
Sublinear Algorithms for Hierarchical Clustering

Arpit Agarwal1 Sanjeev Khanna2 Huan Li2 Prathamesh Patil2

1Data Science Institute, Columbia University
2Department of Computer and Information Science, University of Pennsylvania

{arpit.agarwal}@columbia.edu
{sanjeev,huanli,pprath}@cis.upenn.edu

Abstract

Hierarchical clustering over graphs is a fundamental task in data mining and ma-
chine learning with applications in many domains including phylogenetics, social
network analysis, and information retrieval. Specifically, we consider the recently
popularized objective function for hierarchical clustering due to Dasgupta [20],
namely, minimum cost hierarchical partitioning. Previous algorithms for (approxi-
mately) minimizing this objective function require linear time/space complexity. In
many applications the underlying graph can be massive in size making it computa-
tionally challenging to process the graph even using a linear time/space algorithm.
As a result, there is a strong interest in designing algorithms that can perform global
computation using only sublinear resources (space, time, and communication). The
focus of this work is to study hierarchical clustering for massive graphs under three
well-studied models of sublinear computation which focus on space, time, and
communication, respectively, as the primary resources to optimize: (1) (dynamic)
streaming model where edges are presented as a stream, (2) query model where
the graph is queried using neighbor and degree queries, (3) massively parallel com-
putation (MPC) model where the edges of the graph are partitioned over several
machines connected via a communication channel.
We design sublinear algorithms for hierarchical clustering in all three models
above. At the heart of our algorithmic results is a view of the objective in terms of
cuts in the graph, which allows us to use a relaxed notion of cut sparsifiers to do
hierarchical clustering while introducing only a small distortion in the objective
function. Our main algorithmic contributions are then to show how cut sparsifiers
of the desired form can be efficiently constructed in the query model and the MPC
model. We believe this relaxed notion of cut sparsifiers may be of broader interest.
We complement our algorithmic results by establishing nearly matching lower
bounds that rule out the possibility of designing algorithms with better performance
guarantees in each of these models.

1 Introduction

Hierarchical clustering (HC) is a popular unsupervised learning method for organizing data into a
dendrogram (rooted tree). It can be viewed as clustering datapoints at multiple levels of granularity
simultaneously, with each leaf of the tree corresponding to a datapoint and each internal node of the
tree corresponding to a cluster consisting of its descendent leaves. Much of the technical development
of HC originated in the field of phylogenetics, where the motivation was to organize the different
species into an evolutionary tree based on genomic similarities [22]. Since then, this tool has seen
widespread use in data analysis for a variety of domains ranging from social networks, information
retrieval, financial markets [28, 8, 43] amongst many others.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Due to its popularity, HC has been extensively studied and several algorithms have been proposed.
The most prominent amongst these are bottom-up agglomerative algorithms such as average linkage,
single linkage, complete linkage etc. (see Chapter 14 in [33]). However, despite these advances on the
algorithmic front, very few formal guarantees were known for their performance, primarily owing to
a historic lack of a well defined objective function. Therefore, the study of HC was largely empirical
in nature for a long time.

A part of this issue was recently resolved, when [20] proposed an objective function for similarity-
based HC. This has since sparked interest in both the theoretical computer science as well as
machine learning communities, for designing algorithms with provable guarantees for this objective
[9, 12, 10, 19, 2]. The formal description is as follows: given as input a weighted undirected graph
G = (V,E,w) with n vertices (datapoints) and m edges with positive edge weights corresponding
to pairwise similarities between its endpoints, the objective is to find a hierarchy T over leaf nodes
corresponding to the vertices V that minimizes the cost function

costG(T) :=
X

{i,j}2E

wij · |Tij | , (1)

where Tij is the subtree rooted at the least-common ancestor of i, j in T and |Tij | is the number of
descendent leaves in Tij . Intuitively, costG(T) incentivizes cutting heavy edges at lower levels in
T , thereby placing more similar datapoints closer together. This objective has been shown to have
several desirable properties, including one that guarantees an optimal tree which is binary [20].

This minimization objective however, turns out to be NP-hard. Consequently, [20] and other subse-
quent work explored this objective from an approximation algorithms perspective [42, 9, 12, 10, 19, 2].
The best known polynomial time approximation is O(

p
log n) which is achieved by the recursive

sparsest cut (RSC) algorithm [20, 9, 19]. It is also known that no constant factor polynomial time
approximation is possible for this objective under the small-set expansion (SSE) hypothesis [9].

In this paper, we study the above minimization objective for HC in the context of massive graphs.
While the currently known best algorithm can be considered “efficient” in the classical sense, i.e.
requires polynomial space and time1, this complexity can be prohibitive in many modern applications
of HC that deal with staggering volumes of data. For example, current social networks contain billions
of edges which imposes serious limits on their storage and processing. Therefore, alternative models
of computation need to be considered in the context of such massive graphs. In this work, we consider
three widely-studied models, each aimed at optimizing a different fundamental resource: (i) the
(dynamic) streaming model [24] for space efficiency, where the edges are presented in a stream, (ii)
the general graph (query) model [31] for time efficiency, where the edges can be accessed via degree
and neighbour queries, and (iii) the massively parallel computation model (MPC) for communication
efficiency, where the edges are partitioned across multiple machines connected together through a
communication channel. The focus of our work is the following fundamental question:

Can we design sublinear (in the number of edges) algorithms for hierarchical clustering in each of
these massive-graph computation models?

We provide an almost complete resolution to this question by providing matching upper and lower
bounds for sublinear algorithms in all three canonical models of computation discussed above.
Remark 1. When studying graph problems in the sublinear setting, one can consider an even more
constrained setting where the available resource is o(n), i.e. sublinear in the number of vertices.
However, we are interested in actually finding a hierarchical clustering of the data, the writing of
which takes ⌦(n) time and space (and in MPC, ⌦(n) machine memory). Since in most practical
settings, the bottleneck is often the edges in the graph rather than the vertices, we believe it makes
more sense for us to consider sublinearity only in the edge parameter, i.e. m, in all three models.

Due to the space needed to present full technical details of our main results, we focus here on giving
a overview; the complete paper is deferred to the Appendix. Our results are summarized in Table 1.

Notation. In the following section, we use n and m to refer to the number of vertices and edges in
the input graph, respectively. We use eO(·) to suppress multiplicative O(logc n) factors for constant c,

1We also note that a near-linear (in the number of edges) time implementation of RSC can be obtained
by plugging a recent breakthrough result for fast max-flow computation [14] into the balanced separator
approximation algorithm in [44].

2

Table 1: Summary of Results. Each row gives an upper and lower bound on the resource
(space/time/communication) required for eO(1) approximation in the corresponding model.

Setting/Parameters Upper Bound Lower Bound
Streaming Model

1-pass eO(n), Thm 2 ⌦(n), trivial
(Sublinear Space)

Query Model 1 < ⇣  4/3 eO(n⇣), Thm 4 ⌦(n⇣�o(1)), Thm 8

(Sublinear Time) 4/3 < ⇣  3/2 eO(n4�2⇣), Thm 4 ⌦(n4�2⇣�o(1)), Thm 8

Edges m = ⇥(n⇣) in G 3/2  ⇣ < 2 eO(n), Thm 4 ⌦(n), Thm 8

MPC Model 1-round eO(n4/3), Thm 6 ⌦(n4/3�o(1)), Thm 9

(Sublinear Communication) 2-round eO(n), Thm 5 ⌦(n), trivial

and the term “w.h.p.” implies with probability 1�1/poly(n). Lastly, � will denote the approximation
ratio of any desired offline algorithm for hierarchical clustering. For example, if allowed unbounded
computation time, we have � = 1; given polynomial time, the current best algorithm [9] gives
� = O(

p
log n). We assume this abstraction as any improvement in the approximation ratio here

automatically implies an identical improvement in our upper bounds.

2 Overview of Algorithmic Results

We begin by presenting our algorithmic results for the three models of computation, which at their
core, are all based on the same meta-algorithm which follows from a new structural view of the
minimization objective defined in Eq. (1) in terms of global cuts in the input graph.

2.1 A Meta-Algorithm for Sublinear-Resource Hierarchical Clustering

In their paper, [20] showed that costG(T) can be viewed in two equivalent ways, the first being the
one defined earlier in Eq. (1), and the other in terms of the splits induced by the internal nodes in the
hierarchy: given a hierarchy T with each internal node corresponding to a binary split2 where some
subset of vertices S ✓ V of the input graph is partitioned into two pieces (S`, Sr), then

costG(T) :=
X

splits S!(S`,Sr) in T

|S| · wG(S`, Sr),

where for any disjoint subsets S, T ⇢ V , wG(S, T) is the total weight of the edges in G going
between S and T . At this point, one might be tempted to think that if we could somehow construct
a sparse representation of G such that the weights wG(S, T) are approximately preserved for any
disjoint S, T ⇢ V , then the cost of every hierarchy would also be approximately preserved. Following
this, we could run any desired offline algorithm on this representation with improved efficiency due to
its sparsity without much loss in the quality of its solution. Unfortunately, this is just wishful thinking
as such a representation can easily be shown to require ⌦(m) time and space3. Our first contribution
is to show there is in fact a third equivalent view of this same objective function in terms of global
cuts in G, and the above alternate formulation serves as our starting point.

This result follows from two critical observations, the first of which is given any two disjoint
S, T ⇢ V , we can compute wG(S, T) exactly as wG(S, T) = (1/2) · (wG(S, S) + wG(T, T) �
wG(S [T, S [T)). We could stop here as the quantities on the right are all graph cuts, and it is well
known [7] that one can construct a eO(n) sized sparsifier that approximately preserves all graph cuts.
Unfortunately, the distortion in wG(S, T) can be very large depending on the quantities on the right,
and the cumulative error in costG(T) blows up with the depth of the tree which is even worse. Here

2This is without loss of generality since there always exists an optimal hierarchy that is binary.
3Given such a sparsifier, by setting S = {u} and T = {v}, one can recover whether or not edge (u, v) is

present in G for any u, v 2 V .

3

is the second observation: the negative term wG(S [T, S [T) that internal node S contributes to the
cost also appears as a positive term in its parent’s contribution to the cost. We can pass this term as a
discount in its parent’s contribution to the cost, which after cascading gives a third view of Eq. (1).

costG(T) :=
1

2
·

0

@
X

splits S!(S`,Sr) in T

�
|Sr| · wG(S`, S`) + |S`| · wG(Sr, Sr)

�
+

X

v2V

wG({v}, {v})

1

A ,

a linear combination of graph cuts. This gives a strong blackbox reduction to cut-sparsifiers; preserv-
ing graph cuts to a (1± ✏) factor also preserves the cost of all hierarchies to a (1± ✏) factor.

However, we are not done yet, as cut-sparsifiers cannot be computed efficiently in certain models
of computation; for instance, they necessarily require ⌦(m) queries to the underlying graph. We
therefore introduce a weaker notion of sparsification that, for any cut (S, S), allows for an additive
error of �min{|S|, |S|} in addition to the usual multiplicative error of (1± ✏) (Appendix B Defn. 1).
We term this generalization an (✏, �)-cut sparsifier. A similar notion was also proposed in an earlier
work by [36], which unfortunately does not work here (see Appendix D.1 for details). Our next result
then shows that the distortion in the cost of any hierarchy under this weaker sparsifier is also bounded.
Theorem 1 (informal). Given any weighted graph G, an (✏, �)-cut sparsifier of G preserves the cost
of any tree T up to a multiplicative (1± ✏) factor, and an additive O(�n2) factor.

Therefore, if we could lower bound the cost of the optimal hierarchical clustering by some quantity C,
we could set � = ✏C/n2. The above result would then imply morally the same result as that achieved
by traditional cut-sparsifiers: preserving graph cuts in this ✏, � sense for a sufficiently small � also
preserves the cost of all hierarchies upto a (1± ✏) factor. The last key result exactly establishes such
a general purpose lower bound on the cost of any hierarchical clustering in a graph, which can be
efficiently estimated in all models of computation we consider.

This chain of ideas results in the following meta-algorithm for sublinear HC given any parameter
✏ > 0 and model of computation: Compute the lower bound on the cost of an optimal HC which
establishes the tolerable additive error in our (✏, �) sparsifier, following which we efficiently (in
the resources to be optimized) compute the said sparsifier. We finally run any �-approximate HC
algorithm, which is guaranteed to find a (1 + ✏)�-approximate HC tree. Our subsequent results give
sublinear constructions of these (✏, �)-cut sparsifiers in each of the three models of computation.

2.2 Sublinear Space Algorithms in the (Dynamic) Streaming Model

We first consider the dynamic streaming model for sublinear space algorithms, where the edges in the
input graph are presented in an arbitrarily ordered stream of edge insertions and deletions. Our upper
bound here is a direct consequence of Theorem 1 used in conjunction with [1], a seminal result that
showed an (✏, 0)-cut sparsifier can be constructed in eO(✏�2n) space and a single pass in this setting.

Theorem 2 (informal). There exists a single-pass, eO(n) space, streaming algorithm that given any
weighted graph G presented in a dynamic stream, w.h.p. finds a (1 + o(1)) · �-approximate HC of G.

As outlined in our meta-algorithm, instantiating the offline algorithm with RSC with the input graph
being the sparsifier gives us a polynomial time, eO(n) space, single-pass dynamic streaming algorithm
with approximation ratio O(

p
log n) as a corollary. See Appendix C for more details.

We note that coupled with a recent result [15], our Theorem 1 also implies an eO(n)-space algorithm
for finding a (1 + o(1)) · �-approximate HC in the more general turnstile streams, where arbitrary
edge weight updates can appear.

2.3 Sublinear Time Algorithms in the Query Model

We next consider the general graph model [31] for sublinear time algorithms, where the input graph
can be accessed via two4 types of queries: (i) degree queries: given u 2 V , returns degree du, and
(ii) neighbour queries: given u 2 V , i  du, returns the i-th neighbour of u. Note that this model

4This query model also allows a third type of queries: pair queries which answer whether an edge (u, v)
exists or not. However, we do not need these queries in our algorithm.

4

can be easily implemented using an adjacency array representation of the graph (See Appendix D for
a more detailed discussion). We first present the result for unweighted graphs, where it is easier to see
the key intuition. Our main result in this model is a sublinear time construction of an (✏, �)-sparsifier.

Theorem 3 (informal). There exists an algorithm that given query access to any unweighted graph
G, and any parameters ✏, � 2 (0, 1], can find an (✏, �)-cut sparsifier of G w.h.p. in eO(n/(✏2�)) time.

Our algorithm is based on a simple yet elegant idea (which builds upon a slightly different idea
proposed in [36]; see Appendix D.1 for a detailed discussion): if we embed a constant-degree
expander with edge weights � in an unweighted graph (with unit edge weights), then the effective
resistance of every edge in the resulting composite graph is tightly bound in terms of the effective
degrees of its incident vertices; the effective degree of a vertex is a weighted sum of its degree
in the input graph and its degree in the expander. We can then leverage the effective resistance
sampling scheme of [45] to construct an (✏, 0)-cut sparsifier of this composite graph, which then is
deterministically an (✏, �)-cut sparsifier of the input graph with the sources of error being the usual
multiplicative ✏ term due to sparsification itself, and the (small) additive � term due to the (few) extra
edges introduced by the expander. We can construct constant degree graphs that are expanders with
high probability in sublinear time, and we show that there is an efficient rejection sampling scheme
for sampling edges according to their effective resistances, giving the above result: an (✏, �)-cut
sparsifier with eO(n/(✏2�)) edges in the same amount of time and queries. Moreover, the queries are
completely non-adaptive assuming prior knowledge of vertex degrees. This construction of (✏, �)-cut
sparsifiers in conjunction with Theorem 1 then gives our sublinear time upper bound in this model.

Theorem 4 (informal). There exists an algorithm that given query access to any unweighted graph
G with m = ⇥(n⇣) for ⇣ 2 [0, 2], can find a (1 + o(1)) · �-approximate HC of G w.h.p. using
eO(g(n, ⇣)) queries, where g(n, ⇣)  n4/3 is given by g(n, ⇣) = max{n, n⇣} when ⇣ 2 [0, 4/3],
g(n, ⇣) = max{n, n4�2⇣} when ⇣ 2 (4/3, 2]. Moreover, given any (arbitrarily small) constant
⌧ > 0, the algorithm can find an O(

p
log n)-approximate HC of G w.h.p. in eO(g(n, ⇣)+n1+⌧) time.

It is interesting to observe that the query complexity g(n, ⇣) reduces as the graph becomes denser.
This is because the cost of the optimal HC increases with the density of the input graph, which allows
us to tolerate a larger additive error in our cut sparsifier, thereby making it sparser. In Section 3
we also discuss lower bounds showing that this query complexity is also the best possible for any
eO(1)-approximate algorithm. The sublinear time claim in Theorem 4 is implied by results from [44]
and [14] . Specifically, [44] showed that, for any constant ⌧ 2 (0, 1/2), sparsest cuts and balanced
separators can be approximated to within O(

p
log n) in eO(m) time plus eO(n⌧) maximum flow

computations on graphs with eO(n) edges, and [14] showed that a maximum flow on a graph of m
edges can be computed in O(m1+o(1)) time. These two combined with the fact that our sparsifier
contains just eO(g(n, ⇣)) edges give us the desired running time bound.

We generalize the above result in Appendix D.2 to weighted graphs by grouping edges according to
geometrically increasing weights and constructing (✏, �)-cut sparsifiers for each weight class, and get
an algorithm with essentially the same worst case performance and O(log n) rounds of adaptivity.

2.4 Sublinear Communication Algorithms in the MPC model

Lastly, we consider the MPC model [6, 3] for sublinear communication, which is a common abstrac-
tion of many MapReduce-style computational frameworks. Here, the edges in the input graph are
partitioned across several machines that communicate with each other in synchronous rounds. Each
machine has memory sublinear in m, with its total communication bounded by its memory. A more
detailed description of this model is given in Appendix E.

Our first result is a 2-round MPC algorithm that uses eO(n) memory per machine. In our algorithm,
we leverage a construction of (✏, 0)-cut sparsifiers due to [1] using eO(1) random linear sketches per
vertex in the graph. We show that 2 rounds are sufficient to construct these linear sketches for each
vertex– the first round is used to construct partial sketches using local edges and the second round is
used to aggregate these partial sketches into complete sketches for each vertex. This construction of
(✏, 0)-cut sparsifiers in conjunction with Theorem 1 gives us the following result.

5

Theorem 5 (informal). There exists an MPC algorithm that given any weighted graph G with
edges partitioned across machines with eO(n) memory and access to public randomness, can find a
(1 + o(1)) · �-approximate HC of G w.h.p. on a designated machine in 2 rounds of MPC.

Our second result is a 1-round MPC algorithm that solves this problem for unweighted graphs using
machines with e⇥(n4/3) memory. The execution of our algorithm depends on the density of the
underlying graph. If m  n5/3, then we can again use the result from [1] by constructing local linear
sketches on each machine and sending them to a coordinator who can aggregate them. Note that we
only require 1 round in this case as the number of machines is  n1/3, and hence, we only need to
communicate eO(n1/3) sketches per vertex which is within our memory budget. If m > n5/3, we
show that the cost of the optimal hierarchy is sufficiently large such that a coarse (✏, �)-cut sparsifier
of size eO(n4/3) obtained by randomly subsampling edges will suffice. As a consequence, each
machine can subsample its edges independently and send these eO(n4/3) edges to the coordinator.
We now summarize this 1-round result below.
Theorem 6. (informal) There exists an MPC algorithm that given any unweighted graph G with
edges partitioned across machines with eO(n4/3) memory and access to public randomness, can find
a (1 + o(1)) · �-approximate HC of G w.h.p. on a designated machine in 1 round of MPC.

In the next section, we discuss a 1-round lower bound for MPC which shows that n4/3�o(1) memory
per machine is needed by any eO(1)-approximate algorithm on unweighted graphs.

3 Overview of Lower Bounds

First note that in the (dynamic) streaming model, since our goal is for the algorithm to output a
hierarchical clustering tree, we necessarily need ⌦(n) space. Thus our eO(n) space dynamic streaming
algorithm that obtains a (1 + o(1))-approximation is nearly optimal. We then show that in the other
two models of computation, our algorithms are also essentially the best possible.

3.1 Lower bounds in the Query Model

Note that the query complexity bound of our sublinear time algorithm is always at most eO(n4/3),
where the worst-case input is an unweighted graph with about m ⇡ n4/3 edges. We note that our
algorithm obtains an O(

p
log n)-approximation and (i) is completely non-adaptive on unweighted

graphs assuming prior knowledge of vertex degrees, and has O(log n) rounds of adaptivity on
weighted graphs; (ii) only uses degree queries and neighbor queries (no pair queries needed, see
Footnote 4). We then show that n4/3�o(1) queries are indeed necessary for obtaining any eO(1)-
approximation even in unweighted graphs and given unlimited adaptivity and access to pair queries.
Theorem 7 (informal). Let A be a randomized algorithm that, on any input unweighted graph with
⇥(n4/3) edges, outputs with high probability a polylog(n)-approximate hierarchical clustering tree.
Then A necessarily uses at least n4/3�o(1) queries.

We briefly describe the family of hard graph instances that we use to prove this result. Roughly,
a graph from such a family is generated by first taking a union of n2/3 vertex-disjoint cliques of
size n1/3 each, and then connecting them by a random “perfect matching”. More specifically, we
treat each clique as a supernode, and generate a perfect matching between these n2/3 supernodes
uniformly at random. Then if the ith clique is matched to the jth clique in the perfect matching, we
will add about no(1) edges between these two cliques, which are also chosen in a random manner.
We show that, in order to output a good hierarchical clustering solution, it is necessary to discover
a non-trivial portion of the edges that we add between the cliques, even though their number is
relatively tiny compared to those within, and the latter task provably requires n4/3�o(1) queries.

While this plan looks intuitive, one has to be careful about not leaking information about the “perfect
matching” between the cliques from the vertex degrees, which an algorithm knows a priori (or can
otherwise acquire using O(n) non-adaptive degree queries). In particular, once the inter-clique edges
are added, one could tell that the vertices with degree higher than n1/3 � 1 are those participating in
the perfect matching. Note that there are only n2/3+o(1) such vertices in total, and each of them has

6

degree at most O(n1/3). As a result, by probing all neighbors of these vertices, one can easily find
all the inter-clique edges using n1+o(1) neighbor queries.

Our way around this issue is to also delete certain edges within the cliques based on what inter-clique
edges we have added, so as to ensure that each vertex has the exact same degree of n1/3 � 1. This of
course further complicates things as it increases the correlation between the edge slots — for instance,
whenever an edge between a matched pair of cliques is revealed to the algorithm, missing edges
within each clique are no longer independent. Consequently, our proof for this lower bound turns out
to be considerably involved; we refer the reader to Appendix F.2 for more details.

Theorem 7 shows that the worst-case query complexity of our algorithm is nearly optimal. Note that,
however, for unweighted graphs, our algorithm also obtains improved query/time complexity when
m is far from n4/3. It is then natural to ask — are these improvements also the best possible? We
answer this question in the affirmative. In particular, we show that one can push further the ideas
we discussed above to get a tight query lower bound for every graph density. We summarize these
lower bounds below. Note in particular that, for m = ⇥(n2), as we will show later, any hierarchical
clustering achieves an O(1)-approximation, thus trivially 0 queries are sufficient.

Theorem 8 (informal). Let ⇣ 2 [0, 2] be any constant. Let A be a randomized algorithm that, on any
input unweighted graph with ⇥(n⇣) edges, outputs with high probability a polylog(n)-approximate
HC. Then A necessarily uses at least ⌦(g(n, ⇣)) queries, where g(n, ⇣) = max{n, n⇣�o(1)} when
⇣ 2 [0, 4/3], g(n, ⇣) = max{n, n4�2⇣�o(1)} when ⇣ 2 (4/3, 2), and g(n, ⇣) = 0 when ⇣ = 2.

3.2 Lower bounds in the MPC Model

As our goal is for some machine to output a good hierarchical clustering tree, ⌦(n) memory per
machine is necessary. Indeed, our 2-round MPC algorithm obtains a (1 + o(1))-approximation for
weighted graphs using a nearly optimal memory of eO(n) per machine (Theorem 5).

To show that the number of rounds of our algorithm is also optimal, we prove that a superlinear (in
particular, n4/3�o(1)) memory per machine is necessary for any 1-round MPC algorithm in which
some machine outputs with high probability a polylog(n)-approximate hierarchical clustering tree.
Moreover, in our lower bound instance, the total memory of all machines is ⇡ m, which means that
the input is split across fewest possible machines. We specifically prove the following result:

Theorem 9 (informal). Let P be any 1-round protocol in the MPC model where each machine has
memory O(n4/3�") for any constant " > 0. Then at the end of the protocol P , no machine can output
a polylog(n)-hierarchical clustering tree with probability better than o(1).

Note that this lower bound matches our upper bound result in Theorem 6. Our family of hard instances
is roughly defined as follows. Let ↵ ⇡ 2/3,� ⇡ 1/3 be certain constants. A graph G of 2n vertices
from such a family consists of two vertex-disjoint parts, each supported on n vertices. The first part
is supported on vertices V1 and is a union of vertex-disjoint bi-cliques of size n↵; the second part is
supported on vertices V2 and is in turn a union of vertex-disjoint bi-cliques of size n� , where we have
|V1| = |V2| = n. We will also permute the vertex labels of G uniformly at random. See Figure 1 for
an illustrative example of such a graph G.

We first show that in order to output a good hierarchical clustering solution, it is necessary to discover
(almost) the exact clique structures of the vertex-induced subgraphs G[V1], G[V2], for otherwise a
balanced cut has non-trivial probability of cutting too many edges within the cliques. Then as an
adversary, our strategy is to hide G[V2], which has significantly fewer edges than G[V1], by splitting
G across multiple machines. To this end, we observe that G[V1] can be tiled using edge-disjoint
subgraphs G1, . . . , Gt that are each isomorphic to G[V2] (see Figure 1). This suggests that we could
give G[V2] to a uniformly random machine, and then give each Gi to one of the other machines.

Note that, crucially, each machine’s input follows the exact same distribution, namely a union of bi-
cliques of size n� with vertex labels permuted uniformly at random, although the input distributions
of different machines are correlated. As a result, each machine individually has no information
whether its input graph is G[V2] or just a subgraph Gi of G[V1]. Therefore, each machine has to send
a message to the coordinator such that, if its input graph happens to be G[V2], the coordinator will be
able to recover the clique structures with high probability.

7

G[V1] :

G[V2] :

1

Figure 1: An illustrative example of an input graph G, where G[V1] is a union of two bi-cliques of
size 8 each, and G[V2] is a union of four bi-cliques of size 4 each. Here G[V1] can be tiled using two
edge-disjoint subgraphs each isomorphic to G[V2], which are the subgraph induced by edges within
the four red frames, and the subgraph induced by edges within the four blue frames. So no machine
can tell locally whether it was given the red subgraph, the blue subgraph, or G[V2].

Since the coordinator can only receive a total message size bounded by its machine memory, by
choosing suitable values of ↵,�, each machine on average can only send a message of size o(n).
Now the problem effectively becomes a one-way, two party communication problem, where Alice is
given G[V2] and needs to send Bob a single message so that Bob can recover the clique structures
with high probability. We then conclude the proof by showing that this two-party problem requires
⌦(n) communication. We refer the reader to Appendix G for more details.

4 Related Work
The work of Dasgupta [20] is the starting point of our work. [20] defined the objective function for
hierarchical clustering, namely minimum cost hierarchical partitioning, that we study in this paper.
They showed that the resulting problem is NP-hard and the recursive sparsest-cut algorithm achieves
an O(� log n) approximation, where � = O(

p
log n) is the current best poly-time approximation for

sparsest-cut. [42] improved this approximation factor to O(log n) using an LP-based algorithm. [19,
9] showed that the recursive sparsest cut algorithm of [20] in-fact achieves an O(�) approximation.
[42] and [9] also showed that no polynomial time algorithm can achieve constant factor approximation
under the small set expansion (SSE) hypothesis. [19, 37] showed that by imposing certain probabilistic
or structural assumptions on the graph, one can circumvent this constant factor inapproximability.

There has also been work on maximization objectives for hierarchical clustering. [39] considered a
“dual” version of the Dasgupta objective: where the goal is to maximize the revenue n

P
e2E we �

costG(T). While the optimal values for both objectives are achieved by the same solution, this
objective behaves very differently from an approximation perspective. [19] considered a setting where
the edge weights correspond to dissimilarities rather than similarities and the goal is to maximize the
dissimilarity-based objective costG(T). [39] and [19] both study the average-linkage algorithm and
show that it achieves approximation factors of 1/3 and 2/3, respectively. [10] provided algorithms
with slightly better approximation factors of 1/3 + � and 2/3 + �, respectively. [13] improved the
approximation factor to 0.4246 for the dual objective in [39], which was later improved to 0.585 by
[2]. Very recently, [40] improved the approximation to 0.71604 for the dissimilarity objective of [19].

Several other variations of this basic setup have been considered. For example, [12] have considered
this problem in the presence of structural constraints. [11, 38, 41] considered a setting where vertices
are embedded in a metric space and the similarity/dissimilarity between two vertices is given by
their distances. The most relevant to our work amongst these is [41] which considered this metric
embedded hierarchical clustering problem in a streaming setting. However, the stream in their setting
is composed of vertices while edge weights can be directly inferred using distances between vertices;
whereas the stream in our streaming setting is composed of edges while vertices are already known.
Moreover, their study is only limited to the streaming setting. There has also been work on designing
faster/parallel agglomerative algorithms such as single-linkage, average-linkage etc. [48, 21, 46].
While these works share the same motivation as ours, namely, scaling HC algorithms to massive

8

datasets, these results are largely orthogonal to ours. The primary philosophical difference is that
these aforementioned works are aimed at speeding up/parallelizing very specific kinds of linkage
based algorithms, while recovering the same or similar cluster trees (under very different notions of
similarity) that would have been computed by the slower/sequential algorithm. Moreover, the specific
algorithms considered in these works have no known approximation guarantees for Dasgupta’s
objective. Our work on the other hand approaches this problem from an optimization perspective.
Through data sparsification, we aim to recover a cluster tree with marginal loss in objective function
value as compared to one computed over the entire (dense) input data by any given HC algorithm as
a blackbox, achieving a speedup in runtime or reducing its memory requirement due to sparsity. [32]
studied the hierarchical clustering problem in an MPC setting. However, their work only considered
the maximization objectives [39, 19], while our work is primarily focussed on the minimization
objective of [20].

Recent Independent work: Very recently and independent of our work, [5] considered the problem
of hierarchical clustering under Dasgupta’s objective in the (dynamic) streaming setting. The primary
focus of their work is on estimating the cost of an optimal hierarchy in o(n) space whereas the focus
of our work is to actually output a near-optimal hierarchical clustering. [5] also gives a single-pass,
eO(n) memory streaming algorithm for finding a clustering that also uses cut-sparsifiers. However,
their algorithm needs to restrict the solution space to only balanced trees, and hence, is only able
to achieve an O(�) approximation guarantee instead of the stronger (1 + o(1)) · � approximation
guarantee that we achieve for the streaming setting. They also obtain a 2-round algorithm for MPC
that achieves an O(�) approximation guarantee using eO(n) memory per machine, which is again
slightly weaker than the (1+ o(1))� approximation guarantee that we achieve. But [5] does not show
any lower bound results for the MPC model. Moreover, their work does not consider sublinear time
setting and their algorithms cannot be easily adapted to this setting.

More Related work: The techniques we use in our paper can also be used to compute an expander
decomposition of a graph presented in a dynamic stream. In particular, [25] showed that computing
an expander decomposition reduces to computing the so-called power cut sparsifier of a graph,
which approximates every cut to within a small multiplicative error plus some additive error that is
proportional to the volume of the smaller side of the cut. In this work, we show how to obtain cut
sparsifiers with similar guarantees except that (i) our additive error is proportional to the number of
vertices of the smaller side of the cut, and (ii) our approach does not work for graphs with self-loops,
which is required for the reduction given in [25]. Here (i) is actually a stronger guarantee, since in a
graph without isolated vertices, the volume of a subset of vertices is at least its size, whereas (ii) is
a drawback for this application. However, one can in fact trade off these two by slightly changing
the analysis of our algorithm, while keeping the algorithm exactly the same, on which we elaborate
below.

Specifically, our analysis is done by doing the following thought experiment - add a (weighted)
constant degree expander to the original graph, and then show that the effective resistance of each
edge (u, v) in the original graph has become ⇡ 1/du + 1/dv, with du, dv being the degree of u, v,
and therefore sampling each edge with probability ⇡ 1/du + 1/dv gives a sparsifier of the composed
graph, which is in turn a sparsifier with some additive error of the original graph. One can also
adapt this analysis so that the same algorithm works for obtaining power cut sparsifiers. In particular,
in our thought experiment, we will now add an expander where each vertex has degree (roughly)
proportional to its original degree, and can again show that the effective resistance can be bounded
by ⇡ 1/du + 1/dv even if there are self-loops in the original graph. Therefore the same algorithm
works, with the additive error now being proportional to the volume of the smaller side, as desired.
Finally, as observed in [25], sampling edges with probability ⇡ 1/du + 1/dv can be implemented in
a straightforward manner in dynamic streams.

5 Implications for Other Hierarchical Clustering Objectives

As noted in the previous section, two maximization objectives for hierarchical clustering were
proposed subsequent to the work of [20]: (1) the revenue objective [39] for similarity-based HC
which is a “dual” of costG(T), (2) the dissimilarity objective [19] where the edges correspond to
pairwise dissimilarities and the objective is the same as costG(T). In this section, we discuss the
implications of our work for both objectives in the sublinear-resource regime.

9

We begin by noting a sharp contrast in the difficulty of achieving a “good” solution for the minimiza-
tion objective [20], and the two maximization objectives described above. In fact, it is possible to
achieve a O(1) approximation to both maximization objectives non-adaptively; a random binary hier-
archy, in expectation, is a 1/3 approximation of the optimal revenue [39], and is a 2/3 approximation
of the optimal dissimilarity objective [19], constructing which requires no knowledge of the input
graph. On the other hand, it is not hard to see that one would achieve an arbitrarily bad approximation
of the minimization objective unless something non-trivial was learned about the input graph.

That said, one can further question whether it is possible to match the solution quality of any given
 -approximate offline algorithm for the maximization objectives in the models of computation we
consider. We answer this in the affirmative; we can in fact achieve even stronger performance
guarantees for both objectives in the sublinear resource regime by exploiting the fact that their
corresponding optimal hierarchies have large objective function values5, allowing us to tolerate
even larger additive errors in our cut-sparsifiers. A straightforward application of our structural
decomposition of the cost function along with its downstream implications in each of the three models
of computation directly gives us (� o(1))-approximate algorithms for both HC maximization
objectives in weighted graphs that use (i) a single-pass and eO(n) space in the dynamic streaming
model, (ii) eO(n) queries6 in the general graph (query) model, (iii) 2-rounds and eO(n) communication
in the MPC model, which can be further improved to use just (iv) 1-round, and eO(n) communication
for unweighted graphs.

6 Conclusions and Future Directions

In this paper, we studied hierarchical clustering problem under Dasgupta’s objective [20] in the regime
of sublinear computational resources. We gave sublinear space, query, and communication algorithms
for finding a (1 + o(1))�-approximate hierarchical clustering, where � is the approximation ratio
of any offline algorithm for this problem, and a sublinear time algorithm for finding an O(

p
log n)-

approximate hierarchical clustering. At the core of our sublinear algorithms is a novel meta-algorithm
which first obtains an (", �)-cut sparsifier of the graph and then runs hierarchical clustering algo-
rithm on the sparsifier. We also proved sharp information-theoretic lower bounds showing that the
performance of all our sublinear algorithms is essentially optimal for any polylog(n)-approximation.

Note that all our algorithms and lower bounds are aimed at finding an explicit hierarchical clustering
tree. Therefore a natural direction for future work is to understand whether we can get even more
efficient sublinear algorithms if we only want to estimate the cost of the optimal hierarchical clustering
to within some small error. We note that two recent and independent works have already considered
this question. In the streaming model, [5] have proved extensive lower bounds for optimal cost
estimation under various regimes of space and number of passes over the input stream. In the query
model, [35] have proved both upper and lower bounds for sublinear time cost estimation under certain
“well-clusterability” assumptions and given auxiliary information about the underlying input graph
instance. However, this question remains open in the query model (sublinear time) for more general
input graph instances, and completely unexplored in the MPC model (sublinear communication).

Acknowledgments and Disclosure of Funding

This work was supported in part by NSF awards CCF-1763514, CCF-1934876, and CCF-2008305.

References
[1] AHN, K. J., GUHA, S., AND MCGREGOR, A. Graph sketches: sparsification, spanners, and subgraphs. In

Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

5Given any input instance, a random binary hierarchy achieves an objective function value of ↵ ·n
P

e2E we

in expectation, where ↵ = 1/3 for the revenue objective and ↵ = 2/3 for the dissimilarity objective. Since both
are maximization problems, the objective function values of the optimal hierarchies must be at least as large.

6As of now, we can only give sublinear query algorithms for both these objectives. Our results still imply a
sublinear time (� o(1))-approximation result in both maximization settings if we were given a -approximate,
eO(m) time offline algorithm in the corresponding setting. However, we are not aware of such an algorithm for
either objective.

10

PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012 (2012), M. Benedikt, M. Krötzsch, and M. Lenzerini,
Eds., ACM, pp. 5–14.

[2] ALON, N., AZAR, Y., AND VAINSTEIN, D. Hierarchical clustering: A 0.585 revenue approximation.
In Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria] (2020),
J. D. Abernethy and S. Agarwal, Eds., vol. 125 of Proceedings of Machine Learning Research, PMLR,
pp. 153–162.

[3] ANDONI, A., NIKOLOV, A., ONAK, K., AND YAROSLAVTSEV, G. Parallel algorithms for geometric
graph problems. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014 (2014), D. B. Shmoys, Ed., ACM, pp. 574–583.

[4] ARORA, S., RAO, S., AND VAZIRANI, U. Expander flows, geometric embeddings and graph partitioning.
Journal of the ACM (JACM) 56, 2 (2009), 1–37.

[5] ASSADI, S., CHATZIAFRATIS, V., LACKI, J., MIRROKNI, V., AND WANG, C. Hierarchical clustering
in graph streams: Single-pass algorithms and space lower bounds. In Conference on Learning Theory
(COLT) (To Appear, Personal Communication) (2022).

[6] BEAME, P., KOUTRIS, P., AND SUCIU, D. Communication steps for parallel query processing. J. ACM
64, 6 (2017), 40:1–40:58.

[7] BENCZÚR, A. A., AND KARGER, D. R. Approximating s-t minimum cuts in Õ(n2) time. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996 (1996), G. L. Miller, Ed., ACM, pp. 47–55.

[8] BERKHIN, P. A survey of clustering data mining techniques. In Grouping Multidimensional Data - Recent
Advances in Clustering, J. Kogan, C. K. Nicholas, and M. Teboulle, Eds. Springer, 2006, pp. 25–71.

[9] CHARIKAR, M., AND CHATZIAFRATIS, V. Approximate hierarchical clustering via sparsest cut and
spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19 (2017), P. N. Klein, Ed.,
SIAM, pp. 841–854.

[10] CHARIKAR, M., CHATZIAFRATIS, V., AND NIAZADEH, R. Hierarchical clustering better than average-
linkage. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019 (2019), T. M. Chan, Ed., SIAM, pp. 2291–2304.

[11] CHARIKAR, M., CHATZIAFRATIS, V., NIAZADEH, R., AND YAROSLAVTSEV, G. Hierarchical clustering
for euclidean data. In The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS
2019, 16-18 April 2019, Naha, Okinawa, Japan (2019), K. Chaudhuri and M. Sugiyama, Eds., vol. 89 of
Proceedings of Machine Learning Research, PMLR, pp. 2721–2730.

[12] CHATZIAFRATIS, V., NIAZADEH, R., AND CHARIKAR, M. Hierarchical clustering with structural
constraints. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 (2018), J. G. Dy and A. Krause, Eds., vol. 80 of
Proceedings of Machine Learning Research, PMLR, pp. 773–782.

[13] CHATZIAFRATIS, V., YAROSLAVTSEV, G., LEE, E., MAKARYCHEV, K., AHMADIAN, S., EPASTO,
A., AND MAHDIAN, M. Bisect and conquer: Hierarchical clustering via max-uncut bisection. In The
23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020,
Online [Palermo, Sicily, Italy] (2020), S. Chiappa and R. Calandra, Eds., vol. 108 of Proceedings of
Machine Learning Research, PMLR, pp. 3121–3132.

[14] CHEN, L., KYNG, R., LIU, Y. P., PENG, R., GUTENBERG, M. P., AND SACHDEVA, S. Maximum flow
and minimum-cost flow in almost-linear time. CoRR abs/2203.00671 (2022).

[15] CHEN, Y., KHANNA, S., AND LI, H. On weighted graph sparsification by linear sketching. To appear in
63rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2022. Available at https:
//arxiv.org/abs/2209.07729.

[16] CHEN, Y., KHANNA, S., AND NAGDA, A. Near-linear size hypergraph cut sparsifiers. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS) (2020), IEEE, pp. 61–72.

[17] CHEN, Y., KHANNA, S., AND NAGDA, S. Sublinear time hypergraph sparsification via cut and edge
sampling queries. In 48th International Colloquium on Automata, Languages, and Programming (2021).

11

[18] COHEN-ADDAD, V., KANADE, V., AND MALLMANN-TRENN, F. Hierarchical clustering beyond the
worst-case. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA (2017), I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds.,
pp. 6201–6209.

[19] COHEN-ADDAD, V., KANADE, V., MALLMANN-TRENN, F., AND MATHIEU, C. Hierarchical clustering:
Objective functions and algorithms. J. ACM 66, 4 (2019), 26:1–26:42.

[20] DASGUPTA, S. A cost function for similarity-based hierarchical clustering. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016 (2016), D. Wichs and Y. Mansour, Eds., ACM, pp. 118–127.

[21] DHULIPALA, L., EISENSTAT, D., LACKI, J., MIRROKNI, V. S., AND SHI, J. Hierarchical agglomerative
graph clustering in nearly-linear time. In Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event (2021), M. Meila and T. Zhang, Eds., vol. 139 of
Proceedings of Machine Learning Research, PMLR, pp. 2676–2686.

[22] EISEN, M. B., SPELLMAN, P. T., BROWN, P. O., AND BOTSTEIN, D. Cluster analysis and display
of genome-wide expression patterns. Proceedings of the National Academy of Sciences 95, 25 (1998),
14863–14868.

[23] ERDOS, P., RÉNYI, A., ET AL. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 1
(1960), 17–60.

[24] FEIGENBAUM, J., KANNAN, S., MCGREGOR, A., SURI, S., AND ZHANG, J. On graph problems in a
semi-streaming model. Theor. Comput. Sci. 348, 2-3 (2005), 207–216.

[25] FILTSER, A., KAPRALOV, M., AND MAKAROV, M. Expander decomposition in dynamic streams. CoRR
abs/2211.11384 (2022).

[26] FRIEDMAN, J., KAHN, J., AND SZEMEREDI, E. On the second eigenvalue of random regular graphs. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing (1989), pp. 587–598.

[27] FRIEZE, A. M. Edge-disjoint paths in expander graphs. SIAM Journal on Computing 30, 6 (2001),
1790–1801.

[28] GILBERT, F., SIMONETTO, P., ZAIDI, F., JOURDAN, F., AND BOURQUI, R. Communities and hierarchi-
cal structures in dynamic social networks: analysis and visualization. Social Network Analysis and Mining
1, 2 (2011), 83–95.

[29] GOEL, A., KAPRALOV, M., AND POST, I. Single pass sparsification in the streaming model with edge
deletions. arXiv preprint arXiv:1203.4900 (2012).

[30] GOLDBERG, A. V., AND RAO, S. Beyond the flow decomposition barrier. Journal of the ACM (JACM)
45, 5 (1998), 783–797.

[31] GOLDREICH, O. Introduction to Property Testing. Cambridge University Press, 2017.

[32] HAJIAGHAYI, M., AND KNITTEL, M. Improved hierarchical clustering on massive datasets with broad
guarantees. arXiv preprint arXiv:2101.04818 (2021).

[33] HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J. H., AND FRIEDMAN, J. H. The elements of statistical
learning: data mining, inference, and prediction, vol. 2. Springer, 2009.

[34] HUANG, X., CHEN, Y., YIN, W., AND YUAN, K. Lower bounds and nearly optimal algorithms in
distributed learning with communication compression. Advances in Neural Information Processing
Systems (NeurIPS) (2022).

[35] KAPRALOV, M., KUMAR, A., LATTANZI, S., AND MOUSAVIFAR, A. Learning hierarchical structure of
clusterable graphs. arXiv preprint arXiv:2207.02581 (2022).

[36] LEE, Y. T. Probabilistic spectral sparsification in sublinear time. CoRR abs/1401.0085 (2014).

[37] MANGHIUC, B., AND SUN, H. Hierarchical clustering: O(1)-approximation for well-clustered graphs. In
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual (2021), M. Ranzato, A. Beygelzimer,
Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., pp. 9278–9289.

12

[38] MOSELEY, B., VASSILVITSKII, S., AND WANG, Y. Hierarchical clustering in general metric spaces
using approximate nearest neighbors. In The 24th International Conference on Artificial Intelligence and
Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event (2021), A. Banerjee and K. Fukumizu, Eds.,
vol. 130 of Proceedings of Machine Learning Research, PMLR, pp. 2440–2448.

[39] MOSELEY, B., AND WANG, J. R. Approximation bounds for hierarchical clustering: Average linkage,
bisecting k-means, and local search. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA
(2017), I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, Eds., pp. 3094–3103.

[40] RAHGOSHAY, M., AND SALAVATIPOUR, M. R. Hierarchical clustering: New bounds and objective.
CoRR abs/2111.06863 (2021).

[41] RAJAGOPALAN, A., VITALE, F., VAINSTEIN, D., CITOVSKY, G., PROCOPIUC, C. M., AND GENTILE, C.
Hierarchical clustering of data streams: Scalable algorithms and approximation guarantees. In Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event
(2021), M. Meila and T. Zhang, Eds., vol. 139 of Proceedings of Machine Learning Research, PMLR,
pp. 8799–8809.

[42] ROY, A., AND POKUTTA, S. Hierarchical clustering via spreading metrics. J. Mach. Learn. Res. 18 (2017),
88:1–88:35.

[43] SCHÜTZE, H., MANNING, C. D., AND RAGHAVAN, P. Introduction to information retrieval, vol. 39.
Cambridge University Press Cambridge, 2008.

[44] SHERMAN, J. Breaking the multicommodity flow barrier for o(vlog n)-approximations to sparsest cut. In
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009,
Atlanta, Georgia, USA (2009), IEEE Computer Society, pp. 363–372.

[45] SPIELMAN, D. A., AND SRIVASTAVA, N. Graph sparsification by effective resistances. SIAM Journal on
Computing 40, 6 (2011), 1913–1926.

[46] SUMENGEN, B., RAJAGOPALAN, A., CITOVSKY, G., SIMCHA, D., BACHEM, O., MITRA, P., BLASIAK,
S., LIANG, M., AND KUMAR, S. Scaling hierarchical agglomerative clustering to billion-sized datasets.
arXiv preprint arXiv:2105.11653 (2021).

[47] YAO, A. C. Probabilistic computations: Toward a unified measure of complexity (extended abstract). In
18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October
- 1 November 1977 (1977), IEEE Computer Society, pp. 222–227.

[48] YAROSLAVTSEV, G., AND VADAPALLI, A. Massively parallel algorithms and hardness for single-linkage
clustering under lp distances. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 (2018), J. G. Dy and A. Krause,
Eds., vol. 80 of Proceedings of Machine Learning Research, PMLR, pp. 5596–5605.

[49] YUAN, K., CHEN, Y., HUANG, X., ZHANG, Y., PAN, P., XU, Y., AND YIN, W. DecentLaM: Decentral-
ized momentum SGD for large-batch deep training. International Conference on Computer Vision (ICCV)
(2021).

[50] YUAN, K., HUANG, X., CHEN, Y., ZHANG, X., ZHANG, Y., AND PAN, P. Revisiting optimal convergence
rate for smooth and non-convex stochastic decentralized optimization. Advances in Neural Information
Processing Systems (NeurIPS) (2022).

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]

13

(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

14

