4.7 this yields the corresponding parabolic bounds for their caloric flows,

∥PkFαβ∥Ẇ−1,4 ≲ (ckdk)
1
2 (1 + 22ks)−N . (8.44)

Step 2: Aj and A0 bounds. These are obtained by integrating from infinity

Aα(s) = −
∫︂ ∞

s

DjFjα(s1)ds1.

We estimate in L4 using (8.44), Bernstein’s inequality and the Littlewood-Paley trichotomy

∥PkD
jFjα(s1)∥L4 ≲ ∥Pk∂

jFjα(s1)∥L4 + ∥Pk[A
j, Fjα(s1)]∥L4

≲ 22k

[︄
(ckdk)

1
2 (1 + 22ks1)

−N +
∑︂
j>k

c
3
2
j dj(1 + 22js1)

−N

]︄
.

After integration in s1 this yields

∥PkAα(s)∥L4 ≲ (ckdk)
1
2 (1 + 22ks)−N . (8.45)

Step 3: B bounds. Recalling that

Bj = F0j +DjA0 = F0j + ∂jA0 + [Aj, A0]

we use (8.44) and (8.45) for the first two terms and combine Ḣ
1
and L4 bounds for the last

term to obtain
∥PkBj(s)∥Ẇ−1,4 ≲ (ckdk)

1
2 (1 + 22ks)−N . (8.46)

By Bernstein’s inequality, this bound together with (8.45) complete the proof of (8.41).

Step 4: the remaining bounds (8.42) and (8.43). These follow from the estimates
(7.85) and (7.87) by choosing (σ1, p1) = (0, 2), and appropriate (σ, p) interpolating between
(1, 2) and (0, 4). □

9. The wave equation for Ax

Our main goal here is to interpret the hyperbolic Yang–Mills equation in the caloric gauge
as a system of nonlinear wave equations for Ax. To be more precise, we seek to formulate
the equations in a form where all the quadratic terms are explicit, while the cubic terms
satisfy favorable frequency envelope bounds which only involve the non-endpoint Strichartz
type norms for A.

In this section, by time we always refer to the hyperbolic-time t. Accordingly, in this
section the shorthand LqLp means the space-time norm Lq

tL
p
x, not the space-heat-time norm

Lq
sL

p
x as it were in the prior sections. Otherwise, the conventions fixed at the end of Sec-

tion 7.4 are still in effect.
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For economy of notation, we introduce the following definition:

Definition 9.1. Let X, Y be dyadic norms.

• A map F : X → Y is said to be envelope-preserving of order ≥ n (n ∈ N with n ≥ 2) if
the following property holds: Let c be a (−δ0, S) frequency envelope for a in X. Then

∥PkF(a)∥Y ≲∥a∥X (c
[δ0]
k )n−1ck.

• A map F : X → Y is said to be Lipschitz envelope-preserving of order ≥ n if, in addition
to being envelope preserving of order ≥ n, the following additional property holds: Let
c be a common (−δ0, δ0) frequency envelopes for a1 and a2 in X, and let d be a (−δ0, δ0)
frequency envelope for a1 − a2 in X. Then

∥Pk(F(a1)− F(a2))∥Yk
≲∥a1∥X ,∥a2∥X cn−1

k ek.

where ek = dk + ck(c · d)≤k,

Our main result is as follows:

Theorem 9.2. Let At,x = (A0, A) ∈ Ct(I; Ḣ
1×CQ) with (∂tA0, ∂tA) ∈ Ct(I;L

2×TL2

A(t)CQ) be
a solution to (1.13) with energy E. Then its spatial components A = Ax satisfy an equation
of the form

□AAj = Pj[A, ∂xA] + 2∆−1∂jQ(∂αA, ∂αA) +Rj(A), (9.1)

together with a compatibility condition

∂ℓAℓ = DA(A) := Q(A,A) +DA3(A). (9.2)

Moreover, the temporal component A0 and its time derivative ∂tA0 admit the expressions

A0 =A0(A) := ∆−1[A, ∂tA] + 2∆−1Q(A, ∂tA) +A3
0(A), (9.3)

∂tA0 =DA0(A) := −2∆−1Q(∂tA, ∂tA) +DA3
0(A). (9.4)

Here P is the Leray projector, and Q is the symmetric bilinear form with symbol as in (7.92).

Moreover, Rj(t), DA3(t), A3
0(t) and DA3

0(t) are uniquely determined by (A, ∂tA)(t) ∈ TL2C,
and are Lipschitz envelope preserving maps of order ≥ 3 on the following spaces:

Rj(t) : Ḣ
1 → Ḣ

−1
, (9.5)

DA3(t) : Ḣ
1 → L2, (9.6)

A3
0(t) : Ḣ

1 → Ḣ
1
, (9.7)

DA3
0(t) : Ḣ

1 → L2. (9.8)

Finally, on any interval I ⊆ R, Rj, DA3, A3
0 and DA3

0 are Lipschitz envelope preserving
maps of order ≥ 3 (with bounds independent of I) on the following spaces:

Rj : Str
1[I] → L1L2 ∩ L2Ḣ

− 1
2 [I], (9.9)

DA3 : Str1[I] → L1Ḣ
1 ∩ L2Ḣ

1
2 [I], (9.10)

A3
0 : Str

1[I] → L1Ḣ
2 ∩ L2Ḣ

3
2 [I], (9.11)

DA3
0 : Str

1[I] → L1Ḣ
1 ∩ L2Ḣ

1
2 [I]. (9.12)

104



All implicit constants depend on Q and E.

Proof. We expand the equations (1.13) in terms of the connection A,

□AAj = Dα∂jAα = ∂j∂
αAα + [Aα, ∂jAα]

In the first term on the right we use the expressions for ∂0A0 and ∂jAj,

□AAj = ∂j(DA−DA0) + [Aα, ∂jAα]

We separate the quadratic and cubic terms to obtain

□AAj = ∂j(DA2 −DA2
0) + [Aα, ∂jAα] + ∂j(DA3 −DA3

0) (9.13)

Then we denote

Rj(Ax, ∂tAx) = [A0, ∂jA0] + ∂j(DA3 −DA3
0) (9.14)

To complete the proof of (9.1) we need to compare the above quadratic expressions with
those in (9.1). We begin with the Ax bilinear forms. From Proposition 7.29 we have the
relation DA2 = Q(Ax, Ax) therefore the Ax bilinear forms are

[Ak, ∂jAk] + ∂jQ(Ak, Ak) = Pj[A
k, ∂xAk] + 2∆−1∂jQ(∂ℓAk, ∂ℓAk)

+ ∆−1∂j[A
k,∆Ak] + ∆−1∂j[Q(∆Ak, Ak) +Q(Ak,∆Ak)]

and the terms on the last line cancel in view of the expression (7.92). On the other hand for
the bilinear term in ∂tAx we have from Proposition 8.6

DA2
0(∂0A, ∂0A) = 2∆−1Q(∂0A, ∂0A)

Next we prove the estimates for R, DA3, A3
0, A3

0 and DA0. In terms of subcritical
Strichartz norms we will use the components

Lq(j)Ẇ
σ(j),p(j) ⊂ Str1

If cStr ∈ ℓ2 is a (−δ, S) admissible Str1 frequency envelope for (A,B = ∂tA) in a time

interval [0, T ], then we denote by c
(j)
k (t) a (minimal) (−δ, S) admissible frequency envelope

for (A(t), B(t)) in Ẇ
σ(j),p(j)

. Then we observe that we must have the relation

∥c(j)k (t)∥
Lq(j) ≲ cStrk (9.15)

We will always use this relation in order to transition from the fixed time bounds in the
previous section to the space-time bounds here.

1. The bounds for DA3. The fixed time bound (9.6) is a direct consequence of (7.93),
while the Lipschitz property is due to the difference bound (7.96). For the space-time bound
(9.10) we first estimate separately the term DA3 using the bound (7.95) at fixed t,

∥PkDA3(t)∥
Ḣ

1 ≲ c
(3)
k (t)(c

(3),[δ0]
k )2(t).

Since q(3) = 3, by (9.15) this yields the space-time bound

∥PkDA3∥
L1Ḣ

1 ≲ cStrk (c
Str,[δ0]
k )2.

Finally the L2Ḣ
1
2 bound is obtained similarly using (7.94).
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2. The bounds for A3
0. These follow as above but starting from the bounds (8.23)-(8.25).

For later use, we also note the quadratic bounds

A2
0(t) : Ḣ

1 → Ḣ
1

(9.16)

A2
0 : Str

1[I] → L2Ḣ
3
2 [I] (9.17)

which are a consequence of (8.23) and (8.24).

3. The bounds for DA3
0. Again the same argument applies, but now starting from (8.34)-

(8.36).

4. The bounds for R. Given our definition of R above, the bounds (9.5) and (9.9) are
a consequence of the similar bounds for DA3, DA3

0, A
3
0 together with the estimates (9.16)

and (9.17) for A2
0. □

For our study in subsequent work [19], [20], [21] of the large data hyperbolic Yang–Mills
flow will also need a hyperbolic evolution for the connection A at a nonzero parabolic time
s > 0. The added difficulty is that A(s) no longer solves exactly the hyperbolic Yang–Mills
equation (1.13). Instead we have DβFαβ(s) = wα ̸= 0 in general. We expect the “heat-
wave commutator” wα (called the Yang–Mills tension field) to be concentrated primarily at

frequency comparable to s−
1
2 . Other errors are also expected to have a similar concentration.

Precisely, we have

Theorem 9.3. Let At,x = (A0, A) ∈ Ct(I; Ḣ
1×CQ) with (∂tA0, ∂tA) ∈ Ct(I;L

2×TL2

A(t)CQ) be
a solution to (1.13) with energy E. Let At,x(s) = At,x(t, x, s) be the dynamic Yang–Mills heat
flow development of At,x in the caloric gauge. Then the spatial components A(s) = Ax(s) of
At,x(s) satisfy an equation of the form

□A(s)Aj(s) =Pj[A(s), ∂xA(s)] + 2∆−1∂jQ(∂αA(s), ∂αA(s)) +Rj(A(s))

+Pjw
2
x(∂tA, ∂tA, s) +Rj;s(A)

(9.18)

together with the compatibility condition

∂ℓAℓ(s) = DA(A(s)). (9.19)

Moreover, the temporal component A0(s) and its time derivative ∂tA0(s) admit the expansions

A0(s) =A0(A(s)) +A0;s(A)

:=A0(A(s)) + ∆−1w2
0(A,A, s) +A3

0;s(A),
(9.20)

∂tA0(s) = DA0(A(s)) +DA0;s(A) (9.21)

Here P, Q, Rj, DA, A0 and DA0 are as before, and w2
α are defined as

w2
0(A,B, s) =− 2W(∂tA,∆B, s), (9.22)

w2
j (A,B, s) =− 2W(∂tA, ∂j∂tB − 2∂x∂tBj, s), (9.23)

where W(·, ·, s) is a bilinear form with symbol as in (8.14).

Moreover, Rj;s(t), A
3
0;s(t) and DA0;s(t) are uniquely determined by (A, ∂tA)(t) ∈ TL2C for

each s > 0, and satisfy the following properties
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• Rj;s(t) : Ḣ
1 → Ḣ

−1
is a Lipschitz map with output concentrated at frequency s−

1
2 . More

precisely,

(1− s∆)NRj;s(t) : Ḣ
1 → 2−σ0k(s)Ḣ

−1−σ0
. (9.24)

• A3
0;s(t) : Ḣ

1 → Ḣ
1
is a Lipschitz map with output concentrated at frequency s−

1
2 , i.e.,

(1− s∆)NA3
0;s(t) : Ḣ

1 → 2−σ0k(s)Ḣ
1−σ0

(9.25)

• DA0;s(t) : Ḣ
1 → L2 is a Lipschitz map with output concentrated at frequency s−

1
2 , i.e.,

(1− s∆)NDA0;s(t) : Ḣ
1 → 2−σ0k(s)Ḣ

−σ0
. (9.26)

Finally, on any time interval I ⊆ R (with bounds independent of I), Rj;s, A
3
0;s and DA0;s

satisfy the following properties:

• Rj;s : Str1[I] → L1L2 ∩ L2Ḣ
− 1

2 [I] is a Lipschitz map with output concentrated at fre-

quency s−
1
2 , i.e.,

(1− s∆)NRj;s : Str
1[I] → 2−σ0k(s)(L1Ḣ

−σ0 ∩ L2Ḣ
− 1

2
− 1

12 )[I] (9.27)

• A3
0;s : Str

1[I] → L1Ḣ
2∩L2Ḣ

3
2 [I] is a Lipschitz map with output concentrated at frequency

s−
1
2 , i.e.,

(1− s∆)NA3
0;s : Str

1[I] → 2−σ0k(s)(L1Ḣ
2−σ0 ∩ L2Ḣ

3
2
−σ0

)[I] (9.28)

• DA0;s : Str1[I] → L2Ḣ
1
2 [I] is a Lipschitz map with output concentrated at frequency

s−
1
2 , i.e.,

(1− s∆)NDA0;s : Str
1[I] → 2−σ0k(s)L2Ḣ

1
2
−σ0

[I] (9.29)

All implicit constants depend on Q and E.

Remark 9.4. Compared with the prior theorem, here we have additional contributions R0,
A0s and DA0s as well as the w terms. These have the downside that they depend on A(0)
and ∂tA(0) rather than A(s) and ∂tA(s). The redeeming feature is that these terms will not
only be small due to the energy dispersion, but also, critically, concentrated at frequency
s−

1
2 .

Remark 9.5. The other change here is due to the inhomogeneous termsw2; these are matched
in the Ak(s) and the A0(s) equations, and will interact in the trilinear analysis for the
hyperbolic Yang–Mills flow.

Proof. Using (8.29) and (8.37) we obtain that instead of the equation (9.13) we now have
the equation

□A(s)Aj(s) = ∂j(DA2 −DA2
0) + [Aα, ∂jAα] + ∂j(DA3 −DA3

0)

+ (w2
j (s)− ∂jDA2

0;s) + (w3
j (s)− ∂jDA3

0;s)
(9.30)

where DA3 and DA3
0 now depend on Ak(s), ∂0Ak(s) and w(s). On the second line we have

separated the effect of w, which is nonzero at s > 0.
The terms on the first line are as in the previous theorem. For the second line, we define

Rj;s = w3
j (s)− ∂jDA3

0s.
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For the quadratic part, on the other hand, using Proposition 8.8 we have

w2
j (s)− ∂jDA2

0;s = w2
j (s)−∆−1∂j∂kw

2
j (s) = Pjw

2
x

The remaining algebraic relations (9.20) and (9.21) are obtained from Propositions 8.5 and
8.8. We now consider the estimates in the theorem:

1. The w3
j (s) component of Rj;s. The corresponding parts of the bounds (9.24) and

(9.27) follow from the estimates (8.15)-(8.17) in Proposition 8.3.

2. The DA3
0;s component of Rj;s. Here we use instead the bounds (8.38)-(8.40).

3. The A0;s bound. The estimates (9.28) and (9.11) are consequences of the bounds
(8.30)-(8.32).

4. The DA0;s bound. The estimates (9.29) and (9.12) are consequences of the bounds
(8.38)-(8.40).

□
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