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ABSTRACT. This is the first part of the four-paper sequence, which establishes the Thresh-
old Conjecture and the Soliton Bubbling vs. Scattering Dichotomy for the energy critical
hyperbolic Yang-Mills equation in the (4 4+ 1)-dimensional Minkowski space-time.

The primary subject of this paper, however, is another PDE, namely the energy critical
Yang—Mills heat flow on the 4-dimensional Euclidean space. Our first goal is to establish
sharp criteria for global existence and asymptotic convergence to a flat connection for this
system in H 1, including the Dichotomy Theorem (i.e., either the above properties hold or a
harmonic Yang-Mills connection bubbles off) and the Threshold Theorem (i.e., if the initial
energy is less than twice that of the ground state, then the above properties hold). Our
second goal is to use the Yang—Mills heat flow in order to define the caloric gauge, which will
play a major role in the analysis of the hyperbolic Yang—Mills equation in the subsequent
papers.
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1. INTRODUCTION

The goal of this paper is two-fold:

e To develop a large data global theory of the Yang—Mills heat flow on R*. Consider
the YangMills heat flow on R* with a compact structure group. For initial data a €

H 1(]R‘l), we establish sharp criteria for global existence and asymptotic convergence to
a flat connection, including the Dichotomy Theorem (Theorem and the Threshold
Theorem (Theorem [2.11]).

e To define the caloric gauge for the hyperbolic Yang—Mills equation. Using the large
data global theory of the Yang—Mills heat flow, we define the so-called caloric gauge
(Definition and identify the structure of the hyperbolic Yang-Mills equation in

this gauge (Theorem [2.27)).

While this paper is primarily devoted to analysis of the Yang—Mills heat flow, in the larger
scheme of things it constitutes the first part of a four-paper sequence, whose overall aim
is to prove the Threshold Conjecture and the Dichotomy Theorem for the energy critical
hyperbolic Yang-Mills equation in R!**. The four installments of the series are concerned
with the following topics:

(1) the caloric gauge for the hyperbolic Yang—Mills equation, present paper.
(2) large data energy dispersed caloric gauge solutions, [19].

(3) topological classes of connections and large data local well-posedness, [20]
(4) soliton bubbling vs. scattering dichotomy for large data solutions, [21].

A short overview of the whole sequence is provided in the survey paper [22].
In the remainder of the introduction, we formulate the three Yang-Mills equations that

play a role in this paper, namely the harmonic Yang-Mills equation (elliptic), the Yang-Mills
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heat flow (parabolic) and the hyperbolic Yang-Mills equation. Then in Section [2] the main
results are stated in a more precise form, along with discussion of some major ideas.

1.1. Lie groups and Lie algebras. Let G be a compact noncommutative Lie group and
g its associated Lie algebra. We denote by Ad(O)X = OXO™! the action of G on g by
conjugation (i.e., the adjoint action), and by ad(X)Y = [X,Y] the associated action of g,
which is given by the Lie bracket. We introduce the notation (X,Y) for a bi-invariant inner
product on g,

((X,Y],Z2) = (X,[Y, Z]), X, Y, Z € g,
or equivalently
(X,Y) = (Ad(O)X, Ad(O)Y), X, Yeg O0OecG.

If G is semisimple then one can take (X,Y) = —tr(ad(X)ad(Y")) i.e. negative of the Killing
form on g, which is then positive definite, However, a bi-invariant inner product on g exists
for any compact Lie group G.

1.2. Connections and curvature. The objects of study here are connection 1-forms taking
values in the Lie algebra g,

A R — g.
The associated covariant differentiation operators D; = (DA) j, acting on g-valued functions
B, are defined by
D,B :=0;B + ad(A,)B.

Their commutators yield the curvature tensor

Fj 1= 0;Ax — Ok Aj + [Aj, Ak,
in the sense that D,;D;, — D;D; = ad(Fj;). A basic property of F' is that it satisfies the
Bianchi identity:

D.Fs, +DgF,, +D,F,5 =0.

Given a G-valued function O, its action B — Ad(O)B induces a gauge transformation for
A, namely

Ak — OAkO_l — 8k00_1 =: Q(O)Ak
Correspondingly, we have for F'

ij — OijO_l.

1.3. Yang—Mills equations. While this article is primarily devoted to the Yang—Mills heat
flow, there are in effect three Yang-Mills equations which play a role in our work. These are

as follows:
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1.3.1. The harmonic Yang-Mills equations in the Euclidean space R%. This is obtained as
the Euler—Lagrange equation for the Lagrangian (or the energy)

1 .
EJA] = —/ <ij,F]k>dx, (1.1)
2 Rd
and has the form
D'Fj. =0 (1.2)

Both the Lagrangian and the harmonic Yang—Mills equation are invariant with respect to
gauge transformations, therefore in order to have a good theory for these equations one needs
to fix the gauge. A common choice here is the Coulomb gauge,

DA =0 (1.3)
which formally turns the equations into a strongly elliptic system,
A Ay = —[A7, DA (1.4)
where A4 is the covariant Laplacian, given by
A, =D'D;. (1.5)

1.3.2. The YangMills heat flow in RT x R%. This can be viewed as the gradient flow for
the above Lagrangian, but written in a gauge invariant fashion. Using the letter s for the
heat-time, we add a heat-time connection component A, and the corresponding curvatures
F,;. Then the covariant Yang-Mills heat flow has the form

F,; = D'Fy;, Aj(s =0) = a; (1.6)

The solutions of the harmonic Yang-Mills equation play the role of steady states for the
Yang-Mills heat flow.

This flow is also gauge invariant. A natural way to fix the gauge is via the de Turck gauge
condition

A, = O Ay, (1.7)
which formally turns the system (|1.6)) into a semilinear strongly parabolic system,
(0s — Aa)A; = [Aj, ok A,] — [AF, 0; Ag]. (1.8)

However, there is a second gauge choice which plays the leading role in this article, namely
the local caloric gaugeﬂ,

As =0. 1.9
In this gauge the system becomes a semilinear degenerate parabolic system, )
(0s — Aa)A; = —D*9; Ay (1.10)

where the degenerate part occurs at the level of the divergence of A, namely
05(0F Ay,) = [A7, DFFy,]. (1.11)

This would seem to be less favorable from an analytic point of view. However, as it turns
out, under this gauge the long-time behavior is better. Incidentally, this is exactly the gauge
which corresponds to directly taking the gradient flow for the Lagrangian in ([1.1)).

IThe word local is here to differentiate this gauge with the global caloric gauge defined in Definition m
below.
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Remark 1.1. In the literature, the gradient flow d,A; = D*Fy; is usually called the Yang-
Mills heat flow. In our work, however, we find it conceptually and technically useful to adopt
the fully gauge-covariant formulation (1.6]), and view this flow as the equation in a gauge
defined by . Of course, these viewpoints are equivalent.

The first part of the paper will be devoted to the study of global solutions for the Yang—
Mills heat flow.

1.3.3. The hyperbolic Yang-Mills equation in the Minkowski space R, Let R1*? be the (d+
1)-dimensional Minkowski space, equipped with the Minkowski metric diag(—1, +1,--- , +1)
in the rectangular coordinates (z°, 2, ..., z9).

The hyperbolic Yang—Mills equations are the Euler-Lagrange equations associated with
the formal Lagrangian action functional

oA =1 / (Fg, FO°) dudt. (1.12)
2 R1+d
Here we are using the standard convention for raising indices using the Minkowski metric,
and greek letters for the Minkowski setting. The (hyperbolic) time is denoted by ¢, and
corresponds to the index 0 (i.e., t = 2°). Thus, the hyperbolic Yang-Mills equations take
the form
D“F,5 = 0. (1.13)
In order to consider the Yang—Mills problem as an evolution equation we need to consider
initial data sets. An initial data set for consists of two pairs of 1-forms (a;, e;) on RY.
We say that (a;, e;) is the initial data for a Yang-Mills wave A if

(Aj, Foj) [g=0y= (aj, ).
Note that for § = 0 imposes the condition that the following equation be true for any
initial data for (|1.13):

De; = 0. (1.14)
where D’ denotes the covariant derivative with respect to the a; connection. This equation
is the Gauss (or the constraint) equation for (1.13).

We observe again that harmonic Yang—Mills connections play the role of steady states
for the hyperbolic Yang—Mills evolution. However, here we have an additional class of sym-
metries, namely the Lorentz group. Taking a Lorentz transform of a steady state yields a
soliton, which evolves with constant speed less than 1. It is a simple computation to verify
that the energy of this soliton is larger than the energy of the original harmonic Yang—Mills
connection.

Yet again, is gauge invariant. There are several interesting gauge choices one can
make for the hyperbolic Yang-Mills equations:

e The Lorenz gauge,

0“A, =0 (1.15)
In this gauge the hyperbolic Yang—Mills equations become a semilinear wave system
OaA, = —[A”, D, A (1.16)

In particular it has finite speed of propagation. This gauge is very convenient for local

well-posedness for large but regular data. Unfortunately there are multiple technical
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difficulties if one tries to implement such a gauge in the low regularity setting, see e.g.
[29].
e the temporal gauge,
Ao =0 (1.17)

This is akin to the local caloric gauge for the heat flow. In particular at the level of the
divergence of A, we again get a pure transport equation. In this gauge the Yang-Mills
system is still strictly hyperbolic, and in particular it has finite speed of propagation.
Because of this, it is also convenient for local well-posedness for large but regular data.
Unfortunately working with either low regularity solutions or long time solutions runs
into difficulties largely caused by the lack of decay/dispersion in the transport part.

e The Coulomb gauge

dA;=0. (1.18)

where only the spatial divergence is considered. Here the causality is lost; however,
the Coulomb gauge is an “elliptic” gauge which captures well the null structure of the
problem, and thus works well in low regularity settings. Indeed, the Coulomb gauge
was used in [I2] to prove the small data result for this problem in the critical Sobolev
space. Unfortunately, for large data there are issues with the Coulomb gauge.

The aim of the second part of this paper will be to use the Yang—Mills heat flow in the local
caloric gauge in order to introduce a new gauge choice for the hyperbolic Yang—Mills flow,
which we call the caloric gauge. The final objective here is to arrive at a good formulation
of the hyperbolic Yang—Mills equation in the caloric gauge.

1.4. Energy, scaling and criticality. Here we review the standard energy, scaling and
criticality considerations which apply to the three Yang—Mills problems described above.

1.4.1. The harmonic Yang—Mills equation. In the context of the harmonic Yang—Mills equa-
tion, the Lagrangian L£.[A] plays the role of the energy of the connection A; we will sugges-
tively use the alternate notation Era[A] for it.

On the other hand, the equations also have a scale invariance property,

A(z) = MA(\x).
. d=2
The Sobolev space with the same scaling is H * |, which we will view as the natural space
for solutions to (|1.2)). We will refer to this space as the critical Sobolev space. The energy is
scale invariant in dimension d = 4, which we will refer to as the energy critical dimension.

1.4.2. The Yang—Mills heat flow. Here the energy plays the role of a Lyapunov functional,

d
ds
The scale invariance property now reads

A(x,5) = MMz, \s).

EJA] = — g |D? Fy,.|2da (1.19)

d—2
2

The critical Sobolev space for the initial data a is again H > , and the energy critical
dimension is d = 4 as well.
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1.4.3. The hyperbolic Yang—Mills equation. Here the gauge invariant energy is given by

1
g{t}XRd [A] = 5 /{t}XRd Z |Fa5|2dx.
a<f

The scale invariance property has the form
A(t,x) = ANA(M, Ax).

d—2 d—4
2

The critical Sobolev space for the initial data (a,e)is H > x H *
dimension is again d = 4.

, and the energy critical
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2. THE MAIN RESULTS

In this section, we present the main results proved in this paper. We focus primarily on the
energy critical dimension d = 4, although some of our results and techniques easily extend
to higher dimensions; see Remark below.

2.1. Review of results for harmonic Yang—Mills connections on R*. Here we do
not consider any new results, but instead recall the known results concerning the harmonic
Yang—Mills equation.

We start with the classical elliptic regularity result:

Theorem 2.1 ([40]). All harmonic Yang-Mills connections in H}.

o GTE smooth up to a gauge
transformation O € HZ,. (or equivalently O., € H} ).

Key to this theorem is existence of a good gauge (namely, the local Coulomb gauge) in
which the harmonic Yang—Mills equation becomes a nice elliptic system. The importance of
a judicious choice of gauge to reveal essential analytic features of the equation is a theme
that we will see repeatedly below for the other Yang—Mills equations.

Another fundamental issue, which for example arises in the study of moduli spaces [7], is
the behavior of H.  connections with uniformly bounded energy &.. We recall the following
basic results:

Theorem 2.2. Consider a sequence a™ of H},. harmonic Yang-Mills connections with uni-
formly bounded energies E.[a"] < &, < 0o. Then:

(1) (Uhlenbeck compactness) After passing to a subsequence, a™ is weakly convergent in H'

up to Hfoc gauge transformations.

(2) (Small energy) If &, is sufficiently small, then after passing to a subsequence, a™ converges

strongly in H . to the flat connection up to HE, gauge transformations.

(3) (Dichotomy) Generally, one of the following two scenarios must hold:
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(a) After passing to a subsequence, a™ converges strongly in H  up to H? . gauge trans-
formations.

(b) The sequence “bubbles off” a nontrivial harmonic Yang—Mills connection. More
precisely, there exists a finite set of points ¥ such that, after passing to a subse-
quence, a® converges strongly in HL_ on R*\ X up to HZ, gauge transformations.

Moreover, for each xog € X, there exist sequences x,, — xo and r, — 0 such that the

rescaled sequence

b (x) = rpa™(z, + rpx)

converges strongly in H.!  to a nontrivial harmonic Yang—Mills connection.

loc

For more sophisticated results on the structure of the possible singular set ¥ we refer to [25].
By part (2), we see that

Eas = inf{&.[Q] : Q is a nontrivial harmonic Yang—Mills connection on R*} (2.1)

is strictly positive. Part (3) then implies that, if £55 < 0o, then there exists a harmonic
Yang—Mills connection (), which we call a ground state, such that

E1Q) = Eas.

For noncommutative compact structure groups, we indeed have 55 < oco. This nontrivial
fact comes from the beautiful interplay among the harmonic Yang-Mills equation on R?,
topology and the theory of Lie groups. To property describe it, we need to introduce the
concept of topological classes.

For a compact base manifold, such as S*, this term refers to the isomorphism classes
of principal G-bundles which supports the connection. On the other hand, for R* which
is contractible and thus supports only the trivial fiber bundles, a topological class must be
interpreted rather as a property of a connection. If a is a harmonic Yang—Mills connection on
R* then consider its pullback on S*\ {point} by the stereographic projection. By conformal
invariance, it is a harmonic Yang-Mills connection on S*\ {point} with the same energy,
and by the singularity removal theorem of Uhlenbeck [41], it can be uniquely extended to
a principal G-bundle on the whole sphere S*. We identify its isomorphism class with the
topological class of a.

Remark 2.3. More generally, if A is smooth with a rapidly decaying curvature F', then it
uniquely determines a principal G-bundle on the one-point compactification S* of R*, whose
isomorphism class may be identified with the topological class of A. In fact, this procedure
essentially works under the mere condition that A € H}._ with finite energy. We refer the
reader to [20, Section 3| for a precise definition of topological classes of such connections

along these ideas.

By the above discussion, it suffices to consider the harmonic Yang-Mills connections on S*.
For concreteness, we also restrict our attention to G = SU(2), in which case we normalize
(A, B) = —tr(AB). Then the Chern number ¢, of a principal G-bundle, which is always an
integer, characterizes its topological class. It may be computed from a by the Chern—Weyl
formula 1

ca(a) = ) /s4 tr(f A f). (2.2)

One way to construct harmonic Yang—Mills connections is to look for the absolute min-

imizers of the energy functional &, in a fixed topological class; such connections are called
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instantons. A procedure due to Atiyah—Drinfeld-Hitchin-Manin [I] gives explicit construc-
tion of all instantons in the case of G = SU(2). In particular, we have:

Theorem 2.4 ([I]). Consider G = SU(2) with (AB) = —tr(AB). In every topological class
of principal G-bundles on S*, there exists an instanton (ground state) Q with energy

E.(Q) = 87%|cyl.

One may wonder if the instantons exhaust all harmonic Yang—Mills connections. Remark-
ably, the answer is no, as demonstrated by [30} 3, 26l 23]. Nevertheless, Gursky—Kelleher—
Streets [8] recently proved the following lower bound:

Theorem 2.5 ([§]). Consider G = SU(2) with (AB) = —tr(AB). If a is a harmonic
Yang-Mills connection on a principal G-bundle on S*, then either a is an instanton, or

Eo(a) > 87°|ey| + 1672

In particular, observe that we have a refined threshold for a topologically trivial harmonic
Yang-Mills connection: It is either flat, or must have energy at least 2€4g = 1672.

For a general noncommutative Lie group G, instantons may be constructed from the SU(2)
version by an appropriate embedding su(2) — g, which always exists and forms the basis of
the classical Cartan—Weyl structure theory of compact Lie groups. Moreover, Theorem [2.5
holds more generally for any simple compact Lie group, and also has important implications
for general noncommutative compact Lie groups; see Theorem [6.10] For details, we refer the
reader to [20, Section 6].

2.2. Large data global theory for the Yang—Mills heat low on R*. Here we consider
the question of local and global well-posedness, as well as asymptotic convergence property,
for the Yang—Mills heat flow (1.6)) at energy regularity.

Here and in the rest of this paper, we restrict our attention to connection 1-forms in

H 1, in anticipation of the results we will prove for the hyperbolic Yang-Mills equation (see
Section . More precisely, we will need a global theory of the Yang-Mills heat flow only
for those connections whose hyperbolic Yang—Mills evolutions scatter. These must be in the
trivial topological class (“topologically trivial”), or equivalently, gauge-equivalent to a it
connection [20, Section 4].

In the question of well-posedness of the Yang—Mills heat flow, the gauge choice is critical,
as we would like to avoid pure gauge singularities. Local well-posedness is most readily un-
derstood in the de Turck gauge, where the Yang—Mills heat flow becomes a strongly parabolic
semilinear flow. The following result is relatively easy to establish, and is provided without
proof:

Theorem 2.6. The Yang—Mills heat flow (1.6)) in the de Turck gauge is locally well-posed
m Hl, as well as globally well-posed for small data.

In particular the small data solutions will satisfy

Al o 22 S llall (2:3)

and will decay to zero at infinity. We remark that a similar small data result can also be

proved in the Coulomb gauge; however this gauge no longer extends to all large data.
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Unfortunately, the small data global well-posedness result in the de Turck gauge does not
readily extend to large data. To understand why, consider initial data a whose curvature f
vanishes, f = 0. By the energy dissipation relation (|1.19) we expect the solution to satisfy
Fj; = 0 at all heat-times s > 0. Such solutions are gauge equivalent to the zero solution, so
they can be represented as

A=0,.

The equation (1.6)) is clearly globally solvable in H 1, for any extension of O = Id to s > 0
would yield a solution. However, if we now impose the de Turck gauge condition we arrive
at the following equation for O:

O;s = DjO;j
which is nothing but the harmonic heat flow equation for G-valued maps. It is well-known
(see [B], [4]) that this flow can develop singularities in finite time. Hence the same will happen
for the Yang—Mills heat flow in the de Turck gauge.

The above discussion motivates the introduction of the local caloric gauge as a
substitute for the de Turck gauge. The pure gauge blow-up described above no longer arises
as pure gauge solutions are stationary in the local caloric gauge.

We start with the basic local well-posedness result in the local caloric gauge:

Theorem 2.7. The Yang—Mills heat flow (1.6 in the local caloric gauge is locally well-posed
mn Hl, as well as globally well-posed for small data.
A precise statement of this theorem is provided in Section [5] However, for reader’s conve-

nience we briefly describe here the main features:

(a) Existence, uniqueness and C* local dependence on the initial data. However, in contrast
to the case of the de Turck gauge, C? dependence does not seem to hold.
(b) Higher regularity also holds; in particular the data to solution map is Lipschitz in

H' N EH forall o > 1. Also a frequency envelope version of the result is valid.
(c¢) The curvature F' satisfies global parabolic bounds,

||F||L°°L20L2H1 SHCLHHl 1

and decays to zero at infinity.
(d) The connection A(s), however, does not decay to 0 at infinity. Instead, the limit

(oo = lim A(s)

500
exists in H 1, and has zero curvature f,, = 0.
Next, we introduce the gauge- and scaling-invariant space-time norm
1 F [ L3 (;3)
which plays an important role in our study. In fact, we have the following Structure Theorem:

Theorem 2.8 (Structure Theorem). Let A be a Yang—Mills heat flow given by Theorem
on a heat-time interval J, such that

HFHLS(J;LS) < Q < 0. (24)

When J is finite, A can be extended as a Yang—Mills heat flow past its endpoint. When J is

infinite, properties (b)-(d) holds for A, where the implicit constants depend also on Q.
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Motivated by this result, for a € H " with a global solution A, we introduce the notation

Qa) = HF’|L3([0,00);L3)- (2.5)

We will refer to Q(a) as the caloric size of the connection a. In what follows, by writing
Q(a) < oo, it is implicit that a has a global associated Yang-Mills heat flow A.

We note that many more strong conclusions about A and nearby Yang-Mills heat flows

can be made from (2.4)), which is why we call Theorem the Structure Theorem. We refer
the reader to Section [5| for a more precise statement and the proof.

Remark 2.9 (Remark on the techniques). The subtlety in the proofs of Theorems [2.7]and
lies in the fact that in the local caloric gauge, is only degenerate parabolic. One way
to handle this issue is via the de Turck trick, which in our formalism amounts to working in
the de Turck gauge; as discussed above, however, this approach is effective only locally in
time. Our approach instead is to rely on a version of the de Turck trick for the linearization
of the Yang—Mills heat flow; in this scheme, an auxiliary flow called the dynamic Yang—Mills
heat flow plays a major role. We refer the reader to Section for a further discussion.

Next, we describe our main large data results for the Yang—Mills heat flow. By a blow-up
analysis based on the monotonicity formula (or the energy identity)

1 g 51 : 1 g
/ 5 (Fijs F9) (1) da + / / (D'Fy;, D'F,") dzds = / 5 (Fij, ) (s0) da,
50
Theorem can be considerably strengthened as follows:

Theorem 2.10 (Dichotomy Theorem). Let a be a connection 1-form in Hl, and let A be

the solution to with initial data A;(s = 0) = a; given by Theorem[2.7. Then one of the

following two properties must hold for the maximal solution:

(a) The solution is global, Q(a) = || F||L3(0,00);18) < 00, and A(s) converges to a flat con-
-1

nection as n H as s — oo.
(b) The solution “bubbles off” a nontrivial harmonic Yang—Mills connection, either
(i) at a finite blow-up time s < oo, or
(i) at infinity s = oo.
A more precise form of Theorem [2.10] as well as its proof, may be found in Section [6]
Theorem [2.10] identifies the possible obstruction for global existence and asymptotic con-

vergence to a flat connection as “bubbling oft” a nontrivial harmonic Yang—Mills connections.
Taking into account their theory reviewed in Section [2.1] we obtain:

Theorem 2.11 (Threshold Theorem). Let a be a connection 1-form in Hl, and let A be the
solution to (5.1)) with initial data A;(s = 0) = a; given by Theorem [2.7. If

56 [a] < 25@5,
then the solution A is global, Q(a) = || F||13(j0,00)03) < 00, and A(s) converges to a flat

. e
connection as, th H as s — 0.

For a more precise form of Theorem [2.11] as well as its proof, we again refer to Section [6
Observe that the threshold energy is 2€4¢ instead of the obvious value Egg! This refine-

ment is a result of taking into account the “topological triviality” of H connections, as well
11



as “topological nontriviality” of harmonic Yang-Mills connections with energy below 2€45,
as suggested by Theorem (at least for G = SU(2)).

Remark 2.12 (Brief historical remarks). The bubbling analysis, which forms the basis of the
proofs of Theorems and [2.11] has its origin in the classical work of Struwe [33] (see also
Schlatter [2§]). In the context of a general compact (Riemannian) base manifold, Schlatter
[27] proved global existence and (weak) asymptotic convergence under non-sharp energy
restrictions, and a sharp threshold theorem was proved recently in by Gursky-Kelleher—
Streets [§], as a corollary of their lower bound on the energy of non-instanton harmonic Yang—
Mills connections. In comparison to these works, the significance of our results lies in the
precise asymptotics of the Yang—Mills heat flow on the noncompact space R?* (encapsulated
by the bound Q(a) < oo via Theorem [2.8)), which allows us to define the global caloric
gauge, to be described below. We also refer to the interesting recent work of Waldron on
(im)possible finite time singularities [42] [43], and of Kelleher—Streets [9, [10] on the structure
of the general singular set.

2.3. Preview of results for the hyperbolic Yang—Mills equation in R!™. In order
to motivate the subsequent results concerning the caloric gauge, we state here the local and
global well-posedness results for the energy critical hyperbolic Yang—Mills equation that will
be proved in the subsequent papers [19] 20} 21] of the series.

For the local and global well-posedness properties of the hyperbolic Yang—Mills equation,
the question of the gauge choice is again paramount. We begin with some classical, higher
regularity local well-posedness results:

Theorem 2.13. The hyperbolic Yang—Mills equation (1.13)) is locally well-posed in H> x H?
in both the Lorenz and the temporal gauge.

As mentioned before, both of these gauges are consistent with causality, i.e, the corre-
sponding evolution has finite speed of propagation. Because of this, the large data problem
is easily localized and reduced to a small data problem. The small data problem is pertur-
bative in the Lorenz gauge, but slightly nonperturbative in the temporal gauge.

While in both of these gauges one can lower somewhat the regularity of the data, de-
scending to (critical) energy regularity while working directly in these gaugeﬂ appears to
be fraught with difficulties. The same applies to the global problem; the two are in effect
equivalent at least to a certain extent.

The Coulomb gauge , on the other hand, provides a much better structure for the
equations. In recent work of the second author with Krieger [12], the small data problem
was considered at energy regularity:

Theorem 2.14. The hyperbolic Yang—Mills equation (1.13)) in the Coulomb gauge (1.18]) is
globally well-posed for small data in i x 12,

At the same time, blow-up solutions are known to exist in certain cases (see [11}, 24]) just
above the ground state energy. This leads one to a “Threshold Conjecture” similar to the
one for the Yang—Mills heat flow.

2We remark that, a-posteriori, we obtain local well-posedness at the critical regularity in the temporal
gauge (see Theorem [2.16]). However, its proof is highly indirect, and the key analysis is still performed in
the caloric gauge [19, 20].
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Unfortunately, it appearf] that in general the Coulomb gauge cannot be extended to all
data below the threshold energy. Hence we need an alternative gauge choice which should
retain as much as possible of the algebraic structure associated to the Coulomb gauge, but
which is well-defined at least for subthreshold connections.

This gauge, which we will call the (global) caloric gauge, is defined using the Yang—Mills
heat flow. It is precisely the Threshold Theorem for the Yang—Mills heat flow which guar-
antees that the caloric gauge is defined for all subthreshold connections.

The primary aim of the four-paper series, of which the present one is the first, is to prove
the following two results, which are analogous to Theorems and 2.10] The first result
gives an affirmative answer to the Threshold Conjecture:

Theorem 2.15 (Threshold Theorem). The hyperbolic Yang—Mills equation (1.13|) in the
caloric gauge is globally well-posed, and the solution scatters, for all initial data (a,e) €

' x L2 with energy below 2Eqs.

In Theorem the restriction to “topologically trivial” data (a,e) € I % L2 s natural,
since one of the conclusions is scattering of the solution. This explains the refined threshold
2€gs. On the other hand, for more general data (a,e) € H}, x L7  with finite energy, we
establish the following sharp dichotomy:

Theorem 2.16 (Dichotomy Theorem). The hyperbolic Yang—Mills equation (1.13)) is locally
well-posed in the temporal gauge for all initial data (a,e) € H}, x L2 . with finite energy.
Moreover, one of the following two properties must hold:

(a) The solution is global, and A scatters as t — oo after a suitable gauge transformation.
(b) The solution “bubbles off” a soliton, either

(1) at a finite blow-up time t < oo, or

(i) at infinity t = oo.

In (a), for sufficiently large ¢ the solution A(t) can in fact be gauge-transformed into the
caloric gauge, which then scatters as ¢ — oo in the same sense as Theorem . In (b),
a soliton for the hyperbolic Yang—Mills equation is simply a Lorentz transformation of a
nontrivial harmonic Yang-Mills connection ). By time reversibility, this theorem applies
also (separately) to the past time direction.

Further discussion of gauges and of the above results, as well as a more complete formula-
tion of these, are postponed for the other three papers. The main goal of the second part of
the present paper, which consists of Sections[THI] is to properly define the caloric gauge, and
to provide a formulation of the hyperbolic Yang—Mills equations in this gauge which suffices
for the proof of the above theorems. The caloric gauge and the corresponding results are
described in the next subsection, and the proofs are provided later on.

2.4. The global caloric gauge and the manifold of caloric connections. Here, we
state our main results concerning the caloric gauge connections in a simplified form for the
reader’s convenience. More accurate statements are given and proved in Section [7]
Consider a connection a on R*, whose associated Yang—Mills heat flow is global and satisfies
Q(a) < co. Since the limiting connection a., is flat, it must be gauge equivalent to the zero

3At this point, one should regard this as a conjecture for which we have some evidence but not a proof.
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connection. Precisely, there must be a gauge transformation O with the property that
(as0); = O710;0.

. 9 -1

Here O = O(a) € H (interpreted in the sense that O; € H ) is unique up to constant
conjugations. Conjugating the full heat flow with respect to such an a yields a gauge-
equivalent connection

A;=04A;071 -0,

which solves the Yang-Mills heat flow, and satisfies A(co) = 0. This leads us to the following
definition of caloric connections:

Definition 2.17. We will say that a connection a € H " with Q(a) < oo is (globally) caloric
if the corresponding limiting connection vanishes, a,, = 0; we denote the set of all such
connections by C. More quantitatively, we denote by Cg the set of all caloric connections
whose caloric size Q(a) satisfies

Q(a) = || FlL3(0,00);28) < Q-

Then the Threshold Theorem for the Yang—Mills heat flow can be restated as an existence
result for gauge-equivalent caloric connections:

Theorem 2.18. For every connection a; € i with energy below 2Eqg, there exists a gauge-
equivalent caloric connection a € Hl, which is unique up to constant gauge transformations.
The connection a is defined as
a; = Cal(a) := 0a,0~' =04,  O=0(a).

To properly solve the hyperbolic Yang—Mills equation in the caloric gauge, we need to
view the family C of the caloric gauge connections as an infinite dimensional manifold. Here

the ' topology is no longer sufficient, so we introduce the slightly stronger topolog
H={ac i O'ay € (' L7},

which reflects the fact, discussed later in greater detail, that caloric connections satisfy a
nonlinear form of the Coulomb gauge condition. Then we have

Theorem 2.19. For any caloric connections a € Co with energy £, we have the H bound
lallm Soe 1. (2.6)
The set C of all I caloric connections is a O infinite dimensional submanifold of H.

For an arbitrary a € C, O(a) is only defined as an equivalence class, modulo constant gauge
transformations. However, if in addition we know that a € H, then O(a) is continuous, and
we can fix its choice by imposing the additional condition

lim O(z) = Id. (2.7)
T—r00
With this choice we have the following regularity property:

4Here ¢! stands for dyadic summation in frequency. We prefer this notation to the more classical Besov
style notation, as we can apply it to a larger class of spaces, see also Section
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Theorem 2.20. The map a — O(a) is locally C* from H to i n C°, and from H° to
JigiaYialn for o > 2. It is also also continuous from i t i

Finite energy solutions to the hyperbolic Yang—Mills equation will be continuous functions
of time which take values into C. They are however not smooth in time, instead their time
derivative will merely belong to L?. Because of this, we need to take the closure of its tangent
space T,C (which a-priori is a closed subspace of H) in L?. This is denoted by T, GLQC R R

also convenient to have a direct way of characterizing this space; that is naturally done via
the linearization of the Yang—Mills heat flow:

Definition 2.21. For a caloric gauge connection a € C, we say that L? > b € TaLQC if the
solution to the linearized local caloric gauge Yang—Mills heat flow equation

0,By, = [B’, Fy;] + D’ (DyB; — D;By), By(0) = by, (2.8)
satisfies
lim B(s) =0 in L2,

5—00

A key property of the tangent space T, aLQC is the following nonlinear div-curl type decom-
position:

Theorem 2.22. Let a € C. Then for each e € L? there exists a unique decomposition
e = b — Day, bETaBC, ap e I (2.9)
with the corresponding bound
16llz2 + [laoll ;1 < Nlell 2 (2.10)
For any e € L?, we introduce the notation
b=TI,()

for its projection b as in to TH°C.

Finally, as already hinted by Theorem [2.19] a key property of a caloric connection is that
its divergence 0°A, satisfies a generalized Coulomb condition. We separate out the quadratic
part, which can be explicitly determined, and the remaining higher order terms, which only
play a perturbative role in the subsequent analysis:

Theorem 2.23. For a € C, we have the representation

OF A, = DA(A) = Q(A, A) + DA?(A). (2.11)
where Q(A, A) is a symmetrid| bilinear form (see Definition below) with symbol
€17 = Inf?
Q&) = . 2.12
= 3T o 21

and DA?(A) is a C* map on C containing cubic and higher order terms, and satisfying better
bounds.

-2
SHere H™ needs to be interpreted as a quotient space, modulo constant gauge transformations.
6Note that the symbol of Q is odd, but this is combined with the antisymmetry of the Lie bracket
appearing in the bilinear form; see Definition
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Remark 2.24 (Brief historical remarks). The caloric gauge was introduced by Tao [34] in
the context of mappings from R? into hyperbolic space, using the harmonic map heat flow
on R% TIts construction was extended to general targets up to the ground state energy
(cf. Theorem by Smith [31]. Various authors successfully applied the caloric gauge
in analysis of dispersive equations for mappings, including Tao [35] 36, 137, 38, 39] for the
wave maps on R'?: Bejenaru-Tonescu-Kenig-Tataru [2], Smith [32] and Dodson-Smith [6]
for Schrodinger maps on R x R%. We also note some recent applications of the caloric gauge
in the context of wave maps on the hyperbolic space [13, [14], 16}, 15].

The idea of caloric gauge was extended to the Yang—Mills setting (i.e., for vector bundle
connections) by the first author [I7, [I8] at subcritical regularity. In that case, since the
scaling symmetry is broken, it is more natural to only impose the local caloric gauge condition
for heat-times below certain threshold sq > 0 dictated by the initial data; this is in
contrast to the global caloric gauge used in this work.

2.5. The hyperbolic Yang—Mills equation in the caloric gauge. We now turn our
attention to the hyperbolic Yang—Mills equation. We will consider solutions which at any
fixed time t are in the caloric gauge, A,(t) € C. We will refer to such solutions as caloric
Yang-Mills waves.

We first clarify the notion of an initial data set for the Yang—Mills equation in the caloric
gauge. On the one hand, we have the gauge covariant notion (a,e), which satisfies the
constraint equation . On the other hand, in the caloric gauge, we will consider the
spatial component of the connection as the dynamic variable, and view the temporal part
of the connection as an auxiliary variable (which is analogous to the Coulomb case). From
this point if view, we have:

Definition 2.25. An initial data for the Yang—Mills equation in the caloric gauge is a pair
(a,b) where a € C and by, € T°C.

These two notions are related to each other by the following result:

Theorem 2.26. (1) Given any Yang-Mills initial data pair (a,e) € H' x L? such that

Q(a) < oo, there exists a caloric gauge YangMills data (a,b) € T¥'C and ay € Hl, S0
that the initial data pair (a,é€) is gauge equivalent to (a,e), where

& = b, — DWay.
(2) Given any caloric gauge data (a,b) € TEC, there ezists a unique ag € Hl, with Lipschitz
dependence on (a,b) € i x L?, so that
er = by — D,ia)ao
satisfies the constraint equation .

For a proof, see Theorem below. In view of this result, we can fully describe caloric
Yang—Mills waves as continuous functions

I3t — (A1), 0,4,() e THC.

Next, we consider the task of providing a full description of the gauge-dependent system

of nonlinear wave equations satisfied by a caloric Yang—Mills wave A. Recall the Yang—Mills
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equation (|1.13)):

D“F,3 = 0.
Separating these equations into the spatial (5 # 0) case
DD, A, = D*DYA, — [A%, DA, (2.13)
and respectively the temporal (8 = 0) case
D*D; A4y = DyD* A, — [AF, Dy Ay, (2.14)

we will seek to interpret the first equation as a hyperbolic evolution for A,, and the second
as an elliptic compatibility condition for Ag. This is achieved as follows:

Step 1. Use the equation ((1.13) to show that Ay is uniquely determined by A = A, and
B - BI = 8tAx,
Ay = Ay(A, B) (2.15)

where Ag is a C' map on TFC which contains an explicitly computed quadratic part A2,
as well as purely perturbative higher order terms A3:

Ao(A,, B,) = A(A, B) + A(A, B). (2.16)

Step 2. Use the equations (2.13)) to show that D°A, is uniquely determined by A and B,
ie.,

DAy = DAy(A,, B,) (2.17)

where DAy is a C! map on T%°C which plays a purely perturbative role in the analysis.

The above steps allow us to recast the equations (2.13]) in the form
OaAr = P[A7, 0rA)] + 20710, Q(0% A7, 0,4;) + R(A, 9,A) (2.18)

Here on the right we have two quadratic terms depending only on A and B, both of which
have a favorable null structure, and a higher order remainder term R, which admits fa-
vorable L'L? bounds and thus only plays a perturbative role. However, in the covariant
d’Alembertian (14 on the left, we still have the coefficients Ay and D°A, which are deter-
mined as above in terms of A, and 9;A,. Of these only the quadratic part A2 of Ay plays a
nonperturbative role. We arrive at:

Theorem 2.27. The hyperbolic Yang—Mills equation in the caloric gauge takes the form

[@13), where
e Q is a symmetric quadratic form of order zero with symbol (2.12)).
e Ris a C' map on T¥'C satisfying perturbative bounds.

o Ay and DAy are uniquely determined by A and A, via (2.15)), ([2.16) and (2.17).
e The generalized Coulomb condition (2.11)) holds.

A more precise form of this result is contained in Section [9] All perturbative terms are
shown to satisfy favorable bounds purely in terms of Strichartz type norms for the connection
A. The exact structure of all explicit quadratic forms Q, A2 and DA? will play a key role
in the next paper of our three paper sequence.

To study the small data problem it would be sufficient to work with the equation (2.18)).
However, for the large data problem we also need to flow the wave equation in the parabolic

direction. In a nutshell, a shift in caloric time results in a natural smoothing of the solution,
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which serves as an ingredient in the ”induction on energy” scheme in [19] to compensate for
the lack of smallness of the energy.
To smooth out the space-time connection (Ay, A), we use the dynamic Yang—Mills heat

flow
F,,=D'F,, a=0,1,...4 (2.19)

which is the Yang—Mills heat flow for A adjoined with an s-evolution equation for Ay. Then
at nonzero heat-times s the equation ([1.13)) becomes

D*F,5(s) = wa(s). (2.20)

The space-time 1-form w, is called the (hyperbolic) Yang—Mills tension field. In general
wu(s) # 0 for s > 0, as the two flows (wave and heat) do not commute. In order to proceed,
additional steps are needed:

Step 3. Compute parabolic evolutions for w,, showing that at time ¢ they depend only on
the data A(t), B(t) and of course on s,

we = Wo(A(t), B(t), s).

A key point is that the initial data w,(s = 0) is zero, thanks to the hyperbolic Yang—Mills
equation (|1.13). As a consequence, w, turns out to be quadratic and higher order.

Step 4. Separate w,, into the quadratic part and a higher order term,
Wa(s) = wa(s) + wy(s).
where the former can be explicitly computed, and the latter is purely perturbative.

Step 5. Recalculate Ay and D° Ay to include the dependence on w(s), and write the analogue

of the equation for A(s):
Oas)Ar(s) = P[A(s), 0 A;(s)] + 220710, Q(0* A7 (), 0 A;(s)) + R(A(s), B, A(s)).
+ Pwi(s) + Ry(A, 0, A)

The extra term on the right is matched by a like contribution to the quadratic part of Ay,
i.e. (2.16) is replaced by

Ag(s) = Ag(A(s), B(s)) + A™'wi + A (A, B) (2.22)

(2.21)

Now we can state

Theorem 2.28. The caloric flow A(s) of a hyperbolic Yang—Mills wave in the caloric gauge
takes the form ([2.21), where the additional terms wi(s), Rs and A§ (A, B) satisfy the fol-
lowing properties:
o wi(s)(A, B) are explicit quadratic forms localizecﬂ at frequency s™2.
o R, and A} (A, B) are C' maps on TYC satisfying perturbative bounds, also localized
at frequency s73.
The analysis of the equation (2.21)), carried out in [19], will be very similar to that of

(2.18]), with the minor proviso that the quadratic terms in w in the two equations above
have a very mild nonperturbative role, and exhibit a null form type cancellation.

"with decaying tails
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Remark 2. 29 Flnally, we briefly discuss what happens in dimensions higher than 4. After
replacing i by H = and defining

Q(a) = ||F||Ld—1 [0 S+)'Ld_1)’
the analogue of Theorems 2.7 and 2.8 may be proved for any dimension d > 4 by essentially

a technical extension of the arguments in this paper. For connections a & H with Q(a) <
00, the caloric gauge condition can be defined exactly in the same way (Definition , and
the subsequent results concerning the caloric gauge also extend easily to higher dimensions.
On the other hand, our proof of the Dichotomy and Threshold Theorems (Theorems m
and rely on specific features of dimension 4 (energy criticality, knowledge of harmonic
Yang-Mills connections etc.), and does not admit direct generalization to higher dimensions.

2.6. Remarks on the dynamic Yang—Mills heat flow and the de Turck trick. In
this paper, the dynamic Yang—Mills heat flow

F., = D'F, (2.23)

plays a central role in multiple major ways. This subsection is devoted to a brief discussion
of these aspects.
The same flow appears in our work in three distinct capacities:

(1) As a gauge covariant smoothing flow for space-time connections. This is the most direct
interpretation of the dynamic Yang-Mills heat flow (as opposed to the original Yang-
Mills heat flow, which is for spatial connections). It is used in the energy induction
argument in [19]; for this reason, we derive equations obeyed by the dynamic Yang—Mills
heat flow A(s) of a caloric Yang-Mills wave (see Section [2.5). Noncommutativity of
the hyperbolic and parabolic Yang—Mills equations gives rise to a nontrivial Yang—Mills
tension field wy,(s), whose analysis is key for deriving the equations for A(s).

Curiously, w,(s) (s > 0) also makes appearance in estimates for 9y Ay, even at s = 0.
This is due to other uses of related to the “infinitesimal de Turck trick”, which we explain
below.

(2) As a means to perform the “infinitesimal de Turck trick” for the linearized Yang—Mills
heat flow in the local caloric gauge. The usual de Turck trick is a way of compensating for
the degeneracy of by an s-dependent gauge transformation; in our gauge-covariant
formalism, it amounts to working in the de Turck gauge . As we have seen, however,
this approach is problematic for large data global theory.

Instead, we perform the de Turck trick not for A, but rather at the level of the linearized
flow (thus the name “infinitesimal de Turck trick”). The algorithm is as follows.
Given a one-parameter family of Yang-Mills heat flows A;(¢,z,s) with data a;(t, )
(t € I,x € R s € J), we add a t-component Ay(t,x,s) and view it as a connection
1-form on I x R* x J. In the s-direction, we then impose the equation

F = D'Fy (2.24)

which, combined with ([1.6]), forms the dynamic Yang—Mills heat flow system.
The key idea is to work with
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As opposed to 0, A;, which solves (2.8)), Fo; has the advantage of obeying a nondegenerate
covariant parabolic equation:

DsFOj — AAFOJ‘ - 2ad(f7je)Fog =0.

Solving this equation would determine F; from any data Fp,;(s = 0) = e;. We choose
e; = Owaj, which amounts to prescribing ay = 0. Then Ay may be determined by
integrating

0,Ag = Fyo = D' Fyg (2.26)

where the first equality is the local caloric condition, and the second one is . Finally,
using , we come back to the solution 0;A of the linearized Yang—Mills heat flow.

The success of this approach is based on the solvability of Ay and d; — A4, which is
developed in Section [4 It forms the basis of our analysis in Section [5]

(3) As a means to obtain useful representation of projection to the caloric manifold. This is
a variant of the “infinitesimal de Turck trick”. Previously, we chose to initialize ag = 0.
When a(t = 0) is a caloric connection, another natural choice is to set Ag(s = 00) = 0,
which amounts to making a gauge transformation in ¢ so that the nearby a(t)’s are also
caloric. Integrating from s = oo to 0, we obtain the following representation of
Qg

ag = —/ D Fyy(s) ds.
0

By (2.25)), we have
€; = ataj - (D(“))jao.

Since a(t)’s are caloric, d,a; clearly belongs to T,C since each a(t) is caloric, whereas
D@aqq is a pure covariant gradient. By Theorem , Oia; is precisely the projection
II,e;.

Tjhe procedure just described gives an explicit algorithm for computing II,, which we
will use extensively in Section [7] and onward. The same idea also allows us to relate the
second order variation dyag(s = 0) with integral of DyD*Fy(s) = Dfwy(s) from s = oo
to 0 (up to minor error terms), which explains the usefulness of w(s) in (1).

3. NOTATIONS, CONVENTIONS AND OTHER PRELIMINARIES

3.1. Notations and conventions. Here we collect some notation and conventions used in
this paper.
e We employ the usual asymptotic notation A < B to denote A < C'B for some implicit
constant C' > 0. The dependence of C' on various parameters is specified by subscripts.
e We use the notation 0 (without sub- or superscripts) for the spatial gradient 0 =
(01,0s,...,04), and V for the space-time gradient V = (9,01, ...,0;). We write 9™
(resp. V™) for the collection of n-th order spatial (resp. space-time) derivatives, and
=" (resp. V(=) for those up to order n.

Linear, translation invariant operators acting on functions in R* are viewed as multipli-
ers, and described in a standard fashion via their symbol. Bilinear operators also play an
important role in this paper. In the Lie algebra context, the connection between bilinear

operators and symbols is described as follows:
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Definition 3.1. By a bilinear operator with symbol m(&,n) = m/*(€,n) (which is a complex-
valued 4 x 4-matrix), we mean an expression of the form

2o = [[ (memlaa(e). b)) 1= L

If £ were symmetric, then the symbol m(&,n) is anti-symmetric in £, n, in the sense that
m2P(&,n) = —mP2(n, £); this is due to the antisymmetry of the Lie bracket.

3.2. Function spaces. We begin with the standard Sobolev spaces:

e The n-th homogeneous LP-Sobolev space for functions from R? into a normed vector

space V' is denoted by Wn’p(]Rd; V). In the special case p = 2, we write
H'(R:V) = WHRE V).

The Lebesgue spaces (i.e., when n = 0) are denoted by LP(R%; V).

e The mixed space-time norm LIW. " [resp. LIW."] of functions on RY x .J [resp. I, x RY]
is often abbreviated as LIW"". It will be clear from the context which variable (either
s or t) is involved.

e Given a function space X (on either R? or R1*?), we define the space (*X by

lullfox =Y 1 Peull
k

(with the usual modification for p = c0), where P, (k € Z) are the usual Littlewood—
Paley projections to dyadic frequency annuli.

In the last section of the paper, where we make the connection with the hyperbolic Yang-
Mills equation, we need Strichartz type norms to describe bounds for various remainder
terms. Generally the Strichartz norms are used to describe the dispersive decay of solutions
for the linear wave equation. In particular for solutions to the homogeneous wave equation
Ou = 0 in R we have

IVl e S [[Vu(0)]| 2
for exponents (p, g, o) in the admissible Strichartz range

14—%:24—0, 2<p,q< o0, g—|—§§§. (3.1)
poq poq 2
The exponents (p,q) for which equality holds in the last relation above are referred to as
sharp Strichartz exponents. For the remainder term bounds in the last section we seek to
avoid using sharp Strichartz norms, and instead use only a restricted range of exponents.

For this reason we choose a sufficiently small universal threshold d, > 0 and define

1 1 2 3 3
r— P93 e dmi .b1765§_§__537 —+ =< = — 0. 3.2
[ullser = sup{||ul| py=a: (p, ¢, 0) admissible 555 PRI boo(32)
as well as
ullser = [Vullser (3.3)

These norms have two key properties, which will play an important role in the next paper
of the sequence [19]:

e They are divisible in time, i.e. can be made small by subdividing the time interval.
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e Saturating the associated Strichartz inequalities requires strong pointwise concentration,
rather than the usual range of Knapp examples (wave packets).

3.3. Frequency envelopes. To provide more accurate versions of many of our estimates
and results we use the language of frequency envelopes.
Given a sequence ¢ (k € Z) of positive numbers and a translation invariant norm || - || x,
we introduce the shorthand
|| Prul| x
=sup ——.

ull x,

Definition 3.2. Given a translation invariant space of functions X, we say that a sequence
¢ of positive numbers is a frequency envelope for a function u € X if

(i) The dyadic pieces of u satisfy
llu|lx. <1, or equivalently, || Pyul|x < cx
(ii) The sequence ¢y is slowly varying,
270Uk < i < 20U=k), j>k.
Cj
Here 0 is a small positive universal constant. For some of the results we need to relax the

slowly varying property in a quantitative way. Fixing a universal small constant 0 < ¢ < 1,
we set

Definition 3.3. Let 01,05 > 0. A frequency envelope ¢y is called (—o7y, 05)-admissible if

9-01(1=9U~k) < Tk < 90a(1=9(G-h) 5
Cj

Another situation that will occur frequently is that where we have a reference frequency

envelope ¢, and then a secondary envelope dj describing properties which apply on a back-

ground controlled by ¢i. In this context the envelope dj, often cannot be chosen arbitrarily

but instead must be in a constrained range depending on ¢;. To address such matters we

set:

Definition 3.4. We say that the envelope dj, is o-compatible with ¢, if we have
Ck Z 20(1_6)(j_k)dj 5 dk
j<k
We will often replace envelopes d; which do not satisfy the above compatibility condition

by slightly larger envelopes that do:

Lemma 3.5. Assume that ¢, and dy, are (—o1,S) envelopes, and also that ¢, is bounded.
Then for ¢ < o(1 — €) the envelope

er = dy, + ¢, Z 2&(j_k)dj
i<k
18 o-compatible with c,. The implicit constant in Definition s bounded above by 1 +

Cot-g-sllcle
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Proof. We need to show that
Cr Z 201k, < ey
j<k
This is trivial for the first term in e;, so we consider the contribution of the second,
cn Z Qﬁ(f*k)dﬂ(a(l*e)*&)(jfk)cj < ZQ&(K’k)dg.
t<j<k <k

The claim regarding the bound on the implicit constant in Definition follows by inspec-
tion. 0

Finally we need the following additional frequency envelope notations:
(C . d)k = dek, a<p = Zajv
J<k
cgﬂ = sup 2(1_5)"(j_k)cj (0 >0).
i<k
4. LINEAR COVARIANT ELLIPTIC AND PARABOLIC FLOWS

4.1. Solvability for A,4. Our goal here is to study the elliptic equation
AuB =F, (4.1)
where A is a connection 1-form on R* D is the covariant derivative associated to A and

A, = DDy is the covariant Laplacian. Moreover, B, F are g-valued functions on R*. In

1
this subsection, we assume that A € H , and omit the dependence of all implicit constants
on [[Af ;1.

The main result is:

Theorem 4.1. Assume that A € I'. Then the equation (4.1)) is solvable with bounds as
follows:

1Bl S 1Fll o2, (0<0<2). (4.2)
If in addition ' A; € ('L?, then we also have
1Bl g2 S IF ez (4.3)

Proof. All these bounds are perturbative if we assume in addition that A is small in H g
Else we proceed with the following steps:

The case o = 1. Here the solutions are variationally interpreted as minimum points for the
functional

L(B) = /%(DjB,DjB> — (B, F)dx.

The desired solvability result may be proved with a standard calculus of variations argument
combined with the diamagnetic inequality for D as follows. Note that, for every ¢ > 0 and
smooth B, 0;(e+(B, B))z < (e+(B, B))"2(B, D,B) < |D;B|. Multiplying by a nonnegative
test function ¢ and taking € — 0, we obtain the diamagnetic inequality:

|0|B|| < |DB| in the sense of distributions.
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By Sobolev embeddings, we immediately see that || B[+ < [[DB||2; then expanding D;B =
9;B + ad(A;) B and estimating [lad(A;)B| 2 < [|All 4[| Bl 2+, we obtain

[Bllzs + 1Bl < €A+ [[A]l y1) [DB| 2. (4.4)

As a result, we obtain the following lower bound on L(B):
1 1
L(B) = 5D B3z = Bl | Fll - 2 IDBI2 = C* (1 + 1Al ) * 1 F I -1

By (4.4) and the convexity of L, used in the form of the identity

L(EE) + 5 [(DI(EE). Dy (55 do = 5 (L(B) + L(B),

we see that any minimizing sequence B™ e H Y for I converges strongly to a minimizer
BeH 1, which is unique.
Finally, the desired bound follows from L(B) < L(0) = 0 and (4.4)).

The case o > 1. By duality the case 0 < 1 reduces to this.
It suffices to start with F" localized at frequency 1 with ||F|| ;o-2 = 1, and prove that the

bounds above hold. The smaller frequencies of B are obtained from the H ' bound, so we
need to get the hlgher frequencies. A perturbative argument at high frequencies shows that
we must have B € H’, but this proof depends on the frequency envelope of A. It remains
to remove this dependence.

Let ¢, = || Py B|| 2, and let di, e be (=4, ) frequency envelopes for A in H' and 9‘A, in
L2, respectively. A direct application of the [ " bound to A AB = F yields

e S 2F for any k. (4.5)
which is effective only for £ < 0. For £ > 0 we view our equation as an equation for
BZIC = (1 — P<k)B, i.e.,

ApBsy = [P<y, As]B
We furthermore decompose

[P<k, AA]B :P<k ((2ad(A£)ag + ad(@eAg) + ad(Ag)CLd(Ae))PZkB)
— Poy ((2ad(A) 8, + ad(8°Ay) + ad(A)ad(A")) Py B) .

In what follows, we omit the tensor index ¢. Applying the H ! result to the above equation,
and using Littlewood—Paley trichotomy, we obtain the bound

[1PoiBlljr < [Paks AalBl| 1
SNPakBlly > 27 Fdy + 27| 0P Bl Y 2244,
J<k-5 Jj>k—=5
+ 278 PoyBlle > 25 (e + dY)
Jj>k=5
S dil|[Por Bl 4 27 di (27| 0P< Bl 1) + 27 (ex + d}) || P<i Bl 1o~
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We apply this only for those good k’s where d < 1, which are all but finitely many. Then
the first term on the far RHS can be absorbed into the LHS, and we obtain

1Bkl 1 < 27 (27 |0P<k Bll) + 27" (ex + di) | Baxl| - (4.6)

The LHS controls any ||Bj||H1 with 7 > k. Since for any j € Z we can find a good k£ < j
such that dy < 1 and j — k = O(1), we have (after relabeling j — k)

cr Sdy ZQj_kcj + (ex + d2) Z cj for any k£ > 0.
j<k i<k

The first term on the RHS may be essentially absorbed into the second term after reiteration:

A 27 Fe; 2Ry dy Y 27 <dj D2 e+ (e +d3)) cl-)

i<k 0<y<k 1<j 1<J
SoFdptd Y o Y (d27F 4 (e + D)2
i<k  max{:,0}<j<k
S/ Qikdk + di Z 2(175)(i7k)cl, + dk(ek + dz) Z i
1<k i<k

§ 2_kdk + (ek + di) Z C;.

1<k

Plugging this bound back into the preceding bound we obtain

1+ Z cr < 27%d, + Z (1+C(ex +d2)) <1+ Z cj> for any k£ > 0.

0<j<k 0<j<k 0<j<k
By induction on £, using also the relation ), _, 27%d,, <1, it follows that

k

k
1+) ¢ S[[A+Cd +ey)).
j=1

J=1

In the first case we simply have e, < dj. Since dj, € 2, this yields

which suffices for the #” bound when o < 2.
In the second case we have di + e, € (' so we get instead instead

k
> G sl
j=1
which leads to
cr S di + ey O

We continue with the frequency envelope version of the above result:
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Theorem 4.2. Assume that A € Hl, with a (—1,5) frequency envelope ci. Also assume

that F € H ' has a 1-compatible (—1,S) frequency envelope dy. Then the equation (4.1)) is
solvable with bounds as follows:

1Bl 2 < d- (4.7)

H r~
Proof. If S = 1 then this follows from the previous result, and no compatibility condition
is needed; so we may assume that S > 1. Note also that it suffices to consider a (-4, 5)
frequency envelope dj, as —d can be improved to —1 using Theorem [£.1} Let C' be minimal
with the property that

| Br| ;1 < Cld. (4.8)

To guarantee that such a C' exists, we can always replace dj by
dy, = max{dy, €}
These envelopes are still 1-compatible with ¢, and the desired result is obtained by letting
e — 0.
Now we write the equation for By in the paradifferential form,
AA<kBk = Gk :PkF — Pk (QG,d(PZkAZ)agB —|— a,d(GKPZkAg)B)
— Pk (ad(PZkAe)ad(Ag)B + ad(P<kAZ)ad(PZkAg)B) — [Pk, AA<k]B,
where A, = Pt A. We use Littlewood—Paley to estimate
Gkl S di(1+CD 2 Fey) + Cop Y2 7Fdj,
j<k j<k
where all contributions in the high x high — low case are rapidly decreasing and subsumed
in the 7 = k term, provided that we choose § sufficiently small.
If C < 1 then we are done. Else, let k& be so that (4.8)) is near optimal. Then we must
have

Cdp Sdp(1+C Y 27F¢;) + Cep Y 274,

j<k j<k
so either
j—k ..
1< E 277y,
j<k
or
E Jj—k .
dk S C 2 dj.
j<k

In the first case, as ¢ is a (J, —5) envelope, we must clearly have ¢, =~ 1. In the second case,
by the compatibility condition,

dk S Cp Z 2jikdj S Ck2imE Z 2(176)(]'7]6)6[]‘ -+ CkQ(Sil)mdk S dk (27m6 + 2(Sil)mck) s

J<k j<k—m

so that after choosing m appropriately large, the same conclusion ¢; ~ 1 holds.

Therefore, in both cases, by the compatibility condition we must also have

dy, > cn 22(176)(]'71@)61], > dLﬂ,
i<k
and then the conclusion follows from the S = 1 case. O
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4.2. Solvability for 0, — A,: L? theory. Our goal here is to study the parabolic equation
0sB; — AaB; — 2ad(F;*) By, = G; + D" Hy;. (4.9)
in a time interval J = [0, T]. Here B, G are g-valued 1-forms and H is a g-valued covariant 2-

tensor on R*x .J. We assume that A is a L>°(J; Hl) connection, with curvature F' € L?(J; Hl)
and 9,A € L*(J; L?). Since our results will be scale invariant, the lenght of J plays no role
and is arbitrary. For simplicity, we will often omit the indices and abbreviate (4.9)) as

(0s — Ax —2ad(F))B=G+DH.
Furthermore, we will skip writing out the heat-time interval J, and drop the dependence of

implicit constants on |[A|l, . 41, [|F|l 2z and ||0sAll 2.
We start with a basic solvability result:

Theorem 4.3. Let —2 < 0 < 2, and A as above. Then the above equation is well-posed in
HU, with bound

1Bl et + DBl 257 S 1BO) g + NGl s+ 1H N 2 (4.10)
Proof. We begin with the case 0 = 0. When the term 2ad(F’) B is absent, the desired estimate

follows by multiplying (4.9) by B; and integrating by parts over R* x J. The contribution
of the term 2ad(F')B is then treated perturbatively, by splitting J in to a finite number of

intervals on each of which the L2H ! norm of F' is small.
For o = 1 we differentiate the equation to obtain the following (schematic) linear equation
for DB:

(0s — As —2Ad(F))DB = DG + D’H + (0,A)B + (DF)B + FDB, (4.11)

and apply the o = 0 result. The last three terms on the right are perturbative. By interpo-
lation this yields the result for 0 < o < 1.

For 1 < 0 < 2 we use again the differentiated equation (4.11)), and perturb off the o — 1
result. To insure that no additional derivative falls on 0,4 and DF', we write

(0,A)B + (DF)B = D,D‘*A}*((0,A)B + (DF)B)
and note that, by Theorem [4.1]
DAL ((0s4) B + (DF)B)(3)| yo-1 SI((0s4) B + (DF)B)(5)]| ;o2

SUOsA(S) [z + [[F ()]l ;) B(s)] e
Hence the last three terms on the right in (4.11) can be treated perturbatively, by putting
(0,A)B + (DF)B in L2H° " and FDB in L'H" .

Finally, for negative o we use duality, as our assumptions are invariant with respect to
heat-time reversal. ([l

7

We will also need a frequency envelope version of the above result. Simply the fact that
this result applies for a range of indices ¢ already allows us to obtain the following

Corollary 4.4. Assume that dy, is a (—2,2) frequency envelope for B(0) in L?, G in L'L?
and H in L*L?. Then

8Here it is important to have covariant derivatives on the left if ¢ > 1, and on the right if ¢ < —1.
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The lower range limit for this bound (more precisely, the lower admissibility of dj) is
entirely satisfactory, but we would like to increase the upper limit in order to also have a
higher regularity result. The obvious price to pay is that we need a stronger assumption on
the connection A. To quantify that we will use an #? frequency envelope ¢, so that

[ PeAll gt + 1 PRF | ot + [[PeOsAll 22 S i (4.13)
Then we have the following:

Theorem 4.5. Assume that (4.13) holds for some (—1,S) frequency envelope cy. Let dj, be
a 1-compatible (—2,S) frequency envelope for B(0) in L?, G in L*L? and H in L*L*. Then
we have

| PeBllpoer2 + | PDB||r2r2 < dy. (4.14)

Proof. The proof is analogous to that of Theorem We may assume that S > 2 and that
dy is a (=0, 5) frequency envelope. Let C' be minimal so that

||PkBHL°°L2 —+ ||PkDBHL2L2 < Cdk (415)

To insure that such a C exists, we can always relax dj in the high frequencies while keeping
the compatibility condition, as in the proof of Theorem [4.2]
We rewrite (4.9)) in the paradifferential form

(0s — Aa_,) By =P,G +DY<¥) B H + Py (2ad(P5,A)OB + ad(0PsA)B)
+ Py (ad(PsrA)ad(A)B + ad(P-,A)ad(Ps,A)B) + Py(2ad(F)B)
+ [Py, Aa_,]B + [Py, DU<0H
=PG + G) + DYV (P.H + DU<W AL @),
where A., = P, A, B, = P,B and
G =P,(2ad(F)B),
+ Py (ad(PsrA)ad(A)B + ad(P-A)ad(Ps,A)B)
+ [Py, Aa_,]B + [Py, DY<H)]H.
Recall that, by Theorem [4.1]
DAWAL T H ' L2
Ack -~ :

Applying the L? bound for By, in Theorem (which does not require any curvature infor-
mation), it follows that

| Bill ooz 4+ D<K Byl p2re < di + |Gl iz + ||GY,

[y,

By Littlewood—Paley theory, we may estimate
|G lzre + 1GEIl o= SCox Y 277 dy + Cdy Y 207 ey,
j<k j<k
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and
|PDWB| 212 S[IDY< By| 212 + || Pe(ad(Asp) Bl| 1212 + [[[Pr, DY<Y] B[ 22
SIDA<H) By||pape + Cdy, >~ 2.

j<k
where the high x high — low interaction terms are again rapidly decreasing, and thus is
subsumed to the 7 = k terms after fixing § to be sufficiently small. Thus, we arrive at the
estimate
|PeBl|zoer2 + |PiDWB| roge S dic + Cler Y 27 Fdy + di Y207 e;). (4.16)
<k i<k

Let k be so that (4.15)) is near optimal. Then we must have
Cdp S+ Clep Y 27 dy+dyy 27 Fey),

i<k i<k
and it follows that
either 1< Z 27 k¢, or dy, 2 ¢ Z 217k,
i<k i<k
As in the proof of Theorem [£.2] in either case we must have ¢; ~ 1. Then, by the compati-
bility condition, dj, 2, dg], so the desired bound follows from the case S = 1. 0]

Next, we prove an L!-type bound.

o—1

Theorem 4.6. Consider the equation (4.9) with H = 0, G € LVEHT and B(0) e H
where —1 < o < 1. Then the solution B obeys the bound
DBz S IBO) o1 + |Gl 1 gy
Assume that (4.13)) holds for some (—1,5) frequency envelope cy. Let dy be a 1-compatible
(—1,8) frequency envelope for B(0) in H ' and G in L'H " Then
|P.(DB)||piz2 < dy.
Note that the scaling of Theorem [4.6] differs from Corollary [£.4] and Theorem [4.5] This

reflects the fact that in what follows, Theorem will typically be applied to a covariant
derivative DB of a solution B to (4.9).

Proof. We directly prove the frequency envelope version. By Duhamel’s formula, the general
case is easily reduced to the homogeneous case G = 0. Note that 2¥d, is a (—2, S) frequency
envelope for B in L?, which is 1-compatible with ¢;. Thus, by Theorem we have

| PeB|| ooz + || Pe(DB)| 22 < 25dy. (4.17)
On the other hand, commuting the equation with s%+€, we obtain
142 142
(0s — Ap — 2ad(F)) §1TB = %3_%63 = %De (s_%JreHg) :

where
Hy=Dy(A4)7'B.
We claim that
| PeH || poor2 + || PeH || o S die (4.18)
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Assuming (4.18)), we first conclude the proof. Using the L*L? bound for s < 272* and the
L2H" bound for s > 272k it follows that

| Py(s™ 2T H)|| 22 < 272

For ¢ > 0 sufficiently small, 272¢*d,, still satisfies the admissibility and the compatibility
conditions. Thus, by Theorem [4.5] we have

1527 Py(DB)|| 22 < 2724, (4.19)

Interpolating (4.17)) and (4.19), we obtain the desired frequency envelope bound for DB in
L'I2.

It remains to prove (4.18). For the L*L? bound, we first note that Theorem and the

L>L? bound in ([4.17)) imply
1P(AL B ot < i

Then splitting D = 0 + ad(A) and using Littlewood—Paley trichotomy, we estimate
| PH | o2 SIIPe(DAL! B) | oo 2
SNPUAL Bl oo gt + |1 Prlad(A) AL B)|[ oo
Sde+ oy YRy S dy,
j<k
where we used the compatibility condition in the last inequality.
On the other hand, the L2H ! bound needs a bit of additional work, in order to make use

of the L?L? bound for DB in (4.17). We begin by writing

H=A'"AyH = A'DB + A [A4, DA B.
The contribution of the first term on the RHS is directly dealt with Theorem For the
second term, note that schematically, [A4, D/ = ad(DF) + ad(F)D. Using Littlewood-

Paley trichotomy, as well as the frequency envelope bounds for F € L2H 1, DF € L?L?,
AL'B e L= and DAL'B € L*L2, we have

| Pe(ad(DF)AL' Bl ;-1 + || Pe(ad(F)YDAL' B)|| -1 < i + i Z 217Fd; < dy.

j<k

L2H

The desired L2H" bound for H now follows from Theorem and an argument to peel off
ad(A) = D — 0 as in the previous case. O

4.3. Solvability for 0, — A4: LP parabolic regularity. Next, we consider LP solvability
of (4.9), and parabolic regularity properties of its solutions. For this, we assume that A
satisfies a stronger parabolic regularity property:

[1PeA(s) || S en(142%5)~N for all s > 0, (4.20)

where {c¢;} € £* and N > 2. Then for the homogeneous covariant equation
(0s —Aa —2Ad(F))B =0, B(0) = b, (4.21)

the following result holds:
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Theorem 4.7. Let A be as in (4.20) with a (—0,5) compatible frequency envelope ¢y, and
4 4

—-2<0< -, 2 <p < o0, 0<é<min{-—0,2+0}. (4.22)
p p

Let d7* be a (—0,S) frequency envelope for b in W, which is §-compatible with cx. Then
there exists a unique solution B € C([0,00); Wo’p) to (4.21), and we have

1PeB(5) liyrw Sielloon di” (1 +2%%5) 7N, (4.23)
Proof. We proceed in several steps.

Step 1: A =0, inhomogeneous case. We start with the constant coefficient case A = 0.
We will treat the general case as a perturbation of this case. For this purpose, we need a
slightly refined estimate for the inhomogeneous equation.

Consider the solution B to the inhomogeneous equation

(0s — A)B =G, B(s) =0,
with
| PeG iy < 22Fd7P (2% 5) 7P (1 + 22Fs) M.
where d;’” an arbitrary positive sequence here, and 3 < 1. Then for any 0 < a < 1, we have
1P B(8)|lyiror Sa di?(2min{2%%]s — so|, 22F5}%(22F5) 7P (1 4 2%F5) 7M. (4.24)

Indeed, note by Duhamel’s formula, B takes the form

B(s) = /8 e=92G(3) d3.

S0
We consider two cases:
(1) Short interval. If s < 2s¢, then § € (sg, s) obeys & ~ s, so that

1B s S [ 1 D2GE) yer ds

0

g/ks—@HwG@ngmamds

S0

§dg’p(22k\s — 30])‘”(2%3)_’3(1 + 22k3)_M.

(2) Long interval. If s > 25y, then we split fs‘z = fsi + f; and proceed as follows:

S

s 2 s_ = s =
IPB) e <3 [ e 5GE) dslgon + [ e D2GE) yor ds
S0 %
%
S+ 29 [ =5 G om0 d5
S0
%
+/‘@—5)Hw0@mwomamd5
80
SdTP(2%F5) P (1 4 2% )™M,
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Step 2: A # 0, homogeneous case. Next, we consider the covariant homogeneous

equation ([4.21)) with an arbitrary A satisfying (4.20)). Let 6y = min{2+0 —8(1 —¢), 3}, and
consider the slowly varying envelope

& = sup 270U =li=ke

J

For each time s we associate the dyadic frequency k(s) so that s ~z 272k(),
Given a small constant €y to be fixed below, we split the time interval [0, c0) into finitely
many subintervals .J; = [s;, s;41] so that each J; has one of the following properties:

e Either ¢ < ¢ for all s € Jj;
® or, Sjy1 — S; < €9Sj.

Once ¢y is fixed, the number of such subintervals can be bounded by a constant depending
on ||c[[2 and €.

In both cases we solve the problem perturbatively off the constant coefficient case (Case 1).
We expand A4 and F' in terms of A, and then write the equation schematically as

(0s — A)B = ad(A)0B + ad(0A)B + ad(A)ad(A)B, B(s;) = b;,
or equivalently
B(s) = ¥ )%, 4 (LB)(s)
where
(LB)(s) = /S e (ad(A)OB + ad(dA)B + ad(A)ad(A)B)(3)d5.
We make the induction hypothesis that
1Pibsllyper < dZP(1+2%s5) 7, (4.25)

and use a fixed point argument in the space X with the norm

IB]lx = supsup(dy?) =" (1 + 2%5) ™[ Bi(s)||yyor-

SEJ]-

Observe that (4.25)) follows from the hypothesis in the initial step 7 = 1. To continue the
induction, it suffices to show that in both cases L is a contraction in X.
Indeed, suppose B satisfies

1B (8) e < (d77)(1 +2%5) 7.
Then we seek to estimate the expression
P.G(s) = Pi(ad(A)OB + ad(0A)B + ad(A)ad(A)B)(s)
We separate out essentially the high x high — low interaction:

G =ad(Ps_5A)0Ps.B + ad(0Psp_5A) P, B
+ ad(PZk_g)A)ad(A)PZkB —+ ad(P<k_5A)ad(A2k_5)PZkB
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and decompose PG into PkGZh and PG = P,G — Pszh. Using the standard Littlewood—
Paley trichotomy, we obtain

PG () |yer S22, Y 2GR agP (1 4 925) =N (1 4 225)~N

i<k
+22d7P Ny "2 R (14 2%s) TN (1 4+ 2%) 7N,
i<k
[ PG (3) i 2% D270 Derd]P(1 -+ 2%5) 2.
>k

For 0 < a < 2N, we have the simple inequalities

D 20014 2%5) 7N L2 (1 4 2%s)7E (4.26)
(<k
Z 20{((1 + 2258>7N Szak(22ks>f%(1 + 22k8)7N+%’ (427)
>k

so it follows that
PG (5) [lypmr S2%Fer (D 22ERdgP) (1 4 2%05) =N 0

<k
+ 2% dy (Y 20 R ey)(1 4 22k5) N3 (1-0)
<k
| PG () g S2%(sup 23000 7 ) (27F5) 7257 (1 4 22Ks) NI
>k

where 6; = %(% — o0 — ) > 0. Using the slowly varying properties
d7P < 25(1—6)(f—k)dzvp for ¢ > k, e < 250(1_6)‘5_'“‘@, for any /,
as well as the following consequence of §-compatibility

Cr Z 25(€—k)d?,p S 2—5emck Z 25(1—5)(€—k)dg7p + QSkadZ1p 5 (2—(56771 + QSmék)dZm)
<k L<k—m

where m > 0 is to be chosen below, we obtain

| PLGE(8) | yyror S2%F(2709™ 4 25mE,)dP (1 + 2%k s) N 7202 (4.28)
k w k

22k8 —14202 .
[ PeGR () |lyjor S22 (m) Crdy (1 + 2%5) N 7202, (4.29)

with 52 = %min{dla %(1 - 50)7 N—-1+ HTUE’ ZJFTUE}'

Applying Step 1 to each piece, with a = & for G¥* and o = 1 — §, for G| this leads to
| PeLB(8)]ypor < (14 2%s)™N=02(270m 4 95mz ) d7P min{1, 22F|.J;|}%2.
Now we consider the two scenarios (this is where we fix m and €;):
(1) Short intervals. Here J; = [s;, s;41] where s;,5;41 ~ 272% and |[s;11 — s;| < 6272,
Then we gain from the first factor if 22% > 22% and from the last otherwise.
(2) Long intervals. Here J; = [s;, sj41] where s; &~ 272" and sy ~ 27%%+1 and | J;| & 272Fi+1,
Then we gain from the first factor if 22% > 22k from 270 4 29m¢, < 279 4 25m¢, if

22k; < 92k < 92kj+1 and from the last factor otherwise. O
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We also need a version of the previous result for the inhomogeneous equation

(0s — Ax —2Ad(F))B = G, B(0) =0, (4.30)
Theorem 4.8. Let 0 < 5 < 1. Let di, be (—1,5) admissible and 1-compatible with cy. If
| PGl < 22%(2%5) P dy (1 + 22Fs) 7. (4.31)
Then
| PeBllz2 < (2%8) Pdy (1 + 2%Fs) 7. (4.32)

Similarly, for general (o,p) as in (4.22)), if dy is (—0,5) admissible and §-compatible with
¢k, and if

| PG|y < 22F(2%5) 7877 (1 + 2%5) 7N, (4.33)
then we have

| PLB||yior < (2%s) 7 2d7P(1 4 2%s) N, (4.34)

Proof. The proof repeats the proof of the previous theorem. Step 1 is reused in its entirety,
as well as the interval partition in Step 2. The only difference is in the choice of the induction

hypothesis (4.25]), which is now replaced by

1Pebs|lyior S (2%8)' 7277 (1 4+ 2%s) 7Y, (4.35)
But this is still consistent with (4.24]), so the rest of the argument is again identical to the
previous proof. O

5. THE YANG—MILLS HEAT FLOW AND THE LOCAL CALORIC GAUGE

5.1. The covariant and dynamic Yang—Mills heat flows. Our first goal here is to intro-
duce the equations for the Yang-Mills heat flow and its linearization in a gauge independent
fashion. The Yang—Mills heat flow models the parabolic evolution of a connection 1-form
A = A;dz?. This can be thought of as the gradient flow associated to the functional

1 )
el = [ (B PP de
R4
We will denote by s € [0,00) the heat-time variable. To describe this flow covariantly we
add an s component A, to the connection, so that our connection 1-form is now
Ajda’ + Ay dx
One can think of Ay as the generator of a semigroup of gauge transformations.

Definition 5.1. Given an interval J C [0, 00), we say that a connection 1-form A = A; da? +
Agdx on R* x J is a covariant Yang-Mills heat flow if it solves
F,;,=D'F, (5.1)

This equation is invariant under pointwise gauge transformations on R* x .J.
Assuming that (5.1]) holds, it is not difficult to see that the curvature tensors also must
solve their own system of covariant parabolic equations:

Lemma 5.2. Let A; da?+ A, ds be a sufficiently reqular solution to (5.1)). Then the curvature
components Fj and F; obey the following covariant parabolic equations.

D.F; — D'D,F; = = 2[F,, Fyl, (5.2)

D,F,; — D'D,F,; = — 2[F.%, Fy]. (5.3)
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Next we consider the linearization of the covariant Yang—Mills heat flow. To describe this
we consider a smooth one parameter family A(t) of covariant Yang—Mills heat flows. Here,
anticipating the use of ¢ as the hyperbolic Yang—Mills time variable, we will use the index 0
for t derivatives. Then we seek to write the equations for

B =0yA
A direct linearization in the equations ({5.1]) yields the evolution
D,B; — D;B, = DY(D,B; — D;B,) + [B, Fyi] (5.4)

This is invariant with respect to gauge transformations which depend on s and x. Further,
the effect of a one-parameter family of gauge transformations O(t) in the equations ([5.1)
that satisfies O(t = 0) = Id is the invariance of (5.4)) under the following transformation:

B’i — Bz — DiAO7 Bs — Bs — DSAO (55)

where Ay(s,z) = 04(0,s,x) is the linearized action of O at ¢ = 0. In this sense, may
be regarded as a linearized gauge transformation for . Another useful statement that is
equivalent to the invariance of under is that B;dz' + Byds = D;Apdx’ + D Ayds
solves the linearized flow for any g-valued function Aj.

To achieve full covariance, we proceed as above and add to our connection the s dependent
Ao component:

A, dz® + A, ds.

Instead of tracking B, we are now considering the parabolic evolution of the correspond-
ing curvature tensor Fo;, Iy, which can be interpreted as a gauge-covariant deformation of
Aj, Ay. These are related to B;, By via the relations

Fy; = Bj—D;A,,  Fo,= B, — D,A,. (5.6)

Due to the above gauge invariance, these still solve the equations ({5.4]).
So far, the choice of Ay was arbitrary. We specify covariantly the parabolic evolution of

Aoi

Definition 5.3. Given an interval J C [0,00), we say that a connection 1-form A, dz® +
Agydx on R* x J is a dynamic (covariant) Yang—Mills heat flow if it solves

F,, = D'F, (5.7)

Compared with (5.1)), here we have added the o = 0 equation, which specifies Ay given its
value at the initial heat-time s = 0. Indeed, Fy; = D*Fy, may be equivalently written as

D,A, — D'D,A, = B, — D'B,. (5.8)

This choice is independent of the equation satisfied by B. On the other hand, the
advantage of writing instead of is that the former is manifestly covariant under
any t- and/or s-dependent gauge transformation O = O(t, z, s).

Assuming that A is a dynamic Yang-Mills heat flow, one can differentiate to obtain

the desired covariant parabolic equations for the curvature, which expand the equations
in Lemma [5.2}
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Lemma 5.4. Let A = A, dx® + Asds be a sufficiently reqular solution to (5.7). Then the
curvature components Fnpg and Fs, obey the following covariant parabolic equations.
D,F,5 — D'D/F,5 = — 2[F. ", Fal, (5.9)
D,F,, — D'D,F,, = — 2[F,‘ F.4. (5.10)

At this point, the way one should think of the & = 0 component of these equations is as a
covariant equivalent formulation of the linearized equations (5.4)), given that A, satisfies the

gauge fixing condition (5.7) for a = 0; see Section [2.6]

Remark 5.5 ((5.7]) with & = 0 as an infinitesimal de Turck trick). Note that, by imposing the
equation Fyy = D*F}y, we have arrived at a nondegenerate parabolic equation for Fy; in (5.9),
as opposed to the degenerate parabolic equation . This statement can be alternatively
seen as follows, in a way that resembles the classical de Turck trick for (cf. (L.7)—(L.8)).
Using D'D; B, = D;,D‘B, + [F%, B/, can be rewritten as

D,B; — D'D,B; + 2[F", B)] = D;(B, — D'B,).

If one attempts to cancel the undesirable RHS by a linearized gauge transformation of the
form (5.5)), then one is naturally led to the condition (/5.8]), which is equivalent to ([5.7)) with
a = 0 under the definitions Fy; = B; — DAy and Fy; = B; — D Ay.

5.2. Covariant bounds for solutions. Postponing for the moment the gauge dependent
well-posedness question, we now explore the possible covariant bounds for sufficiently regular
solutions. These are necessarily curvature based. The first is the monotonicity formula:

Proposition 5.6. Let A be a sufficiently reqular covariant Yang—Mills heat flow. Then for
0 < sg < 51 we have the relation

1 y 51 . 1 y
/§<Fij,F”>(31)dx+/ /(Dngi,Dmedxds: /§(Fij,F”>(so) dz. (5.11)
S0

This is verified by a direct computation. Based on this relation, one expects that well-
behaved solutions to the curvature equations satisfy

FeL®L? DFelL?’L%
By the diamagnetic inequality, the latter bound implies F' € L?L*. Interpolating between
this norm and L*L?, one obtains in particular
FelLl’L’
This norm plays a key role in our analysis, as it serves as a continuation criteria for solutions.
More precisely, we have the following:

Proposition 5.7. Let A be a sufficiently regular covariant Yang—Mills heat flow on the
heat-time interval J = [sg, s1). Suppose that

1 F[| L3 (s,L3) < Q < oc. (5.12)

for some Q < oo.
(1) Then for any n > 0, there exists Q,, = Q,(||F (s = so)||z2, Q) < oo such that

H3n/2D§;n)F”LZ(J;L§) + HS(TLH)/QD;HH)FHL%LS(J%L%) < Q,. (5.13)
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(2) Suppose, in addition, that (Ao, A) is a sufficiently reqular dynamic Yang—Mills heat flow
on J. Then for anyn > 0, there exists Qg = Qon(||Foz(s = s0)|lz2, | F'(s = sol|12, Q) <
oo such that

||5n/2Dg(cn)F0j||LZ(J;L§) i |’5(n+1)/2D:(En+1)FOjHLQLLS(J;LE) < Qo (5.14)

Here the L?L? bound in the hypothesis is applied only to the spatial components of the
curvature. However, the conclusion applies as well to the F{; components.

Proof. We prove each part in order.

Proof of (1). We proceed by an induction argument. Assume that, for 0 <n’ <n —1, we
have

> (Hsm/2D:(Em) P AT (J;L%)) <207, (5.15)
0<m<n/ s B

for some Q,, < oo, then we claim that (5.15)) holds for n’ = n. In the base case n = 0, we
make no induction hypothesis.
For each fixed 4, j, the curvature component F;; obeys

D.Fj; — AaFy; = =2[F, Fjy.

Commuting with Dé”), we obtain a schematic equation of the form

D.D(VF;; + ADPF; = > DI E, DI F.
n/=0
Multiplying by s”Dg;")Fij (using the bi-invariant inner product) and integrating over R* x
(s1,52), we get

1 n|Ty(n) 2 . n+1 (n+1) 2 ds
5 52’Dx FZJ| (52) dx + S ’Dx Fzg| dr —

1
:2/ DM F2 (s dx+n/ / s" D |2d:10—

ds

n so
£ [7 [ eonpg-om D ©
n/=0"Y 51

Therefore,
Hsn/QDgEn)FH%Z((SLS@ L2) T ||S(n+1)/2D RH)FHL? ((s1,52);L2)
< € (It D PO + 1l DL FI, (o i + 1)
where

SN , / ds
(51, 89) = 2_:0/ /s"+1<[D;”>F, Dgl—”)F],D;”)m?
We decompose

L,(s1, 52) = I high(s1,52) + Iniow(s1, 52)
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where

ds

In,high(81,52) _/ /SnH([F? Dg;n)F]aDg(Cn)F> P
S1

52
In,low<51> 52) — Z / / 8n+1<[D§Cn/)F, Dgc”fn/)F], D;H)F>

0<n/;n—n'<n

ds
-

Observe that I, ., is nontrivial only when n > 2. In that case, we estimate I, jo,, using
Holder and covariant Sobolev inequalities as follows:

2
|In,low(51>82>| SC( Z Hs(n +1)/2D:S:n)FHL%S((sl,SQ);Li)> HSn/QD:(vn)FHL%;((31,82);[/%)

0<n/<n

2
SC( Z ”S(n +1)/2D§Un +1)F||L2d5((81,52);L§)> HSn/zD:(cn)F”LZ((81,52);L§)

0<n’<n

By the induction hypothesis,
[ ntow(s1, 52)| SCQAIs™*DEVF s (s1.0)522)

which is acceptable since it is linear in F'.
On the other hand, for I, pin we proceed differently in the base case n = 0 and the
inductive case n > 0. In the base case, we simply have

| Lo ign (D) < ClIEN 205,95
and I, ;o = 0, so the desired conclusion ([5.15)) follows with n = 0.
In the inductive case n > 0, we estimate
[ L, high(81, 82)]

1/2
<C|s F“LQ%S((

81752);

L) |‘S(n+l)/2D§cn)FHL2di ((s1,82);L%) H Sn/QDgcn)FHLZ ((s1,82);L2)

<C|s'*D,F

|L2dis ((s1,82);L2) ||S(n+1)/2D;(rn+1)F||L2dis ((s1,82);L2) ||Sn/2D(xn)F”Lfii ((s1,82);L2)+

Therefore, this term can be absorbed into the LHS if
C’Hsl/szFHLQdS ((s1,52);L2) < 1. (516)

By the induction hypothesis, ||s"/*DyF| 12 (,12) < Qo < 00, s0 the interval J can be split

into O(Qp)-many of intervals on each of which (5.16) holds. Reinitializing data at every
(left) endpoint of these intervals, we obtain the conclusion ({5.15)) for n’ = n.

Proof of (2). Asin (1), we again proceed by an induction. Here, the key point is that the
equation obeyed by Fj,, namely

DSFOj — AAFOj = —2[F0k, F]k]

is linear in Fg,. The contribution of the RHS can be treated perturbatively, using the bound
proved in (1), and splitting J into small intervals to gain smallness of F'. We leave the details

to the reader. |
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While in these bounds we cannot substitute covariant derivatives by regular derivatives, we
do have the corresponding L? bounds which would normally follow from Sobolev embeddings:

Corollary 5.8. Under the same assumptions as the previous proposition, we also have

1 1y,01 1 12 _1
”82(2 q)+(4 p)FaﬂHL%s(J;Lq) §Q ]., -4+ - S 5 (517)
< p q
respectively
572 EIDO Fg s iy Se . pa =2, n= L (5.18)

Proof. This follows from the diamagnetic inequality 0;|F,5| < |D;F,s| and the standard
Sobolev embeddings; we leave the details to the reader. 0

5.3. Main results in the local caloric gauge. To prove local solvability for the Yang-
Mills heat flow we need to fix the gauge. One natural choice in this context is the de Turck
gauge,

Ay, = 0'Ay, (5.19)

With this gauge choice, the covariant Yang-Mills heat flow equations are reduced to
a genuinely parabolic semilinear system, and their local theory is relatively straightforward.
Unfortunately, it is not clear to us whether this gauge leads to global solutions in the large
data case, rather than gauge related singularities. Part of the difficulty is that this flow is
nontrivial even for flat connections, where it corresponds to a critical harmonic map heat
flow into the Lie group G.

In order to avoid such difficulties we will work from the start in the the local caloric gauge,

A, =0. (5.20)
The Yang—Mills heat flow written in the local caloric gauge takes the form
0,A4; = D'D,A; — DO Ay, Ai(0) = a. (5.21)

Here one can see the downside of working in this gauge, namely that our evolution is only
degenerate parabolic. This will cause some small difficulties with the local theory, but has
the chief advantage that it is very well suited for the global theory.

The non-parabolic component of the above system is captured in the evolution of 9% Ay,
which we capture here for later use:

0,0' Ay = —[A* D Iy]. (5.22)

This evolution retains some gauge freedom, namely that which corresponds to purely spa-
tial (i.e. s independent) gauge transformations. Later in this section we will take advantage
of this gauge freedom to construct our caloric gauge for the hyperbolic Yang—Mills equation.

In the same vein, the linearized Yang—Mills heat flow written in the local caloric gauge
B, = 0 has the form

We introduce the notation
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In addition to the above gauge transformations B — OBO™!, here we have the additional
gauge freedom arising from pure gauge variations of A, namelyﬂ

where C' is again independent of s (though its covariant derivatives are not).
We repeat this discussion with the Ay equation of the dynamic Yang—Mills heat flow,
which takes the form

0sAg = D'Fy, (5.26)
where Fj, are uniquely determined in terms of their initial data from the equations
OsFoe — AaFoe = —2[F,*, Fy). (5.27)
The gauge freedom here is even simpler,
Ay — Ao+ C, (5.28)

where C' = C(z) is independent of the heat-time s.

The Yang—Mills heat flow written in the form has the disadvantage that the principal
part AA; — 0;0°A, of the RHS is not strictly negative-definite; hence the principal part does
not exhibit (forward in heat-time) smoothing for the whole A;. Instead, at the leading order
this equation decouples into a nondegenerate parabolic equation for the curl of A, coupled
with an ODE evolution for the divergence of A. The same considerations apply to the
linearized equation.

Unfortunately we cannot take advantage of this decoupling directly. However, a carefully
covariant version of it turns out to be effective, and leads us to the critical H ' well-posedness
theory for the system ([5.21]).

From the above discussion we retain the special role played by the divergence of A, which
in general gains no regularity in time. For later use, we will also consider solutions for which
the divergence of A is more regular, and extend the well-posedness theory to the space

H={ac H' 0 € ('L?}.

The same considerations as above apply to the linearized equation . On the other
hand, the evolution (5.27) of Fy, is nondegenerate parabolic. For this reason we will use a
roundabout way to obtain solutions to the linearized flow. Precisely, we follow the following
algorithm:

e We initialize ag = 0 and fo, = by at s = 0.

e We solve the parabolic equation for Fj;.

e We obtain Ay by integrating in heat-time.

As discussed in Section [2.6] this may be though of as an infinitesimal de Turck trick for
(15.23)).

Our main local well-posedness result for the Yang—Mills heat flow in the local caloric gauge
is as follows:

Theorem 5.9. The Yang—Mills heat flow in the local caloric gauge is locally well-posed in
both H' and H, with locally Lipschitz dependence on the initial data. The same result holds
in H' N H® forall o > 1.

9This is the linearized gauge freedom of under the additional restriction O.; = 0 in order to

keep the local caloric gauge condition Ay = 0.
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To study the long time behavior of solutions it is useful to have bounds which depend only
on the L3L? norm of F:

Theorem 5.10. Let a € Hl, and A be the corresponding H' solution for the Yang—Mills
heat flow in the local caloric gauge on a time interval J = [0,s¢). Assume that, for some

Q, M, >0, the L3L? curvature bound holds in J and that
lall jp < M. (5.29)
(1) Then we have the uniform bound
1Al + 1]

as well as the similar H bound.
(2) Let b € H be a corresponding linearized data. Then we have the uniform bound

1Bl oo iy + llearlaBl 2 Soan 0l e =2 <0 <2, (5.31)

A 10uAl ez So llall (5.30)

L L2NL2H

as well as the similar H bound.
(8) Assume in addition that a € H  for some o > 1. Then we have the uniform bound

[ AN oo = + IF Nl oo grr=1rp2i + 10sAll L2 o= Saraa, Nl - (5.32)
Also for the linearized equation we have
1Bl oo grm + llcurlaBll 2 g7 Soan 10l 77 + 161l 2 el g (5.33)

These bounds assert that the solution to data map for the Yang-Mills heat flow in the
local caloric gauge is uniformly Lipschitz in H 1, Hand H NH° ( o > 1) on bounded sets

in f' for as long as the L3L3 norm of F remains controlled.

We will prove parts (1) and (2) directly. However, for part (3) we will instead establish a
stronger and more accurate frequency envelope version of the above result. For this, we will
use the following notation:

e ¢ is a (—1,5) frequency envelope for the connection a in H g

e d;, is a (—1,9) frequency envelope for the linearized data b in L2
If S = 2 then these envelopes can be taken independently of each other. For larger S, we
require that dy be 2—compatiblﬂ with ¢g.

With the above notation, we have:

Theorem 5.11. Leta € i with (—1,5) frequency envelope cx, and b € L? with 2-compatible
(—=1,95) frequency envelope dy. Let A, B be the corresponding solutions for the Yang—Mills
heat flow, respectively its linearization around A, in the local caloric gauge on a heat-time
interval J = [0, o). Assume that the L*L3 curvature bound holds in J, and also that
holds. Then we have the frequency envelope bounds

”PkAHLooHl + ||PkF||L°°L2ﬁL2H1 + ||PI€DF||L1H1 ~9,M1 Ck, (534)
sup || Pe(0°Ag(s1) — 0 Ag(2)) |12 Soonn, crcl) (5.35)
51,52
respectively,
||Pk:B||L°°L2 + ||PkCUT1AB||L2 ~Q,M; dk, (536)

101y fact, any o-compatibility with ¢ > 1 would do. The reason for this range is that it allows us to treat

-1
the linearized equation simultaneously at the two regularities that we are interested in, namely H and L2.
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sup [|[D* By (s1) — D¥By(s)[l ;- Son ardyy + dicyy) + > 287 ejd;. (5.37)

51,52 j>k

Theorem allows us to consider the question of continuation of solutions for the Yang—
Mills heat flow:

Corollary 5.12. (1) Leta € ' and A be the corresponding i solution for the Yang—Mills
heat flow in the local caloric gauge on a heat-time interval J = [0, sq). Assume that the

L3L3 curvature bound - holds in J. Then the following limit exists in i
A(sg) = lim A(s). (5.38)

S5—S0

Further, there exists a strictly larger interval J = [0,50) as well as € = €(Q, ||a||H 1) S0

that for all data a with ||a — al| ;1 < €, the corresponding solution A exists in J, satisfies

(5.12) with Q replaced by 2Q, as well as
1A = All e 51 S lla =l . (5.39)
(

(2) If in addition a € H, respectively a € I nH (0 > 1) then the above limit exists in H,
respectively H N

As a consequence of the last result we have the following continuation criteria:

Corollary 5.13. Let A be a maximal i solution for the Yang—Mills heat flow in the local
caloric gauge in an interval J = [0,50). Then we have either so = 0o or || F||1s(s,8) = 00.

Here we are especially interested in the global behavior of solutions. Given a global
covariant Yang-Mills heat flow A with initial data a = A(s = 0), define

Qfa) = ||F||L3([0,oo);L3)~ (5.40)

First, we show that small initial energy leads to a global solution, with an explicit bound on

Q(a):

Corollary 5.14. Let a be a H' connection with a sufficiently small E.[a|. Then the corre-
sponding solution A to the Yang—Mills heat flow in the local caloric gauge exists globally, and
obeys

Qa)* < Eclal.

For solutions with Q(a) < 0o, we obtain uniform global-in-time bounds for the Yang—Mills
heat flow and its linearization in the local caloric gauge by Theorem Moreover, the
following asymptotic convergence properties also hold.

Corollary 5.15. Let A be a global i solution for the Yang—Mills heat flow in the local
caloric gauge with Q(a) = || F| 13(o,00)03) < Q@ < 00. Then the limiting connection A
exists in H' and has zero curvature. The same applies to the linearized equation in H 7 with
—1 <o <2 as well as in H. ) )
Furthermore, the map a — Ay is Lipschitz in H , H, H N H® (o > 1) uniformly on
bounded convex subsets of ' where (5.12) holds uniformly.
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5.4. Proof of the main results in the local caloric gauge. This subsection is devoted
to the proof of the results stated in the preceding subsection. All the solutions for the
Yang—Mills heat flow are assumed from here on to be in the local caloric gauge (|5.20)).

Due to the degeneracy of the parabolic system for A, we cannot address directly the local

well-posedness question in H , and we begin with a more regular setting:

Lemma 5.16. The Yang—Mills heat flow in the local caloric gauge (5.21)) is locally well-

posed for initial data a € i ﬂH3, with Lipschitz dependence on the initial data and lifespan
depending only on the initial data size.

The same argument applies in H YN for all 0 > 3.

Proof. We write the system as a mixed parabolic/transport for the curl/div of A:
{ (05 — A)curl A = [DA, DA] + [D?A, A] + [A, A, DA],
0s div A = [A, dcurl A] + [A, A, DA].

Here the only important structural information is that div A does not appear differentiated
in the second equation. For initial data A(0) € H "N we solve this system in the space

X = (L¥H? N L*H?) x L™ H?
by estimating the right hand side in

Y = (L'H? + L*H") x L'H?
A standard fixed point argument in this setting yields local well-posedness, with a lifespan

depending only on the initial data size. The control of the H? norm is useful as it guarantees
that A € L*. OJ

We now turn our attention to obtaining scale invariant bounds for such solutions. We will
use the L3L3 bound for F as a key a-priori assumption, while the initial data is assumed to
have finite energy, i.e.,

1
SIFlalllZ: < & < oo, (5.41)

Lemma 5.17. Let A be a sufficiently reqular Yang—Mills heat flow on a heat-time interval
J, so that (5.12) and (5.41) hold. Then we have the bound

1Al Soe 1+t {|A(s)]| ;- (5.42)

Lo it

Remark 5.18. The lemma is also valid for the dynamic Yang—Mills heat flow with the Ag
component added in (5.42)), after replacing (5.41]) by

1
5 D IFup(s = 0)|I7: < € < o0. (5.43)
a<f

Later we will seek to imbalance the Ay bounds.

Remark 5.19. From the proof, it will also be evident that a spatially localized version of
Lemma [5.17] also holds, i.e.,

HAHLoo(J;Hl(BR)) SQ,E' 1+ }ggﬁ HA(S)Hyl(BRy (544)

for any fixed ball B C R*.
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Proof We will proceed in two steps, where we first establish an L* bound for A, and then a
i bound. For the L* bound we need to estimate

S0
/ DEngds
0 L

We restrict to s; < s9 < 53 < 84, as the other cases are similar. Dividing time into dyadic
regions and using the bounds (5.17) and (5.18)), we estimate the corresponding integral Iy
I 5

by
/DF 81 d81 /DF(SQ) /DF(Sg)ng /DF(S4)d84
dyadic
1
Swm Z 325253 54

dyadic

= / <D2Fﬁ<$1), Dngi(82)><D£ng(83), DZFZi(SAL))dSl s dS4.
0

LOO

Given the ordering of the s;’s, this sum has has off-diagonal decay, and thus converges.
-1
In a similar manner, for the H bound we need to estimate

S0 2 S0
/ D*Fds / [A,DFlds
0 2 0

We proceed as above. The first term is written as

2

S0 2
/ OD'Fds +
0

L2

/ (DF(s)), D*F(s5))ds1dso,
51<82

and we can combine the two L?L? bounds for the two factors.
The second term is written as

/< <[A7DF](81),[A,DF](SQ))dSldSQ.

Here we directly use the L* bound for A, the L2L? bound for the first DF(s;) and the L?L>
bound for DF(sy). O

Next, we establish higher regularity bounds.

Lemma 5.20. Let A be a sufficiently reqular Yang—Mills heat flow so that (5.12) holds.
Then we have the bounds

Al gt Sean JAO) | geer, k=1 (5.45)
Proof. We first remark that bounds for A(0) directly translate into bounds for F'(0), namely
ID® )]z San [AO)]] e
This directly leads to improved bounds in Proposition[5.7], with & covariant derivatives added:

Is™ DY F| e (girz) + (|8 VPDTHHIE 2 (pay <o DO F(0)]]12 (5.46)

Next we prove the covariant version of (5.45)), arguing by induction on k. Our starting

point is the £k = 0 bound in the previous proposition. For the induction step we differentiate
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(5.26]) &+ 1 times to obtain the schematic equation

k
O.DWA =D F 4y [DUTYF DR 4],
5=0
Then we integrate in s from s = 0 and estimate separately each term. The analysis for the
first term is identical to the proof of the L? bound in the previous Lemma, but using ([5.46)
instead of ([5.13)). For the summand in the second term we need to consider the integral

I= / ((DUTYF, DD Al(s,), DU F, DE) A (s5) ) dads dss
s51<s2

Now we use (5.46) for F, respectively our induction hypothesis for A to bound the four
factors in L?, L®°L*, L?L> respectively L>®L* to obtain

11 , ‘
17l < Z s7s,? ||D(]+1)F||L21L2 IDE=+D A oo 2 | sDUFD |
s1<s3,dyadic

< DV FO) 7DV A e e

Then the RHS is bounded using the induction hypothesis, provided that 7 # 0. If j =0 we
can argue in a similar fashion if we mildly unbalance the estimate, using instead the norms
L2L*, L>®L? L2L* respectively L>*L* Alternatively, we can also divide the heat-time
interval into subintervals where the above L2LP norms of I are small, and then reiterate.

It remains to make the transition from covariant to regular derivatives. For k = 1 we
estimate as follows:

10PAllz2 Sany IDOA 22 < D A|2 + [[[DA, AJl| 2
Sany IDP A2 + DA paf| All s Sas, [DP A g2,

12,10 [DE TV A o 2

A similar argument inductively applies for higher k. O

We continue with some finer scale invariant estimates for A and F':

Lemma 5.21. Let A be a sufficiently reqular Yang—Mills heat flow so that (5.12)) and (5.29)
hold. Then we have the bounds

IE o + 1SE N ez T 182 Fll 22 Soan L (5.47)
as well as
IDF| o1t Soan 1, (5.48)
HAHZ2L°°H1 S./Q,M117 (549)
IF = e fllp oy Soanl (5.50)

Proof. We start with ((5.47). The first bound is obvious. For the second we need to estimate
at fixed s

1802 F || 12 < ||sDOF(8)|| 2 < |[sODF(5)| 12 + |[SOAF || 12 < ||sD2F(s)|| 12 + ||0A]| 2 ||sF|| o

which suffices. For the third we argue similarly.
More covariant derivatives are also allowed here. In particular the bound ([5.48]) for

IDF||,; . is obtained by combining bound;for [DF|z2 and [[sDF| ;2. (Alternatively,



we could use the fact that DFj, solves the (4.9) with G € L'H _1, and appeal to Theo-

rem [4.6])

The improved A bound ([5.49) follows by integrating

— / DFy;(3) d3
0

using (5-49).

Finally we consider the difference

which solves the schematic equation
(0, — A)F = [A,0F] + [0A, F] + [A,[A, F]] =: G.
Then we use off-diagonal decay, as well as the preceding bounds, to obtain the following
estimate for G:
||G|lg1L2H*1 §Q7M1 L.
Then ([5.50) follows from the usual heat flow estimate (or use Theorem [4.5| with A =0). O

We now have sufficient estimates in order to establish the continuation of regular solutions
for the Yang—Mills heat flow with regular data:

Lemma 5.22. Let J be the mazimal time of existence for the Yang—Mills heat flow problem

in the local caloric gauge, with initial data a € H' N H’. Then either J = [0,00) or
HF||L3(J;L3) = OQ.

. . . 1 L . . .
Proof. We assume that A is a solution in H N H in a finite time interval J, so that

| F|| £3(s;13) < oo. By Lemma |5.20, the solution is uniformly bounded in H N forse .
Since the lifespan of the solution to the initial value problem depends only on the size of the
data, it immediately follows that we can extend the solution past J. 0

Next, we consider the L? well-posedness for the linearized equation ([5.23)). It is convenient
to also consider the corresponding inhomogeneous problem, which we write in the form

dsBy, — D/ (D, By, — Dy.B;) — [B’, Fj.] = Hy, + D’Gj, B(0) = by, (5.51)
where G is antisymmetric.

Lemma 5.23. Let A be a suﬁ‘lczently reqular Yang—Mills heat flow so that - holds.
Then the linearized equation 15 well-posed in H® for =2 < o < 2, and we have the

bounds
1Bl g7 + 1DiB; = D;Bil[ 2 yr S NBO) = + 1H | rgr + NGl i (5.52)
Proof. Depending on ¢ we divide the problem in three cases:

Case 1: —1 < o < 1. For this part of the proof we do not use the fact that A is an
Yang—Mills heat flow. Instead, we use only the following properties:
e A is bounded in Hl ||A||L°°H <o L

o Fis bounded in L2H | ||[F|| ;0 Soan 1.

o 0,A € L2 ||0,Al 2 <o 1.
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These are precisely what we need to apply Theorem 4.3|
Our approach here is to solve the linearized equation via the Ay flow, as follows:

e We assign for simplicity the initial value ag = 0. Then we have matching initial data

ij - bj-
e We find Fp; by solving the inhomogeneous version of the covariant curvature flow (5.27]),
namely

OsFoe — AaFoy = —2[F)*, Fyo] + Hy + DGy, (5.53)
e We recover Ay by integrating (5.26)) in heat-time

A0(8> _/ Dkao(Sl) dSl.
0

e We find the solution B to the linearized inhomogeneous problem ([5.51]) by
Bj = Foj + DjAo.

This approach may at first appear more roundabout, but it has the chief advantage that
we only need to solve dynamically a strongly parabolic evolution. It may be thought of as
an “infinitesimal de Turck’s trick” for the linearized Yang-Mills heat flow (cf. Section [2.6)).

The bounds for Fp; are already provided by Theorem , which yields

[ F0jl| oo i + IDFOsll p2ge S N fosll gz + 1H | prgge + |Gl p2gre-
By the formula curly B = curl 4 Fy, + [F, Ao, it remains to estimate
ID Aol ooy + I, Aolll 2w S M fojll e + 1H N prg + (Gl p2gpe (5.54)
Since —1 < ¢ < 1, this reduces to
[Aoll oo et S Wfosllie + I H prggr + Gl 2o

To bound Ay, we need to better understand the expression DjFOj. This solves the
(schematic) parabolic equation

(0s — A4)D/ Fy; = [DF, Fy,) + [F,DFy;] + D'H; + [F, G,

where we used the fact that D"DG ), = —3[F/% G ;] by antisymmetry. As o € (—1,1), we
can estimate the right hand side in L'H -t By Theorem it follows that

D Foll g rsr S Mol + | H g1+ Gl

which in turn leads by integration to the desired L®H ! bound for Ap.
As a final remark, we observe that by interpolating the bounds ([5.52)) with different o we
obtain the slightly stronger form

1Bl + 1DiBj = D; Bill 2 jy= S IBO) gy + 1 M| 11 g7 + |Gl 27 (5.55)

Case 2: 1 <o < 2. In addition to the previous case, here we use the bounds
e DF is bounded in €2L1H1, IDF | 200 Saras 1

° 88A S €2L1H17 H85A||52L1H1 SM,Ml L.
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which were established in Lemma [5.21]
Here we apply the previous estimates to D‘B. The equations for DB have the form
8,D'B,, — D/(D;D'B, — D;D'B;) — [D'B’, Fj| = Hy + D/GY, (5.56)
where
1. . . .

H} =D‘H,, + §[Ffﬂ, Gji] + [FY,D; B, — D.B;] + [0,A, B] + [B7, D Fy],

G5, =D'Gy + ([F, Bi] — [F'y, By)).
Obtaining i7" bounds for DB suffices, in view of the elliptic bound

DB 2o gyo— + llcarla DB, 501 o an [|Bllpepe + llcurls Bl pape

The LHS of the last relation comes from the bounds for DB. To obtain those, we treat
the B dependent terms in H} and Gﬁk perturbatively. To guarantee smallness, we partition
the heat-time interval J into finitely many subintervals where [|F||,, ;1 and [[DF|,,,, ;1 are
small. The last norm is used in order to estimate the last two terms in H}:

IDE, Bl o=t S IDFll 2 1Bl oo gy

This is where the improved ¢? summation is essential in the last term. We omit further
details.

Case 3: —2 < 0 < —1. Here we argue by duality. The well-posedness for the linearized

flow in H' is equivalent to the well-posedness for the adjoint linearized flow in H ~7. The
adjoint linearized flow is a backward degenerate parabolic flow, which has exactly the same
form as but with the sign of 0y reversed. Since our assumptions on A and F' in the
previous two steps are stable with respect to time reversal, it follows that their conclusion
applies to the adjoint linearized flow as well. Thus the desired conclusion follows. 0]

We now complement the previous result with a frequency envelope bound. We assume
that A satisfies

| PLAll | gt + | PR F|

L>~H

1+ ||PI<:03A||L2L2 + ||PkDF||L1H1 5 Cp.- (557)

L2H
Then we have the following:
Lemma 5.24. Assume that (4.13) holds for some (—1,5) frequency envelope c. Let dj, be
a 2-compatible (—1,5) frequency envelope for B(0) in L?, G in L*L? and H in L*. Then we
have

H-PkB||L°°L2 + HPkCUI'lABHLQLQ gdk (558)
Proof. We prove the result in two steps repeating the analysis in the previous proof.

Step 1: The result for 1l-compatible frequency envelopes. This is similar to the
argument in the previous lemma in the case |o| < 1. The desired bound for Fy; follows from

Theorem [4.5]
Next we consider the parabolic flow for DY Fy;,
(0s — Aa)DFy; =R
where (schematically)

R = [DF, Fyj] + [F,DFy;]| + D'H; + [F, G].
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Repeatedly using the Littlewood-Paley trichotomy we estimate the right hand side
||P/€R||L1L2 5 2kdk
where the worst term is the first one where DF' is the high frequency factor. There we
combine the L' bound for DF with the L*L? bound for Fy;.
The frequency envelope 2¥d, is still admissible. Hence by Theorem this bound for R
yields

< 2k d,.

||PijF0j||L°°L20L2H1 ~

Moreover, by Theorem [4.6] we get
< dj.

”LlHl ~

| P D’ Fy,
This in turn after integration yields

| PkAo S di,

HLooHl ~
and thus the similar bound
|PDAgl|poorz < di.
Finally it remains to estimate [F, Ao] in L2L2?. Here we combine the Ay bound in L™®H !
and the L*H' bound for F.
Step 2: The result for 2-compatible frequency envelopes. This is similar to the
argument in the previous lemma in the case 1 < o < 2.
Here we work with the equations for DB. If di is a 2-compatible frequency envelope for
the initial data b,
[ Pkbllze < di,
then the data Db for DB satisfies (by Littlewood—Paley trichotomy)
1PeDb 2 < 28(di + ¢ Y2207 Md;) < 2%y,
j<k
and is 1-compatible with cy.
We make the bootstrap assumption
HP]CBHLOOLQ + ||PkCUI1AB||L2L2 S Cdk

on some subinterval. To show that this extends to the whole interval, we need to verify that
the B dependent terms in the right hand side of (5.56)) can be treated perturbatively. The
terms to bound are
| Pe([F, curly B])|| 12 + | Pe[DF, B]|| 1112 + || Pi[F, B]|| > < 2"dy
The desired bound is obtained by standard Littlewood-Paley bilinear theory, which yields
2 (di + cr Y 2°07Mdy) < 2 (dy + ep sup 20790 dy) < 2k,

ik i<k
However we also need to gain smallness. In the last chain of inequalities it is clear that
smallness holds unless

a1, 209URg <g . j <k (5.59)

The first property selects only finitely many values of k; in those cases, we can gain smallness

from the divisible norms of F' by subdividing the time interval.
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Now we are in position to apply the bound in Step 1 for DB to obtain
| PeDB||pr2 + || Py curlaDB]|z2 < 2%d.
It remains to return to B and show that this implies
| PiB||oor2 + || Pr curlaB|| 2 S di.

But this is done again perturbatively, where the errors are small unless (5.59)) holds. But
then we are in a position to apply Lemma directly. 0

Finally we use the frequency envelope bounds for the linearized equations in order to prove
frequency envelope bounds for solutions to the Yang—Mills heat flow:

Lemma 5.25. Let A be a sufficiently reqular Yang—Mills heat flow so that (5.12)) holds. Let
A& be a (—1,85) frequency envelope for the initial data a in H'. Then we have

1PAN oyt + 1 PF N o + | PeOsAll 222 + |1PDF| gy S e (5.60)

Proof. This is based on the observation that if A is a solution for the Yang—Mills heat flow
then 0, A are solutions for the corresponding linearized equations.

conclusion immediately follows from Lemma [5.23| with the exception of the L'H ! bound,
which is instead obtained from Theorem [4.6) applied to DF'.

Case 1. Here we consider the easier case when ¢} is a (—1,1) frequency envelope. Then the
23

Case 2. In order to work with more general envelopes, we denote by cg] a minimal (—1,1)

frequency envelope for (A, F') in the sense of (4.13), and by ¢ a minimal (—1,5) frequency

envelope for (A, F') in the same sense. By the result in Case 1 above we have CE] S 02[1}.

Define the envelope
dj, = cg + ¢ sup 22(1_6)(j_k)c?.
i<k

Then 2*d,, is 2-compatible with respect to ¢, therefore applying Lemma to DA it follows
that

|PeDA|, i+ |[PDF| o0 S 284y
Then from Theorem 4.6, we obtain

[PDE| 1 S de

Moreover, removing the covariant derivative from the first bound, we have

| PN o+ IPEE N 2 S i+ ey
Thus, it follows that
o Sdp + ckcg] <A+ ckcg].
~ 1. But in that case ¢, ~ CE}, and again we win by the

result in Case 1, which implies CE] ~ czm ~ . O

This implies ¢, < ¢} unless CL”

The bounds for the linearized equation allow us to consider the case of rough data a € H g
Our strategy will be to define rough solutions not directly, but rather as limits of smooth

solutions.
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Lemma 5.26. For every initial data a € i for the Yang—Mills heat flow in the local caloric

-1
gauge there exists a nontrivial time interval J = [0, s0) and a local solution A € C(J; H),
which 1s the unique limit of reqular solutions.

Proof. For the existence part, we denote by ¢ a frequency envelope for a in H ' Then we
consider a continuum of regularized data a-p = P-ga for k > kg, where ky will be chosen
later. We denote the corresponding solutions by A_j, and the curvature 2-forms by Fy.
Given € > 0, we choose J = [0, 5] so that

| Fkollza(rrsy < 1.
Then we consider the maximal interval K = [kq, k1| with the property that for k € K, the
solution Aj exists in J and satisfies

HF<kHL3(J;L3) S 2, for k € K.

Within this range, the solutions A, are uniformly bounded in L™H g Further, we can
combine the results in Lemmas to conclude that

[(Ackrr = Aci) | oot + 1 F s — Ferllzors S

with further decay away from frequency 2%,

||(A<k:+1 - A<k;)HLOOHN + ||F<k+1 - F<kHL3WN*1v3 S,N 2(N_1)kck7 N > 0.
Here the implicit constants depend only on ||all ;1 Summing up, it follows that
A = ActolP s+ 1Pty — FerglBars S S & ke (561)
ko<k<ki

Now we choose kg so that
Z ¢ < 1.
k>ko
Then for k£ € K we obtain
3
HF<kHL3L3 < 5
By the maximality of K it follows that K = [ko,00). Further, by (5.61) it follows that the
limit

k—o0

exists in L®°H 1. This is the desired solution. Further, we remark that the solution A satisfies
the frequency envelope bounds

| PeAll oo gt + 1 PeF 323 S cx, k > ko, (5.62)
and the regularization bounds
1A = Acko|l? o +IF = Farglliors S >, (5.63)
k>ko
which will be useful later. U

Remark 5.27. Our argument only insures that the rough solution we construct is unique
among the limits of smooth solutions. We leave open the question of establishing uncondi-

. . . 1 .
tional uniqueness in the larger class of H solutions.
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Next we consider the lifespan of H " solutions.

Lemma 5.28. Let J be the mazimal time of existence for a H' solution to the Yang—Mills
heat flow in the local caloric gauge. Then either J = [0,00) or ||F||ps(s,13) = 00.

Proof. Let A be an H " solution on a finite time interval J so that
[F N s (rins) = Q < 0.
Then we seek to show that the solution A can be continued past J. Let Jy C J and kg < oo
be maximal so that the approximate solutions A.j exist on Jy and satisfy
| Fellnaosze) < 29, k> ko.

Such Jy and kg exist by the existence part. Also by the argument in the existence part, we
obtain the bounds (5.62)) and ([5.63)), but where the implicit constant now depends on F'.
Choosing kj large enough so that

Z G <o 1,

k>ko
from (5.63)) it follows that in effect

DO W

||F<k”L3(J0;L3) <39, k > k.

Hence we must have Jy = J, else we contradict the maximality of J. Thus the bounds (/5.62))
and (5.63) hold in J. Further, by Lemma [5.20] the solution A_j, extends beyond J to an
interval J; where

5
[ Fkoll 23 (n:03) < ZLQ'
Then the prior existence argument shows that the solutions A and A_j all extend to Ji,

satisfying similar bounds. 0J

As a corollary of the above result (or rather its proof) we also obtain the following stability
result:

Corollary 5.29. Let a be a H' initial data with lal| ;2 < My, and J a time interval where
the solution exists and satisfies

| F | 238y < Q.
Then there ezists € = €(Q, My) > 0 so that for all data a satisfying
la—all; <e
the corresponding solution exists in J, satisfies
||F||L3(J;L3) <29,

and has a Lipschitz dependence on the initial data.

This concludes the proof of Theorems and in H 1, as well as Corollary m

We next consider the similar problems for the H space, where all that is needed is the
¢*L? norm both for 9°A, and for 9°B, in the context of the linearized equation. This works
because the equation for ‘A, is not strongly parabolic, instead it is merely a transport

equation. Our first goal is to show that the bounds for ‘A, propagate in time:
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Lemma 5.30. Let A be an H' Yang-Mills heat flow so that (5.12)) and [[A(0)|| ;1 < M,
hold. Then we have the bounds

sup ||0° Ag(s1) — 0 Au(s2)]]

51,52

pad Sen 1 (5.64)

In addition, if ¢, is a (—1,S) frequency envelope for a then we have

sup || Po(9*A(s1) — 0 Au(s2)) |12 Sanm e,

81,82

sup || P(9°Ag(s1) — 0°Ag(s2))|| . 14 So,nncrcr.

51,52 ws
Proof. We use the relation

0,0'Ag = 0'DIFy = —[A", DI Fy).

(5.65)

Let ¢, be a frequency envelope for a in H ' Then ¢, s also a frequency envelope for A

in L°H 1, and also for DF in L'H'. The conclusion easily follows by an integration in
heat-time. U

We remark that for the L? bound we have off-diagonal decay, therefore we obtain a 2

envelope (at least if ¢ is a (—1,1) envelope), whereas the case of L3 is borderline.
Now we switch to the linearized Yang—Mills heat flow (5.23):

Lemma 5.31. Let A be an H' Yang—Mills heat flow so that (5.12) holds, and B a corre-

sponding i solution for the linearized equation. Then we have the bounds

sup [IDBy(s1) — D' By(s)l,, oy S, [l (5.66)
and its analogue for L? data,
sup [|D‘By(s1) — D Bu(sa)l,, 1,4 Soan 18] (5.67)

51,52

In addition, if ¢y is a (—1,.S) frequency envelope for a in Hl, and dy, is a 2-compatible (—1,.5)
frequency envelope for b in L?, then

sup || P(D'Be(s1) — D' Be(s2)) -1 Soancrdyy) +dicy) + Y 287 ¢d;,
51,82 -
) ) . = (5.68)
sup || (D’ By(s1) — D' By(s2))|l 4 Seancrdy +dieei + Y 257 e;d,;.
51,52 ]>k

As a consequence of (5.63), if d} is a (—1,S) frequency envelope for b in H " which is
1-compatible with ¢, then

sup || Px (D’ By(s1) — D' By(52)) |2 Soaner(dy) + il

sup || P.(D*By(s1) — DéBg(SQ))HwL% Som ke + dic<y.
51,52

(5.69)

Indeed, note that dj, = 27%d), is a 2-compatible (-1, S) frequency envelope for b in L.
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Proof. The equation for DB, is
0.D'B, = [D;F’*, B)| + D*|B;, Fj] + [Fy;, D' By = —2[B’, D F};].

If ¢, and d;, are as above, then they are frequency envelopes for DF' in L'H" and B in L>IL?
respectively. The desired lemma follows by integration in heat-time. 0

Next, we prove the explicit bound for F € L3([0, 00); L?) when the energy is small:

Lemma 5.32. Let A be a H' Yang—Mills heat flow with energy € < 1. Then A exists
globally, and

||FH%3([O7OO);L3) rg E.
This proves Corollary

Proof. By local well-posedness and Lemma [5.28] it suffices to prove the following: Assuming
that A exists on J and satisfies the bootstrap assumption

IFNZs(5.08) < 2C0€,
we claim that
||F||%3(J;L3) < Go€, (5.70)
provided that Cj is large enough, and & is sufficiently small.
From the proof of Proposition |5.7], recall that

1 3/2
HFH%ZML?) + "32DFH?;2;75(J;L2) SE+ HFH%?’(J;L?') SE+ Co/ g2,

Then by covariant Sobolev and interpolation, we have

1 3/2
| P sy S WFNos (raey + 12 DFIGs ()2 S €+ G282,

from which (5.70)) is clear. O

Finally, we are in a position to prove that the limits of A and B at infinity exist if
F € L3([0,00); L?):

Lemma 5.33. (1) Let A be an i (resp. H) Yang-Mills heat flow so that (5.12)) holds.
Then the limit
Ay = lim A(s)

S5—00
1
exists in H (resp. H), and has zero curvature
Fo=0.

Further, the map A(0) — Ay is Ct in Hl, H and H' N H’, where ¢ > 1.
(2) Let B be a solution for the corresponding linearized equation. If b € H’ (resp. H),
0 <o <1, then the limat
Bo = lim B(s)

S§—00

exists in H' (resp. H) and satisfies
DW=), B ; —DW=) B, =0.

If in addition A(0) € 76 (¢! > 1) then the same property holds in i'n i
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This proves Corollary

Proof. We proceed in several steps.

Step 1: Proof of (1), existence of A,. The result is obtained by revisiting the proof of
Lemma [5.17] Precisely, the same computation but between two times sy and s; shows that
lim [|A(so) — A(s1)|| ;0 =0,
50,81 —>00
as a consequence of the similar decay estimates for the parabolic space-time norms of F'.
The H bound follows in a similar manner as in Lemma [5.301

Proof of (2). We first consider b € H'. We write the (schematic) equation for G = curly B,
(0s — Aq —2ad(F))G = [F,DB] + [DF, B].

The RHS is bounded in L2H _1, so using the L? solvability for this problem we conclude that
curl4B — 0 in L? as s — oo. On the other hand as in Lemma [5.31] div4B = D’B; has a
limit. Then the limit for B is obtained by solving the associated covariant div-curl system,
using the fact that the curvature decays to zero in L2.

First, we consider the case 0 < o0 < 1. To avoid solving the covariant div-curl system, we
employ a more roundabout route using the “infinitesimal de Turck trick” (cf. Section .
As in Case 1 of the proof of Lemma [5.23, we introduce a dynamic component Ay and the
equation Fyy = DFyy with Ag(s = 0) = 0. Then Fy; solves

(85 - AA - 2ad(F))FOJ = 0, FQj(S = O) = bj.

Thus Fj; vanishes at s = 0o in HC.
To transfer this behavior to B; = Fy; + D, Ay, it suffices to show that D ;A has a limit as

s — oo in H’. Proceeding as in Case 1 of the proof of Lemma we obtain
¢
ID Feoll o 1 gyoer S M0l o
Since sAg = Fyo = D*Fy, we see that Ay — ag o in H°™. Then using the i convergence

of A = a., in part (1), and also the fact that o + 1 < 2, it follows that DAy — D(am)a(),oo
in H J, as desired.

Finally, the H bound follows in a similar manner as in Lemma |5.31] and the H "NnH i

(¢/ > 1) bound follows from H ! case and the frequency envelope bound in Lemma |5.24

Step 3: Proof of (1), C' dependence of A, on A(0). Let A"(0) be a C* family of

initial data in H 1, Hor ' NH’ with o > 1), and let A" be the corresponding Yang—Mills
heat flows in the local caloric gauge. Then 9, A" solves the linearized equation, with data in
the respective topology. Thus, the desired statement follows from part (2). ([l

6. THE DICHOTOMY AND THE THRESHOLD THEOREMS

In this section, we present the Dichotomy and the Threshold Theorems for the Yang—
Mills heat flow, which are sharp criteria for global well-posedness and convergence to the

flat connection of the Yang-Mills heat flow in H 1(R4).
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6.1. The Dichotomy Theorem. Here, we precisely state and prove the Dichotomy Theo-
rem for the Yang—Mills heat flow.

Theorem 6.1 (Dichotomy Theorem for the Yang-Mills heat flow). Let a be a connection

1-form in Hl, and let A be the solution to with initial data A(s = 0) = a. Then either
the solution is global and Q(a) < 0o, or the solution “bubbles off” a soliton in the following
sense:
(1) (Finite blow-up time). If the blow-up time (mazimal existence time) sq is finite, then
there exist a point o € R*, a sequence of points (x,, s,) — (z0, o) and a sequence of
scales r,, — 0 such that

lim G(O™)(rnA)(y + 1z, 5, +728) = Q(z)  in L} (R* x [~1,0]),
n—oo
lim Ad(O™)(r2F)(x, + 1oz, 8, +728) = F[Q](z) in L} (R* x [-1,0]),
n—oo
for some sequence of s-independent gauge transformations O™ € H? . (in the sense that
O, € H} ) and a nontrivial finite energy harmonic Yang—Mills connection Q.

(i1) (Inﬁmte blow-up time). If the maximal existence time is s = oo, then there exist a
point zg € R, a sequence of points (z,,s,) — (x9,00) and a sequence of scales r, such

that
1i_{n G(O™)(rnA)(xn + 1z, 5, +10s) = Qx) in L, (R x [=1,0]),
lim Ad(O")(rp F)(wn + 1o, 50 +178) = F[Q)(x)  in Lig(R" x [~1,0]),

for some sequence of s-independent gauge transformations O™ € H} . (in the sense that
O, €H ! ) and a nontrivial finite energy harmonic Yang—Mills connection Q.

The remainder of this subsection is devoted to the proof of Theorem [6.1 Unless other-
wise stated, we always consider Yang—Mills heat flows in the local caloric gauge given by
Theorem 5.9

The key starting point of the proof is the monotonicity formula (or the energy identity)

/;(EJ,FJ>(31)da:+/S:I/(DfFﬁ,D@Fﬂ dxdsz/é(E],Fl )(s0) dz, (6.1)

which, in the case Q(a) = oo, allows us to locate intervals I, on which the Yang-Mills
heat flow is concentrated in the sense that ||F||ps(s,.z3) = 1, but the harmonic (Yang-Mills)
tension field D*Fy; vanishes in L?(I,; L?) in the limit as n — oo.

loc

Lemma 6.2. Let a” be a sequence of initial data, and let A™ be the corresponding solution
to (b.1) with A™(s = 0) = a™, with the mazximal heat-time interval of existence J,, such that

1f*]ze <€, [ F™[| 23,9 = 00,
n—o0

where ™ and F™ are the curvature 2-forms for a™ and A™, respectively. Then there exist
subintervals I,, C J, with the followmg properties:

IE sy =1, IO Fillreaeny =0, DA F a0 Se 1. (6.2)

Proof. We partition the time intervals .J,, into subintervals I, ,, where ||F"(|zs(s, .8y = 1

for each n, m. We select the subinterval with minimal energy dissipation, and denote it by
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I,. Thus, we now have a sequence of solutions A,, in time intervals [, with the following
properties:

1™ o rxmey = 1, (DY) Fill2r,in2) — 0.

Further, a straightforward integration by parts argument shows that the two bounds above
also allow us to control the full gradient for the curvature,

IDA) F™|| p2rr2y S 1 O

Naively, we wish to rescale A™ so that each I,, becomes the unit interval, and pass to the
limit; if successful, the limiting curvature F would satisfy || F||zs = 1, as well as D*Fy; = 0.
The first property would guarantee that F' # 0, and the second, that F' is a harmonic Yang—
Mills connection, as claimed in Theorem However, to make such an argument precise,
we need to handle several issues:

e The major concern when taking a weak limit is to insure that this is nonzero. To
achieve that, we need to break the scaling and translation symmetries. This is done
using localized L? norms. (Lemma

e To pass to the weak limit at the level of A", we need a uniform bound for the size
of A”. While we do have uniformity in all ™ bounds, there is no such guarantee for
A,. We will address this by renormalizing a,, via a suitable gauge transformation, and
then using the local caloric gauge bounds in order to propagate these uniform bounds
in heat-time. (Lemma

e Compactness fails, the obvious culprits being the scaling and translation (in both space
and heat-time) symmetries. Even after factoring out the symmetry group, we still

cannot hope for full compactness in the jin topology, and we will have to settle for a
weaker sense as stated in Theorem [6.1]

We now turn to the detail, addressing first the issue of breaking the scaling and translation
symmetries. The idea here is that having a nontrivial L3L? norm for the curvature requires
some nontrivial concentration of the L? norm on parabolic cubes Q. of the form

Qe = Be(x1) x (51 — €%, 51). (6.3)
We will measure the concentration via the scaling-invariant norm
e F 220
To obtain this, we begin with a simple propagation bound:
Lemma 6.3. Let A be a Yang—Mills heat flow on I. For any subinterval J C I, we have
1Pl r2se @y S € N Fll2r2(Bactenyxn + D Fesllra(sac e <)-

Proof. Let x. be a spatial cutoff adapted to B.(x;), which vanishes outside 2B.(z;). We
compute

d
I /Xe(a:)\FIde =— /Xe(w)|D€ng|2dx + /AXE\F|2d:1:.
s
Here Ay, has size e 2 so integrating this relation we obtain the desired conclusion. 0

Using Lemma 6.3, we may prove the desired concentration lemma.
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Lemma 6.4. Let A be a Yang—Mills heat flow on I with energy < &, which satisfies

|Fllzsresy =1, IID*Fullzzrrey <6, |IDF|| 22y < F. (6.4)
If 6 g 7 1, then there exists a parabolic cube Q. C R* x I with the property that
e "F | r2r2. Zer 1. (6.5)

Proof. In this proof, we use the shorthand LPL%(I) for L?(I; LY). Furthermore, we suppress
the dependence of the implicit constants on &, F.
We begin with the fixed time bound

IF ()72 S N1E(s)llz2[DF(s)][72,

which after time integration yields the interpolation inequality
I 30y S I1F e 2 IDFI 7221y
Since || F||zsz3ry = 1, whereas ||F||por2(py, [|DF || r22¢) S 1, there must be some s, € I so
that
1F(s e 2 I1F Iz DF sz, I1F(so)ll7a = 1117
Moreover, going back to the first inequality it follows that
IDF(s.))z2 2 17"

We now revisit the proof of this bound, using the improved Gagliardo-Nirenberg inequality:

2 1
lullzz S IVull?y llullf 2

where ||ul| ;200 = sup, 272%|| Pyu|| 1. Since the kernel of Py, rapidly decays on the scale 27%,
we have

lull g2 S sup e s

Putting these estimates together, at s = s,, v;e have
IFIEs = PRI,
<IFPIE N EP e
SRR IR e
S IDFI Ll P sup(e s,

4 2

SIEN 2 DE| 2 1 F | 2a-
By the (covariant) Sobolev embedding, the last line is bounded from above by || F|| ;2| DF ||%2,
and then by ||F||3, by our choice of s,. Thus near equality must hold at the last step, i.e.,

sup €| F(su)llz2(zg &~ [IDF ()]l 2. (6.6)

Further, recall that |DF(s,)||z2 > |I|72, so for a near optimal € we must also have € < |I]z.
Consider now a (nonstandard) parabolic cube @ of the form

Q = B, (ﬂf*) X [C’—25§7 ’[C_2€%| = 0_2637
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where B, (z,) is the near optimal ball in and s, € Ic—22 C I. By the previous lemma,
it follows that

6_1||F||L2L2(B2e*(I*)Xfc_zsg) Z 1.
By the pigeonhole principle, we may find a parabolic cube Q. C By, (x) X Ic—22 with
e = O e, satisfying the lower bound ([6.5)), as desired. O

Next, we handle the issue of obtaining a uniform bound for A™. The idea is to exploit
covariant parabolic regularity and use the radial (or exponential) gauge on a fixed heat time,
then propagate the good bound using to other heat times in the local caloric gauge.

Lemma 6.5. Suppose that

||F(8:0)||L2 SE, ||FHL3L3(R4><[O,2}) S 1.
Then there exists a gauge transformation O € HE (R* x [1,2]) (in the sense that O, €
Hl

L (RY % [1,2])) such that A= G(O)A = Ad(O)A — O., obeys

10A| e r2Bpx iz + | Al raBaxa) Ser 1, (6.7)
where B is the ball of radius R with the same (spatial) center as @), and
DA =0 in R x [1,2].

Proof. Without loss of generality, we may assume that the spatial center of @) is 0. We
consider first the special case when a = A(s = 0) is smooth, and then the general case.

Case 1: a is smooth. Thanks to the L3L? norm bound for F, the local caloric gauge
solution A is smooth on [0, 2]. Moreover, by Proposition , we have full covariant parabolic
regularity of F. In particular, on the interval [1,2] we have

DO Pl e @ixpzy § ) IDWF|lpepamocinzy S 1. (6.8)
0<h<N+3
Solving the ODE
0719,0 = A,(1),  0(0) = Id,

which is straightforward since A is smooth, we obtain a smooth s-independent gauge trans-

formation O such that A = G(O)A = Ad(O)A — O., satisfies

A(s=1)=0, A, =0 on]0,2].
In particular, in the polar coordinates (r,©), we have d,Ag = F,e = Ad(O)F,¢ at s = 1.
Integrating in the radial direction, we easily obtain

10A(s = Dll 22 + 1A(s = Dz Sr 1. (6.9)

By Lemma m (more precisely, see Remark [5.19), we may propagate this bound to other
times. This proves the desired bound (6.7)).

Case 2: a € H ', To avoid solving the ODE for O, we approximate the rough solution A
by smooth solutions. More precisely, for each k& € R consider the smooth approximation

a<y = P-ra of a, and let A_; be the corresponding local caloric gauge Yang—Mills heat flow
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with A_g(s = 0) = a~g. For k sufficiently large, we know that A exists on [0,2], A, — A
. 1 .
in L>°H , and that its curvature F_; obeys

[ Fer(s = 0)]|2 < 2€, | Ferllsrs@axpoz) < 2.

Then by the previous case, we may find a smooth gauge transformation O, such that
Acp(s =1) = Ad(O<k)Ack(s = 1) —O—p., Obeys with a uniform constant. In particular,
for each fixed R,

1O<kiallir(Br) Ser 1+ HGHHL

Let us fix a matrix group representation G — O(N) C R¥*Y (which exists since G is
compact), and view O, as a sequence in HZ (R RMN) By the preceding bound and

, after passing to a subsequence, we may find a weak limit O, — O in H?_(R*; RV*N),

which also converges a.e, and A_z(s = 1) — A(s = 1) in H. (R*). This weak convergence

is sufficient to justify that O € G a.e., O, = 9,007" € H! (R*; g) and

A(s =1) = Ad(O)A(s = 1) — O,

as well as the bound (6.9). Extending A to s € [0,2] by defining A(s) = Ad(O)A(s) — O,
and using Lemma (more precisely Remark [5.19)), the desired bound (6.7) follows. [

We are now ready to complete the proof of Theorem [6.1]

Proof of Theorem[6.1. When Q(a) < oo, A extends globally thanks to Corollary [5.13] It
remains to consider the case Q(a) = oo.

Step 1: Selection of intervals. Let £ = &.[a], and let J = [0, s9) be the maximal interval
of existence of the local caloric gauge solution A with data a, where sy may be finite or
infinite. In either case, we fix a sequence 3" 7 sy and apply Lemma to a" = A(5")
(which is possible since Q(a™) = oo for each n). The resulting sequence of solutions and
intervals, which we denote by A™ and I,,, satisfy .

Step 2: Breaking the scaling and translation symmetries. Next, we apply Lemma[6.4]

to each A™ on [,,, whose hypothesis is insured by (6.2]) for large enough n. Thus we find a

parabolic cube Q" = B,, (z,,) X (s, — 2, s,) € R* x I,, with the property that
7";1||Fn||L2L2(Qn Zg 1.

By construction, observe that s, — so and r, < so — 8, — 0 if 59 < co. We rescale and

translate each A" so that (z,,s,,r,) = (0,0, 1); for simplicity of notation, we still call the
resulting heat flows A™.

Step 3: Gauge transformation and compactness argument. For the sequence of
solutions constructed at the previous step, we have the uniform covariant bounds

[ F"|[ ooz < &, [ F™[zsrs < 1, IDAIF | Se 1,
the decay
D7 Eji|| 2 — 0,
and the bound from below

IF"llz2) 2 1
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Applying Lemma we find a sequence of s-independent gauge transformations O™ € H?,
such that A" = G(O™) A" = Ad(O™)A™ — O" obeys the uniform local-in-space bounds

1A HLOOHI(BRX[LQ}) Ser L

By covariant Sobolev embeddings this further yields the bounds from above

~n ~n
1 i (B e gy + 1105 F ||L2H%(B «[1,2)) Ser

We consider a weakly convergent subsequence in the above topologies, and denote by
(A, F') the corresponding limits. These must satisfy the same bounds from above as F" and
A"

In what follows, we drop the tilde and simply write (A™, F") = (;ln, Fn) for simplicity
of notation. By compact Sobolev embeddings the sequences F™ and A™ can be taken to
converge strongly in say L*(Br x [—1,0]). This shows that F is the curvature of A, and it
also allows us to pass to the limit in the last two relations two obtain

D’ Fy, = 0, | F |l 22 > 0

We can also pass to the limit in the local caloric gauge Yang-Mills heat flow in L2L? to
obtain

0;A=0

Thus A is a nontrivial, stationary H; . connection, which satisfies the harmonic Yang-Mills
equation. O

6.2. The Threshold Theorem. In this section, we prove the Threshold Theorem for the
energy critical Yang—Mils heat flow in H 1, whose precise statement is as follows:

Theorem 6.6 (Threshold theorem). Let a be a connection 1-form in H 1(]R‘l) with energy &,
which is below twice the ground state energy 2Eqg. Let A be the solution to with 1natial
data A;(s =0) = a;. Then A extends globally in heat-time. Moreover, there ezists a positive
function Q(E) such that

Q(a) = || F|l3(o,00):L3) < Q(E)- (6.10)

As a consequence of this result and Theorem [5.10, we have global-in-time bounds for both
the Yang—Mills heat flow in the local caloric gauge with subthreshold data, as well as its
linearization.

Some preliminary discussion is in order. From the Dichotomy Theorem (Theorem , if
a fails to exist globally or Q(a) = oo, then a nontrivial harmonic Yang—Mills connection @
bubbles off. Since £[Q] > Egs, this scenario is ruled out when the energy of a is below Egg.
Theorem differs from this naive result in two ways:

e The threshold energy is 2y, instead of £gg. This refinement is achieved by taking into

account the “topological triviality” of H ' connections, as well as “topological nontrivi-
ality” of any harmonic Yang—Mills connection @ with &.[Q] < 2Egs.

e Instead of just the qualitative statement Q(a) < oo, a uniform a-priori bound Q(a) <
Q(&) for any data a with energy < & < 2€g¢ is claimed. For this purpose, we apply
the argument in Section to a sequence of solutions; in contrast, it was applied to a

single solution in the Dichotomy Theorem.
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Associated to a connection a on R* with curvature f € L?, we introduce the characteristic
number

x@):A;—UAf>:iA;—U@ﬁ@dﬂAdﬂAdﬂAdﬁ. (6.11)

Remarkably, the characteristic number x/(a) vanishes for a € H . This is a manifestation of

1
“topological triviality” of an H connection.

Lemma 6.7. Ifa € I with curvature 2-form f, then
xta) = [ (fan=o
R4

Proof. We give a direct computation. The 4-form —(f A f) is closed, and thus exact (since
R* is contractible). Indeed, if we introduce the 3-form

1 .
Y =-— <<aj7 aka€> + §<aj7 [ak7 af])) da? A dxk A dxz

then
aY = —(f A f).
By Stokes’s theorem,

1 .
x(a) = lim inf/ Y = —lim inf/ ((aj, Opae) + =(a;, [ax, (lg]>) da? A da® A dat
9B (0) 9B (0) 3

R—o0 R—o0

But since a € H 1, the RHS vanishes. O

Remark 6.8. In [20], where we define precisely the notion of topological classes of (possibly

rough) finite energy connections, it is shown that (1) a € i s equivalent to a being in the
same topological class as the trivial connection (hence “topologically trivial”), and (2) x is
a topological invariant. These facts lead to an alternative proof of the lemma.

On the other hand, the integrand of ({6.11]) provides a pointwise lower bound on the energy
density. This statement is often referred to as the Bogomoln’yi bound.

Lemma 6.9. We have the pointwise bound

AN U5, (6.12)

where we use the standard inner product (-,-) for 2-forms, which makes {dx’ A da* : j < k}
an orthonormal basis.

Proof. We use the Hodge star operator x, which has the property
(w,n)dz' A -+ Ada* =w Axn for 2-forms w, n,
as well as x1 = dz' A--- Ada* and xdx' A --- Adx* = 1. Then
(F, £) =% (20 Axf))
=+ ((f£+f)AF(fExf)) £2%(f A f)
=((f =X )NFEX)) 25 (fAS).

Since the first term on the last line is nonnegative, ((6.12]) follows. O
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Next, we need the fact that any nontrivial harmonic Yang—Mills connection with energy
below 2Egs is “topologically nontrivial”, in the sense that |x| = Egs. Indeed, we have:

Theorem 6.10. Let G be a noncommutative compact Lie group. Let

Eas = Inf{&.[Q] : Q is a nontrivial harmonic Yang—Mills connection on R*}.

Then the following statements hold.

(1) There exists a nontrivial harmonic Yang—Mills connection Q such that E.[Q] = Egs < 0.
(2) Let Q) be any nontrivial harmonic Yang—Mills connection. Then either E.[Q] > 2Eqs, or

Ix(Q)] = &[Q] > Eqs.

This theorem is a combination of well-known facts concerning instantons (i.e., energy
minimizers in a topological class) and a recent lower bound on non-instanton harmonic
Yang-Mills connections by Gursky—Kelleher—Streets [§]. For instance, consider the case
G = SU(2) and (A, B) = —tr(AB), where x(a) = 87%cy (here, ¢y is the second Chern
number computed from the connection a). Then part (1) is the classical existence of BPST
instantons, and part (2) follows from [8, Corollary 1.3]. For the proof of Theorem in
the general case of a noncommutative compact Lie group G, we refer the reader to [20),
Section 6].

We are now ready to prove Theorem

Proof of Theorem[6.6. We divide the proof into two steps.

Step 1: Contradiction argument and extraction of a bubble. Fix a positive number
E < 2&gs. Suppose, for the purpose of contradiction, that there does not exist Q(€) > 0

such that (6.10) holds for every a € H ' with Ela] < €. Then there exists a sequence

a" e H " of initial data, such that the corresponding solutions on the maximal time interval
of existence J,, obey

IE™ || 23 (g53) — 00
Applying Lemma we may find a sequence of solutions A™ on R* x I, satisfying (6.2).

Proceeding as in Steps 2 and 3 in the proof of the Dichotomy Theorem, we find a sequence
(@, Sn, n, O™) such that (after passing to a subsequence)

lim A(z,s) = Q(x) in L2 (R* x [-1,0]), (6.13)
lim F"(z,s) = F[Q)(z) in L} (R*x [—1,0]), (6.14)

n—o0

where
An(x, s) =G(O™)(r,A™)(z, + T0x, Sy + ris),
Fn(x, s) :F[An] (x,s) = Ad(O”)(TiF")(xn + 7, Sy + Tis),

and ) is a nontrivial H! harmonic Yang-Mills connection.

loc

Step 2: Refinement using x. By the local L? convergence (6.14), it follows that
ge[Q] <€E< 25@5.

Thus, by Theorem [6.10, |x(Q)| = &.[Q]. Without loss of generality, assume that x(Q) > 0.
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Fix any R > 0. By Lemma [6.7, we have
0=x(A'() = [ ~F" AN [ (FAE)
Br R4\BR
Thus, again by the local L? convergence (6.14]), we have
fim [ (F"AF") o) = [ (FIQIAFQ)
n—oo R4\BR Br

after passing to a subsequence, for almost every s € (—1,0). Given any € > 0, by choosing
R sufficiently large, the RHS can be made equal to x (@) up to an error of size as most .
Hence, by Lemma [6.9]

EZIimsup%/ (" F")(s)
R4

n—oo
1 ~n =n ]. =n =n
:hmsup—/ (F',F >(3)+—/ (F",F )(s)
n—oo 2 RY\Bg 2 Br
> limsup | (F"NE"Y )|+ [ (F"AF")(s)]
n—o00 R4\BR Bpr
ZQX(Q) — 2e = 286'5 — 2e.
Since € > 0 is arbitrary, we arrive at £ > 2€5g, which is a contradiction. O

7. THE CALORIC GAUGE

7.1. Caloric connections and the projection map. The results in Section [5[ show that
for connection a € H' with Qa) < oo, its Yang-Mills heat flow A converges at infinity
to a flat connection A, which has a C* dependence on a in the topologies H 1, H and
H nH (0 > 1). Moreover, in Section Iél, we showed that for connections a € H' with
Ela] < 2&qs, its Yang—Mills heat flow in the local caloric gauge is globally well-posed in the
above topologies, and Q(a) < Q(&) for some positive function Q(E).

We are now ready to take advantage of these properties in order to formulate precisely
the (global) caloric gauge. We first define caloric gauge connections.

Definition 7.1. A /' connection a in R* with Q(a) < oo is a caloric gauge connection if
the corresponding Yang—Mills heat flow A in the local caloric gauge satisfies A(co) = 0.

We immediately have the following:

. . 1 . ~ . . . .
Proposition 7.2. For each H connection a in R* with Q(a) < oo, there exists an unique
(up to constant gauge transformations) gauge-equivalent connection a, which is a caloric
gauge connection. Further, the map a — a is continuous in the quotient topology defined by
the distance

d(ay,ay) = Olrelé 0a; 07 — az|| ;1

and C' in H (for a suitable choice of the associated constant gauge transformation,).

In the sequel, we will denote the gauge-equivalent caloric gauge connection a given by this
proposition by
a = Cal(a).
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Proof. faisa H ! connection with Q(a) < oo, then the corresponding solution to the Yang—
Mills heat flow in the local caloric gauge is global (by definition) and has a limit a., as s
approaches infinity (Corollary . Furthermore, a, has zero curvature. Then we need to
find O so that

071'9,0 = an .

Then the connection a is given by

aj = OELJ‘O_I — Oj.

Here we interpret this as a system of ODE’s. Formally, the zero curvature condition is
viewed as a complete integrability condition for this system. This is rigorous if a., is more
regular, e.g. if ae € H'N Hg, in which case we can initialize O b 0(0) = Id .

For less regular a.,, we consider a sequence of regular approximations aZ, which are
obtained simply by localizing the initial data a below frequency 2". We note that n must
be sufficiently large, in order to insure that the truncated connections also obey Q(a") <
2Q(a) < oo. This leads to a corresponding sequence O™ of regular gauge transformations.
For the sequence O™, we have

[0™(0™) o = Ad(O")(aX, — azy).

o0

Hence, an easy computation shows that

IO™(O™)  aall g1 < Nlahe — aZillp
but for the pointwise bound we only have

HO™(O™) e < llak — aZell -

This is proved in a standard manner as in the proof of the Gagliardo—Nirenberg—Sobolev, by
showing first that we have the averaged bound

R [ d0m0m) M), 0m0m) ) dy < /

Br(z)

1
& (z) lz —y[?

10™(0™) ()l dy

1
S| T slady) —aZ(y)ldy,
/R4 [z —y|?
then observing that the RHS is bounded by |[[a%, — aZ||, ;- The pointwise bound follows
by taking R — 0 and using the Lebesgue differentiation theorem.
Thus it is natural to distinguish two scenarios:

Scenario (i). If @ € H then a., € N Indeed, 0t € ('L2 and Dt — Oty —
—[@so j; oo ], SO that
Agolios,j = akaeaoo,é + [afx,, Okt

Since the RHS belongs to (1 H 1, it follows that as € (*H ' by Theorem (plus a simple
interpolation).
It follows that the sequence O™ converges in L*°, and thus the limit
O = lim O"

n—oo

Un case (i) below another natural normalization is to set O(co) = Id.
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exists. To establish C' dependence on the data, we consider a smooth one parameter family

~ C . . . . . . sl
a" of initial data in H, which in turn generates a smooth one parameter family a”_ in (*H .
To see how O depends on h we compute

0,(0710,0) = Opa”, — [a"., 0716,0],
or equivalently, using the a” connection D = D(@5%),
D,(0719,0) = dha", € (1.
Taking the divergence this yields the elliptic equation
Ay (07'0,0) = divyn Opal, € (L7, (7.1)
and thus, by Theorem [4.1] and Corollary [5.15]

10790112 < llOna < 100" [l

h
oo”gl]r'{1

This is the only step in the argument where the extra ¢* summability is used.
Now we are ready to establish the C' dependence of a = Cal(a) on a. Indeed, we have

Ona = O, (Ad(O)(a — 07'9,0)) = Ad(O)(Oh(@ — as) + [O7'040,a — as)).
The L* bound
1Onallzs < l[Onall s
follows by the unitarity of Ad(Q), and the H " bound
1Onall 1 S NIOnall

is easily obtained after one additional differentiation.
It remains to establish the ¢! L? bound for divd,a. After peeling off some good terms, this
reduces to the mapping property

L2 bh— OO e LA

This follows by interpolation from the easier I similar mapping property and its dual it
bound.

. .. ~ 1 sl .
Scenario (ii). If @ € H then a,, € H and the sequence O™ is no longer guaranteed to
converge pointwise. However, we still have

10" (O™l <l — a2l 3k,
k=n

where ¢ is a (—1, 1) frequency envelope for a in ', We claim that there exists a sequence
P € G such that O" = P"O™ satisfy
/ d(0",0™)dx <q Z &2 —0 asn,m— 00
Q

k=min{n,m}
for any cube (). Assuming this claim, we obtain a limit

. ~n .
O = lim O in L7
n—oo
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so that O,, € i and 0710,0 = a.. By Lebesgue’s dominated convergence theorem this
suffices in order to guarantee that the limit

a= lim a”
n—oo o0

. . el .
exists in H , as desired.

It remains to verify the claim. For this purpose, we take the extrinsic viewpoint by fixing
a matrix group representation G — O(N) C RV*¥ (which exists since G is compact) and
viewing each O™ as a RV *¥_valued map. Fix a cube @, and consider the average

~nm 1
= — o (O™ dx.
|@|/Q (O7) " do

By Poincaré’s inequality, it follows that

d(G,0™™)? <@/|0" (O™~ = 0" dx

<( / I[O”(Om)‘l};ﬂ“d:ﬂ); <y

k=n

This implies that, for sufficiently large m, n, O™ is close to G, and its nearest-point projec-
tion O™ € G satisfies

/ (O™, 0MO™) " dr S
] pt

A similar argument using the nearest-point projection and Poincaré’s inequality also shows
that O™ approximately satisfy the cocycle condition, i.e.,

max{n,m,l} max{n,ml}

¢
dor,ommomy? <ao™, 0"+ Y. as Y a
k=min{n,m,¢} k=min{n,m,¢}
. . . (1)

Now we define P by the following inductive procedure Define P! = lim,,_,., O for some

(1)
convergent subsequence of O, P? = lim,,_,+ 02 for some further subsequence of O?"m"

etc. Then
APHPROTY S Y 4
k=min{n,m}

so that 0" = P"O" satisfy the claimed bound.
Finally, a similar argument yields the continuous dependence of a on a with respect to the
metric in the proposition. We omit the details. 0

To understand the higher regularity of the map @ — a = Cal(a) we also establish frequency
envelope bounds. We begin with a technical bound for Ad(O). We introduce the notation

C§k = | P;Ad(O) Py o v
where 2 < p < co. When p = 2, we will often omit p and simply write

_ 2
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Lemma 7.3. (1) Assume that 0719,0 € H'. Then

—plik
J
chx Sjo-1a,0],, 277"

(2) Let ¢y, be a (—1,8) frequency envelope for O~19,0 in ', Then

4 .
Cir S10-10,0] 1 20, k<j-C
Proof. In this proof, we suppress the dependence of implicit constants on ||[O~19,0|| it

For part (1), by interpolation, it suffices to only consider the cases p = oo and p = 2. The
first case is trivial. In the case p = 2, by duality we consider j > k£ and by scaling we set
k = 0. Differentiating we have

0Ad(O)a = Ad(0)(da + [07'0,0, a])

which yields an H " bound and thus 2797#. A second differentiation gives the bound in part
(1).

For part (2) we set j = 0. For a localized at frequency 2% with ||al|z»
Paley trichotomy we can estimate

< 1, using Littlewood—

~

23820, (> k15,
1P[0710,0,a]l|lr S ok k—5<(<k+5, (7.2)
2%_ka {<k—5.

For ¢ > k + 5, we also note that
|P[0720,0, || 12 < 27%2 e, (7.3)
Hence for k < j — C, we can estimate
2jc§k < 2kC§k T Z 22£—k0§€ 4 Z 2%(k—€)2€c§£ 4 Z 2(2_%”0?@2%2405

<k t:k<t<j—C >j—C
For C sufficiently large, the first term on the RHS can be absorbed into the LHS. Moreover,
since ¢, grows slowly to the right, we can easily estimate the last term on the RHS to obtain

c?k < o Z 2211%73‘0?( + Z 2%(]“_13)%’]'0?Z + 202%(k_j)cj.

(<k l:k<j—C

We claim that c?k <c 2%(k_j)cj. Indeed, choosing C' large enough, reiterating this bound

yields strictly smaller contributions unless ¢; ~ 1, in which case we use the bound in part

(1). O
We may now prove a frequency envelope bound for Cal(a).

Proposition 7.4. Let a be a connection in i satisfying Q(a) < Q < oo and ||al ;» < Mj,

with (—=1,5) frequency envelope c,. Then a = Cal(a) also has frequency envelope ¢ in Hl,
with the bound

| Pjall ;0 Sean ¢
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Proof. Here, we suppress the dependence of implicit constants on @ and M;. Let O be the
generator of the corresponding gauge transformation, O~'9,0 = a,. Then

a = Cal(d@) = Ad(0)a — O, = Ad(0)(a — as).

By Theorem , ¢r is a frequency envelope for O~'9,0 in H g Using Lemma we
compute

| Pjall ;1 22] ChCrj S ¢ + Z cre;28 < e

k<j—C
as needed. 0

We now consider bounds for the linearization of Cal.

Proposition 7.5. Let ™ be a C family in H satisfying the uniform bounds Q(a") <
Q < oo and ||a™||g < M. Let O™ the corresponding gauge transformations into caloric
gauge, normalized so that O™ (c0) = Id. Assume that ci, is a (—1,S) frequency envelope for

a® in f' , dy, is a 1-compatible (—1,S) frequency envelope for 9,a® in i and that
d, = ckdE] — dkcg]
is a (—1,8) frequency envelope for 84(%&?)) in L?. Then we have
| PeOpa® HH1 < di + cplc- d) <. (7.4)
Proof. The expression dpa™ is given by
Aha™ = Ad(0M)g,a™ — D@ g,
where
ap = O(,}Z ),
The O™ conjugation is again harmless by Lemma H precisely, this gives
| P (Ad(O)9a )| ;1 < sz Idjc Sdj+ o, Y 278 S dy.
j<k—C

where at the last step we have used the Compatlblllty condition.
Hence in order to estimate d,a™ we need to understand aj,. First, we have

1P((O) 0ROl 2 < (7.5)

This is obtained directly from the elliptic equation ([7.1)), using the bounds for div dpas
provided by Theorem |5.11] Then since

a, = 0f) = Ad(0®)(0) 19,0,
by a similar argument as before using Lemma [7.3], we obtain

[Peanl o S di, + e > 274 < dy. (7.6)

i<k

where the last inequality follows from compatibility, i.e.,

Yy V7R ey 207 S dj

J<k i<k
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To complete the proof of the proposition we estimate
Danll, S di+ Y dier S di + exlc - d)<i
j<k
Finally, we note that by the compatibility condition we have
d, < dy. OJ
As a corollary of Proposition [7.5 we obtain

Corollary 7.6. The map @ — a = Cal(a) for H' connections with Qa) < Q<0 isClin
HNH? (0 > 1), with a bound depending on Q.

We omit the straightforward proof, which is similar to Scenario (i) in the proof of Propo-
sition [7.2] but now taking into account the frequency envelope bound.

7.2. The caloric manifold and its tangent space. We denote by C the set of all caloric
gauge connections, and define

Co=A{ac ' ais a caloric gauge connection with Q(a) < Q}.

Note that C = Ug~0Co.

We seek to describe C as a C! infinite dimensional manifold. Given the results above, it
is natural to seek to do this in the H topology. As a first step, we show that C connections
are indeed in H, and satisfy some nonlinear form of the Coulomb gauge condition.

Proposition 7.7. For a € Cg with energy < &, its caloric gauge Yang—Mills heat flow
satisfies the bound

1Al 2 + 110 A (7.7)

nrzawt Soe L.

Proof. The H " bound is a direct consequence of Lemma m applied on an infinite interval.
Then we use Lemma for the divergence of A. O

Now we can prove the following:
Theorem 7.8. The set C is an infinite dimensional C' submanifold of the Banach space H.

The fact that we only get C'' may well be an artifact of the construction; the difficulty is
that the map a — a. is C! but possibly no better.

Proof. Consider a caloric gauge connection a € Co with energy £. We will show that there
exists € = €(£,Q) > 0 so that C N BH(a) can be parametrized with a C! local chart. Here,
BH(qa) is the ball of radius € around a in the H topology. For the purpose of this proof, all
covariant differentiations will be with respect to the connection a.

To achieve our goal we begin with the closed affine subspace of H '
B={a+be ' : (D%, =0}

which is in some sense a local Coulomb gauge adapted to the connection a. Then we consider
the caloric gauge representations of elements of B near ay,

B>a+b— Calla+10b) €C. (7.8)

We will prove that this map represents a C! parametrization of C near a.
70



Step 1: Proof of regularity. We first claim that this map is C! in a neighbourhood of a.
By the previous results we know that

[0%agl|lnr> S 1.
Then the map
B>a+b— 0(a+b)clL?
is C1. Hence the C! regularity of Cal restricted to B follows.

Step 2: Proof of local invertibility. In order to view this map as a local chart on C we

need to show that it is invertible in the H' topology. It suffices to show that its differential
at a is bounded from below. To compute its differential we denote by O(b) the associated
gauge transformation, normalized by O(oco) = Id. Then Cal has the form

Cal(a +b); = O(b)(a +b);0(0)~ — O(b),5,
and its differential at ¢ has the form

Hence
(dCal(a)b); = b; — (D), ¢ =dO(0)b.

Hence we need to prove the bound

Ib =D el 2 [Ib]]sr- (7.9)
Since (D@), = 0, it suffices to show that
ID®ell,, ;0 S 1Al ze (7.10)

But this is a consequence of Theorem [4.1]

Step 3: Proof of local surjectivity. Here we show that our map (7.8)) is locally surjective
near a. Thus consider another caloric connection a; which is close to a. Then we have

la —ail|;p <1, 10%(a — ay)i||ore < 1.

At this point we use only these bounds, forgetting that a; is caloric. We consider the straight
line joining a and ay, denoted by a(h) with h € [0, 1]. Along this line we construct a family
of gauge transformations O(h), with O(0) = Id, which move this segment into 5. We need
to verify the relation

D*(Ad(O(h))a(h), — O(h).4) = D*a(0).

Here and below, all covariant differentiations are taken with respect to the fixed connection
a. Equivalently, we can differentiate with respect to h to rewrite this condition as

0 =0,D*(Ad(O)a(h)x — Oy)
=D" ([0, Ad(O)a(h)i] + Ad(O)(ar — a)i) = O + [O, O))
We view this as an equation for O.:
D*D,0., =D*(Ad(O)(a; — a)i)
+ D*(h[O,,, Ad(O) (a1 — a)i] — [O, O] — (O, (Ad(O) — 1)ay))
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Here we view the right hand side terms as perturbative, and integrate O.j, in h to find O in

the space CH. For this, we use the smallness of a; —a in H, of Oy in €1H1, as well as of
Ad(O) —1in H — H. We skip the straightforward details. O

We now take a closer look at the tangent space to C. Since the caloric manifold C is a
C'! submanifold of H, its tangent space T,C is naturally defined as a closed subspace of H.
Precisely, given b € H, we denote by B the solution to the linearized Yang—Mills heat flow

(i.e., (5.4)) in the local caloric gauge as = 0 (i.e., (5.23])), which we recall here

This is a well-posed flow in H, with bounds similar to the bounds for the Yang—Mills heat
flow. Further, the limit B(co) exists in H and is curl-free. Then the tangent space T'C can
be defined as

T,C = {b e H: B(co) = 0} (7.12)

For our purposes here we need to look at a larger tangent space, namely with respect to
the L? topology. We denote it by TaLQC , and it is defined as the closure of T,C in the L?
topology, or equivalently as

THC={be L?: B(co)=0}.
Due to the linearized gauge invariance ({5.5) with dsag = 0, it is clear that
TECcnD@H' =0,
Our next result shows that these two closed subspaces of L? are in effect transversal:

Proposition 7.9. Let a € Co C C with energy £. Then the following statements hold:

(1) Any function w € L* admits a unique representation

w=b—DWe, beTFC, cecH

and the following estimate holds:
1bll e + [lell yorr See lwllye,  —1<o <1 (7.13)
Correspondingly, if o = 1 then we have
[0l + lell 12 Soe llwlla: (7.14)
(2) Furthermore, we can represent ¢ as
c=—-A"'V - w+ L(a,w),
where L(a,w) is at least quadratic, and satisfies better bounds
IL(a, )|l ot See g, —1<o <1 (7.15)

The above decomposition is in effect a nonlinear div-curl decomposition. The map from
w to b can be viewed as a canonical projection onto 7, FC . In the sequel we will denote this
projection by

b=Il,w. (7.16)
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Proof. Proof of (1). The case of H is essentiall Proposition with O = Id, w =
0,a"%, M,w = 9pa® and c = =0, 0). In the case of H  with —1 < o < 1, we solve
the linearized equation Wlth w as initial data; the solution is denoted by W. By
Corollary [5.15| (see also Lemma , the map w — W (o) is bounded in H’, and W (o)

has the form W (oo) = —Ve, with ¢ € H™™. Then we simply set
b=w+DWeceTlC.

Proof of (2). We peel off the leading part of ¢, namely
Co — —A_lag’wg.

Then W + DMy still solves the linearized heat flow equation, and further, its data satisfies
the better (schematic) equation for the divergence

which implies that D@ (w + Dycy) € ('H "' Then we propagate this regularity through
the linearized flow, as in Lemma [5.31} 0

Remark 7.10. Now we discuss an alternative way to derive bounds on ¢ (and therefore b)
relying on the dynamic Yang-Mills heat flow instead of appealing to bounds for ((7.11]) (cf.
Sections and . This is a variant of the proof of Lemma m

Let w € L*. We begin from the existence of a decomposition w; = b, —D@cwithb e TaLQC

andce H 1; our aim is then to derive a formula for ¢, which can be analyzed without reference
to (7.11). Assume that b; = 9ya;(t), where (—ep, &) > t — a;(t) € C is a C' curve in C
for some €y > 0. As in Section [5.1, we introduce A;(t = 0,z,s) and Ay(t = 0,2,s) by
solving Fy; = D‘Fy; and Fyy = DFjy on t = 0 with 4;(t = 0,2, = 0) = a;(z) and
Ap(t = 0,2,5 = 0) = c(x). Observe that Fy;(t = 0,2,s) = (B; —DAy) (t = 0,2, s), where
B; is the solution to with Bj(s = 0) = b;. Since Fpy; solves the linear covariant
(nondegenerate) parabolic equation (5.9) with F;(t = 0,-,5 = 0) = b; — D@c € L2, by the
L? theory in Theorem 4.3 . it follows that lim, o Fp; = 0in L? on {t = 0}. Moreover by the
definition of T}, L C, it follows that lim, o B; = 0 in L?. Hence, we see that lim,_,.o DAy = 0
in L? on {t = O} By the diamagnetic mequahty as in the proof of Proposition as well

as the softer facts that Ag(s = 0) € H and that Fy, = DF} can be viewed as a parabohc
equation for Ay, it then follows that

§—00

in /' on {t = 0}. Using 9,49 = Fyy = DFy (thank to A, = 0), we arrive at

c= Ay(s / D Fy ds, (7.17)

1
in H and on {¢t = 0}, which is the desired representation formula.

2Here, the L2 frequency envelope dj, for 0%wy need not be related to ¢ and dy, except that it must be
1-compatible with c;. Then the proof of Proposition goes through, with the only exception of the last
inequality dj, < dy.
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Observe that, while we assumed the existence of ¢ to derive , the right-hand side
of can be computed in a manner that depends only on a; and w;. Indeed, a; already
determines A;(t = 0,z,s) in the global caloric gauge, and Fy, satisfies the same covariant
linear parabolic equation on {t = 0} with Fy;(s = 0) = w; regardless of c. In particular,
by and the results in Section [5} we may obtain estimates on ¢ such as [|c|| ;011 Soe
|w|| e for —1 < 0 < 1 etc. The advantage of this approach is that we have an explicit
formula ([7.17)), which will be useful later.

We conclude by noting the following consequences of the preceding argument, which give
dynamic-Yang-Mills-heat-flow characterizations of a curve in C and T, CLLQC .

(1) Let A,dz" be a dynamic Yang-Mills heat flow on I xR*x [0, 00) with A, (¢,-,s =0) € i
Then A;dz? € C for each ¢ € I if and only if Ay = 0 everywhere and 4;(t,-s = c0) = 0,
Ap(t,,s =00) =0 (in Hl) ontel.

(2) Let b; € L? and a; € C. Thenb; € T, (fQC if and only if there exists a dynamic Yang—Mills
heat flow A, on {t = 0} x R* x [0,00) with 4;(s = 0) = a;, Fy;(s = 0) = b; satisfying
the double boundary condition (on {t = 0}):

Ap(s =0) = Ap(s = 00) = 0. (7.18)

One consequence of Proposition is that if b € TaLZC then 0, has better regularity:
this is a linearized analogue of Proposition [7.7}

Corollary 7.11. Let a € Co C C with energy £, and b € H® a corresponding linearized
caloric data set. Then we have

10%e| 1 pyr—1 Sae 10l o —l<o<l (7.19)

We note that the endpoint case o = 1 is somewhat different, in that we no longer have
a bounded projection on the caloric tangent space. However, the bound for caloric tangent
state survives, as a consequence of Lemma (see also Proposition p:fe-ah).

We also have a frequency envelope bound for II,:

Lemma 7.12. Let a € Cg C C with energy £, and with i (—1,.S)-frequency envelope c.
(1) Let w € L* with a (—1,5) frequency envelope dy, which is 1-compatible with ci. Then
we have
||PkHaw||L2 SJQ,S dk
(2) Alternatively, let w El H, and let dy, respectively d)., be 1-compatible (—1,S) frequency
envelopes for w in H , respectively 0w, in L?. Then we have

”PkHawHH1 5 £ dk + d;i, + delgk

Note that the 1-compatibility condition rules out application of (1) to w € H 1, in which
case (2) must be used.

Proof. Proof of (1). In anticipation of ensuing arguments, we give a proof using the idea
in Remark [7.10] It is very similar to the proof of Lemma [5.24] Step 1, except we integrate
DfF,, from infinity to obtain aj.
More precisely, note that
,w=w — DWq,
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where ag is given by the formula , A is the Yang-Mills heat flow of a, and Fp; solves
(0s — Aq — 2ad(F)) Fy, = 0, Fy;(0) = fo; = w;.
As in the proof of Lemma [5.24] we have
| PeD Fyoll 1 i S i

and thus after integration,
| Peaol| ;1 + [[PxDag|z2 < dy.-
Note that 1-compatibility is crucial to get the control of Dag. The proof (1) is complete.

Proof of (2). This statement can be read off from the proof of Proposition where
0 = Id. O

7.3. The heat flow of caloric connections: L? analysis. Our goal here is to better
describe the Yang—Mills heat flow of caloric connections as a perturbation of the linear heat
flow. Toward that goal we begin with a caloric connection a € Co with energy £ and with
a corresponding linearized caloric data b € T2°C (which we write (a,b) € T’ Cq for short),
and we seek to obtain bounds for their caloric heat flows A(s) and B(s). It is useful and
natural to express these bounds in terms of frequency envelopes. The next result shows that
for caloric connections both A and F' have full parabolic regularity:

Proposition 7.13. (1) Let a be a caloric connection in Co with energy at most €, and let
e be its (—1,85)-frequency envelope in H'. Then for any N > 0, its Yang—Mills heat
flow A(s) satisfies

1PA) ] + 1 PF (s)]l22 So.ever(l +27s)7", (7.20)

1P  Ag(s) |12 Soenverc (1 + 2%6)N, (7.21)

(2) Let b be a corresponding linearized caloric data set with a 2-compatible L* (—1,5)-
frequency envelope di,. Then for any N > 0, its linearized caloric flow B satisfies the
bounds

|PeB(s) > Soendi(l+2%s)~N, (7.22)
1P By(s)|| ;1 Soen (dkcEj] +opdiy) + Y Qk—jcjdj) (14 2%5)~N. (7.23)
>k

Our starting point for the proof is the covariant curvature bounds in Proposition [5.7, and
their slightly less covariant local caloric gauge versions in Lemma Our first goal is to
expand them to fully noncovariant versions, taking advantage of the additional information
A(o0) =0, B(oo) = 0. This is done in the following lemma:

Lemma 7.14. (1) Let a be a caloric connection in Cg with energy £, and let A be its Yang—
Mills heat flow. Then for any m > 0, we have the bounds

Is™ 20 F s (0 0oyrz) + I8 2V F L (000yin2) Seel, (7.24)
Is™ 20 VAl es (0,0oyzz) + 1SV 2O PANT (0 eyizz) Seel- (7.25)
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(2) In addition, if b € H isa corresponding linearized caloric data set with —1 < o < 2,
then the corresponding solution B satisfies the estimates

HSm/Qa:E:m)BHQ%OS([0,00);1;1;) 4 |’8(m+1)/28§m+1)8’|i%5([0,oo);Hg) SQ,S HbHHcr (726)

Proof. For counting the s-weights, it is convenient to use the measure % for s € [0,00). In
this proof, for simplicity of notation, we simply write LYL" = L%, ([0, 00); L"). Moreover, we

E]

suppress the dependence of implicit constants on Q and £.

Proof of (1). We start from the bounds in Proposition [5.7, which now hold globally in
time. Recall also that, by Proposition [7.7, we already have

HaacAHLOOL2 SQ,E 1.

Step (1).1: Covariant bounds for A. These follow from ([5.13]) after time integration from oo.
Starting from the (schematic) relation

0sA =DF,
we differentiate to obtain
0.DA=DPF 4 [DF, A].
Then reiterating yields

0.D"™A =D+ DPF DR 4]
k=1
Thus, for m > 0 we can estimate
[s™2D™ D A|| poo 2 S ||s™ 20D Al oo 2
m+1
5 ||3m/2+1D(m+2)FHL°°L2 + Z ||Sm/2+1[])(k:)F7 D(m—i—l—k)A] ||L°<>L2
k=1
and the last term is bounded inductively if £ < m + 1, as
||Sm/2+1[D(k)F, D(m+1—k)A] ||L°°L2 5 ||Sk/2+1D(k)FHLOOLOO ”S(m—kz)/2])(m—k—|—1)AHLooL2
and directly if k =m + 1,
Hsm/“1 [D(’"H)F, Alllgeore S Hs’"/ZHD(m“)FHLooM | Al oo 14
The argument for the L?L? bounds is similar, and also applies if m = 0.

Step (1).2: The bound (7.24) for m = 1. The L*L? part follows from (7.27). For the L?
part we estimate

150@ F|| 122 <||sDOF | 12r2 S ||sODF|| 22 + ||s[0A, F]|| 212
SHSD(z)FHLZLQ + HaAHLooLQHSFHLQLoo.
Step (1).3: The bound (7.25) for m = 0. We already know the L>°L? part. For the L*L?

bound we estimate
1520 Al 22 < ||sY2DOA| 212 < ||sY20DA| 212 + ||5Y2[0A, Al 212

< |8 D@ Al 22 + [|OA| oo 2|82 Al| L2 oo -
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Finally for the last factor we have

H$1/2AHL2LOO S Hsg/QDFHLZLoo

Step (1).4: The bound (7.24). For m = 0 we only need the following simple bound:
1E] ;0 S IDF| 2. (7.27)

We now consider m > 1. For the L>®L? bound we have

k
Hsm/Qa(m)FHLOOLQ < HSm/QD(m)FHLOOL2+ Z Hsm/2 ( H ad(D(mj)A))D(mO)F“LOOLQ
mo+mi+-+mg=m—=k J=1

and it remains to estimate

k k
||Sm/2 ( H ad(D(mj)A))D(mo)FHLooL2 § (H HSmj/2+1D(mj)A||LooLoo) HSmO/2D(mO)F||LooL2.
j=1

=1
Similarly, for the L?L? bound we get

HS(m+1)/26(m+1)FHLQL2 SHs(m+1)/2D(m+1)FHL2L2

k
+ 3 ||s<m+1>/2(H ad(D(mJ’)A)>D(m°)F||LzL2.
j=1

mo+mi+--+mp=m+1—~k

Here we distinguish two cases. If mg > 0 then we estimate the F' factor in L2L? and all A
factors in L L™ as above. Else we estimate the F factor in L2L*, and one of the A factors
in L>®°L4.

Step (1).5: The bound (7.25)). For the L>L? bound we have, with m > 0,

||Sm/2a(m+1)A||LOOL2 §||sm/2D(m+1)A”L°°L2

k
+ 3 Hsm/2<Had(D(mﬂ')A)>D(m0)AHLmL2
j=1

mo+mi+---+mr=m—k+1
and conclude as above using the induction hypothesis. The L?L? bound is also similar, and

that argument also applies if m = 0.

Proof of (2). We will approach B via the Fy; flow with same data, which also has H 7

regularity. We already know from Theorem that this is well-posed in H’, which gives
the bound in for N = 0. Then we write the equation for sA4F;, apply the same
estimate and then argue as above and repeat. This yields the desired estimate, but for Fy;
rather than B:

|s™/204™) By, |

Next we turn our attention to Ag. As b is a linearized caloric data set, it follows that Ag
vanishes at infinity and at s = 0. Then Ay is represented in two different ways as

[e'] S0
Ap(so) = —/ DgFg(](S)dS :/ DEFgo(S)dS.
s 0
7

0

iooHo + ||8(m+1)/2a§m+1)F()jHizHU §Q’g 1 (728)



We first claim that
Hsm/Za(m Ao HLooH‘TH + HS (m+1) /28(m+1 Ao HL2H"+1 <oge L. (7.29)

Indeed, the integrand satisfies the same bounds as for Fy; but with o replaced by o — 1.

Then by direct integration from infinity we obtain all the desired bounds for Ay (i.e. the

same as for F; but with o — 1 replaced by o+ 1), with the notable exception of the L°°H o

bound. For this we combine the L2H’ bound for DF = 9,4, with the s~ 'L2H ? bound
for Ag.

Unfortunately the estimate ((7.29) does not directly yield the similar bounds for DAy,
precisely in the range o > 1. There (7.29)) does not provide any good control over the low
frequencies of Ay, which is needed for the bilinear term [A, Ag]. To remedy this we also
integrate from zero to obtain the bound

ls™ Aol s Soe 1. (7.30)

Now we can bound the term [A, Ay using a Littlewood-Paley trichotomy as follows: if the
frequency of Ag is higher then combine ([7.25)) with (7.29)), and if the frequency of Aq is

lower, then combine ) with ( - O

We are now ready to complete the proof of Proposition [7.13]

Completion of the proof of Proposition[7.13. As before, we suppress the dependence of im-
plicit constants on Q,&, N.

We first consider (—1,2) envelopes for both B and A. Then the bounds for the linearized
caloric flow B in part (2) of the proposition follow directly from the lemma. Hence the
bounds for A and F in part (1) are obtained by applying the result in part (2) to 9, A, which
solves the linearized equation.

In order to relax the admissibility constraint on the frequency envelope from (—1,2) to
(=1, S), we reiterate the equations based on the linear heat flow. Indeed, denoting by c; the
minimal (—1,5) frequency envelopes for the data a in H 1, we use induction on S to show
that

1PAll g S (14 2%)
The above analysis proves this for S < 2. To increase S to S 4+ ¢ with ¢ < 1 we reiterate
based on the linear (schematic) Duhamel formula

F(s) =e**F(s=0) + /0 S e IR ([A,OF) + [0A, F] + [A, [A, F])) d3,

followed by integration from infinity for A. A direct computation (whose tedious details we
omit) using Littlewood—Paley trichotomy yields

HPkA”H1 S+a +CSZQ] k S 22k: )
i<k
As we have
cf ~ sup 25’(1—6)(j—k)cf+0’
i<k

we compute

S i—k S S(1—e)(j—k) S+ool—k S+o S+o+)(j—k) .S+o ~ St+o

CkZQJ chZQ( ) )Cj 26 ks SJZQ( ) )Cj ~ e

<k J A<k i<k
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where at the second-to-last step we separate the cases j < £ and ¢ < j and use ¢ < 1. The
induction is concluded.
Since the estimate for A has been closed, a more direct argument applies for B. We first
estimate Fy; perturbatively using Theorem @, which yields
| PeFoj ()|l 22 < di(1+22Fs)~ N, (7.31)
Then for Ay we can integrate either from infinity (for the high frequencies) or from zero (for
the low frequencies). We obtain:

Lemma 7.15. Under the assumptions above, we have
1PeAo(s)|l 0 Selie(1+2%0s)™ (7.32)

Hs‘lPkAo( )H i S (7.33)

Combining this lemma with the , we obtain - for (—1,.5) frequency envelopes.
It remains to prove the estimates for 8€Ag and 9°By. As in Lemmas and [5.31] this is
a direct computation based on the representations

o Ay(s) = / AL, DF Byl ds,

S

respectively,
O'By(s) + [AY, B/)(s) = D'By(s) = 2/ [BY, D* F,)ds.
We omit the details. O

Our next goal is to establish difference bounds for the heat flows of caloric connections. For
this we consider two linearized caloric data sets (a(®, b)), (a™, b)) € T¥*Coy with energy
at most &, which are assumed to be sufficiently close

la® — a(l)HH1 <o 1. (7.34)

Then we seek to compare their corresponding caloric extensions (A (s), B()(s)), respec-
tively (A (s), BW(s)), and provide frequency envelope bounds for the differences

6A(s) = AW (s) — AO(s), 6B(s) = BY(s) — BO(s),.
Our main result is as follows:

Proposition 7.16. Let (a®, b)), (a®,bM) € THCq be two linearized caloric data sets with
energy at most €, such that (7.34) holds. Assume that ¢y, is a (—1,S)-frequency envelope for

(a®, b(O ) and (aM,bM) in H x L?, and that dj, is a 1-compatible (—1, S)-frequency envelope

for (a® —a™ b — pM)) 4p H' x L2, such that
e =di + cp(c-d)<p (7.35)
and cpey are also (—1,S)-admissible. Then we have the difference bounds
1POA(s) || 2 + PO F (3) ]2 + | PdB(s)llr2 Soen en(l +2%s)7", (7.36)
respectively,
[P0 S Ag(5)]| 12+ Pe0 6 Be(5)] ;-1 Soen (cw?%—ekck —|—Z 2k~ ”cjej)(l%—fl‘C )N, (7.37)

i>k
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The compatibility assumption may be sharpened if we consider separate frequency en-
velopes for 5@, b and b©® — b()); however, we avoid this for the sake of simplicity.

We remark that similar bounds for the linearized equation follow from the previous propo-
sition, at least for infinitesimal deformations of A. However, if we try to transfer this directly
to differences, then we need to address the problem of constructing a smooth path between
a'® and oM which stays within the caloric manifold. This will be of independent interest
later, so we state the result separately.

Proposition 7.17. Under the same assumptions as in the previous proposition, there exists
a C* path
0,1] 3 h — (™, M) e TFC
so that for h € [0,1], Q(a™) < 29, £.[a™] < 2&, and the following estimates hold uniformly:
1Pea™ || ;0 + | Pb™] |12 So.e e, (7.38)
respectively,
||Pk8ha(h)||H1 + ||Pk8hb(h)||L2 5@75 €. (739)

We now prove the two propositions above.

Proof of Proposition[7.17. We suppress the dependence of constants on Q, &, N.
We first construct the path joining a(® and a"). We begin with the straight line path

a™ = haW+(1—-h)a® between a(® and a"), which does not stay within the caloric manifold.
In view of (7.34)), this path remains in {(a,b) € H' x L?: Q(a) <29, &.[a] <2}, For a™
and 9,a™ we have

Hpké(h)HHl S Ck, HPk@h&(h)HH1 5 dk

Hence, using Theorem and Lemma [5.31] (in particular, (5.69)), we conclude that we
have the uniform bounds

5 () £ (h)
IPRA e gt 4 PR 2 S s

~ (h) ~(h ~ (h
1P A" | o+ | Pe(Di0, A — D0, A
as well as the improved divergence bound
~(h ~(h
1PL(0' 0 AL (51) — 0°0n A" (52)) | oo S cxdll) + diecll.

Integrating this over the interval h € [0, 1] we obtain the following intermediate result:

N dk’a

||L2H1 ~

Lemma 7.18. Given the frequency envelopes ¢, and dy as above, we have the uniform
difference bounds

[ Ped Al o gt + [[POF | o1 S di- (7.40)
respectively

| Ph0 S Al poore < cnd + dicl!. (7.41)

We remark that for the first bounds we do not use the caloric gauge. However for the
second it is critical that A®(c0) = AW (c0) = 0. In particular, its conclusion is nontrivial
even at s = 0, where we get

Corollary 7.19. Given the frequency envelopes ¢ and dj, as above, we have

1P a2 < cxd + dicl (7.42)
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As a consequence of this, by construction we also get
|1Pe0"0nal|| 2 < crdl + djcl! (7.43)

Once we have a good understanding of @™ and 9,a"™, we project onto the caloric manifold,
setting

a® = Cal(@™).

Now the bounds for a® in the proposition follow from Proposition , while those for 9,a™
follow from Proposition [7.5]

We now consider the question of choosing b). We begin with l;(h) which interpolates
linearly between b® and 6™, and define

ph) — 0,0 B(h) _ B(h) _ D(a(h))a(()h)

where a(()h) is the initial data for the corresponding connection component which is initialized

to zero at infinity (see Remark [7.10)), i.e.,
ag” = / (D) F (3) ds.

Now the b(" bound in (7.38) is a consequence of Lemma [7.12] To estimate 9,0 we need
6hD(“(h))a(()h), which we write as

GhD(“(h))a(()h) = D(“<h))8ha(()h) + [Opa™, ad).

The second term is easy to estimate using the previous bound for d,a™ and for aéh) as in

the proof of Proposition [7.13]
It remains to bound 8ha[()h) in fI'. We claim that

1Pe8nay” (s)] s S e (7.44)

To achieve this, we use another round of the “infinitesimal de Turck trick” (see Re-
mark [7.10). In what follows, we suppress the superscript (h). Let us introduce a dynamical
gauge component A, which satisfies

0, A, = DV Fy, Ap(00) =0, (7.45)
where F};, solves the covariant heat equation
(0s — Ag — 2ad(F))Fy; =0, F,;(0) = Ona;. (7.46)
Then we also have
AL(0) = 0. (7.47)
Differentiating with respect to s, we see that
9,DyAg = [D'Fyy,, Ao) + DD Fyy = [D'Fyp,, Ao) + [F,*, Fio] + D; Dy, Flo. (7.48)

On the other hand, D F}y obeys the inhomogeneous covariant heat equation

(95 — Ay — 2ad(F))Dy,Fy; = G, D}, Fy;(0) = by, (7.49)
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where G is (schematically) of the form[
G, = [DFy, Fo] + [Fr, D). (7.50)

Now we have all the equations we need in order to prove the estimates.
By Proposition [7.13](2), we already have

| PeFijll 1 < en(1+2%5)~N, | PeFollze < en(1+2%s)7N. (7.51)

Hence for G; we obtain

=

1PGill 1 S 5™ 2en(1 + 22s) ™
Thus solving the parabolic equation for Dy, Fy; using Theorems [4.7] and .8} we obtain

| PeDyFoill 2 < er(1 + 2%s)~N, (7.52)
This implies that
”PkathA()HH—l 5 ek(l + 22k$)7N,
which in turn yields the desired bound for DAy,
|1 PeDy Aol < er(1+2%s)7 N, (7.53)
which at s = 0 gives ((7.44]). O

Proof of Proposition[7.16. We use the path (a(™, ™) constructed in Proposition . The
difference bounds in the proposition are obtained by integrating with respect to h € [0, 1]
the corresponding bounds for 9, A" (s) and 9, B"(s).

The frequency envelope bounds for the data d,a") translate to similar bounds for 9, A" (s)
by Proposition [7.13] and thus to bounds for 8hFi(jh) = Dié?hAg.h) — DthAEh). We remark that,
by 1-compatibility of d; and e, with ¢, we end up with simply the frequency envelope e
on the RHS.

For 0, B, we again introduce the auxiliary dynamic component A, as in the preceding
proof. Suppressing the superscript (h), we have

OB = DyB — [Ay, B].

For the second term we combine the B bound given by Proposition [7.13](2) with the A,
bound in Lemma (note that Ay in the lemma corresponds to Ay, here). For the first
term we write

D,B = D, Fy; + DDA, = Dy Fy; + DDy Ao + [Fpj, Aol

To estimate the RHS, we combine the bounds (7.52) for Dy, Fy;, (7.53) for DA, (7.51) for
F},; and the following bound for Ay:

1PeAo(s)ll 1 S (1 +2%5) 77,

which is obtained by integrating 9,4y = D*Fjq from s = oo, and using for Fyy. Again,
by compatibility, the frequency envelope bound on the RHS simplifies to e.

Our final goal is to prove the bound for 9,0°A, and 9,0°By; we only give a sketch of the
proof. For 9,0°Ay, its s derivative is:

00,0 Ay = Op[Ag, D'E] = [0, Ay, D'E,*] + [Ay, DY (D;0,A* — D 0, A))]

I3For this computation, we also need the Bianchi identity Dy Fi; = D Fr; — D;Fp,.
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We then integrate from infinity, estimating the RHS using the bounds for A in Proposi-
tion [7.13| and 0, A from above.

The case of 0,0°By is dealt with similarly. Given the estimates for 9, A, this is easily seen
to be equivalent to the bound for 9,D’B,. For this we compute its s derivative,

0,0,D By = — 20,[ By, D'F,"]
= —2[0, By, D'F;] — 2[By, [0, A", F,"]] — 2[By, D' (D0, A" — D0, A; )]

Now it suffices to integrate from infinity, estimating all terms on the RHS, using the bounds
for A in Proposition [7.13] and 9), B from above. O

Next we compare the Yang—Mills heat flow of a caloric connection a € C with its linear
heat flow. Precisely, for its heat flow and the associated curvature tensor, we consider the
following representations:

A;(s) = e*Pa; + Aj(s), Fii(s) = e fi; + Fii(s), (7.54)
as well as
9" Ay(s) = DA(s). (7.55)
Here A;, F;; and DA are viewed as maps on C x [0, 00).

Similarly, if b is a corresponding linearized caloric data, then for its (local caloric gauge)
linearized Yang—Mills heat flow B, we consider the representation

Bj(s) = e*®b; + Bj(s),  0'By(s) = DB(s), (7.56)

where B; and DB are maps on T%C x [0, c0).

Our goal is now to show that these maps satisfy favorable quadratic bounds with Lipschitz
dependence on a. For each heat-time s, recall that k(s) refers to the associated frequency
with 22%()s = 1. As part of our analysis, we will show that A;(s), Fi;(s) and B(s) are
primarily concentrated at frequency k(s).

For the following proposition, let 0 < § < 1.

Proposition 7.20. Let (a,b) € T Co with energy at most € be equipped with H % L2
(—0,5) frequency envelope cx. Then we have the bounds

115D Y Ai()]] 1y HIA=5A) Fig(s)l] g+ (1=s8)VBy(s)]l 4 Soen 27" Peres, (7.57)

respectively,
IPDA g +[[PDB 4 Soen e (1 +2%s) 7N, (7.58)

Similarly, if (a®, b)) and (a™™, M) are two close linearized caloric data sets, with a joint
' x 12 (=6, 8) frequency envelope ci, and 1-compatible (—6,S) frequency envelope dy, for
the difference in ' x L2, Let

e =dp + Ck<C . d)gk
Then we have the difference bounds

11— sAYYA(S)] 1 g+ 11(1 = sA)N6Fy(s)l] 5 + (11— s2)VOBy(s)]], 5 Seen 27" elly,
(7.59)

respectively,
”PkéDAHWI,% + ”1D;€5DB||L§T SQ,E,N 65}(1 + 22k8)_N. (760)
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Here we note that all quantities estimated here are of quadratic type. In particular we
can easily get ¢ replaced by 7 if we give up a bit in terms of Sobolev embeddings and
taper off rapid decay of high frequencies of ¢; (i.e., consider (—d,0) frequency envelopes).

See Proposition for such a statement in the W”" setting.

Proof. The proof is tedious but straightforward. We focus on the structure of the equations,
and only sketch the details.

First we establish the curvature bound, using the equations ([5.2)) and Duhamel’s principle
to write

Fij(s0) =Fy;(s0) — € fy

% 7.61
— / o)A (2[F ] + 2[Ay, D'Fyy] + [0° Ay, Fyj]) ds. (7.61)
0

Then we use the bounds for A and F' to estimate the integrand, using Littlewood—
Paley trichotomy; the worst term is [A, D*F};] in the low X high scenario. Combined with
heat flow bounds, this yields the F bound in @

Next we establish the corresponding DA bound, this time integrating from infinity using
the representation ((5.22)):

DA(s) = / Oo[A’ﬂ, D’ Fy;]ds. (7.62)

The desired bound follows again from ([7.20) by Littlewood—Paley trichotomy. Again, the
worst case is the low X high scenario.
Finally, we establish the A bound, solving again from zero in the equation ([5.21)) to obtain

Ai(SO) :Ai(SO) — eSOAai

s 7.63
_ / eI (0,0 Ay — [AY, 0,Ad] + 2[Ar, DYA)] + [0 A, Al)) ds. (7.63)
0

Here we treat all 9°A, terms perturbatively, using the previously obtained bound.

We now consider the B bounds. Here B is obtained via the Fp; and Ay route (see Sec-
tion [2.6)). The first step is to consider the quadratic part of the curvature Fy;, for which the
analysis and estimates are identical to that for F;;. The next step is to obtain bounds for
Ay, for which we have the double boundary condition Ay(0) = Ay(co) = 0 thanks to the fact
that b is caloric. Thus, we obtain the double representation

Ap(s) = /OO D’ Fjpds = — /8 D’ Fjods (7.64)
Peeling off the linear heat flow of FJZ we obtain 0
Ay(s) = /OO D'Fjo + [Aj, e¥2b]ds + A e’ 207D,
respectively S
Ag(s) = — / DIFjo + [A;j, e2b]ds — A1 — e*2)db;.
Combining the two we arrive z;)t

Ag(s) = (1 — eSA)/ D'Fjo + [A;, e*2b]d5 — eSA/ D'Fjo + [A;, e*2b]d3. (7.65)
s 0
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. Ll
Now we can estimate this in W '? as follows,

H(l — SA)NAO(S) 1,4 S Q_k(s)ck(s). (7.66)

I,
This immediately leads to the B bound in (7.57)), as B; = Fy; + D, A,.
We now consider the bounds for DB, which is given by

DB(s) = 2/OO[BJ’,DiFij]d§. (7.67)

The corresponding bound in (7.58)) immediately follows.
Lastly, the difference bounds ([7.59)), (7.60)) follow in the same fashion by using the differ-
ence estimates in the previous proposition. O]

7.4. The heat flow of caloric connections: LP analysis. We are also interested in the
LP regularity properties for caloric connections. For this we will primarily be interested in
considering the caloric flow for subthreshold linearized caloric data (a,b) € W°" x Wafl’p,

for a range of indices (o, p) related to the Strichartz estimates for the wave equation with

1
H  data, which corresponds to the line between the spaces

[;[17 W%,ﬁ
However, in order to have a good range of admissible envelopes we want to be able to vary
somewhat the number of derivatives. We also want to be able to work with weaker spaces,
obtained from the above ones by Sobolev embeddings. This will be useful in order to take
full advantage of the energy dispersion later in the paper. Because of these, we will use a
range (o, p) as well as associated frequency envelopes as follows:

4
2 <p< oo, —l<o<-. (7.68)
p

The above range insures global well-posedness of the covariant heat flow in both W’ and

W™ for caloric connections a € H 1, with good parabolic decay, see Theorem . The
last condition asserts that W’ scales below L.
For an appropriately constant § > 0, which is small depending on p, o, we will denote

_1,

by ¢, respectively ¢, (—0,5) frequency envelopes for (a,b) in W7 x W7 respectively

in H' x L?. We will also compare flows corresponding to two pairs of data (a®,b®) and

(a™,bM). In that case we will use the notation e, respectively ¢y, for joint W x Wa_l’p,

respectively H 'y L* (=6, 5)-frequency envelopes. Also, we will denote by d;*, respectively

dy, for a (=4, .S) frequency envelope for their difference in W x Wa_l’p, respectively H " I2.
We will assume that ¢f, d;” and dj, are §-compatible with c.
Our estimates for differences will primarily involve the following modification of d;*:

7 = d )+ e ) (7.69)

By the above compatibility properties, it can be verified that e7” is 20-compatible with c.

With the setup as above, our first main goal will be to prove:
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Proposition 7.21. (1) Let (a,b) be a linearized caloric data set in T Cq with energy < &,
equipped with frequency envelopes ¢, and ¢’ as above. Then the corresponding Yang—
Mills heat flow A and the linearized Yang—Mills heat flow B, respectively, satisfy the
bounds

1PeA(S) e + | PoF (8) [y + [|PeB(8) o1 Soen €77(1 427 5)7F. (7.70)

(2) Let (a©,6©) and (oM, bM) be two linearized caloric data sets in TV Co with energy
< 5 which are sufficiently close as in (7.34)), and equipped with frequency envelopes cy,
', dy, 7P as above. Then the difference of their Yang-Mills heat flow pairs satisfies

1P A(s) o + [ POF (8) [l o1 + (|10 B ()l o0 Soev g (1+2%5)N.  (7.71)

Proof. We proceed in several steps. Our first result is concerned with the W”" bounds for
the caloric projection map (cf. Proposition [7.4)).

Lemma 7.22. Let (0,p) be as in . Letd be a H' W™ connectz’on with Q(a) < Q < oo
and ||a|| ;0 < M. Let ¢y, be a (— 5 S) frequency envelope for a in H and let " be a (=9, S)
frequency envelope for a in W which is 0-compatible with cg. Then the caloric projection
a = Cal(a) satisfies the bounds

[ Peallypor Son " (7.72)

Proof. We suppress the dependence of implicit constants on @ and M;. The idea is to first
estimate F' in the caloric gauge, and then pass to a using the caloric gauge representation

— / D' F; ds.
0
To begin, let O be the corresponding gauge transformation, i.e.,
00,0 = an.
By Theorem ¢, is a frequency envelope for as in H'. Then by Lemma and
compatibility, it follows that ¢” is a W’ frequency envelope for

fik = Ad(O)fjk.
By Propositions [7.4 and [7.13] we have
1PA(s) S (1 +2%5) 7.
Therefore, solving the parabolic equation for f using Theorem [4.7], we obtain
1PeE (8)llyyr1 S 77 (1 + 2%) ™
By Littlewood—Paley trichotomy for [Af, F;], we have
|PD  Fui(s) | yprr S 22672 (14 2%5) ™ )~ 2Bl (99920 (1 4 9%5)"N=10 (7.73)

i>k
Then integrating in s, the desired bound follows. U
Next we consider the heat flow of W7 caloric data, and prove the A bound in part (1) of

the proposition:
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Lemma 7.23. Let a € Co with energy < &, and with a i (=6, 8) frequency envelope cy.
Let (0,p) be as in (7.68), and let ¢’ be a (—9,S) frequency envelope for a in W, which
18 d-compatible with ci,. Then we have the bounds

[1PeAS) lyyrr + | PeF(5)|lyr—10 Seen P (14 2%5)7. (7.74)

Proof. This is the same as the previous argument but with O = I. Note that M; Sg¢ 1 by
Proposition [7.7, Moreover, we have the representation

Aj(s) = — / D' F;(3) ds.
Hence, the desired bound follows by integrating ((7.73)) from oo to s. O

Next we turn our attention to the linearized caloric flow and and the corresponding pro-
jection map. To set the notations, let a be a caloric connection, and b a linearized data set.
Its projection b = 11,0 is a linearized caloric data set. Our goals will be to

e Provide WU’p frequency envelope bounds for the projection map b— .
e Provide W”” frequency envelope bounds for the linearized Yang—Mills heat flow of b.

We begin with a frequency envelope bound for the projection map, which is analogous to

Lemma [7.12k

Lemma 7.24. Let a € Co with energy < &, and with a i (=6, 8) frequency envelope. Let
be L?, and let b= 11,b be its caloric projection.

(1) Let (o,p) be in the range —2 < 0 < % — 1, and let d]’" be a (=6, S) frequency envelope
for b in Wg’p, which is §-compatible with c,. Then b satisfies the bound
[P0y Soe dy” (7.75)
(2) Suppose that %—1 <o< %. Let ¢7" be a (=6, S) frequency envelope for a in W, and let
dy, respectively d;” be (—0,.S) frequency envelopes forbin H 1, respectively W, which
are 0-compatible with c,. Assume also that d), = ckdg] + dkcg} is a (=6,8) frequency
envelope for 0°b, in L?. Then

1Pkbjllyimr + (| PiFoj (5)[lyior See di” + (e d)<k. (7.76)
Note that the frequency envelope in (7.76]) is bounded by e;” in (7.69).

Proof. Proof of (1). As in the proof of Lemma [7.12] we begin by solving the covariant
parabolic flow for Fp;, with data

for =b.
By Theorem [4.7], this yields the parabolic b(j)unds
1PeFoj o < di? (1 +2%s) 7N, (7.77)
Now .
b=b— Dayg
where

ag = —/ DZFgodS.
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By the previous estimate and compatibility, we obtain the bound

||Pka0||Wo+1,p < dZJ? <778)

~Y

which in turn leads to the desired bound for Day,
| PxDaollyor < dy”, (7.79)
where we again used compatibility.

Proof of (2). Here the bound ([7.78]) still holds, but it no longer implies (7.79)). Precisely,
the only difficulty occurs in the expression [a, ag| for the high-low interactions. In that case
we use

|P<aolle S ) 1 Piaolly2 S (c- d)<i,
i<k
which is derived from the bound on 8, (see the proof of Proposition . This is combined
with the bound || Pyal|jjor < ¢i”. O

Next we consider the regularity of linearized caloric flows, and in particular prove the B
bounds in part (1) of the proposition:

Lemma 7.25. Let a € Cg with energy < £ and with a i (—0,S5) frequency envelope Ck-

Let (0,p) be as in (7.68)), and let d;” be a (—0,S) frequency envelope for b in W™ which
18 0-compatible with ci,. Then b satisfies the bound

1PeB(s)llypr-10 Soen di”(1+2%s)7. (7.80)

Proof. We proceed exactly as in part (1) of the previous proof (with a caution, however, that
the scaling of d;” is different!). Observe that

Bj(s) = 0o A;(s) = Fo;(s) — D;Ao(s).
In view of (7.77)), it only remains to estimate D Ag(s). For Agy(s), we have the representation

= / DF,(3)d3

Thus, the desired estimate for DAy(s) follows by integration from infinity to s, as in the
proof of Lemma [7.24] O

Finally, we consider difference bound (which is the only use we have for the previous
projection bounds):

Lemma 7.26. (1) Consider two caloric connections a'®,a") € Cq and energy < &€ so that
holds. Let ¢y, and ¢, respectively d;”, be frequency envelopes for a¥ a®), re-
spectively a® — ' | as in the assumptions of Proposition . Then there exists a one
parameter family a'™ of caloric data in Cog with energy < 2€, so that

|Pea™ |lprr Soe P, (7.81)
as well as

HPkaha HWUP <Qg ek . (782)
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- o—1,p

(2) In addition, let b bY) be corresponding linearized caloric data sets with W (—0,5)
frequency envelopes ¢;”, respectively d;" for the difference, as in the assumptions of
Proposition[7.21. Then there exists a corresponding family of linearized caloric data sets
b with similar bounds,

| Pb™ | o0 Sae P, (7.83)
as well as
||Pkahb(h)||wa71,p Sgg €Z’p. (784)

Proof. Proof of (1). We will prove that the family a® constructed in Proposition [7.17
has all the desired properties. We use the same notation as there. The first bound ([7.81))
is a direct consequence of the mapping properties of the caloric projection operator Cal in

Lemma [7.22

Next we consider the bound for d,a™, which is obtained by
Opa™ = Ad(OM)d,al” — (D@),00) = 1,0 Ad(O™)3,a™,

where the last equality follows from the uniqueness statement in Proposition [7.9) By
Lemma and compatibility, it follows that d}*, dy and dj, = ckd,[cl] + dkcg}, respec-
tively, are frequency envelopes for Ad(O™)d,a™ in W, for Ad(OM)opa™ in H ' and
for 8Z(Ad(0(h))8hdéh)) in L2 respectively. Then the desired bound (7.82) follows from
Lemma [7.24}(2).

Proof of (2). We proceed again as in Proposition [7.17], from which we borrow the notation

~(h
and equations. Given a® constructed in part (1), we first define B ) by linearly interpolating
between b(®) and b(). These have the desired regularity but are not yet on the tangent space
of the caloric manifold, so we project, setting

b = 11000
Now the b" bound (7.81) is a consequence of Lemma [7.24]
To estimate 9,0 we need 9,Day.

ahDCLg = D@hag + [8ha, ao].

The second term is easy to estimate using the previous W” bound for dpa and the H '
bound for ag in Lemma [7.15] as

o—1,p

W H W

It remains to bound dpao in W°". Exactly as in Proposition , we use another round of
the “infinitesimal de Turck trick”, where we introduce a dynamical component A;, satisfying

[T.5), (7-46) and (T-47). We have
0D Ao = [D Fun, Ao] + [Fy", Fio] + DD Fo,
where Dy, F}jy solves the covariant heat equation ([7.49) with inhomogeneity G; as in (7.50)),

and with initial data dyb.
By Theorem 4.7 and the prior bounds at s = 0, we already have

|PiFnill g S (di + (e d)<i) (1 +25)7Y, [[PoFogl e S en(1+2%s) 77,
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1PeFujllypre S (d7” + P (e d)<i)(1+2%%s)™N,  |[PeFolly,

Hence for G; (which is, schematically, [DF},, Fy|+ [Fh, DFp]) we obtain, by Littlewood—Paley
trichotomy,

o1p S EP(1 4 2% 5) 7N,

~Y

PGl 3

J—Q,p

SeP(1+ 2%k g )

—i—sl Wa' 1-6,p ~5

where, of course, both s3W and s"" W’ " have the same scaling as WU_3’p. The

worst terms arise from (i) high X low interaction in [DFy,, Fyl, (ii) low x high interaction in
[Fy, DFy] , and (iii) high x high — low for both terms. These give (i) d;” + ¢."(c- d)< in

1 : o—2

s 0—2, .. . 1 , o o . _z,0—1-0, .
s (i) c"’pdg] in s2W7 " and (iii) d77 + (¢ - d)<j, in s"W " respectively.
Recall from ([7.69) that the resulting frequency envelopes add up to e;”

Then solving the parabolic equation for Dy, Fp; we obtain

|PDy Folo-ro S £7(1+ 2%)7N.
By ([7.48)), this implies that
10.D1 g2 S €77 (1 4+ 25),

which in turn, after integration from infinity, yields the desired bound for Dy Ay,
D1 Aollypor S €fP(1+2%5)~, =

As a consequence of the last result, we are able to provide the difference bounds in part
(2) of the proposition. These are obtained by combining the last lemma with the linearized
bounds in Lemma [7.25] O

Our next goal is to compare our caloric heat flow for (A, B) with the corresponding linear

heat flow. We do this first at the linear level, where we can prove a wr counterpart of
Proposition From here on we assume that

0<o< %, 2 < p<oo.
To the pair (o, p) we associate another pair (o7, p;) so that the following relations hold:
0<o0y <o,
respectively,
i—al :2(1—1—0).
P1 p

These are so that we have the scaling equivalence (and bilinear multiplicative property)
WUJ’ . WU:p ~ Wohpl.

Proposition 7.27. Let (a,b) € TYC be a linearized caloric initial data set, with H' x L?
(=0, 5)-frequency envelope ¢ and WP s W (=0, S)-frequency envelope ¢*, which is
0-compatible with c,. Then its Yang—Mills heat flow satisfies the bounds

S s a, 5
11 = SN A (5)[yyorm + (1= A NFiy(8)lpor-10n Soev 27 OGEEEY, (7.85)

~Y

o,p[d
11 = SAYVB;(5) [l yyoi-1on + |1 = D) VEig(0) | om0 Soenw 27500 el (7.86)
respectively,

| B:DA||yprve + || PuDBI|oi 100 Soe e (7.87)
90



Similarly, if (a®,b©® ) and (aV,bM) are two close linearized caloric initial data sets with
frequency envelopes Cr, &30 dy, dy, o satisfying the assumptions of Proposition then we
have the difference bounds

11 = sA)M0A; ()l + [[(1 = sA)Y 6Fi5(5) | o -1

Seen 2O+l (7.85)
(L= 58)¥ 5B () v + 1L~ 58) 5o () -1
SoenN 27 (S)(Ck’(p)e(;’(i[)ﬂ + ek&i)cz’(p[)é])a (7.89)
respectively,
| PiSDA(8) [y + | PLODB(S) i1 Soe e 4 g™ (7.90)

Here for all DB bounds we make the additional assumption o > %

Proof. We proceed as in the proof of Proposition [7.20f Again, the proof is tedious but
straightforward. We focus on the key structural aspects, and omit the details.

First we estimate F;;, using the representation . The same argument applies to Fp;.
For the bilinear terms in the integral we estimate both factors using the WP envelopes.
To fix the notations, consider the worst term [A,JF]. Then using the Littlewood-Paley
trichotomy we have two main contributions,

Fij(s) & 27 Py [Acn), OFano) + Y 27 Py [Ar, OF]
k>k(s)

In the second term we have additional off-diagonal decay as we only need to apply Bernstein
for the product. In the first, however, if A has lower frequency then we need to apply
Bernstein separately for A, and so we can only use an L¢ bound for A.

Next we estimate DA, for which we use the representation ([7.62). The integrand is quite
similar to the one above, but now we integrate to infinity. Thus the leading term is

DA(s)~ Y 27%mes[ Ay, OF,)

k1,k2<k(s)

and when we consider P,DA(s) we arrive at the same two cases as above, with the same
final result.
To estimate A; we use the same analysis one derivative higher, via (7.63). The same

applies to Ay via ((7.65)), which implies the B bound.
Finally we consider the DB bound, where we use

0
The worst contribution is in the high x high — low case,
DBy~ Y 2% P(P;B - 0F;F).
i>k
The derivative in front of P;F gives one more 27/, so we only have 277 left. This is where we
need to assume that o > %

The estimates for the differences are similar, using part (2) of Proposition and Propo-

sition [7. 16l ]
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We end this subsection by fixing some parameters for the ensuing analysis. For our goal

below, we will need to work with five different sets of exponents (o, p@), (¢, pM), ...,
(0(4), p™). Their choice is somewhat flexible, within a range. We describe it in the following

tabld™}

(o,p) Scaling | L] match o constraint p constraint (o1,p1)
(@, pOy | ' L S <o® < 2<p<d (0,2)
(00, py | gt It F<ol < % 3<pe< 15_6 (52
(0@, p@) H%JFGO LA~ 5 + 200 < 0@ < % — % p<3 (% + 209, 2)
(¢®, p®) g L3 % <o® < g 15—8 <p<i4 (%, %)
(0@ p@) | F2720 | e+ G oo < o < é — 10300 p<6 (é — 4oy, 2—54)
Here oy is a small parameter,

0<op< %

The above proposition applies the these sets of indices as follows:

Corollary 7.28. (1) All bounds in Proposition apply for the sets of indices (o0, p®)),
(0, pM) and (c®),p®?).

(2) The bounds in Proposition except for the DB bounds, apply for the sets of indices
(69, p) and (o), p¥).

To keep the notation simpler, in what follows we denote the corresponding homogeneous

Sobolev spaces, and the associated frequency envelopes by W(]), respectively c,(j ) for ] =

0,1,2,3,4. For the most part, the following embeddings will suffice for our estimates:

. .18 . L1
W(O) c w23, W(z) cw?

1 16

W e w2,

—00,3
)

- (3) ! . (4) < L _950,6 (7.91)
W cWw?, W cWw* .
The reason we go past the range of these embeddings is to be able to gain off-diagonal decay
in several quadratic and cubic estimates.

We fix a universal constant d, > 0, which is sufficiently small relative to the five pairs
(@, p©@), . (6™, p™), as well as oy. This will be our lower admissibility range, as well
as compatibility parameter, for all the frequency envelopes we use.

1
14L§ refers to the t-integrability in the matching H -Strichartz norm.
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Given a linearized caloric data set (a,b) € TEC, we let Q,& be upper bounds Q(a) < Q

and EJfa] < E. We let ¢, respectively c,(j), be (—do,S) frequency envelopes for (a,b) in
. o) @) o) 1 @)
i x L2, respectively in W’ e w

Next, given a pair of hnearlzed calorlc data sets (a®, b )), (aM,bM) e TYC, with again
let Q,S be upper bounds Q(a”), 9(aV) < Q and &.[a?], £.[aV] < &, which are close in

the sense of - We let ¢, respectively c,gj) , be joint (—dp, S) frequency envelopes in
(@ pl) - o) -1 pl) .
x W . For the difference (a(® — a™®,b©® — p1),

. 1 . .
we let dj, respectively d,(f , be (=8, S) frequency envelopes in H x L?, respectively in
. o) pl) WU(j),me
X )

i x L2, respectively in W

In all cases above, we assume that cg ), dy, and d,(j ) are do-compatible with ¢.

7.5. Generalized Coulomb condition and Q. By now, we have repeatedly seen (and
took advantage of the fact) that caloric connections a and their linearizations b satisfy a
generalized type of Coulomb gauge condition

d'ay = DA(a), 0'by = DB(a, b),

where the smooth maps DA and DB contain only quadratic and higher terms, and have
better regularity. As a remarkable corollary of the results proved in the preceding subsection,
we are now able to provide a better description of these maps. In particular, the main
quadratic part is described in terms of the explicit symmetric bilinear form Q with symbol

€1 = Inl?
2(1&1% + nl*)’

Later, in the analysis of the hyperbolic Yang—Mills equation, we will use the explicit form of
the quadratic part, while the cubic and higher terms will only play a perturbative role.

Q(&,n) = (7.92)

Proposition 7.29. Let (a,b) € TLQCQ be a linearized caloric data set with energy < .
Then 8*a; = DA(a) and 9°b, = DB(a,b) decompose into the quadratic and the higher order
parts

DA(a) =Q(a,) + DA*(a),
1
DB(a,b) = ([a b] +2Q(a, b)) + DB?(a,b),
where Q is the symmetric bilinear form with symbol (7.92)), and the remainders DA®, DB?

are maps containing cubic and higher order terms. Under the assumptions at the end of
Section 7.4, they obey the following bounds:

|BDA®(| 2 + | BDB?| -1 Sgect (¢l?)?2, (7.93)
| DAYy +[|PDBY|, ) Soect (™)), (7.94)
|PDA| 1 + || DB 12 g et (¢, (7.95)
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as well as the corresponding difference bounds

| PO DA 12 + || PudDB?| 1 Sg e )20, (7.96)
IPODAY| 4 + [PDBY||_y Soe(ep”™)e ), (7.97)
|2 ODA?|| 1 + | PODB| 12 Sge (e Po)2ef® ) (7.98)

We will also often write
1
DA%*(a) = Q(a,a),  DB*(a,b) = 5 ([a,b] +2Q(a,b)).

To understand their mutual relation, note that DB is the not the linearization of DA, but

rather D, = DB + [a%, b] is. We also remark that (7.95) and (7.98)), respectively (7.95)
and (7.98)), will be dynamically accompanied with L?, respectively L}, in Section |§| below.

Proof. We use the representation (|7.62)). The leading quadratic part is obtained using the
linear heat flow for A, and has the form

DA?*(a) = /0 [e*2al, 0" (e*2Opa; — e*20;ay,)]ds.

Integrating this and symmetrizing in j and k yields the symbol

2

2 _ . n
DA (6777) - €2+772'

The desired expression ([7.92)) follows after antisymmetrization.
To estimate DA® we write

DAY(a) = / A2 DFE] + a7, [AF, Fy]] + [¢2ad, 0FF ] ds.
0

All of (7.93), (7.94) and (7.95) are proved by estimating the integral on the right by
Littlewood—Paley trichotomy.

. 5(0) (0) -
e For (7.93), we use the W P L* bound for A and e**a, the W " bound for F,
the L? bound for A? and the (5[ ~! bound for F. .
e For (7.94), we use the W’ P L% bound for A and e*2a, the W bound for F,

the H? bound for A% and glglewl)t[ 2 bound for F. .
e For (7.95)), we use the W~ " < LS bound for A and e*2a, the W’ NGl |

112 2 12

bound for F, the W3 ® bound for A? and the W *® bound for F.

The argument for DB? is similar, there we use the representation
D*B;, = —2/00[Bj,DiF,-j]ds
0
where we expand all terms as the linear heat flow plus a quadratic error, so that
DB? = —2 / OO[BJ‘, DI Fyj] + ["20, [AY, Fyj]] + [V, 07Fy;] + [B?, D;0" Ay ds.
0

Here 0% A, yields only cubic contributions. O
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8. THE DYNAMIC YANG—MILLS HEAT FLOW AND THE CALORIC YANG—MILLS WAVES

Consider a sufficiently regular space-time connection A;, on J x R* which solves the
inhomogeneous hyperbolic Yang—Mills equation

DaFaﬁ = Wg. (81)
Here, w is called the Yang—Mills tension field, and satisfies the constraint equation
Dws = 0. (8.2)

Assume in addition that for each ¢, A(t) = A, (t) is a caloric connection and B(t) = 0;A,(t) €
T jft)C ; in short, we call A;, an inhomogeneous caloric Yang—Mills wave.

To take advantage of the caloric gauge condition, we extend A;, = A;,, as a dynamic
Yang-Mills heat flow on J x R* x [0, 00). Precisely, we adjoint the heat-time s € [0, c0) and
consider the dynamic Yang-Mills heat flow A ,

Fsa = DZFZOH At,m(ta €,s = O) = At,:v(ta ZE),

under the local caloric gauge condition A; = 0. By the (global) caloric gauge assumption,
the Yang-Mills heat flow A(¢,z, s) exists globally in heat-time s, and tends to 0 as s — oo.
Afterwards, it follows that Ag(t,z,s) = As(t,x,s) also exists globally in heat-time s and
tends to 0 as s — o0.

In order to study the problem in the caloric gauge, we first need to clarify what is
a proper initial data set. Our starting point is the notion, introduced earlier, of a gauge
invariant data set (a,e) € H' x L* where e; = Fy; is subject to the constraint D’e; = wy.
On the other hand, once the gauge is fixed we expect to have control of a full initial data
set (A,0;A). However, these are not all independent due to the gauge condition, and at
least conceptually, we expect to see the same pattern as in the Coulomb gauge, namely that
A=A, €¢Cand B=0A, €T jQC are the independent variables. Thus, we will call the
pair (A(t), B(t)) the initial data for the Yang-Mills connection A, at time ¢ in the caloric
gauge (see Definiton [2.25)).

Our goals are now three-fold:

e To establish a one to one correspondence between the two initial data sets (a,e) and
(A, B).

e To show that the remaining initial data components Ay and JyAy can be recovered in
an elliptic fashion from A, and B,.

e To understand the evolution of w, with respect to the heat-time.

Of course, our main interest lies in the homogeneous case w, = 0; for this purpose, it is not
immediately apparent why the third goal is important. However, it will shortly become clear
that there are multiple reasons. On the one hand, this turns out to be closely related to the
second goal above, even for the homogeneous case w, = 0. On the other hand, knowing that
the dynamic Yang—Mills heat flow A(s) at a heat-time s is a good approximate hyperbolic
Yang—Mills connection plays a key role in our induction on energy argument in [19].

Unrelated to the above objectives, in the last part of this section we turn the tables and
prove that we can transfer some L*> type bounds in the opposite direction, namely from
the curvature (f,e) to the caloric data (a,b). This part has no further continuation in the
present paper, but will be very useful in the next article [19] in the context of the energy
dispersion.
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We begin with the equivalence of the two notions of initial data sets:

Theorem 8.1. (1) Given any Yang—Mills initial data pair (ag,ex) € H' x L? such that
Q(a) < oo, there ezists a unique caloric gauge Yang—Mills data set (ay,by) € ' x 12
and ag € Hl, so that the initial data pair (ay, ex) is gauge equivalent to (ay, ey), where

e, = by, — Dyayg.
In addition, (a,b) and ag are unique up to constant gauge transformations, and depend
continuously on (a,e) in the corresponding quotient topology. Further, the map (a,e) —
(@, b) is locally C* in the stronger topologﬂ Hx L? — Hx L2, as well as in more reqular
spaces HY x HN=t — HN x HN-1 (N > 2).

(2) Given any caloric gauge data (ag,by) € TYC, there exists an unique ag € Hl, depending
smoothly on (ay,bx) so that

ex = by — Dyag

satisfies the constraint equation (1.14). Further, the map (a,b) — ag is also Lipschitz
from HN x HN=' — HN for N > 3.

This proves Theorem [2.26]
Proof. Proof of (1). For the first part we note that we can first place a; in the caloric
gauge, and thus reduce the problem to the case when a; = a;. Then the fact that e; and €

are gauge equivalent simply means that e = e.
Both the existence and the uniqueness part for the decomposition

er = b, — Dyag
comes from Proposition [7.9]
Proof of (2). For the second part, we note that the divergence equation for e gives
D*D,.ay = D*by, + wy
so that ag is obtained by solving this elliptic equation, see Theorem [.1] U

Next we turn our attention to the expressions for Ag and dyAy. For Ay we will directly
use the above elliptic equation,

D*Dj, A(s) = D¥By(s) 4 wy(s). (8.3)
In particular this will uniquely identify Aq(0) as a smooth function
Ay = Ag(A, B) = A}(A, B) + A}(A. B) (8.4

where we will further separate the quadratic part and the higher order terms.
Alternately, we can also obtain Ay by integrating ([5.26]) to obtain the following formula

(see Remark [7.10)):
Ao(s) = / D Fyy(s') ds’ = / wo(s') ds' (8.5)

5Here we impose again the condition lim|;|,c O(a) = I in order to fix the choice of O(a).
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We will use this expression to gain control of D°Ay. Indeed, differentiating with respect to
t we arrive at

9" Aq(s) — / " Pw() ds’ = — / Db (s') + [A°, wo(s')] d (8.6)

To continue we need to understand the evolution of wy, which is coupled to the evolution
of all w,’s:

Lemma 8.2 (Deformation of the Yang-Mills tension). Let A = A;da? + Ayds be a suf-
ficiently regular dynamic covariant Yang—Mills heat flow, i.e. solution to (5.7). Then the
Yang-Mills tension w, obeys the following covariant parabolic equation.

D.w, — D'Dyw, = 2[F, ", w/] + 2[F*, D, F,, + D/F,,] (8.7)

For a proof, see [I7, Appendix A]. We remark that in the last expression by symmetry all
terms cancel unless p = 0, so we can rewrite it as

D,w, — D'Dyw, = 2[F,*, wy] + 2[F% DoF,; + D;Fy) (8.8)

For this system to be self-contained at fixed ¢, we need to avoid the Dy derivatives on the
right. This is achieved differently depending on whether v is zero or not. For v # 0 we
simply apply the Bianchi identities to get

D,w, — D'Dyw, = 2[F,*, w,] + 2[F%, D, Fy, + 2DF,), v#0 (8.9)
which does not involve v = 0 at all. On the other hand if ¥ = 0 then we have
D,wo — DDywy = 2[F,*, wy] — 2[Fp", we + DFFr] = —2[Fy*, D Fy]. (8.10)
Thus the above computation shows that we can express D?A((0) as a function
D%A, = DAy(A, B) := DA(B, B) + DA}(A, B)

which is again decomposed into a quadratic term and a higher order term. The aim of the
remaining subsections is to make all these decompositions quantitative rather than qualita-
tive.

In what follows, A or B without any subscripts refer to the spatial components A, or B,.
Moreover, A, B, Ay, By etc. without (s) refers to the corresponding components at s = 0.
We use the convention set up at the end of Section with (a,b) is replaced by (A, B).

8.1. The analysis of w,. We begin with the case when the initial data for wis w(s = 0) = 0,
i.e., our map is a homogeneous Yang—Mills wave. Then we have the following:

Proposition 8.3. Let A,, be a caloric Yang—Mills wave on I x R* satisfying (Ao, A) €
Cy(I; H' % Co) with E[a] < E. Then at fized heat-time s > 0 we have

w(s) = w(A, B,s) = w?(4, B,s) + w*(A, B, s) (8.11)

where the quadratic part w? has the form
w2(B,B) = —2W(B',0,B, — 20,B,), v#0 (8.12)
wi(A, B) = 2W(B', 07 A)), v#0 (8.13)
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where W is a symmetric bilinear form with symbol

W(¢ n,s) = / T el o (€ ) g
0

1 (8.14)
_ —sl&+nl? 2s(&m)
=——ze 1—e )
% 7 ( )
Further, w satisfies the following bounds:
_EG) () (0)[s
11 = sA)¥w(s)l| 3 Soen 27 e e (8.15)
—0 S 1 1)[0
10 = s AW ()] 0y S 27 (8.16)
respectively
_EG) (2) (2)[60] (4)]6 s
[0 = sA)MWA() ., Soen 27 el ey e+ (e, (8.17)
as well as corresponding difference bounds:
5o] _(0)[6
10— s2)Vow(s)l|, 5 Soen 27 7 e el (8.18)
I - sA>N6w<s>HHf%ﬁo Soen 277Kl (8.19)
respectively
k(s) (2)[60] (2)[d0] (4)[S 2)[6 4)[6
11 = sA)Now (s)l], s, Soen 2717 e e e + () e (8.20)
where

sw?3(s) = w??(AQ BO 5) — w?3(AD B ).

Proof. Here we use the equations , respectively (8.10)), recalling that at the initial time
Foo — B, = Dy A is a quadratic term which is better behaved.
To compute the leading quadratic component of w, we proceed as follows, first for v #£ 0:

S0
w2 & 2/ 50 A[sA POl osB(D [, + 2D, F,)]ds
0

S0
~ — 2/ e(S_SO)A[GSABe,eSA(OVBg —20yB,)]ds
0

= —2W(B* 0,B, — 20,B,)
where W has the symbol

W(&"]) = /80 67(3*80)(§+n)2€75(§2+n2)dS
0

1
We remark that B has size (£% + n?) localized in the region |£ + 7| < s, 2

Next we consider v = 0, where we use (§8.10|) instead. Then a computation which is similar
to the one above yields

wa = —2W (B, 00, A)

To prove the bounds in the proposmon we use Theorem [£.8f Thus we need to estimate
the right hand side in the equations respectlvely -



For the bound (8.15]) we use Proposition to estimate

3k(s)

I(1 = sA)N[P(s), DF(s)]l| 3 S2°7 (e))

and then apply heat flow bounds.
For the bound (8.16)) we use the same bounds to similarly estimate

(of S 1
(1= s8)"F(s), DF($)ll -4y S 277 (cl)*

The same applies for (8.17)). Here we use again Proposition for I, while the contribution
of the nonlinear terms F in I is easy to account for based on Proposition [7.27]
Finally, the difference bounds are proved similarly. 0

8.2. The analysis of Aj;. Our main result is as follows:

Proposition 8.4. Let A,, be a caloric Yang-Mills wave on I x R* satisfying (Ao, A) €
Cy(I; H' % Co) with E[a] < E. Then for Ay we have the representation:

A= Ag(A,B) = A3(A,B) + AJ(A, B) (8.21)
where A%(A, B) is a bilinear form of the form
AZ(A, B) = (-A)'([A, B] +2Q(A, B)). (8.22)
and A3(A, B) is a higher order term, linear in B, so that the following bounds hold:
|PAGH (A B See ee”™ (8.23)

and (corresponding to L?)

IPA (A B g Soe o el"™ (8.24)

H?2

as well as (corresponding to L})
IPAG(A, Bl 2 S el + (7)™ (8.25)

We also have the corresponding difference bounds:

1POAY? || Soe el (8.26)
|PSAS] g Sae o PlelV, (8.27)
||Pk5A HH2 <oe e( )[6 ] )[50]6124)[60}"’(0592)[60])261(94)[60]7 (8.28)

where

SADY = AZ(A© BO) _ AZ3(4W B,
Proof. We only sketch the proof, emphasizing the structural points.
For Ay we already have the elliptic equation
ApAy =D"B,
On the other hand for D*b;, we have the representation in Proposition . Thus we have
A4y = DB?(a,b) + DB?(a, b)
In particular the quadratic part of A, is given by

A3(a,b) = A"'DB?(a, b)
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and its symbol is directly obtained from the symbol of DB?,

AY(En) = e

The bounds “8.23i and (8.24) are immediate consequences of the estimates in Proposi-
tions [7.27] [7.29] combined with Theorem
It remains to prove the bound (8.25)). The cubic part of Ag(a,b) is given by

AaA3(a,b) = DB?(a,b) — 2[A", 0, Ad] — [0F Ai, + AR, Aj]
We will separately bound the three terms in the right hand side above in ¢*L?. We have
already proved this for the ﬁrst term in Proposition [7.29 and the remaming two terms are

similar using only the H 2t * bound for A (comblned Wlth the VV6 7% bound for A, in
the worst case), which in turn is proved similarly as . 0

-DB?(¢,n)

The above description of Aj suffices for our description of the caloric Yang—Mills wave at
heat-time s = 0. However, we will also need to show that at s > 0, A(s) is a good approximate
caloric Yang-Mills wave. One difference between the two is that Ag(s) # Ao(A(s), B(s));
this is because solving the w equation with zero Cauchy data at time 0, respectively zero
Cauchy data at time s, yields different results. Nevertheless, we need to compare the two:

Proposition 8.5. Let A;, be a caloric Yang-Mills wave on I x R* satisfying (Ag, A) €

Cy(I; H' x Co) with Ela] < E. Let A;,(s) be the corresponding dynamic Yang-Mills heat
flow. Then for Ay(s) we have the representation

A0(5> = AO(A(S>7 B<S)) + A(Q);S(A? B) + Ag;s(A7 B) (829>
where A§. (A, B) is a bilinear form
A2.(A,B) = A'W3(A, B.s).

Moreover, under the additional assumption that all frequency envelope bounds are (—9,9)-
admissible, the following bounds hold:

()
(1= sA)YAZA, By Soew 275 ()2 (8.30)
(1= sA)YAZA, B g oy S 2O, (8.31)
respectively
0!
11 = AN AG(A Bl omyy Soen 2777 (e el (8.32)

In the next section, the three bounds above would be dynamically accompanied by L, L?
respectively L.

Proof. Denote by w the solutions to the w equations — (8.7) but with initial data w(s) = 0.
Then we have

Ao(s) — Ao(A(s), B(s)) = / (wo — W) (s")ds'.
The function zy = wy — Wy solves the homogeneous heat equation

(0s — Aa)zo =0, 20(8) = wo(s).
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.3 L1,
For wy(s) we can use the H 2, respectively H 2 " bounds in (8.15) and (8.16)) to estimate
2p(8") in the same spaces in a parabolic fashion Then (8.30) and (8.31]) directly follow. The
same apphes to the contribution of wi(s) in - It remains to consider the contribution

of wi(s) in . This corresponds to replacmg zo above by the solution 23 to
(05 — Ap)zs =0, 20(s) = wi(s).

We consider to the expansion

2(s) = A wi(s) + / (A, D22] + [DA, 22])(s')ds".

o@ p@

L1, .
For 22, we use the H 2 " derived from , and for A we use the W norm. O

8.3. The analysis of D°A,. Here we have a representation as follows:

Proposition 8.6. Let A;, be a caloric Yang—Mills wave on I x R* satisfying (Ao, A) €
Cy(I H' % Co) with Ela) < E. Then for 8° Ay we have the representation
9°Ay = DAj(B, B) + DA3(A, B) (8.33)

where the two terms are quadratic, respectively cubic and higher in A, B, and DA?)(B,B)
takes the form

DA} (B, B) = —2A7'Q(B, B).
Further, they satisfy the bounds

IPDAS |12 Soe o el (8.34)
|P.D A33H % oc (1) ()[501 (8.35)
||PkDA || <oe Cé )622)[50] (4)160] + (c (2 )[501) C;g) (8.36)

as well as the corresponding difference bounds (cf. Proposition .

Proof. This is obtained by integrating the previous representation and bounds for wy via the
formula (8.6]). Precisely, we have

80/10 = / [AV, U)l,] + 8]"11)]' ds.
0

R S
The first term above is cubic, and it suffices to combine A and w bounds (W *° 2

in the worst case for (8.36])).
So it remains to consider the d;w; term. For the quadratic part we integrate the symbol

of W(s)
2 2 1
s(€24m%) o (s0=9)(€+1)? s dsy —
/ / @+ )€ +n)?

which combines with the argument of W, namely &’|B',9;B)] = [B', ABj]. It remains to
account for the cubic term in w, for which we use the bounds in Proposition [8.3] This is

exactly the same argument as for Aj. O
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Remark 8.7. In the proof of the preceding proposition, we can also obtain the quadratic
symbol in a more direct fashion, by returning to the Ay equation. Retaining only quadratic
terms, we have

(90A0 ~ avo(a, b) = Ao(b, b) + Ao(a, atb) ~ Ao(b, b) + Ao(a, Aa)
At the symbol level we get for the first expression after antisymmetrization
52 _ 772
(€ +m)*(E + 1)
whereas the second expression vanishes after antisymmetrization.

As in the case of Ay, we also need to compare DY Ay(s) with DAy(A(s), B(s)).

Proposition 8.8. Let A;, be a caloric Yang-Mills wave on I x R* satisfying (Ao, A) €

Cy(I i x Co) with Ela] < E. Let A;.(s) be the corresponding dynamic Yang—Mills heat
flow. Then for D°Aqy(s) we have the representation

DOA()(S) = DA0<A(S)7 B(S>> + DA(Q);S(A7 B) + DAg;s(Aa B) (837>
where DAZ. (A, B) is a bilinear form
DA} (A, B) = A™'0"wi(A, B, s).

Moreover, under the additional assumption that all frequency envelope bounds are (—6,0)-
admissible, the following bounds hold:

[(1+s2) DAy Soew 277 (c))? (8.38)
(14 58) YDA )0y Soew 2Ol (339
respectively
10+ s8) DAL iy Soew 278 (06l (8.40)
Proof. The proof is similar to that of Proposition [8.5| for Aﬁ;‘j; we omit the details. O

8.4. Turnabout: from curvature to caloric data. Throughout this section so far, we
have adopted the viewpoint that (a,b) should be considered as the canonical initial data
set. However, we also briefly need to turn the tables, and prove an estimate for caloric data
(a,b) and its caloric flow which is derived from information about initial curvature (f,e).
This is one of the end results of this paper, which will be used in [19] to transfer small
“inhomogeneous energy dispersion” information from (f,e) to (A, B).

Proposition 8.9. Let ¢ be a (—dy, o) frequency envelope for (a,b) in H' % L?, and let d;,
be a (—dg, o) frequency envelope for (f,e) in W2, Then the following bounds hold:

27| PLA(s) |z + 27| PeB(s) || So.en(di)?(1+2%5) 7, (8.41)
1707 A ()| 2 + || P By(s)ll ;-1 Soev(di)2er(l +2%s5)Y, (8.42)
11+ sA)NVA(s) 22 + 11+ sA)VB(s) ;-1 Soen2 ™ (dige)) 2 cige). (8.43)

One can view this as a non-symmetric variant of Propositions [7.21], and [7.29] Here,

there is no need to consider more general (—dg, S) frequency envelopes.
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Proof. We proceed in several steps, omitting the dependence of implicit constants on Q, &, N:

Step 1: [j; and F{; bounds. For the curvature components we have the covariant
heat equations (5.9) therefore we are in a position to apply the bounds in Theorem .

Unfortunately the W™ norm is borderline inadmissible there. To rectify this we work

. . . . L —14 . . . c
instead in the intermediate W norm, for which by interpolation we have the initial data
bounds

1
1P (S )l yira S (crdi)?
By Theorem this yields the corresponding parabolic bounds for their caloric flows,

| PeFugllyra S (erdi)? (1+2%s) 7. (8.44)
Step 2: A; and Ay bounds. These are obtained by integrating from infinity
Aa(S) = —/ DjF}'a(Sl)dsl.

We estimate in L? using (8.44)), Bernstein’s inequality and the Littlewood-Paley trichotomy
1P D7 Fja(si)llza S 1260 Fja(s1)ll1a + || Pe[A7, Fja(s1)] |l 4

1 3 .
S 2% | (erdp)2 (14 2%51) N+ c2d;(142%s;) 7N
7>k
After integration in s; this yields
1 PsAa(s)||zs < (cpdi)2 (1 + 2%5)~N. (8.45)

Step 3: B bounds. Recalling that
Bj = F()j + DjAO = F(]j + (9jA0 + [Aj, Ao]
we use (8.44) and (8.45) for the first two terms and combine H " and L* bounds for the last

term to obtain )
1P B; (5) [l i-14 S (crdr)Z (1 4+ 2%%s) 77, (8.46)
By Bernstein’s inequality, this bound together with (8.45) complete the proof of (8.41)).

Step 4: the remaining bounds (8.42) and (8.43). These follow from the estimates

(7.85) and (7.87)) by choosing (o1, p1) = (0,2), and appropriate (o, p) interpolating between
(1,2) and (0,4). O

9. THE WAVE EQUATION FOR A,

Our main goal here is to interpret the hyperbolic Yang-Mills equation in the caloric gauge
as a system of nonlinear wave equations for A,. To be more precise, we seek to formulate
the equations in a form where all the quadratic terms are explicit, while the cubic terms
satisfy favorable frequency envelope bounds which only involve the non-endpoint Strichartz
type norms for A.

In this section, by time we always refer to the hyperbolic-time ¢. Accordingly, in this
section the shorthand L9L” means the space-time norm L{L? not the space-heat-time norm
LILP as it were in the prior sections. Otherwise, the conventions fixed at the end of Sec-

tion [.4] are still in effect.
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For economy of notation, we introduce the following definition:

Definition 9.1. Let XY be dyadic norms.
e A map F: X — Y is said to be envelope-preserving of order > n (n € N with n > 2) if
the following property holds: Let ¢ be a (—do, S) frequency envelope for a in X. Then
IPF@ly Spai ()" ex.

e Amap F : X — Y issaid to be Lipschitz envelope-preserving of order > n if, in addition
to being envelope preserving of order > n, the following additional property holds: Let
¢ be a common (—dy, dg) frequency envelopes for a; and a in X, and let d be a (—dy, do)
frequency envelope for a; — as in X. Then

[ Pe(F(ar) — F(a2)llvi, Sjialixllaslix S ex-
where ey, = di, + cx(c - d) <,
Our main result is as follows:
Theorem 9.2. Let Ay, = (A, A) € Ci(I; i x Cg) with (0;Ag, 0;A) € Cy(I; L* x Tj;t)CQ) be

a solution to (1.13|) with energy €. Then its spatial components A = A, satisfy an equation
of the form

Oad; = P;[A, 0, A] + 2A710,Q(0%A, 0, A) + R;(A), (9.1)
together with a compatibility condition
0'Ay =DA(A) == Q(A,A) + DA?(A). (9.2)
Moreover, the temporal component Ag and its time derivative 0, Ay admit the expressions
Ag =Ao(A) = ATA, 0,A] + 2A71Q(A, 8, A) + Al(A), (9.3)
0 Ag =DAy(A) == —2A7'Q(9,A,0,A) + DAS(A). (9.4)

Here P is the Leray projector, and Q is the symmetric bilinear form with symbol as in ((7.92)).
Moreover, R;(t), DA®(t), A3(t) and DAJ(t) are uniquely determined by (A, 9;A)(t) € TL°C,
and are Lipschitz envelope preserving maps of order > 3 on the following spaces:

Ri(t): ' — H ', (9.5)
DA*(t): H' — L2 (9.6)
A3t H — H', (9.7)
DA3(t): ' — L2 (9.8)

Finally, on any interval I C R, R;, DA3, A} and DAS are Lipschitz envelope preserving
maps of order > 3 (with bounds independent of I) on the following spaces:

R;: Str'[I] — L'L*N L2 1], (9.9)
DA : Str'[7] — L' 0 L2177 1], (9.10)
A3 Stll) = LU 0 L2, (9.11)
DA : Stri[1] — LU 0 L2H (). (9.12)
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All implicit constants depend on Q and &.

Proof. We expand the equations in terms of the connection A,
O4A; = D?0;A, = 0;0°A, + [A%, 0;A,]
In the first term on the right we use the expressions for 9y Ay and &’ 4;,
044, = 0,(DA —DAy) + [A%, 0;A,]

We separate the quadratic and cubic terms to obtain

OaA; = 0;(DA* — DA?) + [A%,0,A,] + 0;(DA® — DA}) (9.13)
Then we denote

R;(A,,0:A,) = [A°,0;A¢] + 0;(DA® — DAJ) (9.14)

To complete the proof of . we need to compare the above quadratic expressions with
those in (9.1). We begin with the A, bilinear forms. From Proposition we have the
relation DA = Q(A,, A,) therefore the A, bilinear forms are

(A%, 0,Ar] + 0,Q(AF, Ay) = Pj[AF, 0, A + 2A70,Q(0 A%, 0,Ar)
+ ATI9;[AR, AAL + ATV [QIAAL, Ay) + Q(Ar, AAL)]

and the terms on the last line cancel in view of the expression ((7.92)). On the other hand for
the bilinear term in 0;A, we have from Proposition

DAZ(0pA, 0pA) = 2A71Q(3° A, 0y A)
Next we prove the estimates for R, DA® A3, A2 and DAy. In terms of subcritical
Strichartz norms we will use the components
e o) p)
LW ¢ St
If ¢S € (2 is a (—6,S) admissible Str' frequency envelope for (4,B = §,A) in a time
interval [0, 7], then we denote by c¢; u) (t) a (minimal) (=6, S) admissible frequency envelope
o) ()
for (A(t), B(t)) in W’ "

. Then we observe that we must have the relation

IO o S " (9.15)

Y

We will always use this relation in order to transition from the fixed time bounds in the
previous section to the space-time bounds here.

1. The bounds for DA?. The fixed time bound is a direct consequence of ([7.93),
while the Lipschitz property is due to the difference bound (7.96)). For the space-time bound
(0.10]) we first estimate separately the term DA® using the bound (7.95) at fixed ¢,

|PDA(1)]| 0 S e (1)) (1),
Since ¢® = 3, by (9.15 - this yields the space-time bound

[FRIS

|P,DA® L < eSt(e ftr,[ﬁo])g

||L1H k

Finally the L2H? bound is obtained similarly using (7.94).
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2. The bounds for A}. These follow as above but starting from the bounds ([8.23))-(8.25)).
For later use, we also note the quadratic bounds

A2t H - H (9.16)

AjStrl[I] — L*H? (1] (9.17)
which are a consequence of (8.23) and (8.24)).

3. The bounds for DAJ. Again the same argument applies, but now starting from (8.34)-
(8:36).

4. The bounds for R. Given our definition of R above, the bounds (9.5) and are
a consequence of the similar bounds for DA® DAJ, A3 together with the estimates (9.16)

and (9.17) for AZ. O

For our study in subsequent work [19], [20], [21] of the large data hyperbolic Yang—Mills
flow will also need a hyperbolic evolution for the connection A at a nonzero parabolic time
s > 0. The added difficulty is that A(s) no longer solves exactly the hyperbolic Yang—Mills
equation . Instead we have DPF,5(s) = w, # 0 in general. We expect the “heat-
wave commutator” w, (called the Yang—Mills tension field) to be concentrated primarily at
frequency comparable to s~2. Other errors are also expected to have a similar concentration.
Precisely, we have

Theorem 9.3. Let A;, = (Ao, A) € Cy(I; i' x Cg) with (0;Ag, 0;A) € Cy(T; L? x Tj(i)(,’g) be
a solution to with energy €. Let Ay ,(s) = Ay .(t,x, s) be the dynamic Yang-Mills heat
flow development of A;, in the caloric gauge. Then the spatial components A(s) = A.(s) of
Ay 2(s) satisfy an equation of the form

Dac As(s) =P, [A(s). ,A(s)] +2A7'0,Q(0" A(5), 0. A(s)) + Ry(A(s)

9.18
+ P;w2(0:A, 0: A, 8) + Rj.s(A) ( )

together with the compatibility condition
9" Ay(s) = DA(A(s)). (9.19)

Moreover, the temporal component Ay(s) and its time derivative 0y Ay(s) admit the expansions

Ao(s) =Ao(A(s)) + Ags(A) (9.20)

=Ag(A(s)) + A Wi (A, A, s) + Ag;s(A),
0:Ao(s) = DAG(A(s)) + DAy (A) (9.21)
Here P, Q, R;, DA, Ay and DAy are as before, and w? are defined as
wi(A, B,s) = —2W (0, A, AB, s), (9.22)
w3 (A, B, s) = — 2W(0,A, 0;0,B — 20,0,B;, s), (9.23)

where W (-, -, s) is a bilinear form with symbol as in (8.14]).
Moreover, Rj(t), Aj.,(t) and DAq(t) are uniquely determined by (A, 0,A)(t) € THC for
each s > 0, and satisfy the following properties
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.1 .1
e R (t): H — H s a Lipschitz map with output concentrated at frequency s~3. More
precisely,

(1= AR (1) H' — 2700k =77, (9.24)
) Ag;s(t) H S H oisa Lipschitz map with output concentrated at frequency s’%, i.e.,

(1= sA)YNAS () : H' — 2700k =" (9.25)
e DA((1): I > 1%isa Lipschitz map with output concentrated at frequency 3_%, i.€.,

(1= SAYNDAy,(t) : H' — 2770k, (9.26)

Finally, on any time interval I C R (with bounds independent of 1), R;.s, Ag;s and DAy
satisfy the following properties:

1
e R, : Str'[I] - L'L* N L*H 2[I] is a Lipschitz map with output concentrated at fre-
quency s’%, 1.€.,
- 11
(1 —sA)VR;, : Str'[I] — 27FO(L " N L2H 2 2)[]] (9.27)
.3

° Ag;s : Strl[I] — LYH AI2H? [I] is a Lipschitz map with output concentrated at frequency

.
572, d.e.,

-9 g . 3 _ 4
(1—sA)NVAZ, : Str'[]] — 9=00k() (L7 L2H12 7)1 (9.28)

1

e DAy, : Str'[l] — L2H?[I] is a Lipschitz map with output concentrated at frequency
3_%, i.e.,
(1 — sAYNDAy, : Strl[I] — 270K 272770 (9.29)
All implicit constants depend on Q and &.

Remark 9.4. Compared with the prior theorem, here we have additional contributions R,
Aps and DA, as well as the w terms. These have the downside that they depend on A(0)
and 0;A(0) rather than A(s) and 0, A(s). The redeeming feature is that these terms will not
onlly be small due to the energy dispersion, but also, critically, concentrated at frequency
s72.

Remark 9.5. The other change here is due to the inhomogeneous terms w?; these are matched
in the Ax(s) and the Agy(s) equations, and will interact in the trilinear analysis for the
hyperbolic Yang—Mills flow.

Proof. Using and we obtain that instead of the equation (9.13) we now have
the equation
OaAj(s) = 0;(DA? — DAJ) + [A%,0;A,) + 0;(DA® — DAJ)
+(wi(s) — 9;DAG,) + (wj(s) — 9;DAG,)
where DA? and DA} now depend on Ag(s), dyAx(s) and w(s). On the second line we have

separated the effect of w, which is nonzero at s > 0.
The terms on the first line are as in the previous theorem. For the second line, we define

Rj;s = w;(s) — 9;DAG,.
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For the quadratic part, on the other hand, using Proposition [8.8 we have
W?(S) — @DA&S = W?(s) — A’lajakwf-(s) = P]Wiﬂ

The remaining algebraic relations (9.20]) and (9.21]) are obtained from Propositions and
8.8 We now consider the estimates in the theorem:

1. The w?(s) component of R;,. The corresponding parts of the bounds (9.24) and
(9.27) follow from the estimates (8.15)-(8.17)) in Proposition

2. The DA], component of Rj,,. Here we use instead the bounds (8.38)-(8.40).

3. The Ay, bound. The estimates and are consequences of the bounds
E30)-(532).
4. The DA, bound. The estimates and are consequences of the bounds
E39-E10).

O
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